1
|
Keulen GM, Huckriede J, Wichapong K, Nicolaes GAF. Histon activities in the extracellular environment: regulation and prothrombotic implications. Curr Opin Hematol 2024; 31:230-237. [PMID: 39087372 PMCID: PMC11296287 DOI: 10.1097/moh.0000000000000827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
PURPOSE OF REVIEW Thromboembolic complications are a major contributor to global mortality. The relationship between inflammation and coagulation pathways has become an emerging research topic where the role of the innate immune response, and specifically neutrophils in "immunothrombosis" are receiving much attention. This review aims to dissect the intricate interplay between histones (from neutrophils or cellular damage) and the haemostatic pathway, and to explore mechanisms that may counteract the potentially procoagulant effects of those histones that have escaped their nuclear localization. RECENT FINDINGS Extracellular histones exert procoagulant effects via endothelial damage, platelet activation, and direct interaction with coagulation proteins. Neutralization of histone activities can be achieved by complexation with physiological molecules, through pharmacological compounds, or via proteolytic degradation. Details of neutralization of extracellular histones are still being studied. SUMMARY Leveraging the understanding of extracellular histone neutralization will pave the way for development of novel pharmacological interventions to treat and prevent complications, including thromboembolism, in patients in whom extracellular histones contribute to their overall clinical status.
Collapse
Affiliation(s)
- Gwen M Keulen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
2
|
Toh JM, Yong J, Abrams ST, Wang L, Schofield J, Lane S, La Corte AC, Wang SS, Ariëns RAS, Philippou H, Xie J, Yu W, Wang G, Toh CH. Fibrinogen binding to histones in circulation protects against adverse cellular and clinical outcomes. J Thromb Haemost 2024; 22:2247-2260. [PMID: 38777257 DOI: 10.1016/j.jtha.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Circulating histones are released by extensive tissue injury or cell death and play important pathogenic roles in critical illnesses. Their interaction with circulating plasma components and the potential roles in the clinical setting are not fully understood. OBJECTIVES We aimed to characterize the interaction of histones with fibrinogen and explore its roles in vitro, in vivo, and in patient samples. METHODS Histone-fibrinogen binding was assessed by electrophoresis and enzyme-linked immunosorbent assay-based affinity assay. Functional significance was explored using washed platelets and endothelial cells in vitro and histone-infusion mouse models in vivo. To determine clinical translatability, a retrospective single-center cohort study was conducted on patients requiring intensive care admission (n = 199) and validated in a cohort of hospitalized patients with COVID-19 (n = 69). RESULTS Fibrinogen binds histones through its D-domain with high affinity (calf thymus histones, KD = 18.0 ± 5.6 nM; histone 3, KD = 2.7 ± 0.8 nM; and histone 4, KD = 2.0 ± 0.7 nM) and significantly reduces histone-induced endothelial damage and platelet aggregation in vitro and in vivo in a histone-infusion mouse model. Physiologic concentrations of fibrinogen can neutralize low levels of circulating histones and increase the cytotoxicity threshold of histones to 50 μg/mL. In a cohort of patients requiring intensive care, a histone:fibrinogen ratio of ≥6 on admission was associated with moderate-severe thrombocytopenia and independently predicted mortality. This finding was validated in a cohort of hospitalized patients with COVID-19. CONCLUSION Fibrinogen buffers the cytotoxic properties of circulating histones. Detection and monitoring of circulating histones and histone:fibrinogen ratios will help identify critically ill patients at highest risk of adverse outcomes who might benefit from antihistone therapy.
Collapse
Affiliation(s)
- Julien M Toh
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK; Department of Anaesthetics and Critical Care, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Jun Yong
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK; Roald Dahl Haemostasis & Thrombosis Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Simon T Abrams
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK; Department of Haematology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Lijun Wang
- The Medical School, Southeast University, Nanjing, China
| | - Jeremy Schofield
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK; Roald Dahl Haemostasis & Thrombosis Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Steven Lane
- Department of Medical Statistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Amy Cilia La Corte
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Susan S Wang
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK; William Harvey Research Institute, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, UK
| | - Robert A S Ariëns
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, West Yorkshire, UK
| | - Helen Philippou
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, West Yorkshire, UK
| | - Jianfeng Xie
- The Medical School, Southeast University, Nanjing, China
| | - Weiping Yu
- The Medical School, Southeast University, Nanjing, China
| | - Guozheng Wang
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK; Department of Haematology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK; Roald Dahl Haemostasis & Thrombosis Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
3
|
Affiliation(s)
- Guozheng Wang
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- Department of Haematology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Simon Timothy Abrams
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- Department of Haematology, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
- Roald Dahl Haemostasis & Thrombosis Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
4
|
Pavlovic D, Niciforovic D, Markovic M, Papic D. Cancer-Associated Thrombosis: Epidemiology, Pathophysiological Mechanisms, Treatment, and Risk Assessment. Clin Med Insights Oncol 2023; 17:11795549231220297. [PMID: 38152726 PMCID: PMC10752082 DOI: 10.1177/11795549231220297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023] Open
Abstract
Cancer patients represent a growing population with drastically difficult care and a lowered quality of life, especially due to the heightened risk of vast complications. Thus, it is well established so far that one of the most prominent complications in individuals with cancer is venous thromboembolism. Since there are various improved methods for screening and diagnosing cancer and its complications, the incidence of cancer-associated thrombosis has been on the rise in recent years. Therefore, the high mortality and morbidity rates among these patients are not a surprise. Consequently, there is an excruciating need for understanding the mechanisms behind this complex process, as well as the imperative for adequate analysis and application of the most suitable steps for cancer-associated thrombosis prevention. There are various and numerous mechanisms offering potential answers to cancer-associated thrombosis, some of which have already been elucidated in various preclinical and clinical scenarios, yet further and more elaborate studies are crucial to understanding and preventing this complex and harsh clinical entity. This article elaborates on the growing incidence, mortality, morbidity, and risk factors of cancer-associated thrombosis while emphasizing the pathophysiological mechanisms in the light of various types of cancer in patients and summarizes the most novel therapy and prevention guidelines recommendations.
