1
|
Yazdanpanah N, Rezaei N. The multidisciplinary approach to diagnosing inborn errors of immunity: a comprehensive review of discipline-based manifestations. Expert Rev Clin Immunol 2024; 20:1237-1259. [PMID: 38907993 DOI: 10.1080/1744666x.2024.2372335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/21/2024] [Indexed: 06/24/2024]
Abstract
INTRODUCTION Congenital immunodeficiency is named primary immunodeficiency (PID), and more recently inborn errors of immunity (IEI). There are more than 485 conditions classified as IEI, with a wide spectrum of clinical and laboratory manifestations. AREAS COVERED Regardless of the developing knowledge of IEI, many physicians do not think of IEI when approaching the patient's complaint, which leads to delayed diagnosis, misdiagnosis, serious infectious and noninfectious complications, permanent end-organ damage, and even death. Due to the various manifestations of IEI and the wide spectrum of associated conditions, patients refer to specialists in different disciplines of medicine and undergo - mainly symptomatic - treatments, and because IEI are not included in physicians' differential diagnosis, the main disease remains undiagnosed. EXPERT OPINION A multidisciplinary approach may be a proper solution. Manifestations and the importance of a multidisciplinary approach in the diagnosis of main groups of IEI are discussed in this article.
Collapse
Affiliation(s)
- Niloufar Yazdanpanah
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Cermak J. Case report: Development of clonal hematologic disorders from inherited bone marrow failure. Front Oncol 2024; 14:1420666. [PMID: 39314632 PMCID: PMC11416963 DOI: 10.3389/fonc.2024.1420666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/08/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Inherited bone marrow failure (IBMF) syndromes are caused by mutations forming pathologic germline variants resulting in the production of defective hematopoietic stem cells (HSC) and in congenital failure in the production of one or more blood lineages. An acquisition of subsequent somatic mutations is determining further course of the disease. Nevertheless, a certain number of patients with IBMF may escape correct diagnosis in childhood, especially those with mild cytopenia and minimal clinical features without non-hematologic symptoms. These patients usually present in the third decade of life with unexplained cytopenia or myelodysplastic syndrome (MDS). Methods and results We report 2 patients with IBMF who were correctly diagnosed between 20 and 40 years of age when they were referred with progressive MDS with adverse prognostic factors that affected their outcome. Discussion IBMF syndromes should be excluded in all patients below 40 years of age with unexplained cytopenia. Early hematopoietic stem cell transplantation (HSCT) is the treatment of choice in these patients.
Collapse
Affiliation(s)
- Jaroslav Cermak
- Department of Clinical Hematology, Institute of Hematology and Blood Transfusion, Prague, Czechia
| |
Collapse
|
3
|
Cull AH, Kent DG, Warren AJ. Emerging genetic technologies informing personalized medicine in Shwachman-Diamond syndrome and other inherited BMF disorders. Blood 2024; 144:931-939. [PMID: 38905596 DOI: 10.1182/blood.2023019986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT Ribosomopathy Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive inherited bone marrow failure syndrome (IBMFS) caused by mutations in the Shwachman-Bodian-Diamond syndrome gene, which is associated with an increased risk of myeloid malignancy. Tracking how hematopoietic stem cell (HSC) clonal dynamics change over time, assessing whether somatic genetic rescue mechanisms affect these dynamics, and mapping out when leukemic driver mutations are acquired is important to understand which individuals with SDS may go on to develop leukemia. In this review, we discuss how new technologies that allow researchers to map mutations at the level of single HSC clones are generating important insights into genetic rescue mechanisms and their relative risk for driving evolution to leukemia, and how these data can inform the future development of personalized medicine approaches in SDS and other IBMFSs.
Collapse
Affiliation(s)
- Alyssa H Cull
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - David G Kent
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Alan J Warren
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Parisi X, Bledsoe JR. Discerning clinicopathological features of congenital neutropenia syndromes: an approach to diagnostically challenging differential diagnoses. J Clin Pathol 2024; 77:586-604. [PMID: 38589208 DOI: 10.1136/jcp-2022-208686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
The congenital neutropenia syndromes are rare haematological conditions defined by impaired myeloid precursor differentiation or function. Patients are prone to severe infections with high mortality rates in early life. While some patients benefit from granulocyte colony-stimulating factor treatment, they may still face an increased risk of bone marrow failure, myelodysplastic syndrome and acute leukaemia. Accurate diagnosis is crucial for improved outcomes; however, diagnosis depends on familiarity with a heterogeneous group of rare disorders that remain incompletely characterised. The clinical and pathological overlap between reactive conditions, primary and congenital neutropenias, bone marrow failure, and myelodysplastic syndromes further clouds diagnostic clarity.We review the diagnostically useful clinicopathological and morphological features of reactive causes of neutropenia and the most common primary neutropenia disorders: constitutional/benign ethnic neutropenia, chronic idiopathic neutropenia, cyclic neutropenia, severe congenital neutropenia (due to mutations in ELANE, GFI1, HAX1, G6PC3, VPS45, JAGN1, CSF3R, SRP54, CLPB and WAS), GATA2 deficiency, Warts, hypogammaglobulinaemia, infections and myelokathexis syndrome, Shwachman-Diamond Syndrome, the lysosomal storage disorders with neutropenia: Chediak-Higashi, Hermansky-Pudlak, and Griscelli syndromes, Cohen, and Barth syndromes. We also detail characteristic cytogenetic and molecular factors at diagnosis and in progression to myelodysplastic syndrome/leukaemia.
Collapse
Affiliation(s)
- Xenia Parisi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jacob R Bledsoe
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Yeshareem L, Yacobovich J, Lebel A, Noy-Lotan S, Dgany O, Krasnov T, Berger Pinto G, Oniashvili N, Mardoukh J, Bielorai B, Laor R, Mandel-Shorer N, Ben Barak A, Levin C, Asleh M, Miskin H, Revel-Vilk S, Levin D, Benish M, Zuckerman T, Wolach O, Pazgal I, Brik Simon D, Gilad O, Yanir AD, Goldberg TA, Izraeli S, Tamary H, Steinberg-Shemer O. Genetic backgrounds and clinical characteristics of congenital neutropenias in Israel. Eur J Haematol 2024; 113:146-162. [PMID: 38600884 DOI: 10.1111/ejh.14197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Congenital neutropenias are characterized by severe infections and a high risk of myeloid transformation; the causative genes vary across ethnicities. The Israeli population is characterized by an ethnically diverse population with a high rate of consanguinity. OBJECTIVE To evaluate the clinical and genetic spectrum of congenital neutropenias in Israel. METHODS We included individuals with congenital neutropenias listed in the Israeli Inherited Bone Marrow Failure Registry. Sanger sequencing was performed for ELANE or G6PC3, and patients with wild-type ELANE/G6PC3 were referred for next-generation sequencing. RESULTS Sixty-five patients with neutropenia were included. Of 51 patients with severe congenital neutropenia, 34 were genetically diagnosed, most commonly with variants in ELANE (15 patients). Nine patients had biallelic variants in G6PC3, all of consanguineous Muslim Arab origin. Other genes involved were SRP54, JAGN1, TAZ, and SLC37A4. Seven patients had cyclic neutropenia, all with pathogenic variants in ELANE, and seven had Shwachman-Diamond syndrome caused by biallelic SBDS variants. Eight patients (12%) developed myeloid transformation, including six patients with an unknown underlying genetic cause. Nineteen (29%) patients underwent hematopoietic stem cell transplantation, mostly due to insufficient response to treatment with granulocyte-colony stimulating factor or due to myeloid transformation. CONCLUSIONS The genetic spectrum of congenital neutropenias in Israel is characterized by a high prevalence of G6PC3 variants and an absence of HAX1 mutations. Similar to other registries, for 26% of the patients, a molecular diagnosis was not achieved. However, myeloid transformation was common in this group, emphasizing the need for close follow-up.
Collapse
Affiliation(s)
- Lital Yeshareem
- Kipper Institute of Allergy and Immunology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Joanne Yacobovich
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asaf Lebel
- Pediatric Nephrology Unit, HaEmek Medical Center, Afula, Israel
| | - Sharon Noy-Lotan
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Orly Dgany
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Tanya Krasnov
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Galit Berger Pinto
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Nino Oniashvili
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Jacques Mardoukh
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Bella Bielorai
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Pediatric Hematology and Oncology, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ruth Laor
- Hematology Service, Bnei Zion Medical Center, Haifa, Israel
| | - Noa Mandel-Shorer
- Department of Pediatric Hematology-Oncology, Ruth Rappaport Children's Hospital, Rambam Healthcare Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa, Israel
| | - Ayelet Ben Barak
- Department of Pediatric Hematology-Oncology, Ruth Rappaport Children's Hospital, Rambam Healthcare Campus, Haifa, Israel
| | - Carina Levin
- Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa, Israel
- Pediatric Hematology Unit and Research Laboratory, Emek Medical Center, Afula, Israel
| | - Mahdi Asleh
- Pediatric Hematology, Soroka University Medical Center, Ben-Gurion University, Beer Sheva, Israel
| | - Hagit Miskin
- Pediatric Hematology, Soroka University Medical Center, Ben-Gurion University, Beer Sheva, Israel
| | - Shoshana Revel-Vilk
- Pediatric Hematology/Oncology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Dror Levin
- Department of Pediatric Hemato-Oncology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Marganit Benish
- Department of Pediatric Hemato-Oncology, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Tsila Zuckerman
- Rappaport Faculty of Medicine, Technion-Institute of Technology, Haifa, Israel
- Hematology and Bone Marrow Transplantation Institute, Rambam Healthcare Campus, Haifa, Israel
| | - Ofir Wolach
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Idit Pazgal
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Comprehensive Center of Thalassemia, Hemoglobinopathies & Rare Anemias, Institute of Hematology, Beilinson Hospital, Rabin Medical Center, Petah Tikva, Israel
| | - Dafna Brik Simon
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Oded Gilad
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Asaf David Yanir
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Tracie Alison Goldberg
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
| | - Shai Izraeli
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hannah Tamary
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| | - Orna Steinberg-Shemer
- Department of Hematology-Oncology, Schneider Children's Medical Center of Israel, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Hematology Laboratory, Felsenstein Medical Research Center, Petah Tikva, Israel
| |
Collapse
|
6
|
Ma C, Lang H, Chen Y, Yang L, Wang C, Han L, Chen X, Ma W. Azacitidine combined with venetoclax alleviates AML-MR with TP53 mutation in SDS: a case report and literature review. Anticancer Drugs 2024; 35:548-555. [PMID: 38502829 DOI: 10.1097/cad.0000000000001594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Shwachman-Diamond syndrome (SDS) is an autosomal recessive genetic disease, which is prone to transform into myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). TP53 mutation is a driving factor involved in the transformation of SDS into MDS/AML, and in the evolution of MDS to AML. Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) is the only curable approach, however, challenge remains regarding the balance between efficacy and the high risk from treatment-related toxicity and mortality to achieve temporary disease control before transplantation to gain time and opportunities for transplantation. At present, pre-transplant bridging therapy has emerged as one of the important options with improved efficacy, reduced tumor burden, and less treatment-related toxicity. Here we reported azacitidine combined with venetoclax was used as pre-transplant bridging regimen in a TP53-mutant AML-MR case developed from SDS. He achieved complete remission with incomplete recovery and proceeded to Allo-HSCT. We hope to provide some evidence and insight for in-depth research and clinical treatment by presenting this case.
Collapse
Affiliation(s)
- Cuiping Ma
- The First Clinical Medical College of Beijing University of Traditional Chinese Medicine
| | - Haiyan Lang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing
| | - Yuhan Chen
- Shenzhen Luohu District Hospital of Traditional Chinese Medicine, Guangdong, China
| | - Lu Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing
| | - Chong Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing
| | - Lizhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing
| | - Xinyi Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing
| | - Wei Ma
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing
| |
Collapse
|
7
|
Veltra D, Marinakis NM, Kotsios I, Delaporta P, Kekou K, Kosma K, Traeger-Synodinos J, Sofocleous C. Lethal Complications and Complex Genotypes in Shwachman Diamond Syndrome: Report of a Family with Recurrent Neonatal Deaths and a Case-Based Brief Review of the Literature. CHILDREN (BASEL, SWITZERLAND) 2024; 11:705. [PMID: 38929284 PMCID: PMC11201973 DOI: 10.3390/children11060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Shwachman Diamond Syndrome (SDS) is a multi-system disease characterized by exocrine pancreatic insufficiency with malabsorption, infantile neutropenia and aplastic anemia. Life-threatening complications include progression to acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS), critical deep-tissue infections and asphyxiating thoracic dystrophy. In most patients, SDS results from biallelic pathogenic variants in the SBDS gene, different combinations of which contribute to heterogenous clinical presentations. Null variants are not well tolerated, supporting the theory that the loss of SBDS expression is likely lethal in both mice and humans. A novel complex genotype (SBDS:c.[242C>G;258+2T>C];[460-1G>A]/WFS1:c.[2327A>T];[1371G>T]) was detected in a family with recurrent neonatal deaths. A female neonate died three hours after birth with hemolytic anemia, and a male neonate with severe anemia, thrombocytopenia and neutropenia succumbed on day 40 after Staphylococcus epidermidis infection. A subsequent review of the literature focused on fatal complications, complex SBDS genotypes and/or unusual clinical presentations and disclosed rare cases, of which some had unexpected combinations of genetic and clinical findings. The impact of pathogenic variants and associated phenotypes is discussed in the context of data sharing towards expanding scientific expert networks, consolidating knowledge and advancing an understanding of novel underlying genotypes and complex phenotypes, facilitating informed clinical decisions and disease management.
