1
|
Prantl L, Heider P, Bergmeister L, Calana K, Bohn JP, Wolf D, Banki Z, Bosch A, Plach M, Huber G, Schrödel S, Thirion C, Stoiber H. Enhancement of complement-dependent cytotoxicity by linking factor-H derived short consensus repeats 19-20 to CD20 antibodies. Front Immunol 2024; 15:1379023. [PMID: 39104533 PMCID: PMC11298693 DOI: 10.3389/fimmu.2024.1379023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Antibody-mediated complement-dependent cytotoxicity (CDC) on malignant cells is regulated by several complement control proteins, including the inhibitory complement factor H (fH). fH consists of 20 short consensus repeat elements (SCRs) with specific functional domains. Previous research revealed that the fH-derived SCRs 19-20 (SCR1920) can displace full-length fH on the surface of chronic lymphocytic leukemia (CLL) cells, which sensitizes CLL cells for e.g. CD20-targeting therapeutic monoclonal antibody (mAb) induced CDC. Therefore, we constructed lentiviral vectors for the generation of cell lines that stably produce mAb-SCR-fusion variants starting from the clinically approved parental mAbs rituximab, obinutuzumab and ofatumumab, respectively. Flow-cytometry revealed that the modification of the mAbs by the SCRs does not impair the binding to CD20. Increased in vitro lysis potency compared to their parental mAbs was corroborated by showing specific and dose dependent target cell elimination by CDC when compared to their parental mAbs. Lysis of CLL cells was not affected by the depletion of NK cells, suggesting that antibody-dependent cellular cytotoxicity plays a minor role in this context. Overall, this study emphasizes the crucial role of CDC in the elimination of CLL cells by mAbs and introduces a novel approach for enhancing CDC by directly fusing fH SCR1920 with mAbs.
Collapse
MESH Headings
- Humans
- Antigens, CD20/immunology
- Antigens, CD20/genetics
- Complement Factor H/immunology
- Complement Factor H/metabolism
- Complement Factor H/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Antibody-Dependent Cell Cytotoxicity
- Rituximab/pharmacology
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Cell Line, Tumor
Collapse
Affiliation(s)
- Lena Prantl
- Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Philipp Heider
- Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Lisa Bergmeister
- Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Katharina Calana
- Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | - Jan-Paul Bohn
- Department of Internal Medicine V, Hematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Dominik Wolf
- Department of Internal Medicine V, Hematology & Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Tyrolean Cancer Research Institute (TKFI), Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltan Banki
- Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | - Heribert Stoiber
- Institute of Virology, Innsbruck Medical University, Innsbruck, Austria
- Lysomab GmbH, Schwaz, Austria
| |
Collapse
|
2
|
Sándor N, Schneider AE, Matola AT, Barbai VH, Bencze D, Hammad HH, Papp A, Kövesdi D, Uzonyi B, Józsi M. The human factor H protein family - an update. Front Immunol 2024; 15:1135490. [PMID: 38410512 PMCID: PMC10894998 DOI: 10.3389/fimmu.2024.1135490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Complement is an ancient and complex network of the immune system and, as such, it plays vital physiological roles, but it is also involved in numerous pathological processes. The proper regulation of the complement system is important to allow its sufficient and targeted activity without deleterious side-effects. Factor H is a major complement regulator, and together with its splice variant factor H-like protein 1 and the five human factor H-related (FHR) proteins, they have been linked to various diseases. The role of factor H in inhibiting complement activation is well studied, but the function of the FHRs is less characterized. Current evidence supports the main role of the FHRs as enhancers of complement activation and opsonization, i.e., counter-balancing the inhibitory effect of factor H. FHRs emerge as soluble pattern recognition molecules and positive regulators of the complement system. In addition, factor H and some of the FHR proteins were shown to modulate the activity of immune cells, a non-canonical function outside the complement cascade. Recent efforts have intensified to study factor H and the FHRs and develop new tools for the distinction, quantification and functional characterization of members of this protein family. Here, we provide an update and overview on the versatile roles of factor H family proteins, what we know about their biological functions in healthy conditions and in diseases.
