1
|
Chen Z, Wei Y, Liang L, Wang X, Peng F, Liang Y, Huang X, Yan K, Gao Y, Li K, Huang X, Jiang X, Chen W. Theaflavin -3,3'-digallate/ethanol: a novel cross-linker for stabilizing dentin collagen. Front Bioeng Biotechnol 2024; 12:1401032. [PMID: 38812911 PMCID: PMC11133682 DOI: 10.3389/fbioe.2024.1401032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024] Open
Abstract
Objectives To study the ability of theaflavin-3,3'-digallate (TF3)/ethanol solution to crosslink demineralized dentin collagen, resist collagenase digestion, and explore the potential mechanism. Methods Fully demineralized dentin blocks were prepared using human third molars that were caries-free. Then, these blocks were randomly allocated into 14 separate groups (n = 6), namely, control, ethanol, 5% glutaraldehyde (GA), 12.5, 25, 50, and 100 mg/ml TF3/ethanol solution groups. Each group was further divided into two subgroups based on crosslinking time: 30 and 60 s. The efficacy and mechanism of TF3's interaction with dentin type I collagen were predicted through molecular docking. The cross-linking, anti-enzymatic degradation, and biomechanical properties were studied by weight loss, hydroxyproline release, scanning/transmission electron microscopy (SEM/TEM), in situ zymography, surface hardness, thermogravimetric analysis, and swelling ratio. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy were utilized to explore its mechanisms. Statistical analysis was performed using one and two-way analysis of variance and Tukey's test. Results TF3/ethanol solution could effectively crosslink demineralized dentin collagen and improve its resistance to collagenase digestion and biomechanical properties (p < 0.05), showing concentration and time dependence. The effect of 25 and 50 mg/ml TF3/ethanol solution was similar to that of 5% GA, whereas the 100 mg/mL TF3/ethanol solution exhibited better performance (p < 0.05). TF3 and dentin type I collagen are mainly cross-linked by hydrogen bonds, and there may be covalent and hydrophobic interactions. Conclusion TF3 has the capability to efficiently cross-link demineralized dentin collagen, enhancing its resistance to collagenase enzymatic hydrolysis and biomechanical properties within clinically acceptable timeframes (30 s/60 s). Additionally, it exhibits promise in enhancing the longevity of dentin adhesion.
Collapse
Affiliation(s)
- Zhiyong Chen
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
- Department of Prosthodontics, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Yingxian Wei
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Likun Liang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Xu Wang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Fangfei Peng
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Yiying Liang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Xin Huang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Kaiqi Yan
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Yunxia Gao
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Kangjing Li
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
- Department of Endodontics, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Xiaoman Huang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Xinglu Jiang
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
- Clinical Laboratory Medicine Department, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Wenxia Chen
- Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
- Department of Endodontics, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Wang R, Li Y, Hass V, Peng Z, Wang Y. Methacrylate-functionalized proanthocyanidins as novel polymerizable collagen cross-linkers - Part 2: Effects on polymerization, microhardness and leaching of adhesives. Dent Mater 2021; 37:1193-1201. [PMID: 33965250 DOI: 10.1016/j.dental.2021.