Collapse
Affiliation(s)
- Dragica Pavlovic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Danijela Niciforovic
- Center for Internal Oncology, University Clinical Center Kragujevac, Kragujevac, Serbia
| | - Marina Markovic
- Center for Internal Oncology, University Clinical Center Kragujevac, Kragujevac, Serbia
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Papic
- Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
5
|
Chooklin S, Chuklin S. The role of neutrophil extracellular traps in thrombosis. EMERGENCY MEDICINE 2023; 19:448-457. [DOI: 10.22141/2224-0586.19.7.2023.1627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
According to the cellular model of hemostasis, the process of blood coagulation is presented in the form of three phases: initiation, amplification and propagation, each of them includes several consecutive stages. At the same time, thrombus formation is often explained by Virchow’s triad: blood stasis, damage to the blood vessel walls, and hypercoagulation. Classically, the appearance of one of the three mentioned parameters can lead to thrombus formation. Over the past decade, our knowledge of the cross-talk between coagulation, inflammation, and innate immune activation and the involvement of neutrophil extracellular traps in these processes has expanded. This brief review shows their role in thrombosis through the mechanisms of activation of platelets, complement, interaction with blood coagulation factors and damage to the vascular endothelium. We searched the literature in the MEDLINE database on the PubMed platform.
Collapse
|
6
|
Villalba N, Sackheim AM, Lawson MA, Haines L, Chen YL, Sonkusare SK, Ma YT, Li J, Majumdar D, Bouchard BA, Boyson JE, Poynter ME, Nelson MT, Freeman K. The Polyanionic Drug Suramin Neutralizes Histones and Prevents Endotheliopathy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:648-657. [PMID: 37405700 PMCID: PMC10644384 DOI: 10.4049/jimmunol.2200703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 06/09/2023] [Indexed: 07/06/2023]
Abstract
Drugs are needed to protect against the neutrophil-derived histones responsible for endothelial injury in acute inflammatory conditions such as trauma and sepsis. Heparin and other polyanions can neutralize histones but challenges with dosing or side effects such as bleeding limit clinical application. In this study, we demonstrate that suramin, a widely available polyanionic drug, completely neutralizes the toxic effects of individual histones, but not citrullinated histones from neutrophil extracellular traps. The sulfate groups on suramin form stable electrostatic interactions with hydrogen bonds in the histone octamer with a dissociation constant of 250 nM. In cultured endothelial cells (Ea.Hy926), histone-induced thrombin generation was significantly decreased by suramin. In isolated murine blood vessels, suramin abolished aberrant endothelial cell calcium signals and rescued impaired endothelial-dependent vasodilation caused by histones. Suramin significantly decreased pulmonary endothelial cell ICAM-1 expression and neutrophil recruitment caused by infusion of sublethal doses of histones in vivo. Suramin also prevented histone-induced lung endothelial cell cytotoxicity in vitro and lung edema, intra-alveolar hemorrhage, and mortality in mice receiving a lethal dose of histones. Protection of vascular endothelial function from histone-induced damage is a novel mechanism of action for suramin with therapeutic implications for conditions characterized by elevated histone levels.