Collapse
Affiliation(s)
- Noémi Sándor
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | | | | | - Veronika H. Barbai
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Bencze
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hani Hashim Hammad
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Papp
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
3
|
Luo S, Wang M, Wang H, Hu D, Zipfel PF, Hu Y. How Does Complement Affect Hematological Malignancies: From Basic Mechanisms to Clinical Application. Front Immunol 2020; 11:593610. [PMID: 33193442 PMCID: PMC7658260 DOI: 10.3389/fimmu.2020.593610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/02/2020] [Indexed: 12/24/2022] Open
Abstract
Complement, as a central immune surveillance system, can be activated within seconds upon stimulation, thereby displaying multiple immune effector functions. However, in pathologic scenarios (like in tumor progression), activated complement can both display protective effects to control tumor development and passively promotes the tumor growth. Clinical investigations show that patients with several hematological malignancies often display abnormal level of specific complement components, which in turn modulates complement activation or deregulated cascade. In the past decades, complement-dependent cytotoxicity and complement-dependent cell-mediated phagocytosis were fully approved to display vital roles in monoclonal antibody-based immunotherapies, especially in therapies against hematological malignancies. However, tumor-mediated complement evasion presents a big challenge for such a therapy. This review aims to provide an integrative overview on the roles of the complement in tumor promotion, highlights complement mediated effects on antibody-based immunotherapy against distinct hematological tumors, hopefully provides a theoretical basis for the development of complement-based cancer targeted therapies.
Collapse
Affiliation(s)
- Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huafang Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
The Role of Complement in the Mechanism of Action of Therapeutic Anti-Cancer mAbs. Antibodies (Basel) 2020; 9:antib9040058. [PMID: 33126570 PMCID: PMC7709112 DOI: 10.3390/antib9040058] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
Unconjugated anti-cancer IgG1 monoclonal antibodies (mAbs) activate antibody-dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells and antibody-dependent cellular phagocytosis (ADCP) by macrophages, and these activities are thought to be important mechanisms of action for many of these mAbs in vivo. Several mAbs also activate the classical complement pathway and promote complement-dependent cytotoxicity (CDC), although with very different levels of efficacy, depending on the mAb, the target antigen, and the tumor type. Recent studies have unraveled the various structural factors that define why some IgG1 mAbs are strong mediators of CDC, whereas others are not. The role of complement activation and membrane inhibitors expressed by tumor cells, most notably CD55 and CD59, has also been quite extensively studied, but how much these affect the resistance of tumors in vivo to IgG1 therapeutic mAbs still remains incompletely understood. Recent studies have demonstrated that complement activation has multiple effects beyond target cell lysis, affecting both innate and adaptive immunity mediated by soluble complement fragments, such as C3a and C5a, and by stimulating complement receptors expressed by immune cells, including NK cells, neutrophils, macrophages, T cells, and dendritic cells. Complement activation can enhance ADCC and ADCP and may contribute to the vaccine effect of mAbs. These different aspects of complement are also briefly reviewed in the specific context of FDA-approved therapeutic anti-cancer IgG1 mAbs.
Collapse
|
5
|
Taylor RP, Lindorfer MA. How Do mAbs Make Use of Complement to Kill Cancer Cells? The Role of Ca 2. Antibodies (Basel) 2020; 9:E45. [PMID: 32899722 PMCID: PMC7551823 DOI: 10.3390/antib9030045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
We examined the kinetics and mechanisms by which monoclonal antibodies (mAbs) utilize complement to rapidly kill targeted cancer cells. Based on results from flow cytometry, confocal microscopy and high-resolution digital imaging experiments, the general patterns which have emerged reveal cytotoxic activities mediated by substantial and lethal Ca2+ fluxes. The Ca2+ fluxes are common to the reported pathways that have been utilized by other toxins in killing nucleated cells. These reactions terminate in very high levels of cell killing, and based on these considerations, we suggest additional strategies to further enhance mAb-based targeting of cancer with complement.