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/05/2021] [Accepted: 04/24/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The aim of the study was to investigate the effects of a novel polymerizable collagen cross-linker methacrylate-functionalized proanthocyanidins (MAPA) on the polymerization, microhardness and leaching of a HEMA-based experimental dental adhesive system. METHODS Three MAPAs were synthesized using different methacrylate (MA) to proanthocyanidins (PA) feeding ratios of 1:2, 1:1, and 2:1 to obtain MAPA-1, MAPA-2, and MAPA-3, respectively. The resulting three MAPAs and PA were added to an experimental adhesive formulated with HEMA and a tri-component photoinitiator system (0.5 wt% CQ/EDMAB/DPIHP) at 1%, 5% and 10% MAPA or PA concentrations (wt%). The adhesive polymerization kinetics was measured continuously in real-time for 10 min using a Fourier-transform infrared spectroscopy (FTIR) with an attenuated total reflectance (ATR) accessory. Degree of conversion (DC) and Vickers microhardness (MH) of cured adhesives were measured at 72 h post-cure. The leaching of cured adhesives in DI water was monitored using UV-vis spectrophotometer. Statistical analysis was performed using one-way and two-way ANOVA, Tukey's (p < 0.05). RESULTS The adhesive formulations with 1%, 5% and 10% MAPAs-1, -2, -3 all generated higher rate of polymerization and 10-min DC than the formulations with PA at the same concentrations. At 72 h post-cure, the adhesive formulation with 5% MAPA-2 exhibited significantly higher DC (99.40%) and more than doubled MH (18.93) values than the formulation with 5% PA (DC = 89.47%, MH = 8.41) and the control (DC = 95.46%, MH = 9.33). Moreover, the cured adhesive with 5% MAPA-2 demonstrated significantly reduced PA leaching in comparison with cured adhesive with 5% PA. SIGNIFICANCE Synthesized MAPA is a novel class of polymerizable collagen cross-linker that not only stabilizes dentin collagen via its PA component, but also improves polymerization, mechanical properties and stability of HEMA-based adhesives via its MA component. By inheriting the benefit while overcoming the drawback of PA, MAPA offers a revolutionary solution for improved bond-strength and longevity of dental restorations.
Collapse
Affiliation(s)
- Rong Wang
- School of Dentistry, University of Missouri - Kansas City, Kansas City, MO, 64108, USA
| | - Yong Li
- Department of Chemistry, University of Missouri - Kansas City, MO, 64110, USA
| | - Viviane Hass
- School of Dentistry, University of Missouri - Kansas City, Kansas City, MO, 64108, USA
| | - Zhonghua Peng
- Department of Chemistry, University of Missouri - Kansas City, MO, 64110, USA.
| | - Yong Wang
- School of Dentistry, University of Missouri - Kansas City, Kansas City, MO, 64108, USA.
| |
Collapse
|
3
|
Shaik TA, Alfonso-Garcia A, Richter M, Korinth F, Krafft C, Marcu L, Popp J. FLIm and Raman Spectroscopy for Investigating Biochemical Changes of Bovine Pericardium upon Genipin Cross-Linking. Molecules 2020; 25:E3857. [PMID: 32854230 PMCID: PMC7503846 DOI: 10.3390/molecules25173857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
Biomaterials used in tissue engineering and regenerative medicine applications benefit from longitudinal monitoring in a non-destructive manner. Label-free imaging based on fluorescence lifetime imaging (FLIm) and Raman spectroscopy were used to monitor the degree of genipin (GE) cross-linking of antigen-removed bovine pericardium (ARBP) at three incubation time points (0.5, 1.0, and 2.5 h). Fluorescence lifetime decreased and the emission spectrum redshifted compared to that of uncross-linked ARBP. The Raman signature of GE-ARBP was resonance-enhanced due to the GE cross-linker that generated new Raman bands at 1165, 1326, 1350, 1380, 1402, 1470, 1506, 1535, 1574, 1630, 1728, and 1741 cm-1. These were validated through density functional theory calculations as cross-linker-specific bands. A multivariate multiple regression model was developed to enhance the biochemical specificity of FLIm parameters fluorescence intensity ratio (R2 = 0.92) and lifetime (R2 = 0.94)) with Raman spectral results. FLIm and Raman spectroscopy detected biochemical changes occurring in the collagenous tissue during the cross-linking process that were characterized by the formation of a blue pigment which affected the tissue fluorescence and scattering properties. In conclusion, FLIm parameters and Raman spectroscopy were used to monitor the degree of cross-linking non-destructively.