Collapse
Affiliation(s)
- Nuria Villalba
- Department of Emergency Medicine, University of Vermont, Burlington, VT USA
| | - Adrian M. Sackheim
- Department of Emergency Medicine, University of Vermont, Burlington, VT USA
| | - Michael A. Lawson
- Department of Emergency Medicine, University of Vermont, Burlington, VT USA
| | - Laurel Haines
- Department of Emergency Medicine, University of Vermont, Burlington, VT USA
| | - Yen-Lin Chen
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA USA
| | - Swapnil K. Sonkusare
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA USA
| | - Yong-Tao Ma
- Department of Chemistry, University of Vermont, Burlington, VT USA
| | - Jianing Li
- Department of Chemistry, University of Vermont, Burlington, VT USA
| | - Dev Majumdar
- Department of Emergency Medicine, University of Vermont, Burlington, VT USA
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT USA
| | - Beth A. Bouchard
- Department of Biochemistry, University of Vermont, Burlington, VT USA
| | - Jonathan E. Boyson
- Department of Emergency Medicine, University of Vermont, Burlington, VT USA
| | | | - Mark T. Nelson
- Department of Pharmacology, University of Vermont, Burlington, VT USA
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Kalev Freeman
- Department of Emergency Medicine, University of Vermont, Burlington, VT USA
- Department of Pharmacology, University of Vermont, Burlington, VT USA
| |
Collapse
|
7
|
Yong J, Abrams ST, Wang G, Toh CH. Cell-free histones and the cell-based model of coagulation. J Thromb Haemost 2023; 21:1724-1736. [PMID: 37116754 DOI: 10.1016/j.jtha.2023.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 04/30/2023]
Abstract
The cell-based model of coagulation remains the basis of our current understanding of clinical hemostasis and thrombosis. Its advancement on the coagulation cascade model has enabled new prohemostatic and anticoagulant treatments to be developed. In the past decade, there has been increasing evidence of the procoagulant properties of extracellular, cell-free histones (CFHs). Although high levels of circulating CFHs released following extensive cell death in acute critical illnesses, such as sepsis and trauma, have been associated with adverse coagulation outcomes, including disseminated intravascular coagulation, new information has also emerged on how its local effects contribute to physiological clot formation. CFHs initiate coagulation by tissue factor exposure, either by destruction of the endovascular barrier or induction of endoluminal tissue factor expression on endothelia and monocytes. CFHs can also bind prothrombin directly, generating thrombin via the alternative prothrombinase pathway. In amplifying and augmenting the procoagulant signal, CFHs activate and aggregate platelets, increase procoagulant material bioavailability through platelet degranulation and Weibel-Palade body exocytosis, activate intrinsic coagulation via platelet polyphosphate release, and induce phosphatidylserine exposure. CFHs also inhibit protein C activation and downregulate thrombomodulin expression to reduce anti-inflammatory and anticoagulant effects. In consolidating clot formation, CFHs augment the fibrin polymer to confer fibrinolytic resistance and integrate neutrophil extracellular traps into the clot structure. Such new information holds the promise of new therapeutic developments, including improved targeting of immunothrombotic pathologies in acute critical illnesses.
Collapse
Affiliation(s)
- Jun Yong
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK
| | - Simon T Abrams
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK; Liverpool Clinical Laboratories, Liverpool, UK
| | - Guozheng Wang
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK; Liverpool Clinical Laboratories, Liverpool, UK
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, UK; The Roald Dahl Haemostasis and Thrombosis Centre, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
8
|
García-Giménez JL, García-López E, Mena-Mollá S, Beltrán-García J, Osca-Verdegal R, Nacher-Sendra E, Aguado-Velasco C, Casabó-Vallés G, Romá-Mateo C, Rodriguez-Gimillo M, Antúnez O, Ferreres J, Pallardó FV, Carbonell N. Validation of circulating histone detection by mass spectrometry for early diagnosis, prognosis, and management of critically ill septic patients. J Transl Med 2023; 21:344. [PMID: 37221624 DOI: 10.1186/s12967-023-04197-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/14/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND As leading contributors to worldwide morbidity and mortality, sepsis and septic shock are considered a major global health concern. Proactive biomarker identification in patients with sepsis suspicion at any time remains a daunting challenge for hospitals. Despite great progress in the understanding of clinical and molecular aspects of sepsis, its definition, diagnosis, and treatment remain challenging, highlighting a need for new biomarkers with potential to improve critically ill patient management. In this study we validate a quantitative mass spectrometry method to measure circulating histone levels in plasma samples for the diagnosis and prognosis of sepsis and septic shock patients. METHODS We used the mass spectrometry technique of multiple reaction monitoring to quantify circulating histones H2B and H3 in plasma from a monocenter cohort of critically ill patients admitted to an Intensive Care Unit (ICU) and evaluated its performance for the diagnosis and prognosis of sepsis and septic shock (SS). RESULTS Our results highlight the potential of our test for early diagnosis of sepsis and SS. H2B levels above 121.40 ng/mL (IQR 446.70) were indicative of SS. The value of blood circulating histones to identify a subset of SS patients in a more severe stage with associated organ failure was also tested, revealing circulating levels of histones H2B above 435.61 ng/ml (IQR 2407.10) and H3 above 300.61 ng/ml (IQR 912.77) in septic shock patients with organ failure requiring invasive organ support therapies. Importantly, we found levels of H2B and H3 above 400.44 ng/mL (IQR 1335.54) and 258.25 (IQR 470.44), respectively in those patients who debut with disseminated intravascular coagulation (DIC). Finally, a receiver operating characteristic curve (ROC curve) demonstrated the prognostic value of circulating histone H3 to predict fatal outcomes and found for histone H3 an area under the curve (AUC) of 0.720 (CI 0.546-0.895) p < 0.016 on a positive test cut-off point at 486.84 ng/mL, showing a sensitivity of 66.7% and specificity of 73.9%. CONCLUSIONS Circulating histones analyzed by MS can be used to diagnose SS and identify patients at high risk of suffering DIC and fatal outcome.
Collapse
Affiliation(s)
- José Luis García-Giménez
- Center for Biomedical Research Network On Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain.
- INCLIVA Biomedical Research Institute, Valencia, Spain.