Collapse
Affiliation(s)
- Ronald P. Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
| | | |
Collapse
|
6
|
Kaur N, Goyal A, Sindhu RK. Therapeutic Monoclonal Antibodies in Clinical Practice against Cancer. Anticancer Agents Med Chem 2020; 20:1895-1907. [PMID: 32619180 DOI: 10.2174/1871520620666200703191653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/09/2020] [Accepted: 04/13/2020] [Indexed: 11/22/2022]
Abstract
The importance of monoclonal antibodies in oncology has increased drastically following the discovery of Milstein and Kohler. Since the first approval of the monoclonal antibody, i.e. Rituximab in 1997 by the FDA, there was a decline in further applications but this number has significantly increased over the last three decades for various therapeutic applications due to the lesser side effects in comparison to the traditional chemotherapy methods. Presently, numerous monoclonal antibodies have been approved and many are in queue for approval as a strong therapeutic agent for treating hematologic malignancies and solid tumors. The main target checkpoints for the monoclonal antibodies against cancer cells include EGFR, VEGF, CD and tyrosine kinase which are overexpressed in malignant cells. Other immune checkpoints like CTLA-4, PD-1 and PD-1 receptors targeted by the recently developed antibodies increase the capability of the immune system in destroying the cancerous cells. Here, in this review, the mechanism of action, uses and target points of the approved mAbs against cancer have been summarized.
Collapse
Affiliation(s)
- Navgeet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India,M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala-133207, Haryana, India
| | - Anju Goyal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rakesh K Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
7
|
Jain S, Kumar S. Cancer immunotherapy: dawn of the death of cancer? Int Rev Immunol 2020; 39:1-18. [PMID: 32530336 DOI: 10.1080/08830185.2020.1775827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/11/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023]
Abstract
Cancer is one of the proficient evaders of the immune system which claims millions of lives every year. Developing therapeutics against cancer is extremely challenging as cancer involves aberrations in self, most of which are not detected by the immune system. Conventional therapeutics like chemotherapy, radiotherapy are not only toxic but they significantly lower the quality of life. Immunotherapy, which gained momentum in the 20th century, is emerging as one of the alternatives to the conventional therapies and is relatively less harmful but more costly. This review explores the modern advances in an array of such therapies and try to compare them along with a limited analysis of concerns associated with them.
Collapse
Affiliation(s)
- Sidhant Jain
- Department of Zoology, University of Delhi, Delhi, India
| | - Sahil Kumar
- Department of Pharmacology, Maulana Azad Medical College and Lok Nayak Hospital, New Delhi, India
| |
Collapse
|
8
|
Okrój M, Potempa J. Complement Activation as a Helping Hand for Inflammophilic Pathogens and Cancer. Front Immunol 2019; 9:3125. [PMID: 30687327 PMCID: PMC6335266 DOI: 10.3389/fimmu.2018.03125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023] Open
Abstract
The complement system, an evolutionarily ancient component of innate immunity, is capable of protecting hosts from invading pathogens, either directly, by lysis of target cells, or indirectly, by mobilization of host immune mechanisms. However, this potentially cytotoxic cascade must be tightly regulated, since improperly controlled complement can damage healthy cells and tissues. The practical importance of this axis is highlighted when impairment of complement regulators or bacterial mechanisms of complement evasion result in pathogenic conditions. Recognition of complement as a "double-edged sword" is widely acknowledged, but another, currently underappreciated aspect of complement function has emerged as an important player in homeostatic balance-the dual outcome of complement-mediated inflammation. In most cases, the proinflammatory properties of complement are beneficial to the host. However, certain pathogens have developed the ability to utilize local inflammation as a source of nutrients and as a way to establish a niche for further colonization. Such a strategy can be illustrated in the example of periodontitis. Interestingly, certain tumors also seem to benefit from complement activation products, which promote a proangiogenic and immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Marcin Okrój
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States.,Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
9
|
Bordron A, Bagacean C, Mohr A, Tempescul A, Bendaoud B, Deshayes S, Dalbies F, Buors C, Saad H, Berthou C, Pers JO, Renaudineau Y. Resistance to complement activation, cell membrane hypersialylation and relapses in chronic lymphocytic leukemia patients treated with rituximab and chemotherapy. Oncotarget 2018; 9:31590-31605. [PMID: 30167081 PMCID: PMC6114972 DOI: 10.18632/oncotarget.25657] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 06/04/2018] [Indexed: 01/27/2023] Open
Abstract