Collapse
Affiliation(s)
- Tanveer Ahmed Shaik
- Leibniz Institute of Photonic Technology Jena e.V., Albert-Einstein-Str. 9, 07745 Jena, Germany; (T.A.S.); (F.K.); (C.K.)
| | - Alba Alfonso-Garcia
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616, USA;
| | - Martin Richter
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany;
| | - Florian Korinth
- Leibniz Institute of Photonic Technology Jena e.V., Albert-Einstein-Str. 9, 07745 Jena, Germany; (T.A.S.); (F.K.); (C.K.)
| | - Christoph Krafft
- Leibniz Institute of Photonic Technology Jena e.V., Albert-Einstein-Str. 9, 07745 Jena, Germany; (T.A.S.); (F.K.); (C.K.)
| | - Laura Marcu
- Biomedical Engineering Department, University of California Davis, Davis, CA 95616, USA;
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology Jena e.V., Albert-Einstein-Str. 9, 07745 Jena, Germany; (T.A.S.); (F.K.); (C.K.)
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany;
| |
Collapse
|
4
|
Lopes F, Sousa-Neto M, Akkus A, Silva R, Queiroz AD, Oliveira HD, Roperto R. Effect of different solutions in reversing the damage caused by radiotherapy in dentin structure. Med Oral Patol Oral Cir Bucal 2020; 25:e488-e494. [PMID: 32388525 PMCID: PMC7338064 DOI: 10.4317/medoral.23499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 03/02/2020] [Indexed: 12/02/2022] Open
Abstract
Background Previous studies have shown that radiotherapy of the head and neck region can cause direct changes in dental structure. This study evaluated the effect of different solutions on the dentin chemical composition and collagen structure of irradiated dentin.
Material and Methods Sixty maxillary canines were distributed in 2 groups (n=30): non-irradiated and irradiated (radiotherapy: X-rays of 6 MV in 30 cycles of 2 Gy to 60 Gy). The teeth were sectioned, sanded, and polished to obtain 3x3x2 mm fragments, which were redistributed in 3 subgroups (n=10) according to the treatment employed: chlorhexidine 2% (CL), chitosan 0.2% (QT), and 0.5 M carbodiimide (EDC). The samples were analyzed in FTIR at time zero (T0-control) and after 1 (T1), 3 (T3), and 5 (T5) minutes of immersion in the tested solutions. The data for the areas of the carbonate (C), amide I (AI) bands, and the ratio between the areas of the amide III/proline and hydroxyproline (AIII/PH) bands were analyzed using ANOVA and Tukey test (α=5%).
Results QT showed lower C values at T1, T3, and T5 (P<0.0001), presenting lower values when compared to CL and EDC subgroups (P<0.05). AI values at T3 and T5 were higher than T0-control and T1, independently of the radiotherapy and dentin treatment factors (P<0.05). At T0-control, the AIII/PH ratio was lower in the irradiated group (P<0.05), whereas the EDC treatment at T1, T3, and T5 and QT at T3 and T5 increased these values (P<0.05), making them similar to non-irradiated subgroups (P>0.05).
Conclusions Radiotherapy changes the secondary structure of collagen, and EDC was able to restore collagen integrity after 1 minute of immersion, without changing dentin inorganic composition. Key words:Radiotherapy, collagen, dentin, FTIR, chemical composition.
Collapse
Affiliation(s)
- F Lopes
- Department of Comprehensive Care School of Dental Medicine Case Western Reserve University Cleveland, OH, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Elagin V, Kuznetsova D, Grebenik E, Zolotov DA, Istranov L, Zharikova T, Istranova E, Polozova A, Reunov D, Kurkov A, Shekhter A, Gafarova ER, Asadchikov V, Borisov SM, Dmitriev RI, Zagaynova E, Timashev P. Multiparametric Optical Bioimaging Reveals the Fate of Epoxy Crosslinked Biomeshes in the Mouse Subcutaneous Implantation Model. Front Bioeng Biotechnol 2020; 8:107. [PMID: 32140465 PMCID: PMC7042178 DOI: 10.3389/fbioe.2020.00107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Biomeshes based on decellularized bovine pericardium (DBP) are widely used in reconstructive surgery due to their wide availability and the attractive biomechanical properties. However, their efficacy in clinical applications is often affected by the uncontrolled immunogenicity and proteolytic degradation. To address this issue, we present here in vivo multiparametric imaging analysis of epoxy crosslinked DBPs to reveal their fate after implantation. We first analyzed the structure of the crosslinked DBP using scanning electron microscopy and evaluated proteolytic stability and cytotoxicity. Next, using combination of fluorescence and hypoxia imaging, X-ray computed microtomography and histology techniques we studied the fate of DBPs after subcutaneous implantation in animals. Our approach revealed high resistance to biodegradation, gradual remodeling of a surrounding tissue forming the connective tissue capsule and calcification of crosslinked DBPs. These changes were concomitant to the development of hypoxia in the samples within 3 weeks after implantation and subsequent induction of angiogenesis and vascularization. Collectively, presented approach provides new insights on the transplantation of the epoxy crosslinked biomeshes, the risks associated with its applications in soft-tissue reconstruction and can be transferred to studies of other types of implants.
