1
|
Weerarathne P, Maker R, Huang C, Taylor B, Cowan SR, Hyatt J, Tamil Selvan M, Shatnawi S, Thomas JE, Meinkoth JH, Scimeca R, Birkenheuer A, Liu L, Reichard MV, Miller CA. A Novel Vaccine Strategy to Prevent Cytauxzoonosis in Domestic Cats. Vaccines (Basel) 2023; 11:573. [PMID: 36992157 PMCID: PMC10058880 DOI: 10.3390/vaccines11030573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Cytauxzoonosis is caused by Cytauxzoon felis (C. felis), a tick-borne parasite that causes severe disease in domestic cats in the United States. Currently, there is no vaccine to prevent this fatal disease, as traditional vaccine development strategies have been limited by the inability to culture this parasite in vitro. Here, we used a replication-defective human adenoviral vector (AdHu5) to deliver C. felis-specific immunogenic antigens and induce a cell-mediated and humoral immune response in cats. Cats (n = 6 per group) received either the vaccine or placebo in two doses, 4 weeks apart, followed by experimental challenge with C. felis at 5 weeks post-second dose. While the vaccine induced significant cell-mediated and humoral immune responses in immunized cats, it did not ultimately prevent infection with C. felis. However, immunization significantly delayed the onset of clinical signs and reduced febrility during C. felis infection. This AdHu5 vaccine platform shows promising results as a vaccination strategy against cytauxzoonosis.
Collapse
Affiliation(s)
- Pabasara Weerarathne
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Rebekah Maker
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Chaoqun Huang
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Brianne Taylor
- Oklahoma Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shannon R. Cowan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Julia Hyatt
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Miruthula Tamil Selvan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shoroq Shatnawi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jennifer E. Thomas
- Department of Clinical Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - James H. Meinkoth
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ruth Scimeca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Adam Birkenheuer
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Lin Liu
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Mason V. Reichard
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Craig A. Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
2
|
Refaat L, Abdellateif MS, Bayoumi A, Khafagy M, Kandeel EZ, Nooh HA. Detection of abnormal lymphocytes in the peripheral blood of COVID-19 cancer patients: diagnostic and prognostic possibility. Hematology 2022; 27:745-756. [PMID: 35724413 DOI: 10.1080/16078454.2022.2089830] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Peripheral morphological abnormalities play important roles in the early diagnosis and prognosis of the COVID-19 infection. The aim of the present study was to assess the morphological alterations in the peripheral blood (PB) cells in patients with COVID-19 infection, with special attention to a different group of atypical lymphocytes that had been observed in the PB of COVID-19 cancer and non-cancer patients. METHODS The PB cells were examined in 84 COVID-19 positive cancer patients, and 20 COVID-19 positive non-cancer patients, compared to 30 healthy normal controls. The data were correlated to the disease severity, patients' clinicopathological features, and outcomes. RESULTS There was an increased incidence of giant platelets, neutrophils shifting left, and abnormal monocytes in the COVID-19 positive cancer and non-cancer patients compared to the control group (P < .001, P < .001 and P = .014; respectively). Neutrophils with abnormal toxic granulations, Pseudo Pelger-Heut abnormality, and reactive lymphocytes were significantly increased in COVID-19 cancer patients compared to COVID-19 non-cancer patients and the control group (P = .001, P < .001, and P < .001; respectively). An abnormal form of lymphocytes' morphological changes (Covicytes) was significantly detected in COVID-19 cancer patients [60.7% (51/84)], and in COVID-19 non-cancer patients [55% (11/20)], while it was absent in the normal controls [0.0% (0/30), P < 0.001]. The presence of the Covicytes is associated significantly with a better prognosis in cancer and non-cancer COVID-19 patients. CONCLUSION Covicytes could be a useful marker supporting the diagnosis of SARS-COV-2 infection, and it is associated with a favorable prognosis.
Collapse
Affiliation(s)
- Lobna Refaat
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ahmed Bayoumi
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Medhat Khafagy
- Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Eman Z Kandeel
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Hend A Nooh
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
All that glitters is not LGL Leukemia. Leukemia 2022; 36:2551-2557. [PMID: 36109593 DOI: 10.1038/s41375-022-01695-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/09/2022]
Abstract
LGL disorders are rare hematological neoplasias with remarkable phenotypic, genotypic and clinical heterogeneity. Despite these constraints, many achievements have been recently accomplished in understanding the aberrant pathways involved in the LGL leukemogenesis. In particular, compelling evidence implicates STAT signaling as a crucial player of the abnormal cell survival. As interest increases in mapping hematological malignancies by molecular genetics, the relevance of STAT gene mutations in LGL disorders has emerged thanks to their association with discrete clinical features. STAT3 and STAT5b mutations are recognized as the most common gain-of-function genetic lesions up to now identified in T-LGL leukemia (T-LGLL) and are actually regarded as the hallmark of this disorder, also contributing to further refine its subclassification. However, from a clinical perspective, the relationships between T-LGLL and other borderline and overlapping conditions, including reactive cell expansions, clonal hematopoiesis of indeterminate potential (CHIP) and unrelated clonopathies are not fully established, sometimes making the diagnosis of T cell malignancy challenging. In this review specifically focused on the topic of clonality of T-LGL disorders we will discuss the rationale of the appropriate steps to aid in distinguishing LGLL from its mimics, also attempting to provide new clues to stimulate further investigations designed to move this field forward.