The anti-CD20-specific monoclonal antibody rituximab (RTX), in combination with chemotherapy, is commonly used for primary treatment in chronic lymphocytic leukemia (CLL). However, relapses remain important and activation of the complement pathway is one of the mechanisms by which RTX generates the destruction of B cells directly by complement-dependent cytotoxicity (CDC), or indirectly by antibody-dependent cellular phagocytosis. In this study, the RTX capacity to induce CDC was established in 69 untreated CLL patients, this cohort including 34 patients tested before the initiation of RTX-chemotherapy. In vitro CDC-resistance to RTX predicts lower response rates to RTX-chemotherapy and shorter treatment free survival. Furthermore, the predictive value of CDC-resistance was independent from the clinical, cytogenetic and FcγR3A V158F polymorphism status. In contrast, CLL cell resistance to CDC predominates in IGHV unmutated patients and was related to an important α2-6 sialyl transferase activity, which in turn increases cell surface α2-6 hypersialylation. Suspected factors associated with resistance to CDC (CD20, CD55, CD59, factor H, GM1, and sphingomyelin) were not differentially expressed or recruited between the two CLL groups. Altogether, results provide evidence that testing RTX capacity to induce CDC in vitro represents an independent predictive factor of therapeutic effects of RTX, and that α2-6 hypersialylation in CLL cells controls RTX response through the control of the complement pathway. At a time when CLL therapy is moving towards chemo-free treatments, further experiments are required to determine whether performing an initial in vitro assay to appreciate CLL CDC resistance might be useful to select patients.
Collapse
Affiliation(s)
- Anne Bordron
- U1227 B Lymphocytes and Autoimmunity, Université de Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from 'Canceropole Grand Ouest, Brest, France
| | - Cristina Bagacean
- U1227 B Lymphocytes and Autoimmunity, Université de Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from 'Canceropole Grand Ouest, Brest, France.,Laboratory of Immunology and Immunotherapy, CHRU Brest, Hôpital Morvan, Brest, France
| | - Audrey Mohr
- U1227 B Lymphocytes and Autoimmunity, Université de Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from 'Canceropole Grand Ouest, Brest, France
| | - Adrian Tempescul
- U1227 B Lymphocytes and Autoimmunity, Université de Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from 'Canceropole Grand Ouest, Brest, France.,Department of Haematology, CHRU Brest, Hôpital Morvan, Brest, France
| | - Boutahar Bendaoud
- U1227 B Lymphocytes and Autoimmunity, Université de Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from 'Canceropole Grand Ouest, Brest, France.,Laboratory of Immunology and Immunotherapy, CHRU Brest, Hôpital Morvan, Brest, France
| | - Stéphanie Deshayes
- U1227 B Lymphocytes and Autoimmunity, Université de Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from 'Canceropole Grand Ouest, Brest, France
| | - Florence Dalbies
- Department of Haematology, CHRU Brest, Hôpital Morvan, Brest, France
| | - Caroline Buors
- Laboratory of Haematology, CHRU Brest, Hôpital Morvan, Brest, France
| | - Hussam Saad
- Department of Haematology, CHRU Brest, Hôpital Morvan, Brest, France
| | - Christian Berthou
- U1227 B Lymphocytes and Autoimmunity, Université de Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from 'Canceropole Grand Ouest, Brest, France.,Department of Haematology, CHRU Brest, Hôpital Morvan, Brest, France
| | - Jacques-Olivier Pers
- U1227 B Lymphocytes and Autoimmunity, Université de Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from 'Canceropole Grand Ouest, Brest, France
| | - Yves Renaudineau
- U1227 B Lymphocytes and Autoimmunity, Université de Brest, INSERM, IBSAM, Labex IGO, Networks IC-CGO and REpiCGO from 'Canceropole Grand Ouest, Brest, France.,Laboratory of Immunology and Immunotherapy, CHRU Brest, Hôpital Morvan, Brest, France
| |
Collapse
|
10
|
Winkler MT, Bushey RT, Gottlin EB, Campa MJ, Guadalupe ES, Volkheimer AD, Weinberg JB, Patz EF. Enhanced CDC of B cell chronic lymphocytic leukemia cells mediated by rituximab combined with a novel anti-complement factor H antibody. PLoS One 2017; 12:e0179841. [PMID: 28658265 PMCID: PMC5489178 DOI: 10.1371/journal.pone.0179841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/05/2017] [Indexed: 12/29/2022] Open
Abstract
Rituximab therapy for B cell chronic lymphocytic leukemia (B-CLL) has met with mixed success. Among several factors to which resistance can be attributed is failure to activate complement dependent cytotoxicity (CDC) due to protective complement regulatory proteins, including the soluble regulator complement factor H (CFH). We hypothesized that rituximab killing of non-responsive B-CLL cells could be augmented by a novel human monoclonal antibody against CFH. The B cells from 11 patients with B-CLL were tested ex vivo in CDC assays with combinations of CFH monoclonal antibody, rituximab, and a negative control antibody. CDC of rituximab non-responsive malignant B cells from CLL patients could in some cases be augmented by the CFH monoclonal antibody. Antibody-mediated cytotoxicity of cells was dependent upon functional complement. In one case where B-CLL cells were refractory to CDC by the combination of rituximab plus CFH monoclonal antibody, additionally neutralizing the membrane complement regulatory protein CD59 allowed CDC to occur. Inhibiting CDC regulatory proteins such as CFH holds promise for overcoming resistance to rituximab therapy in B-CLL.