Collapse
Affiliation(s)
- Vadim Elagin
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Daria Kuznetsova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Ekaterina Grebenik
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Denis A Zolotov
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics" Russian Academy of Sciences, Moscow, Russia
| | - Leonid Istranov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tatiana Zharikova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elena Istranova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anastasia Polozova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Dmitry Reunov
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alexandr Kurkov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Anatoly Shekhter
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elvira R Gafarova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Victor Asadchikov
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics" Russian Academy of Sciences, Moscow, Russia
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria
| | - Ruslan I Dmitriev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Elena Zagaynova
- Institute of Experimental Oncology and Biomedical Technologies, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.,Institute of Photonic Technologies, Federal Scientific Research Centre "Crystallography and Photonics" Russian Academy of Sciences, Moscow, Russia.,Department of Polymers and Composites, N.N. Semenov Institute of Chemical Physics, Moscow, Russia
| |
Collapse
|
6
|
Tran XV, Salehi H, Truong MT, Sandra M, Sadoine J, Jacquot B, Cuisinier F, Chaussain C, Boukpessi T. Reparative Mineralized Tissue Characterization after Direct Pulp Capping with Calcium-Silicate-Based Cements. MATERIALS 2019; 12:ma12132102. [PMID: 31261905 PMCID: PMC6650868 DOI: 10.3390/ma12132102] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022]
Abstract
Nowadays, the preservation of dental pulp vitality is an integral part of our daily therapies. The success of these treatments depends on the clinical situation as well as the biomaterials used. Mineral Trioxide aggregate and BiodentineTM are commonly used as pulp capping materials. One objective of vital pulp therapy is the repair/regeneration of the pulp. In addition to the initial inflammatory status of the pulp, the nature and quality of the new mineralized tissue obtained after pulp capping directly influence the success of the treatment. In order to characterize the reparative dentin, in the current study, the chemical composition and microstructure of the dentin bridge after direct pulp capping using Biodentine™ and mineral trioxide aggregate (MTA) was studied by using Raman microspectroscopy and scanning electron microscopy, respectively. The results showed that the reparative dentin bridge observed in both groups presented dentin tubules and chemical composition similar to primary dentin. With the limitations of this study, the calcium-silicate-based cements used as pulp capping materials provide an optimal environment for pulp healing, resulting in a reparative dentin resembling on certain points of the primary dentin and the regeneration of the pulp.
Collapse
Affiliation(s)
- Xuan Vinh Tran
- EA 2496, Laboratory of Orofacial Pathologies, Imaging and Biotherapies, Dental School, Paris Descartes University, Sorbonne Paris Cite, 1 rue Maurice Arnoux, 92120 Montrouge, France.
- Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City (UMP), 217 Hong Bang street, Ward 11, Dist 5, Ho Chi Minh City, Viet Nam.