Collapse
Affiliation(s)
- Danai Veltra
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
- Research University Institute for the Study of Genetic and Malignant Disease of Childhood, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Nikolaos M. Marinakis
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
- Research University Institute for the Study of Genetic and Malignant Disease of Childhood, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Ioannis Kotsios
- Neonatal Intensive Care Unit, “Hippocration” General Hospital, 54642 Thessaloniki, Greece
| | - Polyxeni Delaporta
- Thalassemia Unit, First Department of Pediatrics, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Kyriaki Kekou
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| | - Konstantina Kosma
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| |
Collapse
|
8
|
Wakamatsu M, Muramatsu H, Sato H, Ishikawa M, Konno R, Nakajima D, Hamada M, Okuno Y, Kawashima Y, Hama A, Ito M, Iwafuchi H, Takahashi Y, Ohara O. Integrated proteogenomic analysis for inherited bone marrow failure syndrome. Leukemia 2024; 38:1256-1265. [PMID: 38740980 PMCID: PMC11147772 DOI: 10.1038/s41375-024-02263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Recent advances in in-depth data-independent acquisition proteomic analysis have enabled comprehensive quantitative analysis of >10,000 proteins. Herein, an integrated proteogenomic analysis for inherited bone marrow failure syndrome (IBMFS) was performed to reveal their biological features and to develop a proteomic-based diagnostic assay in the discovery cohort; dyskeratosis congenita (n = 12), Fanconi anemia (n = 11), Diamond-Blackfan anemia (DBA, n = 9), Shwachman-Diamond syndrome (SDS, n = 6), ADH5/ALDH2 deficiency (n = 4), and other IBMFS (n = 18). Unsupervised proteomic clustering identified eight independent clusters (C1-C8), with the ribosomal pathway specifically downregulated in C1 and C2, enriched for DBA and SDS, respectively. Six patients with SDS had significantly decreased SBDS protein expression, with two of these not diagnosed by DNA sequencing alone. Four patients with ADH5/ALDH2 deficiency showed significantly reduced ADH5 protein expression. To perform a large-scale rapid IBMFS screening, targeted proteomic analysis was performed on 417 samples from patients with IBMFS-related hematological disorders (n = 390) and healthy controls (n = 27). SBDS and ADH5 protein expressions were significantly reduced in SDS and ADH5/ALDH2 deficiency, respectively. The clinical application of this first integrated proteogenomic analysis would be useful for the diagnosis and screening of IBMFS, where appropriate clinical screening tests are lacking.
Collapse
Affiliation(s)
- Manabu Wakamatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, 466-8560, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, 466-8560, Japan.
| | - Hironori Sato
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan
| | - Masaki Ishikawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Ryo Konno
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Daisuke Nakajima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Motoharu Hamada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, 466-8560, Japan
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, 464-0083, Japan
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, 464-0083, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan.
| | - Asahito Hama
- Department of Hematology and Oncology, Children's Medical Center, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nakamura-ku, Nagoya, 453-8511, Japan
| | - Masafumi Ito
- Department of Pathology, Japanese Red Cross Aichi Medical Center Nagoya First Hospital, Nakamura-ku, Nagoya, 453-8511, Japan
| | - Hideto Iwafuchi
- Department of Pathology, Shizuoka Children's Hospital, Aoi-ku, Shizuoka, 420-095, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, 466-8560, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| |
Collapse
|
9
|
Wang L, Jin Y, Chen Y, Zhao P, Shang X, Liu H, Sun L. Clinical and genetic characteristics of Chinese patients with Shwachman Diamond syndrome: a literature review of Chinese publication. Exp Biol Med (Maywood) 2024; 249:10035. [PMID: 38651168 PMCID: PMC11033403 DOI: 10.3389/ebm.2024.10035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Shwachman Diamond syndrome (SDS) is a rare autosomal recessive genetic disorder and due to its complex and varied clinical manifestations, diagnosis is often delayed. The purpose of this study was to investigate the clinical manifestations and genetic characteristics of SDS in Chinese patients, in order to increase pediatricians' awareness of SDS and to allow early diagnosis. We conducted a search to identify patients presenting SBDS gene pathogenic variant in two Chinese academic databases. We analyzed and summarized the epidemiology, clinical features, gene pathogenic variants, and key points in the diagnosis and treatment of SDS. We reviewed the clinical data of 39 children with SDS from previously published articles. The interval from the onset of the first symptoms to diagnosis was very long for most of our patients. The age of presentation ranged from 1 day to 10 years (median: 3 months). However, the age of diagnosis was significantly delayed, ranging from 1 month to 14 years (median: 14 months). Hematological abnormalities were the most common presentation, 89.7% (35/39) at the beginning and 94.9% (37/39) at diagnosis of SDS. Diarrhea was the second most common clinical abnormality at the time of diagnosis. 59% (23/39) of patients had a typical history of persistent chronic diarrhea. Furthermore, hepatic enlargement or elevation of transaminase occurred in 15 cases (38.5%). 56.4% patients (22/39) had a short stature, and 17.9% (7/39) patients showed developmental delay. Additionally, twenty patients had compound heterozygous pathogenic variants of c.258 + 2T > C and c.183_ 184TA > CT. Children with SDS in China had high incidence rates of chronic diarrhea, cytopenia, short stature, and liver damage. Furthermore, SBDS c.258 + 2T > C and c.183_ 184TA > CT were the most common pathogenic variants in patients with SDS. The diagnosis of SDS can be delayed if the clinical phenotype is not recognized by the health care provider.
Collapse
Affiliation(s)
| | | | | | | | | | - Haiyan Liu
- *Correspondence: Haiyan Liu, ; Lifeng Sun,
| | - Lifeng Sun
- Department of Pediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
10
|
Pegoraro A, Bezzerri V, Tridello G, Brignole C, Lucca F, Pintani E, Danesino C, Cesaro S, Fioredda F, Cipolli M. Growth Charts for Shwachman-Diamond Syndrome at Ages 0 to 18 Years. Cancers (Basel) 2024; 16:1420. [PMID: 38611098 PMCID: PMC11010856 DOI: 10.3390/cancers16071420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Shwachman-Diamond syndrome (SDS) is one of the most common inherited bone marrow failure syndromes. SDS is characterized by hypocellular bone marrow, with a severe impairment of the myeloid lineage, resulting in neutropenia, thrombocytopenia, and, more rarely, anemia. Almost 15% of patients with SDS develop myelodysplastic syndrome or acute myeloid leukemia as early as childhood or young adulthood. Exocrine pancreatic insufficiency is another common feature of SDS. Almost all patients with SDS show failure to thrive, which is associated with skeletal abnormalities due to defective ossification. Considering these observations, it remains unfeasible to use the common growth charts already available for the general population. To address this issue, we report how we drew up growth charts of patients with SDS aged 0 to 18 years. We analyzed height, weight, and body max index (BMI) in 121 Italian patients with SDS. Results indicated that the 50th and 3rd percentiles of weight and height of the pediatric general population correspond to the 97th and 50th percentiles of patients with SDS aged 0-18 years, respectively. In addition, the percentage increment in weight of subjects aged 14-18 years was higher in patients with SDS than in the general population. SDS-specific growth charts, such as those described here, afford a new tool, which is potentially useful for both clinical and research purposes in SDS.
Collapse
Affiliation(s)
- Anna Pegoraro
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
| | - Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
- Department of Life Sciences, Health, and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Gloria Tridello
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
| | - Cecilia Brignole
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
| | - Francesca Lucca
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
| | - Emily Pintani
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
| | - Cesare Danesino
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Simone Cesaro
- Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy;
| | | | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (A.P.); (V.B.); (G.T.); (C.B.); (F.L.)
| |
Collapse
|
11
|
Trottier AM, Feurstein S, Godley LA. Germline predisposition to myeloid neoplasms: Characteristics and management of high versus variable penetrance disorders. Best Pract Res Clin Haematol 2024; 37:101537. [PMID: 38490765 DOI: 10.1016/j.beha.2024.101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 01/07/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
Myeloid neoplasms with germline predisposition have been recognized increasingly over the past decade with numerous newly described disorders. Penetrance, age of onset, phenotypic heterogeneity, and somatic driver events differ widely among these conditions and sometimes even within family members with the same variant, making risk assessment and counseling of these individuals inherently difficult. In this review, we will shed light on high malignant penetrance (e.g., CEBPA, GATA2, SAMD9/SAMD9L, and TP53) versus variable malignant penetrance syndromes (e.g., ANKRD26, DDX41, ETV6, RUNX1, and various bone marrow failure syndromes) and their clinical features, such as variant type and location, course of disease, and prognostic markers. We further discuss the recommended management of these syndromes based on penetrance with an emphasis on somatic aberrations consistent with disease progression/transformation and suggested timing of allogeneic hematopoietic stem cell transplant. This review will thereby provide important data that can help to individualize and improve the management for these patients.
Collapse
Affiliation(s)
- Amy M Trottier
- Division of Hematology, Department of Medicine, QEII Health Sciences Centre, Dalhousie University, Halifax, NS, Canada
| | - Simone Feurstein
- Department of Internal Medicine, Section of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Lucy A Godley
- Division of Hematology/Oncology, Department of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
12
|
Da Costa L, Mohandas N, David-NGuyen L, Platon J, Marie I, O'Donohue MF, Leblanc T, Gleizes PE. Diamond-Blackfan anemia, the archetype of ribosomopathy: How distinct is it from the other constitutional ribosomopathies? Blood Cells Mol Dis 2024:102838. [PMID: 38413287 DOI: 10.1016/j.bcmd.2024.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Diamond-Blackfan anemia (DBA) was the first ribosomopathy described in humans. DBA is a congenital hypoplastic anemia, characterized by macrocytic aregenerative anemia, manifesting by differentiation blockage between the BFU-e/CFU-e developmental erythroid progenitor stages. In 50 % of the DBA cases, various malformations are noted. Strikingly, for a hematological disease with a relative erythroid tropism, DBA is due to ribosomal haploinsufficiency in 24 different ribosomal protein (RP) genes. A few other genes have been described in DBA-like disorders, but they do not fit into the classical DBA phenotype (Sankaran et al., 2012; van Dooijeweert et al., 2022; Toki et al., 2018; Kim et al., 2017 [1-4]). Haploinsufficiency in a RP gene leads to defective ribosomal RNA (rRNA) maturation, which is a hallmark of DBA. However, the mechanistic understandings of the erythroid tropism defect in DBA are still to be fully defined. Erythroid defect in DBA has been recently been linked in a non-exclusive manner to a number of mechanisms that include: 1) a defect in translation, in particular for the GATA1 erythroid gene; 2) a deficit of HSP70, the GATA1 chaperone, and 3) free heme toxicity. In addition, p53 activation in response to ribosomal stress is involved in DBA pathophysiology. The DBA phenotype may thus result from the combined contributions of various actors, which may explain the heterogenous phenotypes observed in DBA patients, even within the same family.
Collapse
Affiliation(s)
- L Da Costa
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France; University of Paris Saclay, F-94270 Le Kremlin-Bicêtre, France; University of Paris Cité, F-75010 Paris, France; University of Picardie Jules Verne, F-80000 Amiens, France; Inserm U1170, IGR, F-94805 Villejuif/HEMATIM UR4666, F-80000 Amiens, France; Laboratory of Excellence for Red Cells, LABEX GR-Ex, F-75015 Paris, France.
| | | | - Ludivine David-NGuyen
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France
| | - Jessica Platon
- Inserm U1170, IGR, F-94805 Villejuif/HEMATIM UR4666, F-80000 Amiens, France
| | - Isabelle Marie
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France
| | - Marie Françoise O'Donohue
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Thierry Leblanc
- Service d'immuno-hématologie pédiatrique, Hôpital Robert-Debré, F-75019 Paris, France
| | - Pierre-Emmanuel Gleizes
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
13
|
Elghetany MT, Patnaik MM, Khoury JD. Myelodysplastic neoplasms evolving from inherited bone marrow failure syndromes / germline predisposition syndromes: Back under the microscope. Leuk Res 2024; 137:107441. [PMID: 38301422 DOI: 10.1016/j.leukres.2024.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/03/2024]
Abstract
Inherited bone marrow failure syndromes and germline predisposition syndromes (IBMFS/GPS) are associated with increased risk for hematologic malignancies, particularly myeloid neoplasms, such as myelodysplastic neoplasms (MDS) and acute myeloid leukemia (AML). The diagnosis of MDS in these syndromes poses difficulty due to frequent bone marrow hypocellularity and the presence of some degree of dysplastic features related to the underlying germline defect causing abnormal maturation of one or more cell lines. Yet, the diagnosis of MDS is usually associated with a worse outcome in several IBMFS/GPS. Criteria for the diagnosis of MDS in IBMFS/GPS have not been standardized with some authors suggesting a mixture of morphologic, cytogenetic, and genetic criteria. This review highlights these challenges and suggests a more standardized approach to nomenclature and diagnostic criteria.