Collapse
Affiliation(s)
- Mark T. Winkler
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ryan T. Bushey
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Elizabeth B. Gottlin
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael J. Campa
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Eross S. Guadalupe
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Alicia D. Volkheimer
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Durham VA Medical Center, Durham, North Carolina, United States of America
| | - J. Brice Weinberg
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Durham VA Medical Center, Durham, North Carolina, United States of America
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Edward F. Patz
- Department of Radiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
11
|
Stasiłojć G, Österborg A, Blom AM, Okrój M. New perspectives on complement mediated immunotherapy. Cancer Treat Rev 2016; 45:68-75. [DOI: 10.1016/j.ctrv.2016.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 12/25/2022]
|
12
|
Taylor RP, Lindorfer MA. Cytotoxic mechanisms of immunotherapy: Harnessing complement in the action of anti-tumor monoclonal antibodies. Semin Immunol 2016; 28:309-16. [PMID: 27009480 DOI: 10.1016/j.smim.2016.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/07/2016] [Indexed: 01/02/2023]
Abstract
Several mAbs that have been approved for the treatment of cancer make use of complement-dependent cytotoxicity (CDC) to eliminate tumor cells. Comprehensive investigations, based on in vitro studies, mouse models and analyses of patient blood samples after mAb treatment have provided key insights into the details of individual steps in the CDC reaction. Based on the lessons learned from these studies, new and innovative approaches are now being developed to increase the clinical efficacy of next generation mAbs with respect to CDC. These improvements include engineering changes in the mAbs to enhance their ability to activate complement. In addition, mAb dosing paradigms are being developed that take into account the capacity as well as the limitations of the complement system to eliminate a substantial burden of mAb-opsonized cells. Over the next few years it is likely these approaches will lead to mAbs that are far more effective in the treatment of cancer.
Collapse
Affiliation(s)
- Ronald P Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, United States.
| | - Margaret A Lindorfer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| |
Collapse
|
13
|
Mamidi S, Höne S, Kirschfink M. The complement system in cancer: Ambivalence between tumour destruction and promotion. Immunobiology 2015; 222:45-54. [PMID: 26686908 DOI: 10.1016/j.imbio.2015.11.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/08/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022]
Abstract
Constituting a part of the innate immune system, the complement system consists of over 50 proteins either acting as part of a 3-branch activation cascade, a well-differentiated regulatory system in fluid phase or on each tissue, or as receptors translating the activation signal to multiple cellular effector functions. Complement serves as first line of defence against infections from bacteria, viruses and parasites by orchestrating the immune response through opsonisation, recruitment of immune cells to the site of infection and direct cell lysis. Complement is generally recognised as a protective mechanism against the formation of tumours in humans, but is often limited by various resistance mechanisms interfering with its cytotoxic action, now considered as a great barrier of successful antibody-based immunotherapy. However, recent studies also indicate a pro-tumourigenic potential of complement in certain cancers and under certain conditions. In this review, we present recent findings on the possible dual role of complement in destroying cancer, especially if resistance mechanisms are blocked, but also under certain inflammatory conditions-promoting tumour development.