| | - Hamideh Salehi
- EA4203, Laboratory BioHealth and Nanosciences, Dental school, Montpellier University, avenue du Pr Jean-Louis Viala, CEDEX 5, 34193 Montpellier, France
| | - Minh Tam Truong
- Thanh Vu Medic Bac Lieu Hospital; Highway 1 bypass, Ward 7, Bac Lieu City, Bac Lieu province, Viet Nam
| | - Minic Sandra
- EA 2496, Laboratory of Orofacial Pathologies, Imaging and Biotherapies, Dental School, Paris Descartes University, Sorbonne Paris Cite, 1 rue Maurice Arnoux, 92120 Montrouge, France
| | - Jeremy Sadoine
- EA 2496, Laboratory of Orofacial Pathologies, Imaging and Biotherapies, Dental School, Paris Descartes University, Sorbonne Paris Cite, 1 rue Maurice Arnoux, 92120 Montrouge, France
| | - Bruno Jacquot
- EA4203, Laboratory BioHealth and Nanosciences, Dental school, Montpellier University, avenue du Pr Jean-Louis Viala, CEDEX 5, 34193 Montpellier, France
| | - Frédéric Cuisinier
- EA4203, Laboratory BioHealth and Nanosciences, Dental school, Montpellier University, avenue du Pr Jean-Louis Viala, CEDEX 5, 34193 Montpellier, France
| | - Catherine Chaussain
- EA 2496, Laboratory of Orofacial Pathologies, Imaging and Biotherapies, Dental School, Paris Descartes University, Sorbonne Paris Cite, 1 rue Maurice Arnoux, 92120 Montrouge, France
- AP-HP Department of odontology, Charles Foix and Bretonneau Hospitals, 12 avenue de la République, 94200, Ivry-sur-Seine, France and 12 rue Carpeaux, 75018 Paris, France
| | - Tchilalo Boukpessi
- EA 2496, Laboratory of Orofacial Pathologies, Imaging and Biotherapies, Dental School, Paris Descartes University, Sorbonne Paris Cite, 1 rue Maurice Arnoux, 92120 Montrouge, France.
- AP-HP Department of odontology, Charles Foix and Bretonneau Hospitals, 12 avenue de la République, 94200, Ivry-sur-Seine, France and 12 rue Carpeaux, 75018 Paris, France.
| |
Collapse
|
7
|
Zn-containing polymer nanogels promote cervical dentin remineralization. Clin Oral Investig 2018; 23:1197-1208. [PMID: 29971511 DOI: 10.1007/s00784-018-2548-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Nanogels designing for effective treatment of eroded cervical dentin lesions. MATERIALS AND METHODS Polymethylmetacrylate-based nanoparticles (NPs) were doxycycline (D), calcium, or zinc loaded. They were applied on eroded cervical dentin. Treated surfaces were characterized morphologically by atomic force and scanning electron microscopy, mechanically probed by a nanoindenter to test nanohardness and Young's modulus, and chemically analyzed by Raman spectroscopy at 24 h and 7 days of storage. Data were submitted to ANOVA and Student-Newman-Keuls multiple comparisons tests. RESULTS Dentin treated with Zn-NPs attained the highest nanomechanical properties, mineralization, and crystallinity among groups. Nanoroughness was lower in Zn-treated surfaces in comparison to dentin treated with undoped gels. Dentin treated with Ca-NPs created the minimal calcification at the surface and showed the lowest Young's modulus at peritubular dentin. Intertubular dentin appeared remineralized. Dentinal tubules were empty in samples treated with D-NPs, partially occluded in cervical dentin treated with undoped NPs and Ca-NPs, and mineral covered when specimens were treated with Zn-NPs. CONCLUSIONS Zn-loaded NPs permit functional remineralization of eroded cervical dentin. Based on the tested nanomechanical and chemical properties, Zn-based nanogels are suitable for dentin remineralization. CLINICAL RELEVANCE The ability of zinc-loaded nanogels to promote dentin mineralization may offer new strategies for regeneration of eroded cervical dentin and effective treatment of dentin hypersensitivity.