Collapse
|
4
|
Jaensch SM, Hayward DA, Boyd SP. Clinicopathologic and immunophenotypic features in dogs with presumptive large granular lymphocyte leukaemia. Aust Vet J 2022; 100:527-532. [DOI: 10.1111/avj.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Affiliation(s)
- SM Jaensch
- Vetnostics 60 Waterloo Road, North Ryde New South Wales 2113 Australia
| | - DA Hayward
- Vetnostics 60 Waterloo Road, North Ryde New South Wales 2113 Australia
| | - SP Boyd
- QML Vetnostics 11 Riverview Place, Metroplex on Gateway, Murarrie Queensland 4172 Australia
| |
Collapse
|
5
|
Defining TCRγδ lymphoproliferative disorders by combined immunophenotypic and molecular evaluation. Nat Commun 2022; 13:3298. [PMID: 35676278 PMCID: PMC9177852 DOI: 10.1038/s41467-022-31015-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
Tγδ large granular lymphocyte leukemia (Tγδ LGLL) is a rare lymphoproliferative disease, scantily described in literature. A deep-analysis, in an initial cohort of 9 Tγδ LGLL compared to 23 healthy controls, shows that Tγδ LGLL dominant clonotypes are mainly public and exhibit different V-(D)-J γ/δ usage between patients with symptomatic and indolent Tγδ neoplasm. Moreover, some clonotypes share the same rearranged sequence. Data obtained in an enlarged cohort (n = 36) indicate the importance of a combined evaluation of immunophenotype and STAT mutational profile for the correct management of patients with Tγδ cell expansions. In fact, we observe an association between Vδ2/Vγ9 clonality and indolent course, while Vδ2/Vγ9 negativity correlates with symptomatic disease. Moreover, the 7 patients with STAT3 mutations have neutropenia and a CD56-/Vδ2- phenotype, and the 3 cases with STAT5B mutations display an asymptomatic clinical course and CD56/Vδ2 expression. All these data indicate that biological characterization is needed for Tγδ-cell neoplasm definition. Tγδ large granular lymphocyte leukemia (Tγδ LGLL) is a rare lymphoproliferative neoplasm characterized by the expansion of T large granular lymphocytes expressing γδ TCR. Here, based on deep sequencing analysis of the clonotype repertoire, the authors show that leukemic Tγδ cells are characterized by recurrent public clonotypes that are diversified between symptomatic and asymptomatic patients.
Collapse
|
6
|
Jain S, Meena R, Kumar V, Kaur R, Tiwari U. Comparison of haematologic abnormalities between hospitalized Coronavirus disease 2019 (COVID-19) positive and negative patients with correlation to disease severity and outcome. J Med Virol 2022; 94:3757-3767. [PMID: 35467029 PMCID: PMC9088404 DOI: 10.1002/jmv.27793] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 01/08/2023]
Abstract
Peripheral blood smear (PBS) changes in coronavirus disease 2019 (COVID‐19) are diverse and have been reported in the literature in the form of case series with relatively smaller sample sizes and with a handful of studies showing the association between PBS and clinical severity. This study aims to highlight the numerical and morphological changes in peripheral blood of COVID‐19 patients and to compare the same in intensive care unit (ICU) and non‐ICU settings as well as with disease severity and outcome. The study included 80 COVID‐19 positive (41 ICU and 39 non‐ICU) patients and 32 COVID‐19 negative ICU patients. Complete blood counts (CBCs) and PBS findings were studied and scored by two pathologists blindfolded. Absolute lymphocyte count (ALC) and absolute eosinophil count (AEC) were significantly lower in COVID‐19 positive cases as compared to the COVID‐19 negative group (p = 0.001 and p = 0.001). COVID‐19 positive group showed significant left myeloid shift (p = 0.021), Dohle bodies (p = 0.025) with significant prominence of acquired pseudo–Pelger–Huët anomaly, ring‐shaped neutrophils, monolobate neutrophils, and plasmacytoid lymphocytes as compared to control group (p = 0.000, p = 0.009, p = 0.046, and p = 0.011, respectively). The overall mean white blood cell (WBC) counts were higher in COVID‐19 positive ICU patients as compared to non‐ICU COVID patients with significant shift to left, presence of ring‐shaped neutrophils, monocyte vacuolation, and large granular lymphocytes (p = 0.017, p = 0.007, p = 0.008, and p = 0.004, respectively). Deceased group showed significantly higher WBC count (p = 0.018) with marked neutrophilia (p = 0.024) and toxic granulation (p = 0.01) with prominence of monocyte vacuolization, ring‐shaped neutrophils, large granular lymphocytes, and reactive lymphocytes. Parameters like myeloid left shift, ring‐shaped neutrophils, monocyte vacuolation, and large granular lymphocytes emerged as highly sensitive markers of disease severity. Therefore, serial CBC with comprehensive PBS analysis should be done in every newly diagnosed hospitalized COVID‐19 patient which potentially predicts the course of the disease.
Collapse
Affiliation(s)
- Swasti Jain
- Department of Pathology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Rachana Meena
- Department of Pathology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Vijay Kumar
- Department of Pathology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Ranvinder Kaur
- Department of Anaesthesia and Intensive Care, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Umesh Tiwari
- Department of Pathology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| |
Collapse
|
7
|
Isolated anemia in patients with large granular lymphocytic leukemia (LGLL). Blood Cancer J 2022; 12:30. [PMID: 35194022 PMCID: PMC8863822 DOI: 10.1038/s41408-022-00632-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 11/08/2022] Open
Abstract
Patients with large granular lymphocytic leukemia (LGLL) frequently present with neutropenia. When present, anemia is usually accompanied by neutropenia and/or thrombocytopenia and isolated anemia is uncommon. We evaluated a cohort of 244 LGLL patients spanning 15 years and herein report the clinicopathologic features of 34 (14%) with isolated anemia. The patients with isolated anemia showed a significantly male predominance (p = 0.001), a lower level of hemoglobulin (p < 0.0001) and higher MCV (p = 0.017) and were less likely to have rheumatoid arthritis (p = 0.023) compared to the remaining 210 patients. Of the 34 LGLL patients with isolated anemia, 13 (38%) presented with pure red cell aplasia (PRCA), markedly decreased reticulocyte count and erythroid precursors, and more transfusion-dependence when compared to non-PRCA patients. There was no other significant clinicopathologic difference between PRCA and non-PRCA patients. 32 patients were followed for a median duration of 51 months (6-199). 24 patients were treated (11/11 PRCA and 13/21 non-PRCA patients, p < 0.02). The overall response rate to first-line therapy was 83% [8/11 (72.7%) for PRCA, 12/13 (92.3%) for non-PRCA], including 14 showing complete response and 6 showing partial response with a median response duration of 48 months (12-129). Half of non-PRCA patients who were observed experienced progressive anemia. During follow-up, no patients developed neutropenia; however, 5/27 (18.5%) patients developed thrombocytopenia. No significant difference in overall survival was noted between PRCA and non-PRCA patients. In summary, this study demonstrates the unique features of LGLL with isolated anemia and underscores the importance of recognizing LGLL as a potential cause of isolated anemia, which may benefit from disease-specific treatment. LGLL patients with PRCA were more likely to require treatment but demonstrated similar clinicopathologic features, therapeutic responses, and overall survival compared to isolated anemia without PRCA, suggesting PRCA and non-PRCA of T-LGLL belong to a common disease spectrum.