Collapse
Affiliation(s)
- M Tarek Elghetany
- Department of Pathology & Immunology and Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| | - Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph D Khoury
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
14
|
Dobrewa W, Bielska M, Bąbol-Pokora K, Janczar S, Młynarski W. Congenital neutropenia: From lab bench to clinic bedside and back. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108476. [PMID: 37989463 DOI: 10.1016/j.mrrev.2023.108476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/23/2023]
Abstract
Neutropenia is a hematological condition characterized by a decrease in absolute neutrophil count (ANC) in peripheral blood, typically classified in adults as mild (1-1.5 × 109/L), moderate (0.5-1 × 109/L), or severe (< 0.5 × 109/L). It can be categorized into two types: congenital and acquired. Congenital severe chronic neutropenia (SCN) arises from mutations in various genes, with different inheritance patterns, including autosomal recessive, autosomal dominant, and X-linked forms, often linked to mitochondrial diseases. The most common genetic cause is alterations in the ELANE gene. Some cases exist as non-syndromic neutropenia within the SCN spectrum, where genetic origins remain unidentified. The clinical consequences of congenital neutropenia depend on granulocyte levels and dysfunction. Infants with this condition often experience recurrent bacterial infections, with approximately half facing severe infections within their first six months of life. These infections commonly affect the respiratory system, digestive tract, and skin, resulting in symptoms like fever, abscesses, and even sepsis. The severity of these symptoms varies, and the specific organs and systems affected depend on the genetic defect. Congenital neutropenia elevates the risk of developing acute myeloid leukemia (AML) or myelodysplastic syndromes (MDS), particularly with certain genetic variants. SCN patients may acquire CSF3R and RUNX1 mutations, which can predict the development of leukemia. It is important to note that high-dose granulocyte colony-stimulating factor (G-CSF) treatment may have the potential to promote leukemogenesis. Treatment for neutropenia involves antibiotics, drugs that boost neutrophil production, or bone marrow transplants. Immediate treatment is essential due to the heightened risk of severe infections. In severe congenital or cyclic neutropenia (CyN), the primary therapy is G-CSF, often combined with antibiotics. The G-CSF dosage is gradually increased to normalize neutrophil counts. Hematopoietic stem cell transplants are considered for non-responders or those at risk of AML/MDS. In cases of WHIM syndrome, CXCR4 inhibitors can be effective. Future treatments may involve gene editing and the use of the diabetes drug empagliflozin to alleviate neutropenia symptoms.
Collapse
Affiliation(s)
- Weronika Dobrewa
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland.
| | - Marta Bielska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland
| | - Katarzyna Bąbol-Pokora
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland
| | - Szymon Janczar
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, 36\50 Sporna Str, 91-738 Lodz, Poland.
| |
Collapse
|
15
|
Obiorah IE, Upadhyaya KD, Calvo KR. Germline Predisposition to Myeloid Neoplasms: Diagnostic Concepts and Classifications. Clin Lab Med 2023; 43:615-638. [PMID: 37865507 DOI: 10.1016/j.cll.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Molecular and sequencing advances have led to substantial breakthroughs in the discovery of new genes and inherited mutations associated with increased risk of developing myeloid malignancies. Many of the same germline mutated genes are also drivers of malignancy in sporadic cancer. Recognition of myeloid malignancy associated with germline mutations is essential for proper therapy, disease surveillance, informing related donor selection for hematopoietic stem cell transplantation, and genetic counseling of the patient and affected family members. Some germline mutations are associated with syndromic features that precede the development of malignancy; however, penetrance may be highly variable leading to masking of the syndromic phenotype and/or inherited etiology.
Collapse
Affiliation(s)
- Ifeyinwa E Obiorah
- Department of Pathology, Division of Hematopathology, University of Virginia Health, Charlottesville, VA, USA
| | - Kalpana D Upadhyaya
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
16
|
Vissers LTW, van der Burg M, Lankester AC, Smiers FJW, Bartels M, Mohseny AB. Pediatric Bone Marrow Failure: A Broad Landscape in Need of Personalized Management. J Clin Med 2023; 12:7185. [PMID: 38002797 PMCID: PMC10672506 DOI: 10.3390/jcm12227185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Irreversible severe bone marrow failure (BMF) is a life-threatening condition in pediatric patients. Most important causes are inherited bone marrow failure syndromes (IBMFSs) and (pre)malignant diseases, such as myelodysplastic syndrome (MDS) and (idiopathic) aplastic anemia (AA). Timely treatment is essential to prevent infections and bleeding complications and increase overall survival (OS). Allogeneic hematopoietic stem cell transplantation (HSCT) provides a cure for most types of BMF but cannot restore non-hematological defects. When using a matched sibling donor (MSD) or a matched unrelated donor (MUD), the OS after HSCT ranges between 60 and 90%. Due to the introduction of post-transplantation cyclophosphamide (PT-Cy) to prevent graft versus host disease (GVHD), alternative donor HSCT can reach similar survival rates. Although HSCT can restore ineffective hematopoiesis, it is not always used as a first-line therapy due to the severe risks associated with HSCT. Therefore, depending on the underlying cause, other treatment options might be preferred. Finally, for IBMFSs with an identified genetic etiology, gene therapy might provide a novel treatment strategy as it could bypass certain limitations of HSCT. However, gene therapy for most IBMFSs is still in its infancy. This review summarizes current clinical practices for pediatric BMF, including HSCT as well as other disease-specific treatment options.
Collapse
Affiliation(s)
- Lotte T. W. Vissers
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.T.W.V.); (M.v.d.B.)
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (L.T.W.V.); (M.v.d.B.)
| | - Arjan C. Lankester
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.C.L.); (F.J.W.S.)
| | - Frans J. W. Smiers
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.C.L.); (F.J.W.S.)
| | - Marije Bartels
- Department of Pediatric Hematology, Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Alexander B. Mohseny
- Department of Pediatrics, Hematology and Stem Cell Transplantation, Willem-Alexander Children’s Hospital, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (A.C.L.); (F.J.W.S.)
| |
Collapse
|
17
|
Han X, Lu S, Gu C, Bian Z, Xie X, Qiao X. Clinical features, epidemiology, and treatment of Shwachman-Diamond syndrome: a systematic review. BMC Pediatr 2023; 23:503. [PMID: 37803383 PMCID: PMC10557232 DOI: 10.1186/s12887-023-04324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Shwachman-Diamond syndrome (SDS) is an autosomal recessive disease which results in inherited bone marrow failure (IBMF) and is characterized by exocrine pancreatic dysfunction and diverse clinical phenotypes. In the present study, we reviewed the internationally published reports on SDS patients, in order to summarize the clinical features, epidemiology, and treatment of SDS. METHODS We searched the WangFang and China National Knowledge Infrastructure databases with the keywords "Shwachman-Diamond syndrome," "SDS," "SBDS gene" and "inherited bone marrow failure" for relevant articles published from January 2002 to October 2022. In addition, studies published from January 2002 to October 2022 were searched from the Web of Science, PubMed, and MEDLINE databases, using "Shwachman-diamond syndrome" as the keyword. Finally, one child with SDS treated in Tongji Hospital was also included. RESULTS The clinical features of 156 patients with SDS were summarized. The three major clinical features of SDS were found to be peripheral blood cytopenia (96.8%), exocrine pancreatic dysfunction (83.3%), and failure to thrive (83.3%). The detection rate of SDS mutations was 94.6% (125/132). Mutations in SBDS, DNAJC21, SRP54, ELF6, and ELF1 have been reported. The male-to-female ratio was approximately 1.3/1. The median age of onset was 0.16 years, but the diagnostic age lagged by a median age of 1.3 years. CONCLUSIONS Pancreatic exocrine insufficiency and growth failure were common initial symptoms. SDS onset occurred early in childhood, and individual differences were obvious. Comprehensive collection and analysis of case-related data can help clinicians understand the clinical characteristics of SDS, which may improve early diagnosis and promote effective clinical intervention.
Collapse
Affiliation(s)
- Xue Han
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Shuanglong Lu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Changjuan Gu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Zhuli Bian
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Xiaotian Xie
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China
| | - Xiaohong Qiao
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
18
|
Kawashima N, Oyarbide U, Cipolli M, Bezzerri V, Corey SJ. Shwachman-Diamond syndromes: clinical, genetic, and biochemical insights from the rare variants. Haematologica 2023; 108:2594-2605. [PMID: 37226705 PMCID: PMC10543188 DOI: 10.3324/haematol.2023.282949] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
Shwachman-Diamond syndrome is a rare inherited bone marrow failure syndrome characterized by neutropenia, exocrine pancreatic insufficiency, and skeletal abnormalities. In 10-30% of cases, transformation to a myeloid neoplasm occurs. Approximately 90% of patients have biallelic pathogenic variants in the SBDS gene located on human chromosome 7q11. Over the past several years, pathogenic variants in three other genes have been identified to cause similar phenotypes; these are DNAJC21, EFL1, and SRP54. Clinical manifestations involve multiple organ systems and those classically associated with the Shwachman-Diamond syndrome (bone, blood, and pancreas). Neurocognitive, dermatologic, and retinal changes may also be found. There are specific gene-phenotype differences. To date, SBDS, DNAJC21, and SRP54 variants have been associated with myeloid neoplasia. Common to SBDS, EFL1, DNAJC21, and SRP54 is their involvement in ribosome biogenesis or early protein synthesis. These four genes constitute a common biochemical pathway conserved from yeast to humans that involve early stages of protein synthesis and demonstrate the importance of this synthetic pathway in myelopoiesis.
Collapse
Affiliation(s)
- Nozomu Kawashima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan; Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH
| | - Usua Oyarbide
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH
| | | | | | - Seth J Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
19
|
Cuccuini W, Collonge-Rame MA, Auger N, Douet-Guilbert N, Coster L, Lafage-Pochitaloff M. Cytogenetics in the management of bone marrow failure syndromes: Guidelines from the Groupe Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103423. [PMID: 38016422 DOI: 10.1016/j.retram.2023.103423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Bone marrow failure syndromes are rare disorders characterized by bone marrow hypocellularity and resultant peripheral cytopenias. The most frequent form is acquired, so-called aplastic anemia or idiopathic aplastic anemia, an auto-immune disorder frequently associated with paroxysmal nocturnal hemoglobinuria, whereas inherited bone marrow failure syndromes are related to pathogenic germline variants. Among newly identified germline variants, GATA2 deficiency and SAMD9/9L syndromes have a special significance. Other germline variants impacting biological processes, such as DNA repair, telomere biology, and ribosome biogenesis, may cause major syndromes including Fanconi anemia, dyskeratosis congenita, Diamond-Blackfan anemia, and Shwachman-Diamond syndrome. Bone marrow failure syndromes are at risk of secondary progression towards myeloid neoplasms in the form of myelodysplastic neoplasms or acute myeloid leukemia. Acquired clonal cytogenetic abnormalities may be present before or at the onset of progression; some have prognostic value and/or represent somatic rescue mechanisms in inherited syndromes. On the other hand, the differential diagnosis between aplastic anemia and hypoplastic myelodysplastic neoplasm remains challenging. Here we discuss the value of cytogenetic abnormalities in bone marrow failure syndromes and propose recommendations for cytogenetic diagnosis and follow-up.