Collapse
Affiliation(s)
| | - Simon Höne
- Institute for Immunology, University of Heidelberg, Germany
| | | |
Collapse
|
14
|
Kapka-Skrzypczak L, Wolinska E, Szparecki G, Wilczynski GM, Czajka M, Skrzypczak M. CD55, CD59, factor H and factor H-like 1 gene expression analysis in tumors of the ovary and corpus uteri origin. Immunol Lett 2015; 167:67-71. [PMID: 26261870 DOI: 10.1016/j.imlet.2015.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/24/2015] [Accepted: 06/29/2015] [Indexed: 12/15/2022]
Abstract
The expression level of complement regulators in ovarian and corpus uteri tumors was not fully established so far. In current manuscript we performed gene expression analysis by the real-time PCR approach to investigate both membrane bound - CD55 and CD59 and fluid phase - factor H and factor H-like 1 complement regulators. We found increased CD55 expression in corpus uteri tumors when compared to control tissues, whereas in ovarian cancer CD55 expression was lower than in control sections. Additionally we found CD59 expression to be more prominent in ovarian cancer than in corpus uteri tumor samples. We observed also the strong positive correlation between the level of expression of the whole group of regulators, which was particularly significant between the expression of factor H and factor H- like 1. In conclusion we present novel results which implicates different role of particular complement inhibitors in the regulation of the complement system in two cancer types examined. Strong positive correlation between examined proteins implicates similar pattern of the regulation which should be taken into consideration with regards to the possible immunotherapy applied as adjuvant therapeutic approach in these two indications. The inhibition of complement regulation may serve as a strategy to potentiate the efficacy of such treatment.
Collapse
Affiliation(s)
- L Kapka-Skrzypczak
- Department of Medical Biology and Translational Research, University of Information Technology and Management, Faculty of Medicine, Sucharskiego Street 2, 35-225 Rzeszow, Poland; Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego Street 2, 20-090 Lublin, Poland
| | - E Wolinska
- Department of Pathology, Medical University of Warsaw, Pawinskiego Street 7, 02-091 Warsaw, Poland.
| | - G Szparecki
- Department of Pathology, Medical University of Warsaw, Pawinskiego Street 7, 02-091 Warsaw, Poland
| | - G M Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura Street 3, 02-091 Warsaw, Poland
| | - M Czajka
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego Street 2, 20-090 Lublin, Poland
| | - M Skrzypczak
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego Street 8, 20-954 Lublin, Poland
| |
Collapse
|
15
|
Abstract
INTRODUCTION Ofatumumab is a second-generation humanized monoclonal antibody targeting CD20 registered for the treatment of patients with relapsing/refractory chronic lymphocytic leukemia. This review will describe the activity of ofatumumab in patients with CD20 B-cell lymphomas. AREAS COVERED A review of all manuscript published on ofatumumab activity in B-cell lymphomas is presented with conclusions on the future use of this antibody in these patients. EXPERT OPINION Ofatumumab activity is low in indolent or aggressive B-cell lymphomas. The future of this drug is challenged by new monoclonal antibodies and new targeted drugs.
Collapse
Affiliation(s)
- Lionel Karlin
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Hematology Department , 165, Chemin du Grand Revoyet 69495 Pierre-Benite , France +33 478864301 ; +33 478864355 ;
| | | |
Collapse
|
16
|
Mamidi S, Höne S, Teufel C, Sellner L, Zenz T, Kirschfink M. Neutralization of membrane complement regulators improves complement-dependent effector functions of therapeutic anticancer antibodies targeting leukemic cells. Oncoimmunology 2015; 4:e979688. [PMID: 25949896 PMCID: PMC4404820 DOI: 10.4161/2162402x.2014.979688] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 01/12/2023] Open
Abstract
Complement-dependent cytotoxicity (CDC) is one of the effector mechanisms mediated by therapeutic anticancer monoclonal antibodies (mAbs). However, the efficacy of antibodies is limited by the resistance of malignant cells to complement attack, primarily due to the over-expression of one or more membrane complement regulatory proteins (mCRPs) CD46, CD55, and CD59. CD20-positive Burkitt lymphoma Raji cells and primary CLL cells are resistant to rituximab (RTX)-induced CDC whereas ofatumumab (OFA) proved to be more efficient in cell killing. Primary CLL cells but not CD52-positive acute lymphoblastic leukemia (ALL) REH cells were sensitive to alemtuzumab (ALM)-induced CDC. Upon combined inhibition on Raji and CLL cells by mCRPs-specific siRNAs or neutralizing antibodies, CDC induced by RTX and by OFA was augmented. Similarly, CDC of REH cells was enhanced after mCRPs were inhibited upon treatment with ALM. All mAbs induced C3 opsonization, which was significantly augmented upon blocking mCRPs. C3 opsonization led to enhanced cell-mediated cytotoxicity of leukemia cells exposed to PBLs or macrophages. Furthermore, opsonized CLL cells were efficiently phagocytized by macrophages. Our results provide conclusive evidence that inhibition of mCRPs expression sensitizes leukemic cells to complement attack thereby enhancing the therapeutic effect of mAbs targeting leukemic cells.