Collapse
|
8
|
Slimani A, Nouioua F, Desoutter A, Levallois B, Cuisinier FJG, Tassery H, Terrer E, Salehi H. Confocal Raman mapping of collagen cross-link and crystallinity of human dentin-enamel junction. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-8. [PMID: 28822139 DOI: 10.1117/1.jbo.22.8.086003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
The separation zone between enamel and dentin [dentin-enamel junction (DEJ)] with different properties in biomechanical composition has an important role in preventing crack propagation from enamel to dentin. The understanding of the chemical structure (inorganic and organic components), physical properties, and chemical composition of the human DEJ could benefit biomimetic materials in dentistry. Spatial distribution of calcium phosphate crystallinity and the collagen crosslinks near DEJ were studied using confocal Raman microscopy and calculated by different methods. To obtain collagen crosslinking, the ratio of two peaks 1660 cm-1 over 1690 cm-1 (amide I bands) is calculated. For crystallinity, the inverse full-width at half maximum of phosphate peak at 960 cm-1, and the ratio of two Raman peaks of phosphate at 960/950 cm-1 is provided. In conclusion, the study of chemical and physical properties of DEJ provides many benefits in the biomaterial field to improve the synthesis of dental materials in respect to the natural properties of human teeth. Confocal Raman microscopy as a powerful tool provides the molecular structure to identify the changes along DEJ and can be expanded for other mineralized tissues.
Collapse
Affiliation(s)
- Amel Slimani
- Université Montpellier, Laboratoire de Bioingénierie et Nanosciences, Montpellier, France
| | - Fares Nouioua
- Université Montpellier, Laboratoire de Bioingénierie et Nanosciences, Montpellier, France
| | - Alban Desoutter
- Université Montpellier, Laboratoire de Bioingénierie et Nanosciences, Montpellier, France
| | - Bernard Levallois
- Université Montpellier, Laboratoire de Bioingénierie et Nanosciences, Montpellier, France
| | - Frédéric J G Cuisinier
- Université Montpellier, Laboratoire de Bioingénierie et Nanosciences, Montpellier, France
| | - Hervé Tassery
- Université Montpellier, Laboratoire de Bioingénierie et Nanosciences, Montpellier, France
- Université Aix-Marseille, Department of Restorative Dentistry, Marseille, France
| | - Elodie Terrer
- Université Montpellier, Laboratoire de Bioingénierie et Nanosciences, Montpellier, France
- Université Aix-Marseille, Department of Restorative Dentistry, Marseille, France
| | - Hamideh Salehi
- Université Montpellier, Laboratoire de Bioingénierie et Nanosciences, Montpellier, France
| |
Collapse
|
9
|
Influence of EDC on Dentin-Resin Shear Bond Strength and Demineralized Dentin Thermal Properties. MATERIALS 2016; 9:ma9110920. [PMID: 28774040 PMCID: PMC5457252 DOI: 10.3390/ma9110920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/03/2016] [Accepted: 10/31/2016] [Indexed: 11/17/2022]
Abstract
This study aimed to evaluate the bonding strength and thermal properties of demineralized dentin with and without EDC treatment. Sound human molars were randomly divided into seven treatment groups (n = 20): control, 80% ethanol, and five EDC ethanol solutions (0.01–1.0 M). In each group, 16 samples were used for bond strength assessment and 4 samples were used for scanning electron microscopy (SEM) analysis. A further 70 intact molars were used to obtain a fine demineralized dentin powder, treated with the same solutions and were evaluated the crosslink degree by ninhydrin test and denaturation temperature (Td) by differential scanning calorimetry. EDC-treated specimens (<1.0 M) had a higher bond strength, especially 0.3 and 0.5 M group, than the control counterpart. There was a significant drop in bond strength of 1.0 M EDC group. SEM revealed a homogeneous and regular interface under all treatments. EDC treatment significantly increased the demineralized dentin cross-link degree and Td compared with the control and ethanol treatments. The 0.3 and 0.5 M treatments showed the highest cross-link degree and Td. In terms of mechnical and theramal properties consideration, 0.3 and 0.5 M EDC solutions may be favorable for when applied with etch-and-rinse adhesives, but it is still needed further long-term study.