Collapse
Affiliation(s)
- Wendy Cuccuini
- Laboratoire d'Hématologie, Unité de Cytogénétique, Hôpital Saint-Louis, Assistance Publique Hôpitaux de Paris (APHP), 75475, Paris Cedex 10, France.
| | - Marie-Agnes Collonge-Rame
- Oncobiologie Génétique Bioinformatique UF Cytogénétique et Génétique Moléculaire, CHU de Besançon, Hôpital Minjoz, 25030, Besançon, France
| | - Nathalie Auger
- Laboratoire de Cytogénétique/Génétique des Tumeurs, Gustave Roussy, 94805, Villejuif, France
| | - Nathalie Douet-Guilbert
- Laboratoire de Génétique Chromosomique, CHU Brest, Hôpital Morvan, 29609, Brest Cedex, France
| | - Lucie Coster
- Laboratoire d'Hématologie, Secteur de Cytogénétique, Institut Universitaire de Cancérologie de Toulouse, CHU de Toulouse, 31059, Toulouse Cedex 9, France
| | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Hématologique, CHU Timone, Assistance Publique Hôpitaux de Marseille (APHM), Aix Marseille Université, 13005, Marseille, France
| |
Collapse
|
20
|
Machado HE, Øbro NF, Williams N, Tan S, Boukerrou AZ, Davies M, Belmonte M, Mitchell E, Baxter EJ, Mende N, Clay A, Ancliff P, Köglmeier J, Killick SB, Kulasekararaj A, Meyer S, Laurenti E, Campbell PJ, Kent DG, Nangalia J, Warren AJ. Convergent somatic evolution commences in utero in a germline ribosomopathy. Nat Commun 2023; 14:5092. [PMID: 37608017 PMCID: PMC10444798 DOI: 10.1038/s41467-023-40896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
Clonal tracking of cells using somatic mutations permits exploration of clonal dynamics in human disease. Here, we perform whole genome sequencing of 323 haematopoietic colonies from 10 individuals with the inherited ribosomopathy Shwachman-Diamond syndrome to reconstruct haematopoietic phylogenies. In ~30% of colonies, we identify mutually exclusive mutations in TP53, EIF6, RPL5, RPL22, PRPF8, plus chromosome 7 and 15 aberrations that increase SBDS and EFL1 gene dosage, respectively. Target gene mutations commence in utero, resulting in a profusion of clonal expansions, with only a few haematopoietic stem cell lineages (mean 8, range 1-24) contributing ~50% of haematopoietic colonies across 8 individuals (range 4-100% clonality) by young adulthood. Rapid clonal expansion during disease transformation is associated with biallelic TP53 mutations and increased mutation burden. Our study highlights how convergent somatic mutation of the p53-dependent nucleolar surveillance pathway offsets the deleterious effects of germline ribosomopathy but increases opportunity for TP53-mutated cancer evolution.
Collapse
Affiliation(s)
| | - Nina F Øbro
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | - Shengjiang Tan
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge, UK
| | - Ahmed Z Boukerrou
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge, UK
| | - Megan Davies
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Emily Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - E Joanna Baxter
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Nicole Mende
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anna Clay
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Philip Ancliff
- Department of Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Jutta Köglmeier
- Department of Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Sally B Killick
- University Hospitals Dorset NHS Foundation Trust, The Royal Bournemouth Hospital, Bournemouth, UK
| | - Austin Kulasekararaj
- Department of Haematological Medicine, King's College Hospital NHS Foundation Trust and King's College London, London, UK
| | - Stefan Meyer
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester, UK
- Department of Paediatric Haematology and Oncology, Royal Manchester Children's Hospital, Manchester Foundation Trust, Manchester, Oxford Road, Manchester, UK
- Teenage and Adolescent Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, UK
| | - Elisa Laurenti
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - David G Kent
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- York Biomedical Research Institute, Department of Biology, University of York, York, UK.
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Alan J Warren
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge, UK.
| |
Collapse
|
21
|
Kawashima N, Bezzerri V, Corey SJ. The Molecular and Genetic Mechanisms of Inherited Bone Marrow Failure Syndromes: The Role of Inflammatory Cytokines in Their Pathogenesis. Biomolecules 2023; 13:1249. [PMID: 37627314 PMCID: PMC10452082 DOI: 10.3390/biom13081249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) include Fanconi anemia, Diamond-Blackfan anemia, Shwachman-Diamond syndrome, dyskeratosis congenita, severe congenital neutropenia, and other rare entities such as GATA2 deficiency and SAMD9/9L mutations. The IBMFS monogenic disorders were first recognized by their phenotype. Exome sequencing has validated their classification, with clusters of gene mutations affecting DNA damage response (Fanconi anemia), ribosome structure (Diamond-Blackfan anemia), ribosome assembly (Shwachman-Diamond syndrome), or telomere maintenance/stability (dyskeratosis congenita). The pathogenetic mechanisms of IBMFSs remain to be characterized fully, but an overarching hypothesis states that different stresses elicit TP53-dependent growth arrest and apoptosis of hematopoietic stem, progenitor, and precursor cells. Here, we review the IBMFSs and propose a role for pro-inflammatory cytokines, such as TGF-β, IL-1β, and IFN-α, in mediating the cytopenias. We suggest a pathogenic role for cytokines in the transformation to myeloid neoplasia and hypothesize a role for anti-inflammatory therapies.
Collapse
Affiliation(s)
- Nozomu Kawashima
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy;
| | - Seth J. Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH 44195, USA;
| |
Collapse
|
22
|
Reilly CR, Shimamura A. Predisposition to myeloid malignancies in Shwachman-Diamond syndrome: biological insights and clinical advances. Blood 2023; 141:1513-1523. [PMID: 36542827 PMCID: PMC10082379 DOI: 10.1182/blood.2022017739] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Shwachman-Diamond syndrome (SDS) is an inherited multisystem ribosomopathy characterized by exocrine pancreatic deficiency, bone marrow failure, and predisposition to myeloid malignancies. The pathobiology of SDS results from impaired ribosomal maturation due to the deficiency of SBDS and the inability to evict the antiassociation factor eIF6 from the 60S ribosomal subunit. Clinical outcomes for patients with SDS who develop myeloid malignancies are extremely poor because of high treatment-related toxicities and a high rate of refractory disease/relapse even after allogeneic hematopoietic stem cell transplant (HSCT). Registry data indicate that outcomes are improved for patients with SDS who undergo routine bone marrow surveillance and receive an HSCT before developing an overt malignancy. However, the optimal approach to hematologic surveillance and the timing of HSCT for patients with SDS is not clearly established. Recent studies have elucidated distinct patterns of somatic blood mutations in patients with SDS that either alleviate the ribosome defect via somatic rescue (heterozygous EIF6 inactivation) or disrupt cellular checkpoints, resulting in increased leukemogenic potential (heterozygous TP53 inactivation). Genomic analysis revealed that most myeloid malignancies in patients with SDS have biallelic loss-of-function TP53 mutations. Single-cell DNA sequencing of SDS bone marrow samples can detect premalignant biallelic TP53-mutated clones before clinical diagnosis, suggesting that molecular surveillance may enhance the detection of incipient myeloid malignancies when HSCT may be most effective. Here, we review the clinical, genetic, and biologic features of SDS. In addition, we present evidence supporting the hematologic surveillance for patients with SDS that incorporates clinical, pathologic, and molecular data to risk stratify patients and prioritize transplant evaluation for patients with SDS with high-risk features.
Collapse
Affiliation(s)
- Christopher R. Reilly
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Akiko Shimamura
- Department of Pediatric Hematology/Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA
| |
Collapse
|
23
|
Fabozzi F, Mastronuzzi A. Genetic Predisposition to Hematologic Malignancies in Childhood and Adolescence. Mediterr J Hematol Infect Dis 2023; 15:e2023032. [PMID: 37180200 PMCID: PMC10171214 DOI: 10.4084/mjhid.2023.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
Advances in molecular biology and genetic testing have greatly improved our understanding of the genetic basis of hematologic malignancies and have enabled the identification of new cancer predisposition syndromes. Recognizing a germline mutation in a patient affected by a hematologic malignancy allows for a tailored treatment approach to minimize toxicities. It informs the donor selection, the timing, and the conditioning strategy for hematopoietic stem cell transplantation, as well as the comorbidities evaluation and surveillance strategies. This review provides an overview of germline mutations that predispose to hematologic malignancies, focusing on those most common during childhood and adolescence, based on the new International Consensus Classification of Myeloid and Lymphoid Neoplasms.
Collapse
Affiliation(s)
- Francesco Fabozzi
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| |
Collapse
|
24
|
The International Consensus Classification (ICC) of hematologic neoplasms with germline predisposition, pediatric myelodysplastic syndrome, and juvenile myelomonocytic leukemia. Virchows Arch 2023; 482:113-130. [PMID: 36445482 DOI: 10.1007/s00428-022-03447-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/30/2022]
Abstract
Updating the classification of hematologic neoplasia with germline predisposition, pediatric myelodysplastic syndrome (MDS), and juvenile myelomonocytic leukemia (JMML) is critical for diagnosis, therapy, research, and clinical trials. Advances in next-generation sequencing technology have led to the identification of an expanding group of genes that predispose to the development of hematolymphoid neoplasia when mutated in germline configuration and inherited. This review encompasses recent advances in the classification of myeloid and lymphoblastic neoplasia with germline predisposition summarizing important genetic and phenotypic information, relevant laboratory testing, and pathologic bone marrow features. Genes are organized into three major categories including (1) those that are not associated with constitutional disorder and include CEBPA, DDX41, and TP53; (2) those associated with thrombocytopenia or platelet dysfunction including RUNX1, ANKRD26, and ETV6; and (3) those associated with constitutional disorders affecting multiple organ systems including GATA2, SAMD9, and SAMD9L, inherited genetic mutations associated with classic bone marrow failure syndromes and JMML, and Down syndrome. A provisional category of germline predisposition genes is created to recognize genes with growing evidence that may be formally included in future revised classifications as substantial supporting data emerges. We also detail advances in the classification of pediatric myelodysplastic syndrome (MDS), expanding the definition of refractory cytopenia of childhood (RCC) to include early manifestation of MDS in patients with germline predisposition. Finally, updates in the classification of juvenile myelomonocytic leukemia are presented which genetically define JMML as a myeloproliferative/myelodysplastic disease harboring canonical RAS pathway mutations. Diseases with features overlapping with JMML that do not carry RAS pathway mutations are classified as JMML-like. The review is based on the International Consensus Classification (ICC) of Myeloid and Lymphoid Neoplasms as reported by Arber et al. (Blood 140(11):1200-1228, 2022).
Collapse
|
25
|
Wu D, Zhang L, Qiang Y, Wang K. Improved detection of SBDS gene mutation by a new method of next-generation sequencing analysis based on the Chinese mutation spectrum. PLoS One 2022; 17:e0269029. [PMID: 36512530 PMCID: PMC9747038 DOI: 10.1371/journal.pone.0269029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/13/2022] [Indexed: 12/15/2022] Open
Abstract
Next-generation sequencing (NGS) is a useful molecular diagnostic tool for genetic diseases. However, due to the presence of highly homologous pseudogenes, it is challenging to use short-read NGS for analyzing mutations of the Shwachman-Bodian-Diamond syndrome (SBDS) gene. The SBDS mutation spectrum was analyzed in the Chinese population, which revealed that SBDS variants were primarily from sequence exchange between SBDS and its pseudogene at the base-pair level, predominantly in the coding region and splice junction of exon two. The c.258+2T>C and c.185_184TA>GT variants were the two most common pathogenic SBDS variants in the Chinese population, resulting in a total carrier frequency of 1.19%. When analyzing pathogenic variants in the SBDS gene from the NGS data, the misalignment was identified as a common issue, and there were different probabilities of misalignment for different pathogenic variants. Here, we present a novel mathematical method for identifying pathogenic variants in the SBDS gene from the NGS data, which utilizes read-depth of the paralogous sequence variant (PSV) loci of SBDS and its pseudogene. Combined with PCR and STR orthogonal experiments, SBDS gene mutation analysis results were improved in 40% of clinical samples, and various types of mutations such as homozygous, compound heterozygous, and uniparental diploid were explored. The findings effectively reduce the impact of misalignment in NGS-based SBDS mutation analysis and are helpful for the clinical diagnosis of SBDS-related diseases, the research into population variation, and the carrier screening.
Collapse
Affiliation(s)
- Dong Wu
- Department of Obstetrics and Gynecology, 900 Hospital of the Joint Logistics Team or Dongfang Hospital, Fuzhou, Fujian, People’s Republic of China
| | - Li Zhang
- Fulgent (Fujian) Technologies, Fuzhou, Fujian, People’s Republic of China
| | - Yuzhen Qiang
- Fulgent (Fujian) Technologies, Fuzhou, Fujian, People’s Republic of China
| | - Kaiyu Wang
- Fulgent (Fujian) Technologies, Fuzhou, Fujian, People’s Republic of China
- * E-mail:
| |
Collapse
|
26
|
Thompson AS, Giri N, Gianferante DM, Jones K, Savage SA, Alter BP, McReynolds LJ. Shwachman Diamond syndrome: narrow genotypic spectrum and variable clinical features. Pediatr Res 2022; 92:1671-1680. [PMID: 35322185 PMCID: PMC9500118 DOI: 10.1038/s41390-022-02009-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Shwachman Diamond syndrome (SDS) is an inherited bone marrow failure syndrome (IBMFS) associated with pancreatic insufficiency, neutropenia, and skeletal dysplasia. Biallelic pathogenic variants (PV) in SBDS account for >90% of SDS. We hypothesized that the SDS phenotype varies based on genotype and conducted a genotype-phenotype correlation study to better understand these complexities. METHODS We reviewed records of all patients with SDS or SDS-like syndromes in the National Cancer Institute's (NCI) IBMFS study. Additional published SDS cohorts were reviewed and compared with the NCI cohort. RESULTS PVs in SBDS were present in 32/47 (68.1%) participants. Biallelic inheritance of SBDS c.258 + 2T > C and c.183_184TA > CT was the most common genotype in our study (25/32, 78.1%) and published cohorts. Most patients had the SDS hallmark features of neutropenia (45/45, 100%), pancreatic insufficiency (41/43, 95.3%), and/or bony abnormalities (29/36, 80.6%). Developmental delay was common (20/34, 58.8%). Increased risk of hematologic malignancies at young ages and the rarity of solid malignancies was observed in both the NCI cohort and published studies. CONCLUSIONS SDS is a complex childhood illness with a narrow genotypic spectrum. Patients may first present to primary care, gastroenterology, orthopedic, and/or hematology clinics. Coordinated multidisciplinary care is important for diagnosis and patient management. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT00027274. IMPACT The clinical and genetic spectrum of Shwachman Diamond Syndrome was comprehensively evaluated, and the findings illustrate the importance of a multidisciplinary approach for these complex patients. Our work reveals: 1. a narrow genotypic spectrum in SDS; 2. a low risk of solid tumors in patients with SDS; 3. patients with SDS have clinical manifestations in multiple organ systems.