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
| | - Eva García-López
- Center for Biomedical Research Network On Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna, Valencia, Spain
| | - Salvador Mena-Mollá
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Jesús Beltrán-García
- Center for Biomedical Research Network On Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rebeca Osca-Verdegal
- Center for Biomedical Research Network On Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Elena Nacher-Sendra
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | | | - Germán Casabó-Vallés
- EpiDisease S.L. (Spin-Off CIBER-ISCIII), Parc Científic de la Universitat de València, Paterna, Valencia, Spain
| | - Carlos Romá-Mateo
- Center for Biomedical Research Network On Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - María Rodriguez-Gimillo
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Intensive Care Unit, Clinical University Hospital of Valencia (HCUV), Valencia, Spain
| | - Oreto Antúnez
- Proteomics Unit, SCSIE-University of Valencia, Burjassot, València, Spain
| | - José Ferreres
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Intensive Care Unit, Clinical University Hospital of Valencia (HCUV), Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Research Network On Rare Diseases (CIBERER), Carlos III Health Institute, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - Nieves Carbonell
- INCLIVA Biomedical Research Institute, Valencia, Spain.
- Intensive Care Unit, Clinical University Hospital of Valencia (HCUV), Valencia, Spain.
| |
Collapse
|
9
|
Colicchia M, Perrella G, Gant P, Rayes J. Novel mechanisms of thrombo-inflammation during infection: spotlight on neutrophil extracellular trap-mediated platelet activation. Res Pract Thromb Haemost 2023; 7:100116. [PMID: 37063765 PMCID: PMC10099327 DOI: 10.1016/j.rpth.2023.100116] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 03/13/2023] Open
Abstract
A state-of-the-art lecture titled "novel mechanisms of thrombo-inflammation during infection" was presented at the ISTH Congress in 2022. Platelet, neutrophil, and endothelial cell activation coordinate the development, progression, and resolution of thrombo-inflammatory events during infection. Activated platelets and neutrophil extracellular traps (NETs) are frequently observed in patients with sepsis and COVID-19, and high levels of NET-derived damage-associated molecular patterns (DAMPs) correlate with thrombotic complications. NET-associated DAMPs induce direct and indirect platelet activation, which in return potentiates neutrophil activation and NET formation. These coordinated interactions involve multiple receptors and signaling pathways contributing to vascular and organ damage exacerbating disease severity. This state-of-the-art review describes the main mechanisms by which platelets support NETosis and the key mechanisms by which NET-derived DAMPs trigger platelet activation and the formation of procoagulant platelets leading to thrombosis. We report how these DAMPs act through multiple receptors and signaling pathways differentially regulating cell activation and disease outcome, focusing on histones and S100A8/A9 and their contribution to the pathogenesis of sepsis and COVID-19. We further discuss the complexity of platelet activation during NETosis and the potential benefit of targeting selective or multiple NET-associated DAMPs to limit thrombo-inflammation during infection. Finally, we summarize relevant new data on this topic presented during the 2022 ISTH Congress.
Collapse
Affiliation(s)
- Martina Colicchia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Gina Perrella
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Poppy Gant
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Vincent Drive, Birmingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, U.K
| |
Collapse
|
10
|
Akinbo DB, Ajayi OI. Thrombotic Pathogenesis and Laboratory Diagnosis in Cancer Patients, An Update. Int J Gen Med 2023; 16:259-272. [PMID: 36711430 PMCID: PMC9879027 DOI: 10.2147/ijgm.s385772] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/04/2023] [Indexed: 01/23/2023] Open
Abstract
Cancer-associated thrombosis (CAT) is a leading cause of mortality in cancer patients and its incidence varies in different parts of the world. Venous thromboembolism (VTE) is a prominent manifestation of CAT, and significantly impacts morbidity and survival compared to arterial thrombosis in cancer patients. Several risk factors for developing VTE such as chemotherapy and immobilization have also been found co-existing with cancer patients and contributing to the increased risk of VTE in cancer patients than in non-cancer patients. This review highlights recent mechanisms in the pathogenesis of hypercoagulable syndromes associated with cancer, multiple mechanisms implicated in promoting cancer-associated thrombosis and their diagnostic approaches. Cancer cells interact with every part of the hemostatic system; generating their own procoagulant factors, through stimulation of the prothrombotic properties of other blood cell components or the initiation of clotting by cancer therapies which can all directly activate the coagulation cascade and contribute to the VTE experienced in CAT. It is our hope that the multiple interconnections between the hemostatic system and cancer biology and the improved biomarkers reported in this study can be relevant in establishing a predictive model for VTE, optimize early detection of asymptomatic microthrombosis for more personalized prophylactic strategies and incorporate effective therapeutic options and patient management to reduce mortality and morbidity, and improve the quality of life of affected cancer patients.