Collapse
|
10
|
On modeling and nanoanalysis of caries-affected dentin surfaces restored with Zn-containing amalgam and in vitro oral function. Biointerphases 2015; 10:041004. [DOI: 10.1116/1.4933243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Self-etching zinc-doped adhesives improve the potential of caries-affected dentin to be functionally remineralized. Biointerphases 2015; 10:031002. [DOI: 10.1116/1.4926442] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Daood U, Swee Heng C, Neo Chiew Lian J, Fawzy AS. In vitro analysis of riboflavin-modified, experimental, two-step etch-and-rinse dentin adhesive: Fourier transform infrared spectroscopy and micro-Raman studies. Int J Oral Sci 2015; 7:110-24. [PMID: 25257880 PMCID: PMC4817549 DOI: 10.1038/ijos.2014.49] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2014] [Indexed: 11/11/2022] Open
Abstract
To modify two-step experimental etch-and-rinse dentin adhesive with different concentrations of riboflavin and to study its effect on the bond strength, degree of conversion, along with resin infiltration within the demineralized dentin substrate, an experimental adhesive-system was modified with different concentrations of riboflavin (m/m, 0, 1%, 3%, 5% and 10%). Dentin surfaces were etched with 37% phosphoric acid, bonded with respective adhesives, restored with restorative composite–resin, and sectioned into resin–dentin slabs and beams to be stored for 24 h or 9 months in artificial saliva. Micro-tensile bond testing was performed with scanning electron microscopy to analyse the failure of debonded beams. The degree of conversion was evaluated with Fourier transform infrared spectroscopy (FTIR) at different time points along with micro-Raman spectroscopy analysis. Data was analyzed with one-way and two-way analysis of variance followed by Tukey's for pair-wise comparison. Modification with 1% and 3% riboflavin increased the micro-tensile bond strength compared to the control at 24 h and 9-month storage with no significant differences in degree of conversion (P<0.05). The most predominant failure mode was the mixed fracture among all specimens except 10% riboflavin-modified adhesive specimens where cohesive failure was predominant. Raman analysis revealed that 1% and 3% riboflavin adhesives specimens showed relatively higher resin infiltration. The incorporation of riboflavin in the experimental two-step etch-and-rinse adhesive at 3% (m/m) improved the immediate bond strengths and bond durability after 9-month storage in artificial saliva without adversely affecting the degree of conversion of the adhesive monomers and resin infiltration.
Collapse
Affiliation(s)
- Umer Daood
- Discipline of Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Chan Swee Heng
- Laboratory technologist, Discipline of Oral Sciences, Biomaterials and Biophotonics, National University of Singapore, Singapore, Singapore
| | - Jennifer Neo Chiew Lian
- Discipline of Prosthodontics, Operative Dentistry and Endodontics, National University of Singapore, Singapore, Singapore
| | - Amr S Fawzy
- Discipline of Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Liu Y, Chen M, Yao X, Xu C, Zhang Y, Wang Y. Enhancement in dentin collagen's biological stability after proanthocyanidins treatment in clinically relevant time periods. Dent Mater 2013; 29:485-92. [PMID: 23434233 DOI: 10.1016/j.dental.2013.01.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/23/2012] [Accepted: 01/30/2013] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate whether proanthocyanidins (PA) is capable of improving dentin collagen's biological stability through cross-linking within time periods that are clinically relevant. MATERIALS AND METHODS Demineralized dentin collagen slabs were treated with 3.75 wt% PA solution for 10s, 1 min, 30 min, 60 min, 120 min, 360 min, and 720 min, respectively. The resultant cross-linked collagen samples were subject to digestion with 0.1% collagenase at 37°C for 2h, 6h, 12h, 24h, 36 h, and 48 h. The percentage of weight loss after digestion was calculated to evaluate PA-treated collagen's resistance toward enzymatic degradation. Fourier-transformed infrared (FTIR) spectroscopy was used to probe evidences of PA-collagen interactions after various periods of PA treatment. RESULTS The collagenase digestion assay suggests that PA treatment as short as 10s can enhance collagen's resistance toward enzymatic challenge. The FTIR spectroscopy further verifies that PA is indeed incorporated into collagen regardless of treatment time, possibly via a mechanism involving the chemical interactions between PA and collagen. SIGNIFICANCE This study confirmed that PA can effectively cross-link collagen and improve its biological stability in time periods as short as 10s. The use of PA as a priming agent is therefore clinically feasible and is a promising approach to improving the durability of current dentin bonding systems.