Collapse
Key Words
- ADCC, antibody-dependent cellular cytotoxicity
- ALM, Alemtuzumab
- CDC, complement-dependent cytotoxicity
- CDCC, complement-dependent cellular cytotoxicity
- MAC, membrane attack complex
- NHS, Normal Human Serum
- OFA, Ofatumumab
- PBLs, peripheral blood leukocytes
- RTX, Rituximab
- TRX, Trastuzumab
- alemtuzumab
- chronic lymphocytic leukemia
- complement regulatory proteins
- complement-dependent cytotoxicity
- mCRP, membrane-bound complement regulatory protein
- ofatumumab
- opsonization
- rituximab
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Srinivas Mamidi
- Institute for Immunology; University of Heidelberg; Heidelberg, Germany
| | - Simon Höne
- Institute for Immunology; University of Heidelberg; Heidelberg, Germany
| | - Claudia Teufel
- Institute for Immunology; University of Heidelberg; Heidelberg, Germany
| | - Leopold Sellner
- Department of Translational Oncology; National Center for Tumour Diseases (NCT) and German Cancer Research Center (DKFZ); Heidelberg, Germany
- Department of Medicine V; University of Heidelberg; Heidelberg, Germany
| | - Thorsten Zenz
- Department of Translational Oncology; National Center for Tumour Diseases (NCT) and German Cancer Research Center (DKFZ); Heidelberg, Germany
- Department of Medicine V; University of Heidelberg; Heidelberg, Germany
| | | |
Collapse
|
17
|
Targeted delivery of siRNA using transferrin-coupled lipoplexes specifically sensitizes CD71 high expressing malignant cells to antibody-mediated complement attack. Target Oncol 2014; 10:405-13. [DOI: 10.1007/s11523-014-0345-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/29/2014] [Indexed: 01/08/2023]
|
18
|
Meyer S, Leusen JHW, Boross P. Regulation of complement and modulation of its activity in monoclonal antibody therapy of cancer. MAbs 2014; 6:1133-44. [PMID: 25517299 PMCID: PMC4622586 DOI: 10.4161/mabs.29670] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The complement system is a powerful tool of the innate immune system to eradicate pathogens. Both in vitro and in vivo evidence indicates that therapeutic anti-tumor monoclonal antibodies (mAbs) can activate the complement system by the classical pathway. However, the contribution of complement to the efficacy of mAbs is still debated, mainly due to the lack of convincing data in patients. A beneficial role for complement during mAb therapy is supported by the fact that cancer cells often upregulate complement-regulatory proteins (CRPs). Polymorphisms in various CRPs were previously associated with complement-mediated disorders. In this review the role of complement in anti-tumor mAb therapy will be discussed with special emphasis on strategies aiming at modifying complement activity. In the future, clinical efficacy of mAbs with enhanced effector functions together with comprehensive analysis of polymorphisms in CRPs in mAb-treated patients will further clarify the role of complement in mAb therapy.