Collapse
Affiliation(s)
- David Bolaji Akinbo
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Afe Babalola University, Ado – Ekiti, Ekiti State, Nigeria,Department of Food, Nutrition, Dietetics and Health, College of Health and Human Sciences, Kansas State University, Manhattan, KS, USA,Correspondence: David Bolaji Akinbo, Email
| | - Olutayo Ifedayo Ajayi
- Department of Physiology, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin City, Edo State, Nigeria
| |
Collapse
|
11
|
Courson JA, Lam FW, Langlois KW, Rumbaut RE. Histone-stimulated platelet adhesion to mouse cremaster venules in vivo is dependent on von Willebrand factor. Microcirculation 2022; 29:e12782. [PMID: 36056797 PMCID: PMC9720896 DOI: 10.1111/micc.12782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/15/2022] [Accepted: 08/30/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Extracellular histones are known mediators of platelet activation, inflammation, and thrombosis. Von Willebrand Factor (vWF) and Toll-like receptor 4 (TLR4) have been implicated in pro-inflammatory and prothrombotic histone responses. The objective of this study was to assess the role of vWF and TLR4 on histone-induced platelet adhesion in vivo. METHODS Intravital microscopy of the mouse cremaster microcirculation, in the presence of extracellular histones or saline control, was conducted in wild-type, vWF-deficient, and TLR4-deficient mice to assess histone-mediated platelet adhesion. Platelet counts following extracellular histone exposure were conducted. Platelets were isolated from vWF-deficient mice and littermates to assess the role of vWF on histone-induced platelet aggregation. RESULTS Histones promoted platelet adhesion to cremaster venules in vivo in wild-type animals, as well as in TLR4-deficient mice to a comparable degree. Histones did not lead to increased platelet adhesion in vWF-deficient mice, in contrast to littermate controls. In all genotypes, histones resulted in thrombocytopenia. Histone-induced platelet aggregation ex vivo was similar in vWF-deficient mice and littermate controls. CONCLUSIONS Histone-induced platelet adhesion to microvessels in vivo is vWF-dependent and TLR4-independent. Platelet-derived vWF was not necessary for histone-induced platelet aggregation ex vivo. These data are consistent with the notion that endothelial vWF, rather than platelet vWF, mediates histone-induced platelet adhesion in vivo.
Collapse
Affiliation(s)
- Justin A. Courson
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center; Houston, TX USA,Department of Medicine, Baylor College of Medicine; Houston, TX USA
| | - Fong W. Lam
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center; Houston, TX USA,Department of Pediatrics, Baylor College of Medicine; Houston, TX USA
| | - Kimberly W. Langlois
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center; Houston, TX USA,Department of Medicine, Baylor College of Medicine; Houston, TX USA
| | - Rolando E. Rumbaut
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center; Houston, TX USA,Department of Medicine, Baylor College of Medicine; Houston, TX USA,Department of Pediatrics, Baylor College of Medicine; Houston, TX USA,Corresponding Author: Rolando E. Rumbaut, Michael E. DeBakey VA Medical Center, 2002 Holcombe Blvd., Building 109, Houston, TX 77030
| |
Collapse
|
12
|
Shafqat A, Abdul Rab S, Ammar O, Al Salameh S, Alkhudairi A, Kashir J, Alkattan K, Yaqinuddin A. Emerging role of neutrophil extracellular traps in the complications of diabetes mellitus. Front Med (Lausanne) 2022; 9:995993. [PMID: 36082273 PMCID: PMC9445264 DOI: 10.3389/fmed.2022.995993] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Immune dysfunction is widely regarded as one of the central tenants underpinning the pathophysiology of diabetes mellitus (DM) and its complications. When discussing immunity, the role of neutrophils must be accounted for: neutrophils are the most abundant of the circulating immune cells and are the first to be recruited to sites of inflammation, where they contribute to host defense via phagocytosis, degranulation, and extrusion of neutrophil extracellular traps (NETs). NETs are composed of DNA associated with nuclear and cytosolic neutrophil proteins. Although originally reported as an antimicrobial strategy to prevent microbial dissemination, a growing body of evidence has implicated NETs in the pathophysiology of various autoimmune and metabolic disorders. In these disorders, NETs propagate a pathologic inflammatory response with consequent tissue injury and thrombosis. Many diabetic complications—such as stroke, retinopathy, impaired wound healing, and coronary artery disease—involve these mechanisms. Therefore, in this review, we discuss laboratory and clinical data informing our understanding of the role of NETs in the development of these complications. NET markers, including myeloperoxidase, citrullinated histone H3, neutrophil elastase, and cell-free double-stranded DNA, can easily be measured in serum or be detected via immunohistochemical/immunocytochemical staining of tissue specimens. Therefore, NET constituents potentially constitute reliable biomarkers for use in the management of diabetic patients. However, no NET-targeting drug is currently approved for the treatment of diabetic complications; a candidate drug will require the outcomes of well-designed, robust clinical trials assessing whether NET inhibition can benefit patients in terms of morbidity, quality of life, health expenditures, and mortality. Therefore, much work remains to be done in translating these encouraging pieces of data into clinical trials for NET-targeting medications to be used in the clinic.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- *Correspondence: Areez Shafqat
| | | | - Osama Ammar
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Anas Alkhudairi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Center of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Khaled Alkattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
13
|
Baptista de Barros Ribeiro Dourado LP, Santos M, Moreira-Gonçalves D. Nets, pulmonary arterial hypertension, and thrombo-inflammation. J Mol Med (Berl) 2022; 100:713-722. [PMID: 35441845 DOI: 10.1007/s00109-022-02197-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/28/2021] [Accepted: 03/31/2022] [Indexed: 02/07/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and fatal vascular disease in which high blood pressure in the pulmonary artery and remodeling of the pulmonary vasculature ensues. This disorder is characterized by the presence of thrombotic lesions, resulting from chronic platelet, coagulation factors, and endothelium activation, which translate into platelet aggregation, vasoconstriction, and medial thickening. Neutrophil extracellular traps (NETs), a network of chromatin and cytoplasmatic enzymes (myeloperoxidase and neutrophil elastase) forming after neutrophil programmed cell death, were described in multiple cardiovascular diseases as thrombotic mediators, by creating a scaffold or by surface receptor interaction. In this review, we analyze the possible involvement of NETs in PAH, to enlighten future studies to explore this hypothesis. NETs may have a determining role in pulmonary hypertension through activation of platelets and endothelial cells. Simultaneously, NETosis may be induced by endothelial signaling and/or cell-cell interaction between platelets and primed neutrophils, creating a positive feedback loop. Confirming its role in the pathophysiology and prognosis of PAH may represent a new opportunity to explore new therapeutic options. KEY MESSAGES: Thrombosis and innate immunity are relevant axes in PAH. Patients with PAH display elevated levels of NETs. NETs could activate platelets/endothelium with proliferative and thrombotic effects. Activated platelets and endothelium could contribute to NETosis. NETs could open new therapy research avenues.