Collapse
Affiliation(s)
- Ashley S Thompson
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - D Matthew Gianferante
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
- Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
27
|
Spangenberg MN, Grille S, Simoes C, Dell'Oca N, Boada M, Guillermo C, Raggio V, Spangenberg L. Two mutations in the SBDS gene reveal a diagnosis of Shwachman-Diamond syndrome in a patient with atypical symptoms. Cold Spring Harb Mol Case Stud 2022; 8:a006237. [PMID: 36577524 PMCID: PMC9808556 DOI: 10.1101/mcs.a006237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/10/2022] [Indexed: 12/30/2022] Open
Abstract
We present the case of a 53-yr-old woman with an inherited bone marrow failure coexisting with uncommon extrahematological symptoms, such as cirrhosis and skin abnormalities. Whole-exome sequencing revealed a diagnosis of Shwachman-Diamond syndrome (SDS) with an atypical presentation. Unexpected was the age of disease expression, normally around the pediatric age, with a predominantly median survival age of 36 yr. To our knowledge, she was the first adult patient with a molecular diagnosis of Shwachman-Diamond in Uruguay. The patient was referred to our service when she was 43-yr-old with a history of bone marrow failure with anemia and thrombocytopenia. All secondary causes of pancytopenia were excluded. Bone marrow aspirate and biopsy specimens were hypocellular for the patient's age. Numerous dysplastic features were observed in the three lineages. She had a normal karyotype and normal chromosomal fragility. A diagnosis of low-risk hypoplastic MDS was made. Dermatological examination revealed reticulate skin pigmentation with hypopigmented macules involving the face, neck, and extremities; nail dystrophy; premature graying; and thin hair. Extrahematological manifestations were present (e.g., learning difficulties, short stature). Last, she was diagnosed with cryptogenic liver cirrhosis CHILD C. This rules out all other possible causes of chronic liver disease. This clinical presentation initially oriented the diagnosis toward telomeropathy, so we did a telomeropathy NGS panel that came up negative. Finally, we did an exome sequencing that confirmed the diagnosis of SDS. Using whole-exome sequencing, we were able to find two compound heterozygous mutations in the SBDS gene that were responsible for the phenotype of a patient that was undiagnosed for 10 years. An earlier genetic diagnosis could have influenced our patient's outcome.
Collapse
Affiliation(s)
- María Noel Spangenberg
- Departamento de Hematología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, 11600 Montevideo, Uruguay
| | - Sofia Grille
- Departamento de Hematología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, 11600 Montevideo, Uruguay
- Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, 11600 Montevideo, Uruguay
| | - Camila Simoes
- Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, 11600 Montevideo, Uruguay
- Bioinformatics Unit, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| | - Nicolás Dell'Oca
- Departamento de Genética, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay
| | - Matilde Boada
- Departamento de Hematología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, 11600 Montevideo, Uruguay
| | - Cecilia Guillermo
- Departamento de Hematología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, 11600 Montevideo, Uruguay
| | - Victor Raggio
- Departamento de Genética, Facultad de Medicina, Universidad de la República, 11800 Montevideo, Uruguay
| | - Lucía Spangenberg
- Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, 11600 Montevideo, Uruguay
- Bioinformatics Unit, Institut Pasteur de Montevideo, 11400 Montevideo, Uruguay
| |
Collapse
|
28
|
Cesaro S, Donadieu J, Cipolli M, Dalle JH, Styczynski J, Masetti R, Strahm B, Mauro M, Alseraihy A, Aljurf M, Dufour C, de la Tour RP. Stem Cell Transplantation in Patients Affected by Shwachman-Diamond Syndrome: Expert Consensus and Recommendations From the EBMT Severe Aplastic Anaemia Working Party. Transplant Cell Ther 2022; 28:637-649. [PMID: 35870777 DOI: 10.1016/j.jtct.2022.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/18/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Shwachman-Diamond syndrome is a rare disorder that can develop malignant and nonmalignant hematological complications. Overall, 10% to 20% of Shwachman-Diamond patients need hematopoietic stem cell transplantation (HSCT), but most centers have a limited experience and different approaches. The European Society for Blood and Marrow Transplantation-Severe Aplastic Anaemia Working Party promoted an expert consensus to propose recommendations regarding key issues in the management of Shwachman-Diamond patients with hematological complications. The main items identified as relevant for improving survival were: the importance of regular and structured hematologic follow-up, the potential reduction of transplant-related mortality by using reduced-intensity conditioning regimens, the limitation of total body irradiation, particularly for non-malignant severe cytopenia/bone marrow failure, the early diagnosis of clonal malignant evolution and early recognition of an indication for HSCT. Finally, the poor results of HSCT in patients with acute myeloid leukemia, irrespective of cytoreductive chemotherapy treatment received prior to transplantation, highlights the need for innovative approaches. © 2023 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Collapse
Affiliation(s)
- Simone Cesaro
- Paediatric Haematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, Verona, Italy.
| | - Jean Donadieu
- Department of Paediatric Haematology and Oncology, Registre National des Neutropénies Chroniques, AP-HP Trousseau Hospital, Paris, France
| | - Marco Cipolli
- Cystic Fibrosis and Shwachman Diamond Regional Centre, Italian Registry of Shwachman Diamond Disease, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Jean Hugues Dalle
- Department of Paediatric Haematology, Robert Debré Hospital, GHU APHP Nord Université de Paris, France
| | - Jan Styczynski
- Department of Paediatric Haematology and Oncology, Collegium Medicum, Nicolaus Copernicus University Torun, Jurasz University Hospital, Bydgoszcz, Poland
| | - Riccardo Masetti
- Paediatric Oncology and Haematology "Lalla Seràgnoli," Paediatric Unit-IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Brigitte Strahm
- Department of Paediatrics and Adolescent Medicine, Division of Paediatric Haematology and Oncology, Medical Centre, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Margherita Mauro
- Paediatric Haematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Amal Alseraihy
- Department of Oncology, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
| | - Mahmoud Aljurf
- Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Carlo Dufour
- Haematology Unit, IRCCS G. Gaslini Children's Hospital, Genoa, Italy
| | - Regis Peffault de la Tour
- French Reference Centre for Aplastic Anaemia and Paroxysmal Nocturnal Haemoglobinuria, Bone Marrow Transplantation Unit, APHP, Saint-Louis Hospital, Paris University, Paris, France
| |
Collapse
|
29
|
Lv S, Zhao J, Liu L, Wang C, Yue H, Zhang H, Li S, Zhang Z. Exploring and expanding the phenotype and genotype diversity in seven Chinese families with spondylo-epi-metaphyseal dysplasia. Front Genet 2022; 13:960504. [PMID: 36118854 PMCID: PMC9473317 DOI: 10.3389/fgene.2022.960504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Spondylo-epi-metaphyseal dysplasia (SEMD) is a heterogeneous group of disorders with different modes of inheritance and is characterized by disproportionate or proportionate short stature. To date, more than 30 disease-causing genes have been identified, and different types of SEMD exhibit greatly overlapping clinical features, which usually complicate the diagnosis. This study was performed to expand the clinical and molecular spectrum of SEMD among Chinese subjects and to explore their potential phenotype–genotype relations. We enrolled seven families including 11 affected patients with SEMD, and their clinical, radiographic, and genetic data were carefully analyzed. All the seven probands showed different degrees of short stature, and each of them exhibited additional specific skeletal manifestations; four probands had extraosseous manifestations. X-rays of the seven probands showed common features of SEMD, including vertebral deformities, irregular shape of the epiphysis, and disorganization of the metaphysis. Seven variants were identified in TRPV4 (c.694C> T, p.Arg232Cys), COL2A1 (c.654 + 1G > C; c.3266_3268del, p.Gly1089del), CCN6 (c.396 T> G, p.Cys132Trp; c.721 T>C, p.Cys241Arg), SBDS (c.258 + 2T> C), and ACAN (c.1508C> A, p.Thr503Lys) genes, and two of them were novel. Two families with TRPV4 variants showed considerable intrafamily and interfamily heterogeneities. In addition, we reported one case of SEMD with a severe phenotype caused by ACAN gene mutation. Our study expands the phenotype and genetic spectrum of SEMD and provides evidence for the phenotype–genotype relations, aiding future molecular and clinical diagnosis as well as procreative management of SEMD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shanshan Li
- *Correspondence: Shanshan Li, ; Zhenlin Zhang,
| | | |
Collapse
|
30
|
Taha I, Foroni S, Valli R, Frattini A, Roccia P, Porta G, Zecca M, Bergami E, Cipolli M, Pasquali F, Danesino C, Scotti C, Minelli A. Case Report: Heterozygous Germline Variant in EIF6 Additional to Biallelic SBDS Pathogenic Variants in a Patient With Ribosomopathy Shwachman–Diamond Syndrome. Front Genet 2022; 13:896749. [PMID: 36035165 PMCID: PMC9411639 DOI: 10.3389/fgene.2022.896749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Shwachman–Diamond syndrome (SDS) is a rare autosomal recessive ribosomopathy mainly characterized by exocrine pancreatic insufficiency, skeletal alterations, neutropenia, and a relevant risk of hematological transformation. At least 90% of SDS patients have pathogenic variants in SBDS, the first gene associated with the disease with very low allelic heterogeneity; three variants, derived from events of genetic conversion between SBDS and its pseudogene, SBDSP1, provided the alleles observed in about 62% of SDS patients. Methods: We performed a reanalysis of the available WES files of a group of SDS patients with biallelic SBDS pathogenic variants, studying the results by next bioinformatic and protein structural analysis. Parallelly, careful clinical attention was given to the patient focused in this study. Results: We found and confirmed in one SDS patient a germline heterozygous missense variant (c.100T>C; p.Phe34Leu) in the EIF6 gene. This variant, inherited from his mother, has a very low frequency, and it is predicted as pathogenic, according to several in silico prediction tools. The protein structural analysis also envisages the variant could reduce the binding to the nascent 60S ribosomal. Conclusion: This study focused on the hypothesis that the EIF6 germline variant mimics the effect of somatic deletions of chromosome 20, always including the locus of this gene, and similarly may rescue the ribosomal stress and ribosomal dysfunction due to SBDS mutations. It is likely that this rescue may contribute to the stable and not severe hematological status of the proband, but a definite answer on the role of this EIF6 variant can be obtained only by adding a functional layer of evidence. In the future, these results are likely to be useful for selected cases in personalized medicine and therapy.
Collapse
Affiliation(s)
- Ibrahim Taha
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Selena Foroni
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Roberto Valli
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Annalisa Frattini
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
- Istituto di Ricerca Genetica e Biomedica, CNR, Milano, Italy
| | - Pamela Roccia
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Giovanni Porta
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Marco Zecca
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S, Matteo, Pavia, Italy
| | - Elena Bergami
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico S, Matteo, Pavia, Italy
| | - Marco Cipolli
- Centro Fibrosi Cistica, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Francesco Pasquali
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cesare Danesino
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Claudia Scotti
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Antonella Minelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Antonella Minelli,
| |
Collapse
|
31
|
Phenotypic Variation in Two Siblings Affected with Shwachman-Diamond Syndrome: The Use of Expert Variant Interpreter (eVai) Suggests Clinical Relevance of a Variant in the KMT2A Gene. Genes (Basel) 2022; 13:genes13081314. [PMID: 35893049 PMCID: PMC9394309 DOI: 10.3390/genes13081314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction. Shwachman-Diamond Syndrome (SDS) is an autosomal-recessive disorder characterized by neutropenia, pancreatic exocrine insufficiency, skeletal dysplasia, and an increased risk for leukemic transformation. Biallelic mutations in the SBDS gene have been found in about 90% of patients. The clinical spectrum of SDS in patients is wide, and variability has been noticed between different patients, siblings, and even within the same patient over time. Herein, we present two SDS siblings (UPN42 and UPN43) carrying the same SBDS mutations and showing relevant differences in their phenotypic presentation. Study aim. We attempted to understand whether other germline variants, in addition to SBDS, could explain some of the clinical variability noticed between the siblings. Methods. Whole-exome sequencing (WES) was performed. Human Phenotype Ontology (HPO) terms were defined for each patient, and the WES data were analyzed using the eVai and DIVAs platforms. Results. In UPN43, we found and confirmed, using Sanger sequencing, a novel de novo variant (c.10663G > A, p.Gly3555Ser) in the KMT2A gene that is associated with autosomal-dominant Wiedemann−Steiner Syndrome. The variant is classified as pathogenic according to different in silico prediction tools. Interestingly, it was found to be related to some of the HPO terms that describe UPN43. Conclusions. We postulate that the KMT2A variant found in UPN43 has a concomitant and co-occurring clinical effect, in addition to SBDS mutation. This dual molecular effect, supported by in silico prediction, could help to understand some of the clinical variations found among the siblings. In the future, these new data are likely to be useful for personalized medicine and therapy for selected cases.