Collapse
|
8
|
Neutropenia and Large Granular Lymphocyte Leukemia: From Pathogenesis to Therapeutic Options. Cells 2021; 10:cells10102800. [PMID: 34685780 PMCID: PMC8534439 DOI: 10.3390/cells10102800] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/13/2023] Open
Abstract
Large granular lymphocyte leukemia (LGLL) is a rare lymphoproliferative disorder characterized by the clonal expansion of cytotoxic T-LGL or NK cells. Chronic isolated neutropenia represents the clinical hallmark of the disease, being present in up to 80% of cases. New advances were made in the biological characterization of neutropenia in these patients, in particular STAT3 mutations and a discrete immunophenotype are now recognized as relevant features. Nevertheless, the etiology of LGLL-related neutropenia is not completely elucidated and several mechanisms, including humoral abnormalities, bone marrow infiltration/substitution and cell-mediated cytotoxicity might cooperate to its pathogenesis. As a consequence of the multifactorial nature of LGLL-related neutropenia, a targeted therapeutic approach for neutropenic patients has not been developed yet; moreover, specific guidelines based on prospective trials are still lacking, thus making the treatment of this disorder a complex and challenging task. Immunosuppressive therapy represents the current, although poorly effective, therapeutic strategy. The recent identification of a STAT3-mediated miR-146b down-regulation in neutropenic T-LGLL patients emphasized the pathogenetic role of STAT3 activation in neutropenia development. Accordingly, JAK/STAT3 axis inhibition and miR-146b restoration might represent tempting strategies and should be prospectively evaluated for the treatment of neutropenic LGLL patients.
Collapse
|
9
|
Blood cell morphology and COVID-19 clinical course, severity, and outcome. J Hematop 2021; 14:221-228. [PMID: 34249171 PMCID: PMC8255335 DOI: 10.1007/s12308-021-00459-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/18/2021] [Indexed: 12/22/2022] Open
Abstract
COVID-19 infection affects different organs of the human body, and blood cells are not an exception. Peripheral blood smear (PBS) is a simple and available method to investigate blood cells’ morphologic changes. In this study, we aimed to determine the morphologic changes and abnormalities of COVID-19 patients and their relation to the patients’ clinical course. In this prospective cross-sectional study, we included 89 PCR-positive COVID-19 patients. A pathologist examined the PBS findings of these patients. The patients’ clinical course, including severity, outcome, intubation, and ICU admission, was extracted from their profiles. The statistical analyses were done to find out the relation between PBS findings and patients’ clinical course. Results showed that smudge cells are the most frequent abnormality in our participants. Other findings were schistocyte; atypical lymphocytes; and increased large granular lymphocytes, shift to left of granulocytes, giant platelets, and leukoerythroblastic reaction. Our results did not show any statistically significant relationship between PBS findings and their clinical course. Although other studies suggested PBS as a possible predictive tool for COVID-19 disease, our study showed that these findings could not predict nor relate to the patients’ clinical course.
Collapse
|
10
|
Giudice V, Cardamone C, Triggiani M, Selleri C. Bone Marrow Failure Syndromes, Overlapping Diseases with a Common Cytokine Signature. Int J Mol Sci 2021; 22:ijms22020705. [PMID: 33445786 PMCID: PMC7828244 DOI: 10.3390/ijms22020705] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/19/2022] Open
Abstract
Bone marrow failure (BMF) syndromes are a heterogenous group of non-malignant hematologic diseases characterized by single- or multi-lineage cytopenia(s) with either inherited or acquired pathogenesis. Aberrant T or B cells or innate immune responses are variously involved in the pathophysiology of BMF, and hematological improvement after standard immunosuppressive or anti-complement therapies is the main indirect evidence of the central role of the immune system in BMF development. As part of this immune derangement, pro-inflammatory cytokines play an important role in shaping the immune responses and in sustaining inflammation during marrow failure. In this review, we summarize current knowledge of cytokine signatures in BMF syndromes.
Collapse
Affiliation(s)
- Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (V.G.); (C.C.); (C.S.)
- Clinical Pharmacology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Chiara Cardamone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (V.G.); (C.C.); (C.S.)
- Internal Medicine and Clinical Immunology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| | - Massimo Triggiani
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (V.G.); (C.C.); (C.S.)
- Internal Medicine and Clinical Immunology, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
- Correspondence: ; Tel.: +39-089-672810
| | - Carmine Selleri
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy; (V.G.); (C.C.); (C.S.)
- Hematology and Transplant Center, University Hospital “San Giovanni di Dio e Ruggi D’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
11
|
Padilla O, Tam W, Geyer JT. T-cell neoplasms in the spleen. Semin Diagn Pathol 2020; 38:135-143. [PMID: 33199090 DOI: 10.1053/j.semdp.2020.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 11/11/2022]
Abstract
Hematopoietic neoplasms involving the spleen are uncommon, but T cell neoplasms involving the spleen are extremely rare. The rarity of splenic involvement by T cell neoplasms has resulted in a limited body of literature describing their splenic characteristics. As a result, our purpose in this review article is to provide and summarize some of the characteristics seen by different T cell neoplasms that may involve the spleen.