Collapse
Affiliation(s)
| | - Mário Santos
- Cardiology Department, Hospital Santo António, Centro Hospitalar Universitário do Porto, Largo do Prof. Abel Salazar, 4099-001, Porto, Portugal.,Unit of Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Daniel Moreira-Gonçalves
- CIAFEL, Faculty of Sport, University of Porto, R. Dr. Plácido da Costa 91, 4200-450, Porto, Portugal.,ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| |
Collapse
|
14
|
Wilson AS, Randall KL, Pettitt JA, Ellyard JI, Blumenthal A, Enders A, Quah BJ, Bopp T, Parish CR, Brüstle A. Neutrophil extracellular traps and their histones promote Th17 cell differentiation directly via TLR2. Nat Commun 2022; 13:528. [PMID: 35082281 PMCID: PMC8792063 DOI: 10.1038/s41467-022-28172-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 01/08/2022] [Indexed: 01/08/2023] Open
Abstract
Neutrophils perform critical functions in the innate response to infection, including through the production of neutrophil extracellular traps (NETs) - web-like DNA structures which are extruded from neutrophils upon activation. Elevated levels of NETs have been linked to autoimmunity but this association is poorly understood. By contrast, IL-17 producing Th17 cells are a key player in various autoimmune diseases but are also crucial for immunity against fungal and bacterial infections. Here we show that NETs, through their protein component histones, directly activate T cells and specifically enhance Th17 cell differentiation. This modulatory role of neutrophils, NETs and their histones is mediated downstream of TLR2 in T cells, resulting in phosphorylation of STAT3. The innate stimulation of a specific adaptive immune cell subset provides an additional mechanism demonstrating a direct link between neutrophils, NETs and T cell autoimmunity.
Collapse
Affiliation(s)
- Alicia S Wilson
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katrina L Randall
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,ANU Medical School, The Australian National University, Canberra, ACT, Australia
| | - Jessica A Pettitt
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Julia I Ellyard
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Anselm Enders
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Benjamin J Quah
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Tobias Bopp
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christopher R Parish
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Anne Brüstle
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
15
|
Yu L, Guo Y, Chang Z, Zhang D, Zhang S, Pei H, Pang J, Zhao ZJ, Chen Y. Bidirectional Interaction Between Cancer Cells and Platelets Provides Potential Strategies for Cancer Therapies. Front Oncol 2021; 11:764119. [PMID: 34722319 PMCID: PMC8551800 DOI: 10.3389/fonc.2021.764119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Platelets are essential components in the tumor microenvironment. For decades, clinical data have demonstrated that cancer patients have a high risk of thrombosis that is associated with adverse prognosis and decreased survival, indicating the involvement of platelets in cancer progression. Increasing evidence confirms that cancer cells are able to induce production and activation of platelets. Once activated, platelets serve as allies of cancer cells in tumor growth and metastasis. They can protect circulating tumor cells (CTCs) against the immune system and detachment-induced apoptosis while facilitating angiogenesis and tumor cell adhesion and invasion. Therefore, antiplatelet agents and platelet-based therapies should be developed for cancer treatment. Here, we discuss the mechanisms underlying the bidirectional cancer-platelet crosstalk and platelet-based therapeutic approaches.
Collapse
Affiliation(s)
- Liuting Yu
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Shiqiang Zhang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hanzhong Pei
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Jun Pang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhizhuang Joe Zhao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
16
|
Effect of Nitinol on Metabolic and Coagulation Activity of Endothelial Cells Culture. Bull Exp Biol Med 2021; 171:480-482. [PMID: 34542754 DOI: 10.1007/s10517-021-05255-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 10/20/2022]
Abstract
We studied the effect of nitinol, the most prevalent material for endovascular stents, on metabolic and coagulation activity of a primary culture of human umbilical vein endothelial cells (HUVEC). Metabolic activity was evaluated using MTS-test and by the level of stable NO metabolites in the conditioned medium, coagulation activity was assessed by activity of von Willebrand factor (vWF) and levels of plasminogen activator inhibitor-1 (PAI-1) and soluble endothelial protein C receptors (sEPCR). Exposure to nitinol reduced metabolic activity of the cell culture by 11.1% in comparison with the control (p<0.001). Although absolute activity of vWF and absolute level of sEPCR were elevated, incubation with nitinol did not lead to a statistically significant elevation of these parameters in comparison with the control, which can indicate the absence of substantial hypercoagulation effects of nitinol.