Collapse
|
32
|
Calvo C, Lainey E, Caye A, Cuccuini W, Fenneteau O, Yakouben K, Bellanné-Chantelot C, Baruchel A, Dalle JH, Leblanc T. Leukaemic transformation in a 10-year-old girl with SRP54 congenital neutropenia. Br J Haematol 2022; 198:1069-1072. [PMID: 35732340 DOI: 10.1111/bjh.18334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Charlotte Calvo
- Pediatric Hematology and Immunology Department, Robert-Debré University Hospital (APHP and Université de Paris), Paris, France
| | - Elodie Lainey
- Hematology Laboratory, Robert-Debré University Hospital (APHP and Université de Paris), Paris, France
| | - Aurélie Caye
- Genetic Department, Robert-Debré University Hospital (APHP and Université de Paris), Paris, France
| | - Wendy Cuccuini
- Hematology Laboratory, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Odile Fenneteau
- Hematopathology Department, Robert-Debré University Hospital (APHP and Université de Paris), Paris, France
| | - Karima Yakouben
- Pediatric Hematology and Immunology Department, Robert-Debré University Hospital (APHP and Université de Paris), Paris, France
| | - Christine Bellanné-Chantelot
- Department of Medical Genetics, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - André Baruchel
- Pediatric Hematology and Immunology Department, Robert-Debré University Hospital (APHP and Université de Paris), Paris, France
| | - Jean-Hugues Dalle
- Pediatric Hematology and Immunology Department, Robert-Debré University Hospital (APHP and Université de Paris), Paris, France
| | - Thierry Leblanc
- Pediatric Hematology and Immunology Department, Robert-Debré University Hospital (APHP and Université de Paris), Paris, France
| |
Collapse
|
33
|
Bezzerri V, Lentini L, Api M, Busilacchi EM, Cavalieri V, Pomilio A, Diomede F, Pegoraro A, Cesaro S, Poloni A, Pace A, Trubiani O, Lippi G, Pibiri I, Cipolli M. Novel Translational Read-through-Inducing Drugs as a Therapeutic Option for Shwachman-Diamond Syndrome. Biomedicines 2022; 10:biomedicines10040886. [PMID: 35453634 PMCID: PMC9024944 DOI: 10.3390/biomedicines10040886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Shwachman-Diamond syndrome (SDS) is one of the most commonly inherited bone marrow failure syndromes (IBMFS). In SDS, bone marrow is hypocellular, with marked neutropenia. Moreover, SDS patients have a high risk of developing myelodysplastic syndrome (MDS), which in turn increases the risk of acute myeloid leukemia (AML) from an early age. Most SDS patients are heterozygous for the c.183-184TA>CT (K62X) SBDS nonsense mutation. Fortunately, a plethora of translational read-through inducing drugs (TRIDs) have been developed and tested for several rare inherited diseases due to nonsense mutations so far. The authors previously demonstrated that ataluren (PTC124) can restore full-length SBDS protein expression in bone marrow stem cells isolated from SDS patients carrying the nonsense mutation K62X. In this study, the authors evaluated the effect of a panel of ataluren analogues in restoring SBDS protein resynthesis and function both in hematological and non-hematological SDS cells. Besides confirming that ataluren can efficiently induce SBDS protein re-expression in SDS cells, the authors found that another analogue, namely NV848, can restore full-length SBDS protein synthesis as well, showing very low toxicity in zebrafish. Furthermore, NV848 can improve myeloid differentiation in bone marrow hematopoietic progenitors, enhancing neutrophil maturation and reducing the number of dysplastic granulocytes in vitro. Therefore, these findings broaden the possibilities of developing novel therapeutic options in terms of nonsense mutation suppression for SDS. Eventually, this study may act as a proof of concept for the development of similar approaches for other IBMFS caused by nonsense mutations.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (V.B.); (A.P.)
| | - Laura Lentini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, 90128 Palermo, Italy; (L.L.); (V.C.); (A.P.); (I.P.)
| | - Martina Api
- Cystic Fibrosis Center of Ancona, Azienda Ospedaliero Universitaria Ospedali Riuniti, 60126 Ancona, Italy;
| | - Elena Marinelli Busilacchi
- Hematology Clinic, Università Politecnica delle Marche, AOU Ospedali Riuniti, 60126 Ancona, Italy; (E.M.B.); (A.P.)
| | - Vincenzo Cavalieri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, 90128 Palermo, Italy; (L.L.); (V.C.); (A.P.); (I.P.)
- Zebrafish Laboratory, Advanced Technologies Network (ATeN) Center, University of Palermo, 90128 Palermo, Italy
| | - Antonella Pomilio
- Department of Medical, Oral and Biotechnological Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Francesca Diomede
- Dipartimento di Tecnologie Innovative in Medicina e Odontoiatria, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (O.T.)
| | - Anna Pegoraro
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (V.B.); (A.P.)
| | - Simone Cesaro
- Unit of Pediatric Hematology Oncology, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy;
| | - Antonella Poloni
- Hematology Clinic, Università Politecnica delle Marche, AOU Ospedali Riuniti, 60126 Ancona, Italy; (E.M.B.); (A.P.)
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, 90128 Palermo, Italy; (L.L.); (V.C.); (A.P.); (I.P.)
| | - Oriana Trubiani
- Dipartimento di Tecnologie Innovative in Medicina e Odontoiatria, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.D.); (O.T.)
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, 37126 Verona, Italy;
| | - Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, 90128 Palermo, Italy; (L.L.); (V.C.); (A.P.); (I.P.)
| | - Marco Cipolli
- Cystic Fibrosis Center of Verona, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy; (V.B.); (A.P.)
- Correspondence: ; Tel.: +39-045-812-2293
| |
Collapse
|
34
|
Groarke EM, Calado RT, Liu JM. Cell senescence and malignant transformation in the inherited bone marrow failure syndromes: Overlapping pathophysiology with therapeutic implications. Semin Hematol 2022; 59:30-37. [PMID: 35491056 PMCID: PMC9062194 DOI: 10.1053/j.seminhematol.2022.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 02/02/2023]
Abstract
Fanconi anemia, telomeropathies and ribosomopathies are members of the inherited bone marrow failure syndromes, rare genetic disorders that lead to failure of hematopoiesis, developmental abnormalities, and cancer predisposition. While each disorder is caused by different genetic defects in seemingly disparate processes of DNA repair, telomere maintenance, or ribosome biogenesis, they appear to lead to a common pathway characterized by premature senescence of hematopoietic stem cells. Here we review the experimental data on senescence and inflammation underlying marrow failure and malignant transformation. We conclude with a critical assessment of current and future therapies targeting these pathways in inherited bone marrow failure syndromes patients.
Collapse
Affiliation(s)
- Emma M Groarke
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Johnson M Liu
- Division of Hematology, Maine Medical Center, Portland, ME
| |
Collapse
|
35
|
Warren JT, Link DC. Impaired myelopoiesis in congenital neutropenia: insights into clonal and malignant hematopoiesis. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:514-520. [PMID: 34889405 PMCID: PMC8791126 DOI: 10.1182/hematology.2021000286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A common feature of both congenital and acquired forms of bone marrow failure is an increased risk of developing acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS). Indeed, the development of MDS or AML is now the major cause of mortality in patients with congenital neutropenia. Thus, there is a pressing clinical need to develop better strategies to prevent, diagnose early, and treat MDS/AML in patients with congenital neutropenia and other bone marrow failure syndromes. Here, we discuss recent data characterizing clonal hematopoiesis and progression to myeloid malignancy in congenital neutropenia, focusing on severe congenital neutropenia (SCN) and Shwachman-Diamond syndrome. We summarize recent studies showing excellent outcomes after allogenic hematopoietic stem cell transplantation for many (but not all) patients with congenital neutropenia, including patients with SCN with active myeloid malignancy who underwent transplantation. Finally, we discuss how these new data inform the current clinical management of patients with congenital neutropenia.
Collapse
Affiliation(s)
- Julia T Warren
- Division of Hematology-Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Daniel C Link
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
36
|
Connelly JA. Diagnosis and therapeutic decision-making for the neutropenic patient. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:492-503. [PMID: 34889413 PMCID: PMC8791128 DOI: 10.1182/hematology.2021000284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Determining the cause of a low neutrophil count in a pediatric or adult patient is essential for the hematologist's clinical decision-making. Fundamental to this diagnostic process is establishing the presence or lack of a mature neutrophil storage pool, as absence places the patient at higher risk for infection and the need for supportive care measures. Many diagnostic tests, eg, a peripheral blood smear and bone marrow biopsy, remain important tools, but greater understanding of the diversity of neutropenic disorders has added new emphasis on evaluating for immune disorders and genetic testing. In this article, a structure is provided to assess patients based on the mechanism of neutropenia and to prioritize testing based on patient age and hypothesized pathophysiology. Common medical quandaries including fever management, need for growth factor support, risk of malignant transformation, and curative options in congenital neutropenia are reviewed to guide medical decision-making in neutropenic patients.
Collapse
Affiliation(s)
- James A. Connelly
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
37
|
Choijilsuren HB, Park Y, Jung M. Mechanisms of somatic transformation in inherited bone marrow failure syndromes. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:390-398. [PMID: 34889377 PMCID: PMC8791168 DOI: 10.1182/hematology.2021000271] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inherited bone marrow failure syndromes (IBMFS) cause hematopoietic stem progenitor cell (HSPC) failure due to germline mutations. Germline mutations influence the number and fitness of HSPC by various mechanisms, for example, abnormal ribosome biogenesis in Shwachman-Diamond syndrome and Diamond-Blackfan anemia, unresolved DNA cross-links in Fanconi anemia, neutrophil maturation arrest in severe congenital neutropenia, and telomere shortening in short telomere syndrome. To compensate for HSPC attrition, HSPCs are under increased replication stress to meet the need for mature blood cells. Somatic alterations that provide full or partial recovery of functional deficit implicated in IBMFS can confer a growth advantage. This review discusses results of recent genomic studies and illustrates our new understanding of mechanisms of clonal evolution in IBMFS.
Collapse
Affiliation(s)
- Haruna Batzorig Choijilsuren
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
- Department of Molecular and Cellular Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| | - Yeji Park
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Moonjung Jung
- Division of Hematology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
38
|
Revy P, Donadieu J. EFL1 deficiency: a little is better than nothing. Blood 2021; 138:2016-2018. [PMID: 34821936 DOI: 10.1182/blood.2021012724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 11/20/2022] Open
|
39
|
Hematologic Complications with Age in Shwachman-Diamond Syndrome. Blood Adv 2021; 6:297-306. [PMID: 34758064 PMCID: PMC8753194 DOI: 10.1182/bloodadvances.2021005539] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
Severe bone marrow failure was primarily observed in early childhood in children with biallelic SBDS mutations. Absolute neutrophil counts were positively associated with age (P < .0001) in patients with biallelic SBDS mutations.
Shwachman-Diamond syndrome (SDS) is an inherited bone marrow failure syndrome with leukemia predisposition. An understanding of the hematologic complications of SDS with age could guide clinical management, but data are limited for this rare disease. We conducted a cohort study of 153 subjects from 143 families with confirmed biallelic SBDS mutations enrolled on the North American Shwachman Diamond Registry or Bone Marrow Failure Registry. The SBDS c.258 + 2T>C variant was present in all but 1 patient. To evaluate the association between blood counts and age, 2146 blood counts were analyzed for 119 subjects. Absolute neutrophil counts were positively associated with age (P < .0001). Hemoglobin was also positively associated with age up to 18 years (P < .0001), but the association was negative thereafter (P = .0079). Platelet counts and marrow cellularity were negatively associated with age (P < .0001). Marrow cellularity did not correlate with blood counts. Severe marrow failure necessitating transplant developed in 8 subjects at a median age of 1.7 years (range, 0.4-39.5), with 7 of 8 requiring transplant prior to age 8 years. Twenty-six subjects (17%) developed a myeloid malignancy (16 myelodysplasia and 10 acute myeloid leukemia) at a median age of 12.3 years (range, 0.5-45.0) and 28.4 years (range, 14.4-47.3), respectively. A lymphoid malignancy developed in 1 patient at the age of 16.9 years. Hematologic complications were the major cause of mortality (17/20 deaths; 85%). These data inform surveillance of hematologic complications in SDS.