Collapse
Affiliation(s)
- Osvaldo Padilla
- Texas Tech University Health Sciences Center, PL Foster School of Medicine, Department of Pathology, 4625 Alberta Ave., El Paso, TX 79905, United States.
| | - Wayne Tam
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, 525 E 68th Street, Starr Pavilion 715, New York, NY 10065, United States
| | - Julia T Geyer
- Weill Cornell Medicine, Department of Pathology and Laboratory Medicine, 525 E 68th Street, Starr Pavilion 715, New York, NY 10065, United States
| |
Collapse
|
12
|
Teramo A, Barilà G, Calabretto G, Vicenzetto C, Gasparini VR, Semenzato G, Zambello R. Insights Into Genetic Landscape of Large Granular Lymphocyte Leukemia. Front Oncol 2020; 10:152. [PMID: 32133291 PMCID: PMC7040228 DOI: 10.3389/fonc.2020.00152] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/28/2020] [Indexed: 01/29/2023] Open
Abstract
Large granular lymphocyte leukemia (LGLL) is a chronic proliferation of clonal cytotoxic lymphocytes, usually presenting with cytopenias and yet lacking a specific therapy. The disease is heterogeneous, including different subsets of patients distinguished by LGL immunophenotype (CD8+ Tαβ, CD4+ Tαβ, Tγδ, NK) and the clinical course of the disease (indolent/symptomatic/aggressive). Even if the etiology of LGLL remains elusive, evidence is accumulating on the genetic landscape driving and/or sustaining chronic LGL proliferations. The most common gain-of-function mutations identified in LGLL patients are on STAT3 and STAT5b genes, which have been recently recognized as clonal markers and were included in the 2017 WHO classification of the disease. A significant correlation between STAT3 mutations and symptomatic disease has been highlighted. At variance, STAT5b mutations could have a different clinical impact based on the immunophenotype of the mutated clone. In fact, they are regarded as the signature of an aggressive clinical course with a poor prognosis in CD8+ T-LGLL and aggressive NK cell leukemia, while they are devoid of negative prognostic significance in CD4+ T-LGLL and Tγδ LGLL. Knowing the specific distribution of STAT mutations helps identify the discrete mechanisms sustaining LGL proliferations in the corresponding disease subsets. Some patients equipped with wild type STAT genes are characterized by less frequent mutations in different genes, suggesting that other pathogenetic mechanisms are likely to be involved. In this review, we discuss how the LGLL mutational pattern allows a more precise and detailed tumor stratification, suggesting new parameters for better management of the disease and hopefully paving the way for a targeted clinical approach.
Collapse
Affiliation(s)
- Antonella Teramo
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Gregorio Barilà
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Giulia Calabretto
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Cristina Vicenzetto
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Vanessa Rebecca Gasparini
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Gianpietro Semenzato
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Renato Zambello
- Hematology and Clinical Immunology Section, Department of Medicine (DIMED), Padova University School of Medicine, Padova, Italy.,Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
13
|
Stat3 mutations impact on overall survival in large granular lymphocyte leukemia: a single-center experience of 205 patients. Leukemia 2019; 34:1116-1124. [PMID: 31740810 DOI: 10.1038/s41375-019-0644-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/17/2019] [Accepted: 11/03/2019] [Indexed: 12/13/2022]
Abstract
Large granular lymphocyte leukemia (LGLL) is a rare and chronic lymphoproliferative disorder characterized by the clonal expansion of LGLs. LGLL patients can be asymptomatic or develop cytopenia, mostly neutropenia. Somatic STAT3 and STAT5b mutations have been recently reported in approximately 40% of patients. The aim of this study is to analyze clinical and biological features of a large cohort of LGLL patients to identify prognostic markers affecting patients' outcome. In 205 LGLL patients, neutropenia (ANC < 1500/mm3) was the main feature (38%), with severe neutropenia (ANC < 500/mm3) being present in 20.5% of patients. STAT3 mutations were detected in 28.3% patients and were associated with ANC < 500/mm3 (p < 0.0001), Hb < 90 g/L (p = 0.0079) and treatment requirement (p < 0.0001) while STAT5b mutations were found in 15/152 asymptomatic patients. By age-adjusted univariate analysis, ANC < 500/mm3 (p = 0.013), Hb < 90 g/L (p < 0.0001), treatment requirement (p = 0.001) and STAT3 mutated status (p = 0.011) were associated to reduced overall survival (OS). By multivariate analysis, STAT3 mutated status (p = 0.0089) and Hb < 90 g/L (p = 0.0011) were independently associated to reduced OS. In conclusion, we identified clinical and biological features associated to reduced OS in LGLL and we demonstrated the adverse impact of STAT3 mutations in patients' survival, suggesting that this biological feature should be regarded as a potential target of therapy.