Collapse
|
17
|
Shi H, Gandhi AA, Smith SA, Wang Q, Chiang D, Yalavarthi S, Ali RA, Liu C, Sule G, Tsou PS, Zuo Y, Kanthi Y, Farkash EA, Lin JD, Morrissey JH, Knight JS. Endothelium-protective, histone-neutralizing properties of the polyanionic agent defibrotide. JCI Insight 2021; 6:e149149. [PMID: 34264868 PMCID: PMC8492316 DOI: 10.1172/jci.insight.149149] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022] Open
Abstract
Neutrophil-mediated activation and injury of the endothelium play roles in the pathogenesis of diverse disease states ranging from autoimmunity to cancer to COVID-19. Neutralization of cationic proteins (such as neutrophil extracellular trap–derived [NET-derived] histones) with polyanionic compounds has been suggested as a potential strategy for protecting the endothelium from such insults. Here, we report that the US Food and Drug Administration–approved polyanionic agent defibrotide (a pleiotropic mixture of oligonucleotides) directly engages histones and thereby blocks their pathological effects on endothelium. In vitro, defibrotide counteracted endothelial cell activation and pyroptosis-mediated cell death, whether triggered by purified NETs or recombinant histone H4. In vivo, defibrotide stabilized the endothelium and protected against histone-accelerated inferior vena cava thrombosis in mice. Mechanistically, defibrotide demonstrated direct and tight binding to histone H4 as detected by both electrophoretic mobility shift assay and surface plasmon resonance. Taken together, these data provide insights into the potential role of polyanionic compounds in protecting the endothelium from thromboinflammation with potential implications for myriad NET- and histone-accelerated disease states.
Collapse
Affiliation(s)
- Hui Shi
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Alex A Gandhi
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Stephanie A Smith
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States of America
| | - Qiuyu Wang
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States of America
| | - Diane Chiang
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Srilakshmi Yalavarthi
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Ramadan A Ali
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Chao Liu
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Gautam Sule
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Pei-Suen Tsou
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Yu Zuo
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| | - Yogendra Kanthi
- Division of Intramural Research National Heart, Lung and Blood Institute, Bethesda, United States of America
| | - Evan A Farkash
- Department of Pathology, University of Michigan, Ann Arbor, United States of America
| | - Jiandie D Lin
- University of Michigan, Ann Arbor, United States of America
| | - James H Morrissey
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States of America
| | - Jason S Knight
- Department of Internal Medicine, University of Michigan, Ann Arbor, United States of America
| |
Collapse
|
18
|
Shi H, Gandhi AA, Smith SA, Wang Q, Chiang D, Yalavarthi S, Ali RA, Liu C, Sule G, Tsou PS, Zuo Y, Kanthi Y, Farkash EA, Lin JD, Morrissey JH, Knight JS. Endothelium-protective, histone-neutralizing properties of the polyanionic agent defibrotide. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021. [PMID: 33655266 DOI: 10.1101/2021.02.21.21252160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neutrophil-mediated activation and injury of the endothelium play a role in the pathogenesis of diverse disease states ranging from autoimmunity to cancer to COVID-19. Neutralization of cationic proteins (such as neutrophil extracellular trap/NET-derived histones) with polyanionic compounds has been suggested as a potential strategy for protecting the endothelium from such insults. Here, we report that the FDA-approved polyanionic agent defibrotide (a pleiotropic mixture of oligonucleotides) directly engages histones and thereby blocks their pathological effects on endothelium. In vitro , defibrotide counteracted endothelial cell activation and pyroptosis-mediated cell death, whether triggered by purified NETs or recombinant histone H4. In vivo , defibrotide stabilized the endothelium and protected against histone-accelerated inferior vena cava thrombosis in mice. Mechanistically, defibrotide demonstrated direct and tight binding to histone H4 as detected by both electrophoretic mobility shift assay and surface plasmon resonance. Taken together, these data provide insights into the potential role of polyanionic compounds in protecting the endothelium from thromboinflammation with potential implications for myriad NET- and histone-accelerated disease states.
Collapse
|
19
|
Shah S, Karathanasi A, Revythis A, Ioannidou E, Boussios S. Cancer-Associated Thrombosis: A New Light on an Old Story. Diseases 2021; 9:34. [PMID: 34064390 PMCID: PMC8161803 DOI: 10.3390/diseases9020034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/08/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer-associated thrombosis (CAT) is a rising and significant phenomenon, becoming the second leading cause of death in cancer patients. Pathophysiology of CAT differs from thrombosis in the non-cancer population. There are additional risk factors for thrombosis specific to cancer including cancer type, histology, and treatment, such as chemotherapy. Recently developed scoring systems use these risk factors to stratify the degree of risk and encourage thromboprophylaxis in intermediate- to high-risk patients. Anticoagulation is safely used for prophylaxis and treatment of CAT. Both of these have largely been with low-molecular-weight heparin (LMWH), rather than the vitamin K antagonist (VKA); however, there has been increasing evidence for direct oral anticoagulant (DOAC) use. Consequently, international guidelines have also adapted to recommend the role of DOACs in CAT. Using DOACs is a turning point for CAT, but further research is warranted for their long-term risk profile. This review will discuss mechanisms, risk factors, prophylaxis and management of CAT, including both LMWH and DOACs. There will also be a comparison of current international guidelines and how they reflect the growing evidence base.