Collapse
Affiliation(s)
- Saskia Meyer
- a Laboratory for Immunotherapy; Laboratory for Translational Immunology (LTI) ; University Medical Center Utrecht ; Utrecht , The Netherlands
| | | | | |
Collapse
|
19
|
Monoclonal Antibodies in Cancer Therapy: Mechanisms, Successes and Limitations. W INDIAN MED J 2014; 63:650-4. [PMID: 25803383 DOI: 10.7727/wimj.2013.241] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 02/24/2014] [Indexed: 11/18/2022]
Abstract
Rituximab was the first chemotherapeutic monoclonal antibody (CmAb) approved for clinical use in cancer therapeutics in 1997 and has significantly improved the clinical outcomes in non-Hodgkin's lymphoma. Since then, numerous CmAbs have been developed and approved for the treatment of various haematologic and solid human cancers. In this review, the classification, efficacy and significantly reduced toxicity of CmAbs available for use in the United States of America are presented. Finally, the limitations of CmAbs and future considerations are explored.
Collapse
|
20
|
Reagan JL, Castillo JJ. Ofatumumab as front-line therapy in untreated chronic lymphocytic leukemia. Future Oncol 2014; 10:1147-55. [DOI: 10.2217/fon.14.73] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT: Ofatumumab is a fully human IgG1 type I anti-CD20 monoclonal antibody that binds to both the small and large loop of the membrane antigen CD20. Much of its therapeutic efficacy is derived through complement-dependent cytotoxicity, although it also appears to operate via induction of caspase-dependent apoptosis and shows potent antibody-dependent cellular phagocytosis. CD20 is an important but sometimes difficult antigen to effectively target in chronic lymphocytic leukemia (CLL) secondary to its overall dim expression in CLL cells. Currently, ofatumumab is approved in the USA and EU for fludarabine- and alemtuzumab-refractory CLL patients. However, the experience with ofatumumab in untreated CLL patients is mounting and shows competitive response and survival rates with an acceptable adverse event profile. Herein, we outline the efficacy and toxicities of ofatumumab alone and in combination for the front-line treatment of CLL.
Collapse
Affiliation(s)
- John L Reagan
- Division of Hematology & Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Jorge J Castillo
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, 450 Brookline Ave, M221, Boston, MA 02215, USA
| |
Collapse
|
21
|
Huber G, Bánki Z, Kunert R, Stoiber H. Novel bifunctional single-chain variable antibody fragments to enhance virolysis by complement: generation and proof-of-concept. BIOMED RESEARCH INTERNATIONAL 2014; 2014:971345. [PMID: 24524088 PMCID: PMC3913500 DOI: 10.1155/2014/971345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/03/2013] [Indexed: 12/20/2022]
Abstract
When bound to the envelope of viruses, factor H (FH), a soluble regulator of complement activation, contributes to the protection against a potent immune defense mechanism, the complement-mediated lysis (CML). Thus, removing FH from the surface renders viruses, such as HIV, susceptible to CML. For a proof of concept, we developed a construct consisting of recombinant bifunctional single-chain variable fragment (scFv) based on a monoclonal antibody against Friend murine leukemia virus (F-MuLV) envelope protein gp70, which was coupled to specific binding domains (short consensus repeats 19-20; SCR1920) of FH. We used Pichia pastoris as expression system in common shake flasks and optimized expression in high density bench top fermentation. Specific binding of recombinant scFv was proven by flow cytometry. The recombinant scFv-SCR significantly enhanced CML of F-MuLV in vitro implying that FH binding to the viral surface was impaired by the scFv-SCR. This novel concept to enhance virolysis may provide a new approach for antiviral treatment.
Collapse
Affiliation(s)
- Georg Huber
- Division of Virology, Innsbruck Medical University, Peter-Mayr-Straße 4b, 6020 Innsbruck, Austria
| | - Zoltán Bánki
- Division of Virology, Innsbruck Medical University, Peter-Mayr-Straße 4b, 6020 Innsbruck, Austria
| | - Renate Kunert
- Department of Biotechnology, VIBT, BOKU-University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria
| | - Heribert Stoiber
- Division of Virology, Innsbruck Medical University, Peter-Mayr-Straße 4b, 6020 Innsbruck, Austria
| |
Collapse
|
22
|
CD20 mAb-Mediated Complement Dependent Cytotoxicity of Tumor Cells is Enhanced by Blocking the Action of Factor I. Antibodies (Basel) 2013. [DOI: 10.3390/antib2040598] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|