Collapse
|
14
|
Barilà G, Calabretto G, Teramo A, Vicenzetto C, Gasparini VR, Semenzato G, Zambello R. T cell large granular lymphocyte leukemia and chronic NK lymphocytosis. Best Pract Res Clin Haematol 2019; 32:207-216. [DOI: 10.1016/j.beha.2019.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/26/2023]
|
15
|
Shrader SM, Fish EJ, Pereira MM, Groover ES, Christopherson PW. Pathology in Practice. J Am Vet Med Assoc 2018; 252:1477-1480. [PMID: 29889634 DOI: 10.2460/javma.252.12.1477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
A portion of expanded granular lymphocytes cause pure white cell aplasia? Ann Hematol 2018; 97:1995-1997. [PMID: 29717366 PMCID: PMC6097745 DOI: 10.1007/s00277-018-3342-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/21/2018] [Indexed: 11/20/2022]
|
17
|
Papadantonakis P, Kaparou M, Papadaki HA, Marinos L, Krasagakis K. Multiple cutaneous reticulohistiocytosis with T-cell large granular lymphocyte clonopathy. Australas J Dermatol 2017; 58:e249-e252. [DOI: 10.1111/ajd.12608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 11/26/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Pavlos Papadantonakis
- Department of Dermatology; University General Hospital of Heraklion; Heraklion Crete Greece
| | - Maria Kaparou
- Department of Haematology; University General Hospital of Heraklion; Heraklion Crete Greece
| | - Helen A Papadaki
- Department of Haematology; University General Hospital of Heraklion; Heraklion Crete Greece
| | - Leonidas Marinos
- Department of Haematopathology; Evangelismos Hospital; Athens Greece
| | - Konstantin Krasagakis
- Department of Dermatology; University General Hospital of Heraklion; Heraklion Crete Greece
| |
Collapse
|
18
|
Reda G, Fattizzo B, Cassin R, Flospergher E, Orofino N, Gianelli U, Barcellini W, Cortelezzi A. Multifactorial neutropenia in a patient with acute promyelocytic leukemia and associated large granular lymphocyte expansion: A case report. Oncol Lett 2016; 13:1307-1310. [PMID: 28454252 DOI: 10.3892/ol.2016.5549] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/04/2016] [Indexed: 12/17/2022] Open
Abstract
Neutropenia in the setting of acute hematological malignancies may impact disease prognosis, thus affecting therapy dose intensity. This is often due to chemotherapy-induced aplasia as well as to the disease itself. However, chronic neutropenia deserves further investigation, as the management of reversible concomitant causes may avoid treatment delay. The present study describes a case of an acute promyelocytic leukemia patient with chronic severe neutropenia of multifactorial origin, including acute leukemia itself, chemotherapy, autoimmune activation with anti-platelets and anti-neutrophil antibodies positivity, and the rare association of large granular lymphocyte (LGL) expansion. As neutropenia may challenge the diagnosis and treatment of acute malignancies, clinicians and hematopathologists must discuss the differential diagnosis in order to avoid misdiagnosing and undertreating concomitant diseases. In particular, LGL chronic expansion and autoimmunity should be considered.
Collapse
Affiliation(s)
- Gianluigi Reda
- Onco-Hematology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, I-20100 Milan, Italy
| | - Bruno Fattizzo
- Onco-Hematology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, I-20100 Milan, Italy
| | - Ramona Cassin
- Onco-Hematology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, I-20100 Milan, Italy
| | - Elena Flospergher
- Onco-Hematology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, I-20100 Milan, Italy
| | - Nicola Orofino
- Onco-Hematology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, I-20100 Milan, Italy
| | - Umberto Gianelli
- Hemopathology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico and University of Milan, I-20100 Milan, Italy
| | - Wilma Barcellini
- Onco-Hematology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, I-20100 Milan, Italy
| | - Agostino Cortelezzi
- Onco-Hematology Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico and University of Milan, I-20100 Milan, Italy
| |
Collapse
|
19
|
Oral cyclophosphamide was effective for Coombs-negative autoimmune hemolytic anemia in CD16+CD56− chronic lymphoproliferative disorder of NK-cells. Int J Hematol 2016; 105:854-858. [DOI: 10.1007/s12185-016-2170-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
|
20
|
Natural killer cells in inflammatory heart disease. Clin Immunol 2016; 175:26-33. [PMID: 27894980 DOI: 10.1016/j.clim.2016.11.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/09/2016] [Accepted: 11/20/2016] [Indexed: 02/07/2023]
Abstract
Despite of a multitude of excellent studies, the regulatory role of natural killer (NK) cells in the pathogenesis of inflammatory cardiac disease is greatly underappreciated. Clinical abnormalities in the numbers and functions of NK cells are observed in myocarditis and inflammatory dilated cardiomyopathy (DCMi) as well as in cardiac transplant rejection [1-6]. Because treatment of these disorders remains largely symptomatic in nature, patients have little options for targeted therapies [7,8]. However, blockade of NK cells and their receptors can protect against inflammation and damage in animal models of cardiac injury and inflammation. In these models, NK cells suppress the maturation and trafficking of inflammatory cells, alter the local cytokine and chemokine environments, and induce apoptosis in nearby resident and hematopoietic cells [1,9,10]. This review will dissect each protective mechanism employed by NK cells and explore how their properties might be exploited for their therapeutic potential.
Collapse
|
21
|
Bárcena P, Jara-Acevedo M, Tabernero MD, López A, Sánchez ML, García-Montero AC, Muñoz-García N, Vidriales MB, Paiva A, Lecrevisse Q, Lima M, Langerak AW, Böttcher S, van Dongen JJM, Orfao A, Almeida J. Phenotypic profile of expanded NK cells in chronic lymphoproliferative disorders: a surrogate marker for NK-cell clonality. Oncotarget 2016; 6:42938-51. [PMID: 26556869 PMCID: PMC4767482 DOI: 10.18632/oncotarget.5480] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/27/2015] [Indexed: 01/08/2023] Open
Abstract
Currently, the lack of a universal and specific marker of clonality hampers the diagnosis and classification of chronic expansions of natural killer (NK) cells. Here we investigated the utility of flow cytometric detection of aberrant/altered NK-cell phenotypes as a surrogate marker for clonality, in the diagnostic work-up of chronic lymphoproliferative disorders of NK cells (CLPD-NK). For this purpose, a large panel of markers was evaluated by multiparametric flow cytometry on peripheral blood (PB) CD56low NK cells from 60 patients, including 23 subjects with predefined clonal (n = 9) and polyclonal (n = 14) CD56low NK-cell expansions, and 37 with CLPD-NK of undetermined clonality; also, PB samples from 10 healthy adults were included. Clonality was established using the human androgen receptor (HUMARA) assay. Clonal NK cells were found to show decreased expression of CD7, CD11b and CD38, and higher CD2, CD94 and HLADR levels vs. normal NK cells, together with a restricted repertoire of expression of the CD158a, CD158b and CD161 killer-associated receptors. In turn, NK cells from both clonal and polyclonal CLPD-NK showed similar/overlapping phenotypic profiles, except for high and more homogeneous expression of CD94 and HLADR, which was restricted to clonal CLPD-NK. We conclude that the CD94hi/HLADR+ phenotypic profile proved to be a useful surrogate marker for NK-cell clonality.