Collapse
|
40
|
Sylvester DE, Chen Y, Grima N, Saletta F, Padhye B, Bennetts B, Wright D, Krivanek M, Graf N, Zhou L, Catchpoole D, Kirk J, Latchoumanin O, Qiao L, Ballinger M, Thomas D, Jamieson R, Dalla-Pozza L, Byrne JA. Rare germline variants in childhood cancer patients suspected of genetic predisposition to cancer. Genes Chromosomes Cancer 2021; 61:81-93. [PMID: 34687117 DOI: 10.1002/gcc.23006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/11/2022] Open
Abstract
Identification of cancer-predisposing germline variants in childhood cancer patients is important for therapeutic decisions, disease surveillance and risk assessment for patients, and potentially, also for family members. We investigated the spectrum and prevalence of pathogenic germline variants in selected childhood cancer patients with features suggestive of genetic predisposition to cancer. Germline DNA was subjected to exome sequencing to filter variants in 1048 genes of interest including 176 known cancer predisposition genes (CPGs). An enrichment burden analysis compared rare deleterious germline CPG variants in the patient cohort with those in a healthy aged control population. A subset of predicted deleterious variants in novel candidate CPGs was investigated further by examining matched tumor samples, and the functional impact of AXIN1 variants was analyzed in cultured cells. Twenty-two pathogenic/likely pathogenic (P/LP) germline variants detected in 13 CPGs were identified in 19 of 76 patients (25.0%). Unclear association with the diagnosed cancer types was observed in 11 of 19 patients carrying P/LP CPG variants. The burden of rare deleterious germline variants in autosomal dominant CPGs was significantly higher in study patients versus healthy aged controls. A novel AXIN1 frameshift variant (Ser321fs) may impact the regulation of β-catenin levels. Selection of childhood cancer patients for germline testing based on features suggestive of an underlying genetic predisposition could help to identify carriers of clinically relevant germline CPG variants, and streamline the integration of germline genomic testing in the pediatric oncology clinic.
Collapse
Affiliation(s)
- Dianne E Sylvester
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Yuyan Chen
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Natalie Grima
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Federica Saletta
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Bhavna Padhye
- The Cancer Centre for Children, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Bruce Bennetts
- Sydney Genome Diagnostics, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Dale Wright
- Sydney Genome Diagnostics, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Michael Krivanek
- Histopathology Department, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Nicole Graf
- Histopathology Department, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Li Zhou
- Sydney Children's Tumour Bank Network, Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Daniel Catchpoole
- Sydney Children's Tumour Bank Network, Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Judy Kirk
- Familial Cancer Service, Westmead Hospital, Westmead Institute for Medical Research, University of Sydney, Westmead, New South Wales, Australia
| | - Olivier Latchoumanin
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney & Westmead Hospital, Westmead, New South Wales, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney & Westmead Hospital, Westmead, New South Wales, Australia
| | - Mandy Ballinger
- The Kinghorn Cancer Centre & Genomic Cancer Medicine, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - David Thomas
- The Kinghorn Cancer Centre & Genomic Cancer Medicine, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Robyn Jamieson
- Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, The Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Eye and Developmental Genetics Research Group, The Children's Hospital at Westmead and Children's Medical Research Institute, and Disciplines of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Luciano Dalla-Pozza
- The Cancer Centre for Children, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Jennifer A Byrne
- Molecular Oncology Laboratory, Children's Cancer Research Unit, Kids Research, The Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, The Children's Hospital at Westmead, Westmead, New South Wales, Australia.,NSW Health Statewide Biobank, NSW Health Pathology, Camperdown, New South Wales, Australia
| |
Collapse
|
41
|
Inducible Sbds Deletion Impairs Bone Marrow Niche Capacity to Engraft Donor Bone Marrow After Transplantation. Blood Adv 2021; 6:108-120. [PMID: 34625796 PMCID: PMC8753223 DOI: 10.1182/bloodadvances.2021004640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/17/2021] [Indexed: 11/20/2022] Open
Abstract
Bone marrow (BM) niche-derived signals are critical for facilitating engraftment after hematopoietic stem cell (HSC) transplantation (HSCT). HSCT is required for restoration of hematopoiesis in patients with inherited bone marrow failure syndromes (iBMFS). Shwachman-Diamond syndrome (SDS) is a rare iBMFS associated with mutations in SBDS. Previous studies have demonstrated that SBDS deficiency in osteolineage niche cells causes bone marrow dysfunction that promotes leukemia development. However, it is unknown whether BM niche defects caused by SBDS deficiency also impair efficient engraftment of healthy donor HSC following HSCT, a hypothesis that could explain morbidity seen after clinical HSCT for patients with SDS. Here, we report a mouse model with inducible Sbds deletion in hematopoietic and osteolineage cells. Primary and secondary BM transplantation (BMT) studies demonstrated that SBDS deficiency within BM niches caused poor donor hematopoietic recovery and specifically poor HSC engraftment after myeloablative BMT. We have additionally identified multiple molecular and cellular defects within niche populations that are driven by SBDS deficiency and that are accentuated or develop specifically following myeloablative conditioning. These abnormalities include altered frequencies of multiple niche cell subsets including mesenchymal lineage cells, macrophages and endothelial cells; disruption of growth factor signaling, chemokine pathway activation, and adhesion molecule expression; and p53 pathway activation, and signals involved in cell cycle arrest. Taken together, this study demonstrates that SBDS deficiency profoundly impacts recipient hematopoietic niche function in the setting of HSCT, suggesting that novel therapeutic strategies targeting host niches could improve clinical HSCT outcomes for patients with SDS.
Collapse
|
42
|
Donadieu J, Frenz S, Merz L, Sicre De Fontbrune F, Rotulo GA, Beaupain B, Biosse-Duplan M, Audrain M, Croisille L, Ancliff P, Klein C, Bellanné-Chantelot C. Chronic neutropenia: how best to assess severity and approach management? Expert Rev Hematol 2021; 14:945-960. [PMID: 34486458 DOI: 10.1080/17474086.2021.1976634] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Neutropenia is a relatively common finding in medical practice and the medical approach requires a gradual and pertinent diagnostic procedure as well as adapted management. AREAS COVERED The area of chronic neutropenia remains fragmented between diverse diseases or situations. Here physicians involved in different aspects of chronic neutropenia gather both the data from medical literature till the end of May 2021 and their experience to offer a global approach for the diagnosis of chronic neutropenia as well as their medical care. EXPERT OPINION In most cases, the neutropenia is transient, frequently related to a viral infection, and not harmful. However, neutropenia can be chronic (i.e. >3 months) and related to a number of etiologies, some clinically benign, such as so-called 'ethnic' neutropenia. Autoimmune neutropenia is the common form in young children, whereas idiopathic/immune neutropenia is a frequent etiology in young females. Inherited neutropenia (or congenital neutropenia) is exceptional, with approximately 30 new cases per 106 births and 30 known subtypes. Such patients have a high risk of invasive bacterial infections, and oral infections. Supportive therapy, which is primarily based on daily administration of an antibiotic prophylaxis and/or treatment with granulocyte-colony stimulating factor (G-CSF), contributes to avoiding recurrent infections.
Collapse
Affiliation(s)
- Jean Donadieu
- Centre De Référence Des Neutropénies Chroniques, Registre National Des Neutropénies Congénitales, Service d'Hémato-oncologie Pédiatrique, Hôpital Armand Trousseau Aphp, Paris, France
| | - Stephanie Frenz
- Dr. Von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Lauren Merz
- Brigham and Women's Hospital, Department of Internal Medicine, Boston, MA, USA
| | | | - Gioacchino Andrea Rotulo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (Dinogmi), University of Genoa, Italy
| | - Blandine Beaupain
- Centre De Référence Des Neutropénies Chroniques, Registre National Des Neutropénies Congénitales, Service d'Hémato-oncologie Pédiatrique, Hôpital Armand Trousseau Aphp, Paris, France
| | | | - Marie Audrain
- Service d'Immunologie Laboratoire De Biologie Chu De Nantes 9 Quai Moncousu
| | | | - Phil Ancliff
- Pediatric Hematology, Great Ormond Street Hospital London, UK
| | - Christoph Klein
- Dr. Von Hauner Children's Hospital, Department of Pediatrics, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
43
|
Groarke EM, Young NS, Calvo KR. Distinguishing constitutional from acquired bone marrow failure in the hematology clinic. Best Pract Res Clin Haematol 2021; 34:101275. [PMID: 34404527 DOI: 10.1016/j.beha.2021.101275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/23/2022]
Abstract
Distinguishing constitutional from immune bone marrow failure (BMF) has important clinical implications. However, the diagnosis is not always straightforward, and immune aplastic anemia, the commonest BMF, is a diagnosis of exclusion. In this review, we discuss a general approach to the evaluation of BMF, focusing on clinical presentations particular to immune and various constitutional disorders as well as the interpretation of bone marrow histology, flow cytometry, and karyotyping. Additionally, we examine the role of specialized testing in both immune and inherited BMF, and discuss genetic testing, both its role in patient evaluation and interpretation of results.
Collapse
Affiliation(s)
- Emma M Groarke
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Clinical Center, Building 10, 3-E, room 3-5240, 10 Center Drive, Bethesda, MD, 20892, United States.
| | - Neal S Young
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Clinical Center, Building 10, 3-E, room 3-5240, 10 Center Drive, Bethesda, MD, 20892, United States.
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Clinical Center, Building 10, Department of Laboratory Medicine, 10 Center Drive, Bethesda, MD, 20892, United States.
| |
Collapse
|
44
|
Rotulo GA, Plat G, Beaupain B, Blanche S, Moushous D, Sicre de Fontbrune F, Leblanc T, Renard C, Barlogis V, Vigue MG, Freycon C, Piguet C, Pasquet M, Fieschi C, Abou-Chahla W, Gandemer V, Rialland F, Millot F, Marie-Cardine A, Paillard C, Levy P, Aladjidi N, Biosse-Duplan M, Bellanné-Chantelot C, Donadieu J. Recurrent bacterial infections, but not fungal infections, characterise patients with ELANE-related neutropenia: a French Severe Chronic Neutropenia Registry study. Br J Haematol 2021; 194:908-920. [PMID: 34340247 DOI: 10.1111/bjh.17695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022]
Abstract
Among 143 patients with elastase, neutrophil-expressed (ELANE)-related neutropenia enrolled in the French Severe Chronic Neutropenia Registry, 94 were classified as having severe chronic neutropenia (SCN) and 49 with cyclic neutropenia (CyN). Their infectious episodes were classified as severe, mild or oral, and analysed according to their natural occurrence without granulocyte-colony stimulating factor (G-CSF), on G-CSF, after myelodysplasia/acute leukaemia or after haematopoietic stem-cell transplantation. During the disease's natural history period (without G-CSF; 1913 person-years), 302, 957 and 754 severe, mild and oral infectious events, respectively, occurred. Among severe infections, cellulitis (48%) and pneumonia (38%) were the most common. Only 38% of episodes were microbiologically documented. The most frequent pathogens were Staphylococcus aureus (37·4%), Escherichia coli (20%) and Pseudomonas aeruginosa (16%), while fungal infections accounted for 1%. Profound neutropenia (<200/mm3 ), high lymphocyte count (>3000/mm3 ) and neutropenia subtype were associated with high risk of infection. Only the p.Gly214Arg variant (5% of the patients) was associated with infections but not the overall genotype. The first year of life was associated with the highest infection risk throughout life. G-CSF therapy achieved lower ratios of serious or oral infectious event numbers per period but was less protective for patients requiring >10 µg/kg/day. Infections had permanent consequences in 33% of patients, most frequently edentulism.