Collapse
Affiliation(s)
- Yi Liu
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | | | | | | | | | | |
Collapse
|
14
|
Liu Y, Wang Y. Effect of proanthocyanidins and photo-initiators on photo-polymerization of a dental adhesive. J Dent 2013; 41:71-9. [PMID: 23079281 PMCID: PMC3570613 DOI: 10.1016/j.jdent.2012.10.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/26/2012] [Accepted: 10/06/2012] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVES To evaluate the effects of proanthocyanidins (PA) and photoinitiator type on the degree of conversion (DC) and polymerization rate (PR) of a model dental adhesive. METHODS Three types of photo-initiation systems were introduced into the Bis-GMA/HEMA co-monomer mixture, resulting in four resin formulations including CQ/A (0.5wt% CQ and EDMAB), CQ/A/I-1 (0.5wt% CQ, EDMAB and DPIHP), CQ/A/I-2 (1.0wt% CQ, EDMAB and DPIHP), and TPO (2.1wt% TPO). For each resin formulation, adhesives containing 0%, 2.5%, 5% and 10% of PA with respect to the weight of resin were produced after mixing the resin with various amount of PA/ethanol solution. When light-cured, the RP and DC of each adhesive was determined using ATR-FTIR spectroscopy. RESULTS Across and within the initiator groups, the DC followed the general trend of CQ/A2.5-PA>5-PA>10-PA, respectively. The change of PR with respect to photo-initiation systems and PA content was in a similar but less pronounced pattern. CONCLUSION PA hampered the polymerization of all adhesives regardless of photoinitiators used. The initiator formulations CQ/A/I-2 and TPO are better fit for PA-containing adhesives, both leading to >65% DC in the presence of 5% PA. CLINICAL SIGNIFICANCE The inclusion of PA in dental adhesives has been limited by its interference with the light-curing of adhesive resins. This study found photo-initiation formulations that could maintain a satisfactory degree of monomer conversion while a significant amount of PA is incorporated.
Collapse
Affiliation(s)
- Yi Liu
- University of Missouri-Kansas City, School of Dentistry, Kansas City, MO 64108, USA
| | | |
Collapse
|
15
|
Green B, Yao X, Ganguly A, Xu C, Dusevich V, Walker MP, Wang Y. Grape seed proanthocyanidins increase collagen biodegradation resistance in the dentin/adhesive interface when included in an adhesive. J Dent 2010; 38:908-15. [PMID: 20709136 DOI: 10.1016/j.jdent.2010.08.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/04/2010] [Accepted: 08/06/2010] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVES Contemporary methods of dentin bonding could create hybrid layers (HLs) containing voids and exposed, demineralised collagen fibres. Proanthocyanidins (PA) have been shown to cross-link and strengthen demineralised dentin collagen, but their effects on collagen degradation within the HL have not been widely studied. The purpose of this study was to compare the morphological differences of HLs created by BisGMA/HEMA model adhesives with and without the addition of grape seed extract PA under conditions of enzymatic collagen degradation. METHODS Model adhesives formulated with and without 5% PA were bonded to the acid etched dentin. 5-μm-thick sections cut from the bonded specimens were stained with Goldner's trichrome. The specimens were then exposed to 0.1% collagenase solution for 0, 1, or 6 days. Following collagenase treatment, the specimens were analysed with SEM/TEM. RESULTS Staining did not reveal a difference in the HLs created with the two adhesives. SEM showed the presence of intact collagen fibrils in all collagenase treatment conditions for specimens bonded with adhesive containing PA. These integral collagen fibrils were not observed in the specimens bonded with adhesive without PA after the same collagenase treatment. TEM confirmed that the specimens containing PA still showed normal collagen fibril organisation and dimensions after treatment with collagenase solution. In contrast, disorganised collagen fibrils in the interfacial zone lacked the typical cross-banding of normal collagen after collagenase treatment for specimens without PA. CONCLUSIONS The presence of grape seed extract PA in dental adhesives may inhibit the biodegradation of unprotected collagen fibrils within the HL.
Collapse
Affiliation(s)
- Bradley Green
- University of Missouri-Kansas City School of Dentistry, 650 E. 25th St., Kansas City, MO 64108, USA
| | | | | | | | | | | | | |
Collapse
|