Collapse
Affiliation(s)
- Paloma Bárcena
- Cancer Research Centre (IBMCC, CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - María Jara-Acevedo
- Cancer Research Centre (IBMCC, CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | | | - Antonio López
- Cancer Research Centre (IBMCC, CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - María Luz Sánchez
- Cancer Research Centre (IBMCC, CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Andrés C García-Montero
- Cancer Research Centre (IBMCC, CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Noemí Muñoz-García
- Cancer Research Centre (IBMCC, CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - María Belén Vidriales
- Department of Hematology and Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, Salamanca, Spain
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Serviço de Patologia Clínica, Centro Hospitalar e Universitário de Coimbra, Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Análises Clínicas e Saúde Pública, Coimbra,Portugal
| | - Quentin Lecrevisse
- Cancer Research Centre (IBMCC, CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Margarida Lima
- Department of Hematology, Laboratory of Cytometry, Hospital de Santo António, Centro Hospitalar do Porto, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Porto, Portugal
| | - Anton W Langerak
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Sebastian Böttcher
- Medical Clinic II, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jacques J M van Dongen
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Alberto Orfao
- Cancer Research Centre (IBMCC, CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Julia Almeida
- Cancer Research Centre (IBMCC, CSIC-USAL), Institute of Biomedical Research of Salamanca (IBSAL), (NUCLEUS) and Department of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
22
|
Gattazzo C, Teramo A, Passeri F, De March E, Carraro S, Trimarco V, Frezzato F, Berno T, Barilà G, Martini V, Piazza F, Trentin L, Facco M, Semenzato G, Zambello R. Detection of monoclonal T populations in patients with KIR-restricted chronic lymphoproliferative disorder of NK cells. Haematologica 2014; 99:1826-33. [PMID: 25193965 DOI: 10.3324/haematol.2014.105726] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The etiology of chronic large granular lymphocyte proliferations is largely unknown. Although these disorders are characterized by the expansion of different cell types (T and natural killer) with specific genetic features and abnormalities, several lines of evidence suggest a common pathogenetic mechanism. According to this interpretation, we speculated that in patients with natural killer-type chronic lymphoproliferative disorder, together with natural killer cells, also T lymphocytes undergo a persistent antigenic pressure, possibly resulting in an ultimate clonal T-cell selection. To strengthen this hypothesis, we evaluated whether clonal T-cell populations were detectable in 48 patients with killer immunoglobulin-like receptor-restricted natural killer-type chronic lymphoproliferative disorder. At diagnosis, in half of the patients studied, we found a clearly defined clonal T-cell population, despite the fact that all cases presented with a well-characterized natural killer disorder. Follow-up analysis confirmed that the TCR gamma rearrangements were stable over the time period evaluated; furthermore, in 7 patients we demonstrated the appearance of a clonal T subset that progressively matures, leading to a switch between killer immunoglobulin-like receptor-restricted natural killer-type disorder to a monoclonal T-cell large granular lymphocytic leukemia. Our results support the hypothesis that a common mechanism is involved in the pathogenesis of these disorders.
Collapse
Affiliation(s)
- Cristina Gattazzo
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | | | - Francesca Passeri
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Elena De March
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine
| | - Samuela Carraro
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine
| | - Valentina Trimarco
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Federica Frezzato
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Tamara Berno
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine
| | - Gregorio Barilà
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine
| | - Veronica Martini
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Francesco Piazza
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Monica Facco
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Renato Zambello
- Department of Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| |
Collapse
|
23
|
Zambello R, Teramo A, Barilà G, Gattazzo C, Semenzato G. Activating KIRs in Chronic Lymphoproliferative Disorder of NK Cells: Protection from Viruses and Disease Induction? Front Immunol 2014; 5:72. [PMID: 24616720 PMCID: PMC3935213 DOI: 10.3389/fimmu.2014.00072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/10/2014] [Indexed: 11/13/2022] Open
Abstract
Human natural killer (NK) cells are functionally regulated by killer cell immunoglobulin-like receptors (KIRs) and their interactions with HLA class I molecules. As KIR expression in a given NK cell is stochastically established, KIR repertoire perturbations reflect a dominance of discrete NK-cell subsets as the consequence of adaptation of the NK-cell compartment to exogenous agents, more often represented by virus infection. Although inhibitory interactions between KIR and their cognate HLA class I ligands abrogate effector responses of NK cells, they are also required for the functional education of NK cell. The biology and molecular specificities of the activating KIRs are less well defined, and most interactions with presumed HLA class I ligands are weak. Interestingly, epidemiologic studies link activating KIR genes to resistance against numerous virus infections. Chronic lymphoproliferative disorder of NK cells (CLPD-NK) is an indolent NK cell disease characterized by a persistent increase of circulating NK cells (usually exceeding 500 NK cells/mm(3)). The mechanism through which NK cells are induced to proliferate during CLPD-NK pathogenesis is still a matter of debate. Accumulating data suggest that exogenous agents, in particular viruses, might play a role. The etiology of CLPD-NK, however, is largely unknown. This is likely due to the fact that not a single, specific agent is responsible for the NK cells proliferation, which perhaps represents the expression of an abnormal processing of different foreign antigens, sharing a chronic inflammatory background. Interestingly, proliferating NK cells are typically characterized by expression of a restricted pattern of KIR, which have been demonstrated to be mostly represented by the activating form. This finding indicates that these receptors may be directly involved in the priming of NK cells proliferation.