Collapse
Affiliation(s)
- Gioacchino A Rotulo
- Registre des Neutropénies Chroniques, Centre de Référence des Neutropénies Chroniques, Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Geneviève Plat
- Hématologie Oncologie et Immunologie Pédiatrique, Hôpital des Enfants, Toulouse, France
| | - Blandine Beaupain
- Registre des Neutropénies Chroniques, Centre de Référence des Neutropénies Chroniques, Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Stéphane Blanche
- APHP, UIHR CEREDIH, Hôpital Necker-Enfants Malade, Paris, France
| | - Despina Moushous
- APHP, UIHR CEREDIH, Hôpital Necker-Enfants Malade, Paris, France
| | | | - Thierry Leblanc
- Department of Pediatric Hematology and Immunology, Hôpital Robert-Debré, APHP, Paris, France
| | - Cécile Renard
- Service de Pédiatrie, Institut d'Hématologie et Oncologie Pédiatrique, Centre Hospitalier Universitaire (CHU) de Lyon, Lyon, France
| | - Vincent Barlogis
- Department of Pediatric Hematology, Timone Hospital, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Marie-Gabrielle Vigue
- Pediatrics, Infectiology, Rhumatology, Hôpital Arnaud-de-Villeneuve, CHRU de Montpellier, Montpellier, France
| | - Claire Freycon
- Service d'Onco-Hématologie Pédiatrique, CHU de Grenoble, Grenoble, France
| | - Christophe Piguet
- Service d'Hémato-Oncologie Pédiatrie, CHU de Limoges, Limoges, France
| | - Marlène Pasquet
- Hématologie Oncologie et Immunologie Pédiatrique, Hôpital des Enfants, Toulouse, France
| | - Claire Fieschi
- Department of Clinical Immunology, Saint-Louis Hospital, APHP, Paris, France
| | - Wadih Abou-Chahla
- Department of Pediatric Hematology, Jeanne-de-Flandre Hospital, CHU de Lille, Lille, France
| | - Virginie Gandemer
- Service d'Hémato-Oncologie Pédiatrique, CHU de Rennes, Rennes, France
| | - Fanny Rialland
- Service d'Oncologie Pédiatrique, CHU de Nantes, Nantes, France
| | - Frédéric Millot
- Service d'Hémato-Oncologie Pédiatrique, CHU de Poitiers, Poitiers, France
| | | | - Catherine Paillard
- Service d'Hématologie Oncologie Pédiatrique, CHU de Strasbourg, Strasbourg, France
| | - Pacifique Levy
- Département de Génétique, DMU BioGeM, CHU Pitié-Salpêtrière, APHP, Sorbonne Université, Paris, France
| | - Nathalie Aladjidi
- Service d'Hémato-Oncologie Pédiatrique, CHU de Bordeaux, Bordeaux, France
| | | | | | - Jean Donadieu
- Registre des Neutropénies Chroniques, Centre de Référence des Neutropénies Chroniques, Hôpital Trousseau, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | | |
Collapse
|
45
|
Bou Mitri F, Beaupain B, Flejou JF, Patient M, Okhremchuck I, Blaise D, Izadifar-Legrand F, Martignoles JA, Delhommeau F, Bellanne-Chantelot C, Emile JF, Donadieu J. Shwachman-Diamond syndrome and solid tumors: Three new patients from the French Registry for Severe Chronic Neutropenia and literature review. Pediatr Blood Cancer 2021; 68:e29071. [PMID: 33871916 DOI: 10.1002/pbc.29071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/17/2021] [Accepted: 04/05/2021] [Indexed: 12/23/2022]
Abstract
Shwachman-Diamond syndrome with Shwachman-Bodian-Diamond syndrome (SBDS) biallelic variants is a rare disorder that predisposes the carrier to malignant hemopathies but solid-cancer predisposition is poorly known. Among 155 cases entered in the French Registry for Severe Chronic Neutropenia, three were identified with malignant solid tumors (ovary, breast, and esophagus). All cancers occurred during the fifth decade and, despite being localized at diagnosis, were rapidly fatal thereafter. No cancer was observed post transplantation in the 14 HSCT survivors. Based on the literature and our patient data, we can merely advance that this complication is predominantly diagnosed in adults.
Collapse
Affiliation(s)
- Fares Bou Mitri
- Centre de Recherche Saint-Antoine, APHP, Armand-Trousseau Hospital, French Registry for Severe Chronic Neutropenia, CRMR of Chronic Neutropenia, Department of Pediatrics Hematology and Oncology, Sorbonne Université, Inserm, Paris, France
| | - Blandine Beaupain
- Centre de Recherche Saint-Antoine, APHP, Armand-Trousseau Hospital, French Registry for Severe Chronic Neutropenia, CRMR of Chronic Neutropenia, Department of Pediatrics Hematology and Oncology, Sorbonne Université, Inserm, Paris, France
| | | | - Matthieu Patient
- Department of Hematology and Oncology, Hôpital d'Instruction des Armées (HIA) Sainte-Anne, Toulon, France
| | | | - Didier Blaise
- Department of Hematology, Paoli-Calmettes Institut, Marseille, France
| | | | - Jean Alain Martignoles
- Inserm, Centre de Recherche Saint-Antoine, Hématologie Biologique, Hôpital Saint-Antoine, APHP, Sorbonne Université, Paris, France
| | - François Delhommeau
- Inserm, Centre de Recherche Saint-Antoine, Hématologie Biologique, Hôpital Saint-Antoine, APHP, Sorbonne Université, Paris, France
| | | | | | - Jean Donadieu
- Centre de Recherche Saint-Antoine, APHP, Armand-Trousseau Hospital, French Registry for Severe Chronic Neutropenia, CRMR of Chronic Neutropenia, Department of Pediatrics Hematology and Oncology, Sorbonne Université, Inserm, Paris, France
| |
Collapse
|
46
|
Abstract
Inherited bone marrow failure syndromes are a group of genetic disorders associated with bone marrow production defects resulting in single or multiple cytopenias. Many of these disorders predispose the patient to hematologic and nonhematologic malignancies, requiring life-long follow-up. A positive family history of hematologic disorders or malignancies is frequent, as these disorders commonly run in families, and selection of family members as potential bone marrow donors should be performed with caution to avoid transplanting potentially defective stem cells. This review highlights the most common genetic disorders associated with bone marrow failure.
Collapse
|
47
|
Rother C, Gebauer N, Schneider J, Bauer A, Holzhausen F, Mayer T, Riecke A, Müller M, Merz H, Steinestel K, Witte HM. Autoimmune neutropenia associated with heterozygous variant of SBDS gene mimicking Shwachman-Bodian-Diamond syndrome. Leuk Lymphoma 2021; 62:3047-3050. [PMID: 34151701 DOI: 10.1080/10428194.2021.1941941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Conn Rother
- Department of Hematology and Oncology, Federal Armed Forces Hospital of Ulm, Ulm, Germany
| | - Niklas Gebauer
- Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Juliane Schneider
- Institute of Pathology and Molecular Pathology, Federal Armed Forces Hospital of Ulm, Ulm, Germany
| | - Arthur Bauer
- Department of Hematology and Oncology, Federal Armed Forces Hospital of Ulm, Ulm, Germany
| | - Fabian Holzhausen
- Department of Hematology and Oncology, Federal Armed Forces Hospital of Ulm, Ulm, Germany
| | - Thomas Mayer
- Department of Hematology and Oncology, Federal Armed Forces Hospital of Ulm, Ulm, Germany
| | - Armin Riecke
- Department of Hematology and Oncology, Federal Armed Forces Hospital of Ulm, Ulm, Germany
| | - Matthias Müller
- Department of Hematology and Oncology, Federal Armed Forces Hospital of Ulm, Ulm, Germany
| | - Hartmut Merz
- Hämatopathologie Lübeck, Reference Center for Lymph Node Pathology and Hematopathology, Lübeck, Germany
| | - Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Federal Armed Forces Hospital of Ulm, Ulm, Germany
| | - Hanno M Witte
- Department of Hematology and Oncology, Federal Armed Forces Hospital of Ulm, Ulm, Germany.,Department of Hematology and Oncology, University Hospital of Schleswig-Holstein, Lübeck, Germany.,Institute of Pathology and Molecular Pathology, Federal Armed Forces Hospital of Ulm, Ulm, Germany
| |
Collapse
|
48
|
Kumar S, Nattamai KJ, Hassan A, Amoah A, Karns R, Zhang C, Liang Y, Shimamura A, Florian MC, Bissels U, Luevano M, Bosio A, Davies SM, Mulaw M, Geiger H, Myers KC. Repolarization of HSC attenuates HSCs failure in Shwachman-Diamond syndrome. Leukemia 2021; 35:1751-1762. [PMID: 33077869 PMCID: PMC11334678 DOI: 10.1038/s41375-020-01054-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 08/11/2020] [Accepted: 10/05/2020] [Indexed: 01/01/2023]
Abstract
Shwachman-Diamond syndrome (SDS) is a bone marrow failure (BMF) syndrome associated with an increased risk of myelodysplasia and leukemia. The molecular mechanisms of SDS are not fully understood. We report that primitive hematopoietic cells from SDS patients present with a reduced activity of the small RhoGTPase Cdc42 and concomitantly a reduced frequency of HSCs polar for polarity proteins. The level of apolarity of SDS HSCs correlated with the magnitude of HSC depletion in SDS patients. Importantly, exogenously provided Wnt5a or GDF11 that elevates the activity of Cdc42 restored polarity in SDS HSCs and increased the number of HSCs in SDS patient samples in surrogate ex vivo assays. Single cell level RNA-Seq analyses of SDS HSCs and daughter cells demonstrated that SDS HSC treated with GDF11 are transcriptionally more similar to control than to SDS HSCs. Treatment with GDF11 reverted pathways in SDS HSCs associated with rRNA processing and ribosome function, but also viral infection and immune function, p53-dependent DNA damage, spindle checkpoints, and metabolism, further implying a role of these pathways in HSC failure in SDS. Our data suggest that HSC failure in SDS is driven at least in part by low Cdc42 activity in SDS HSCs. Our data thus identify novel rationale approaches to attenuate HSCs failure in SDS.
Collapse
Affiliation(s)
- Sachin Kumar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kalpana J Nattamai
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Aishlin Hassan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Amanda Amoah
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Cuiping Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Health Sciences Research Building, Room 340, 1095 V.A. Drive, Lexington, KY, 40536, USA
| | - Ying Liang
- Department of Toxicology and Cancer Biology, University of Kentucky, Health Sciences Research Building, Room 340, 1095 V.A. Drive, Lexington, KY, 40536, USA
| | - Akiko Shimamura
- Boston Children's Hospital, Dana Farber Cancer Institute, Boston, MA, USA
| | | | - Ute Bissels
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | | | | | - Stella M Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Medhanie Mulaw
- Institute of Experimental Cancer Research, Ulm University, Ulm, Germany
| | - Hartmut Geiger
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| | - Kasiani C Myers
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
49
|
Successful Umbilical Cord Blood Transplantation With Reduced-intensity Conditioning for Acute Myeloid Leukemia in a Child With Shwachman-Diamond Syndrome. J Pediatr Hematol Oncol 2021; 43:e414-e418. [PMID: 32134838 DOI: 10.1097/mph.0000000000001773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/10/2020] [Indexed: 11/27/2022]
Abstract
Outcomes of patients with Shwachman-Diamond syndrome (SDS) who developed myeloid malignancies are poor because of refractory disease and high hematopoietic stem cell transplantation-related mortality. We herein report a case of a 7-year-old girl with SDS who developed acute myeloid leukemia with monosomy 7. She was successfully treated with chemotherapy followed by unrelated cord blood transplantation with reduced-intensity conditioning consisting of fludarabine, melphalan, and high-dose cytarabine without significant toxicity. Reduced-intensity conditioning presented in this report might be a preferable option for SDS patients with acute myeloid leukemia, although further evaluation in a larger number of similar cases is necessary.
Collapse
|
50
|
Crisà E, Boggione P, Nicolosi M, Mahmoud AM, Al Essa W, Awikeh B, Aspesi A, Andorno A, Boldorini R, Dianzani I, Gaidano G, Patriarca A. Genetic Predisposition to Myelodysplastic Syndromes: A Challenge for Adult Hematologists. Int J Mol Sci 2021; 22:ijms22052525. [PMID: 33802366 PMCID: PMC7959319 DOI: 10.3390/ijms22052525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Myelodysplastic syndromes (MDS) arising in the context of inherited bone marrow failure syndromes (IBMFS) differ in terms of prognosis and treatment strategy compared to MDS occurring in the adult population without an inherited genetic predisposition. The main molecular pathways affected in IBMFS involve telomere maintenance, DNA repair, biogenesis of ribosomes, control of proliferation and others. The increased knowledge on the genes involved in MDS pathogenesis and the wider availability of molecular diagnostic assessment have led to an improvement in the detection of IBMFS genetic predisposition in MDS patients. A punctual recognition of these disorders implies a strict surveillance of the patient in order to detect early signs of progression and promptly offer allogeneic hematopoietic stem cell transplantation, which is the only curative treatment. Moreover, identifying an inherited mutation allows the screening and counseling of family members and directs the choice of donors in case of need for transplantation. Here we provide an overview of the most recent data on MDS with genetic predisposition highlighting the main steps of the diagnostic and therapeutic management. In order to highlight the pitfalls of detecting IBMFS in adults, we report the case of a 27-year-old man affected by MDS with an underlying telomeropathy.
Collapse
Affiliation(s)
- Elena Crisà
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
- Correspondence: (E.C.); (G.G.); Tel.: +39-0321-660-655 (E.C. & G.G.); Fax: +39-0321-373-3095 (E.C.)
| | - Paola Boggione
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Maura Nicolosi
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Abdurraouf Mokhtar Mahmoud
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Wael Al Essa
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Bassel Awikeh
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| | - Anna Aspesi
- Laboratory of Genetic Pathology, Division of Pathology, Department of Health Sciences, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (A.A.); (I.D.)
| | - Annalisa Andorno
- Division of Pathology, Department of Health Sciences, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (A.A.); (R.B.)
| | - Renzo Boldorini
- Division of Pathology, Department of Health Sciences, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (A.A.); (R.B.)
| | - Irma Dianzani
- Laboratory of Genetic Pathology, Division of Pathology, Department of Health Sciences, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (A.A.); (I.D.)
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
- Correspondence: (E.C.); (G.G.); Tel.: +39-0321-660-655 (E.C. & G.G.); Fax: +39-0321-373-3095 (E.C.)
| | - Andrea Patriarca
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont and Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy; (P.B.); (M.N.); (A.M.M.); (W.A.E.); (B.A.); (A.P.)
| |
Collapse
|