Collapse
Affiliation(s)
- Renato Zambello
- Hematology and Clinical Immunology Branch, Department of Medicine, Padua University School of Medicine , Padua , Italy ; Venetian Institute of Molecular Medicine , Padua , Italy
| | - Antonella Teramo
- Hematology and Clinical Immunology Branch, Department of Medicine, Padua University School of Medicine , Padua , Italy ; Venetian Institute of Molecular Medicine , Padua , Italy
| | - Gregorio Barilà
- Hematology and Clinical Immunology Branch, Department of Medicine, Padua University School of Medicine , Padua , Italy ; Venetian Institute of Molecular Medicine , Padua , Italy
| | - Cristina Gattazzo
- Hematology and Clinical Immunology Branch, Department of Medicine, Padua University School of Medicine , Padua , Italy ; Venetian Institute of Molecular Medicine , Padua , Italy
| | - Gianpietro Semenzato
- Hematology and Clinical Immunology Branch, Department of Medicine, Padua University School of Medicine , Padua , Italy ; Venetian Institute of Molecular Medicine , Padua , Italy
| |
Collapse
|
24
|
Zambello R, Teramo A, Gattazzo C, Semenzato G. Are T-LGL Leukemia and NK-Chronic Lymphoproliferative Disorder really two distinct diseases? Transl Med UniSa 2014; 8:4-11. [PMID: 24778993 PMCID: PMC4000458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022] Open
Abstract
Mature Large Granular lymphocytes (LGL) disorders include a spectrum of conditions, ranging from polyclonal to clonal indolent and/or overt leukemic LGL proliferations. Most cases are represented by clonal expansions of TCRα/β+ LGL displaying a CD8+ phenotype with expression of cytotoxic T-cell antigens (CD57, CD16, TIA-1, perforin and granzyme B). Proliferations of CD3-CD16+ NK cells with a restricted patter of NK receptors are less common, usually comprising 15% of the cases. Main features are cytopenias, splenomegaly and autoimmune phenomena. Morphology, immunophenotyping and molecular analyses are crucial to establish a correct diagnosis of disease. According to the 2008 WHO classification, two separate entities account for the majority of cases, T-LGL leukemia and Chronic Lymphoproliferative Disease of NK cell (this latter still provisional). Although these disorders are characterized by the expansion of different cells types i.e. T and NK cells, with specific genetic features and abnormalities, compelling evidence supports the hypothesis that a common pathogenic mechanism would be involved in both disorders. As a matter of fact, a foreign antigen driven clonal selection is considered the initial step in the mechanism ultimately leading to generation of both conditions. In this chapter we will discuss recent advances on the pathogenesis of chronic T and NK disorders of granular lymphocytes, challenging the current WHO classification on the opportunity to separate T and NK disorders, which are likely to represent two sides of the same coin.
Collapse
Affiliation(s)
- Renato Zambello
- Padua University School of Medicine, Department of Medicine, Hematology and Clinical Immunology Branch, Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Antonella Teramo
- Padua University School of Medicine, Department of Medicine, Hematology and Clinical Immunology Branch, Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Cristina Gattazzo
- Padua University School of Medicine, Department of Medicine, Hematology and Clinical Immunology Branch, Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Gianpietro Semenzato
- Padua University School of Medicine, Department of Medicine, Hematology and Clinical Immunology Branch, Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| |
Collapse
|
25
|
Abstract
Dasatinib is a second generation tyrosine kinase inhibitor (TKI) approved for clinical use in patients with imatinib-resistant chronic myeloid leukemia (CML) and Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph(+) ALL). Large granular lymphocytes (LGLs) are medium to large cells with eccentric nuclei and abundant cytoplasm with coarse azurophilic granules. LGL lymphocytosis is caused by a proliferation of cytotoxic (CD8+) T cells and/or NK cells. In a proportion of CML and Ph(+) ALL patients, there is a significant expansion of LGLs during dasatinib therapy. LGL lymphocytosis is seen in some cases with fevers, colitis, and pleural effusions (PE), suggesting an aberrant immune response mediated by these LGLs. LGLs may participate in the elimination of the residual leukemic cells, and LGL clonal expansion is associated with excellent, long-lasting therapy responses in dasatinib-treated patients. For a more comprehensive analysis, we analyzed the morphologic, phenotypic, clinical, and functional features of the LGL subsets amplified in vivo during dasatinib therapy.
Collapse
Affiliation(s)
- Zhi-Yuan Qiu
- Department of Hematology; the First Affiliated Hospital of Nanjing Medical University; Jiangsu Province Hospital; Nanjing, PR China
| | - Wei Xu
- Department of Hematology; the First Affiliated Hospital of Nanjing Medical University; Jiangsu Province Hospital; Nanjing, PR China
| | - Jian-Yong Li
- Department of Hematology; the First Affiliated Hospital of Nanjing Medical University; Jiangsu Province Hospital; Nanjing, PR China
| |
Collapse
|
26
|
Intrinsic and extrinsic mechanisms contribute to maintain the JAK/STAT pathway aberrantly activated in T-type large granular lymphocyte leukemia. Blood 2013; 121:3843-54, S1. [PMID: 23515927 DOI: 10.1182/blood-2012-07-441378] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The JAK/STAT pathway is altered in T-cell large granular lymphocytic leukemia. In all patients, leukemic LGLs display upregulation of phosphorylated STAT3 (P-STAT3) that activates expression of many antiapoptotic genes. To investigate the mechanisms maintaining STAT3 aberrantly phosphorylated using transcriptional protein and functional assays, we analyzed interleukin (IL)-6 and suppressor of cytokine signaling-3 (SOCS3), 2 key factors of the JAK/STAT pathway that induce and inhibit STAT3 activation, respectively. We showed that IL-6 was highly expressed and released by the patients' peripheral blood LGL-depleted population, accounting for a trans-signaling process. By neutralizing IL-6 or its specific receptor with specific antibodies, a significant reduction of P-STAT3 levels and, consequently, LGL survival was demonstrated. In addition, we found that SOCS3 was down-modulated in LGL and unresponsive to IL-6 stimulation. By treating neoplastic LGLs with a demethylating agent, IL-6-mediated SOCS3 expression was restored with consequent P-STAT3 and myeloid cell leukemia-1 down-modulation. Methylation in the SOCS3 promoter was not detectable, suggesting that an epigenetic inhibition mechanism occurs at a different site. Our data indicate that loss of the inhibitor SOCS3 cooperates with IL-6 to maintain JAK/STAT pathway activation, thus contributing to leukemic LGL survival, and suggest a role of demethylating agents in the treatment of this disorder.
Collapse
|
27
|
Poullot E, Bouscary D, Guyader D, Ghandour C, Roussel M, Fest T, Houot R, Lamy T. Large granular lymphocyte leukemia associated with hepatitis C virus infection and B cell lymphoma: improvement after antiviral therapy. Leuk Lymphoma 2012; 54:1797-9. [DOI: 10.3109/10428194.2012.752486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Pontikoglou C, Kalpadakis C, Papadaki HA. Pathophysiologic mechanisms and management of neutropenia associated with large granular lymphocytic leukemia. Expert Rev Hematol 2011; 4:317-28. [PMID: 21668396 DOI: 10.1586/ehm.11.26] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Large granular lymphocyte (LGL) syndrome includes a spectrum of clonal T cell and natural killer cell chronic lymphoproliferative disorders. These conditions are thought to arise from chronic antigenic stimulation, while the long-term survival of the abnormal LGLs appears to be sustained by resistance to apoptosis and/or impaired survival signaling. T-cell LGL (T-LGL) leukemia is the most common LGL disorder in the Western world. Despite its indolent course, the disease is often associated with neutropenia, the pathogenesis of which is multifactorial, comprising both humoral and cytotoxic mechanisms. This article addresses the pathogenesis of T-LGL leukemia and natural killer cell chronic lymphoproliferative disorder, as well as that of T-LGL leukemia-associated neutropenia. Furthermore, as symptomatic neutropenia represents an indication for initiating treatment, available therapeutic options are also discussed.
Collapse
|
29
|
Abstract
The recently updated World Health Organization (WHO) classification of tumors of hematopoietic and lymphoid tissues, published in 2008, has made great advances in revising the disorders previously included in the pool of natural killer (NK) cell tumors. Although NK cell neoplasms represent a relatively rare group of diseases, accounting for <5% of all lymphoid neoplasms, they include very distinctive conditions both clinically and pathologically. This family of diseases includes the most indolent clinical forms, such as the provisional new entry of chronic lymphoproliferative disorder of NK cells (CLPD-NK) in the WHO classification, as well as one of the most fatal diseases recognized in medical oncology, aggressive NK cell leukemia (ANKL), which is characterized by a prognosis of weeks, or even days. In addition, some disorders previously identified as blastic NK cell lymphoma within the NK cell system have been more properly defined and included in the blastic plasmacytoid dentritic cell neoplasms, although rare cases of bona fide immature NK lymphoid tumors (now classified as NK cell lymphoblastic leukemia/lymphoma) have been reported in the literature. This paper focuses on recent concepts and progress in morphology, pathogenesis, clinicopathological features, treatment approaches, and outcomes of NK cell malignancies.
Collapse
Affiliation(s)
- G Semenzato
- Department of Clinical and Experimental Medicine, Hematology and Clinical Immunology Branch, Padua University School of Medicine, Padova, Italy.
| | | | | |
Collapse
|
30
|
Fedele R, Martino M, Dattola A, Cuzzola M, Messina G, Irrera G, Iacopino P. Imatinib mesylate in T-cell large granular lymphocyte leukemia associated with chronic graft-versus-host disease. Leuk Lymphoma 2011; 52:2010-1. [PMID: 21663506 DOI: 10.3109/10428194.2011.584992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Chumak AA, Abramenko IV, Bilous NI, Filonenko IA, Kostin OV, Pleskach OY, Pleskach GV, Efremova N, Yanko J. Persistent infections and their relationship with selected oncologic and non-tumor pathologies. J Immunotoxicol 2010; 7:279-88. [PMID: 20518708 DOI: 10.3109/1547691x.2010.489528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our earlier studies of hepatitis C virus (HCV) infection rates among blood donors at the Kyiv Municipal Blood Center revealed a 3.45% HCV+ prevalence in these "healthy" hosts. In the study here, we analyzed HCV (as well as cytomegalovirus [CMV]) prevalence among Chernobyl nuclear power plant (NPP) accident sufferers--cleanup workers, local residents, NPP workers, and convalescent patients--who suffered acute radiation syndrome (ARS) as a result of the 1986 accident, and individuals who had not been exposed to ionizing radiation (IR). Serological analyses of antibodies against each pathogen (via enzyme-linked immunosorbent assay [ELISA]) revealed the highest HCV (i.e., 27.2%) and CMV (85.6%) prevalence in the convalescent hosts. Though the HCV prevalence (reflecting a current/past infection) among the cleanup workers (and other groups) was lower (i.e., 11-25%), viral presence was "associated" with a higher incidence of selected somatic diseases, for example, thyroiditis, goiter, hypertension, Type 1 diabetes, chronic hepatitis/gastritis, in the cleanup workers. A similar scenario with respect to CMV was also seen, i.e., lower prevalence rates [relative to in ARS patients] and "association" between CMV status and incidence of chronic gastritis, arthritis, and bronchitis, in the cleanup workers and IR-non-exposed controls. Further, irrespective of CMV status, there was a clear delineation between incidence rate(s) of each of the pathologies and whether or not the person was/was not exposed in 1986. We also investigated, due to a high incidence of chronic lymphocytic leukemia (CLL) among Chernobyl sufferers, if there was homology between immunoglobulins (Igs) generated by these transformed cells and known antiviral and antimicrobial Igs. Polymerase chain reaction (PCR) analyses of Ig heavy-chain variable (IgHV) genes in cells from CLL patients who were/were not exposed in 1986 revealed a significant homology of some IgHV genes with Igs directed against infectious agents. However, no differences were found between the sequences from IR-exposed and IR-non-exposed CLL patients. Based on the findings here, we conclude that a past/ongoing presence of certain viral infections (i.e., CMV and/or HCV) in a host can modify (aggravate) the clinical course of certain somatic (i.e., non-tumor) diseases and promote malignancies (i.e., CLL), and that each of these outcomes could be modulated as a result of that host's past exposure to IR.
Collapse
|