Collapse
Affiliation(s)
- Sidrah Shah
- Department of Hematology/Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.S.); (A.K.); (A.R.)
| | - Afroditi Karathanasi
- Department of Hematology/Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.S.); (A.K.); (A.R.)
| | - Antonios Revythis
- Department of Hematology/Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.S.); (A.K.); (A.R.)
| | - Evangelia Ioannidou
- Department of Paediatrics and Child Health, West Suffolk Hospital NHS Foundation Trust, Hardwick Lane, Bury St Edmunds IP33 2QZ, UK;
| | - Stergios Boussios
- Department of Hematology/Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham ME7 5NY, UK; (S.S.); (A.K.); (A.R.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, London SE1 9RT, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| |
Collapse
|
20
|
Mechanisms and biomarkers of cancer-associated thrombosis. Transl Res 2020; 225:33-53. [PMID: 32645431 PMCID: PMC8020882 DOI: 10.1016/j.trsl.2020.06.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer-associated thrombosis is a leading cause of non-cancer death in cancer patients and is comprised of both arterial and venous thromboembolism (VTE). There are multiple risk factors for developing VTE, including cancer type, stage, treatment, and other medical comorbidities, which suggests that the etiology of thrombosis is multifactorial. While cancer-associated thrombosis can be treated with anticoagulation, benefits of therapy must be balanced with the increased bleeding risks seen in patients with cancer. Although risk models exist for primary and recurrent VTE, additional predictors are needed to improve model performance and discrimination of high-risk patients. This review will outline the diverse mechanisms driving thrombosis in cancer patients, as well as provide an overview of biomarkers studied in thrombosis risk and important considerations when selecting candidate biomarkers.
Collapse
|
21
|
Bray MA, Sartain SE, Gollamudi J, Rumbaut RE. Microvascular thrombosis: experimental and clinical implications. Transl Res 2020; 225:105-130. [PMID: 32454092 PMCID: PMC7245314 DOI: 10.1016/j.trsl.2020.05.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023]
Abstract
A significant amount of clinical and research interest in thrombosis is focused on large vessels (eg, stroke, myocardial infarction, deep venous thrombosis, etc.); however, thrombosis is often present in the microcirculation in a variety of significant human diseases, such as disseminated intravascular coagulation, thrombotic microangiopathy, sickle cell disease, and others. Further, microvascular thrombosis has recently been demonstrated in patients with COVID-19, and has been proposed to mediate the pathogenesis of organ injury in this disease. In many of these conditions, microvascular thrombosis is accompanied by inflammation, an association referred to as thromboinflammation. In this review, we discuss endogenous regulatory mechanisms that prevent thrombosis in the microcirculation, experimental approaches to induce microvascular thrombi, and clinical conditions associated with microvascular thrombosis. A greater understanding of the links between inflammation and thrombosis in the microcirculation is anticipated to provide optimal therapeutic targets for patients with diseases accompanied by microvascular thrombosis.
Collapse
Key Words
- adamts13, a disintegrin-like and metalloproteinase with thrombospondin type 1 motif 13
- ap, alternate pathway
- apc, activated protein c
- aps, antiphospholipid syndrome
- caps, catastrophic aps
- asfa, american society for apheresis
- atp, adenosine triphosphate
- cfh, complement factor h
- con a, concavalin a
- cox, cyclooxygenase
- damp, damage-associated molecular pattern
- dic, disseminated intravascular coagulation
- gbm, glomerular basement membrane
- hellp, hemolysis, elevated liver enzymes, low platelets
- hitt, heparin-induced thrombocytopenia and thrombosis
- hlh, hemophagocytic lymphohistiocytosis
- hus, hemolytic-uremic syndrome
- isth, international society for thrombosis and haemostasis
- ivig, intravenous immunoglobulin
- ldh, lactate nos, nitric oxide synthase
- net, neutrophil extracellular trap
- pai-1, plasminogen activator inhibitor 1
- pf4, platelet factor 4
- prr, pattern recognition receptor
- rbc, red blood cell
- scd, sickle cell disease
- sle, systemic lupus erythematosus
- tlr, toll-like receptor
- tf, tissue factor
- tfpi, tissue factor pathway inhibitor
- tma, thrombotic microangiopathy
- tnf-α, tumor necrosis factor-α
- tpe, therapeutic plasma exchange
- ulc, ultra large heparin-pf4 complexes
- ulvwf, ultra-large von willebrand factor
- vwf, von willebrand factor
Collapse
Affiliation(s)
- Monica A Bray
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Sarah E Sartain
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Jahnavi Gollamudi
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas
| | - Rolando E Rumbaut
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas; Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
22
|
Middleton EA, He XY, Denorme F, Campbell RA, Ng D, Salvatore SP, Mostyka M, Baxter-Stoltzfus A, Borczuk AC, Loda M, Cody MJ, Manne BK, Portier I, Harris ES, Petrey AC, Beswick EJ, Caulin AF, Iovino A, Abegglen LM, Weyrich AS, Rondina MT, Egeblad M, Schiffman JD, Yost CC. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020; 136:1169-1179. [PMID: 32597954 PMCID: PMC7472714 DOI: 10.1182/blood.2020007008] [Citation(s) in RCA: 994] [Impact Index Per Article: 248.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/25/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 affects millions of patients worldwide, with clinical presentation ranging from isolated thrombosis to acute respiratory distress syndrome (ARDS) requiring ventilator support. Neutrophil extracellular traps (NETs) originate from decondensed chromatin released to immobilize pathogens, and they can trigger immunothrombosis. We studied the connection between NETs and COVID-19 severity and progression. We conducted a prospective cohort study of COVID-19 patients (n = 33) and age- and sex-matched controls (n = 17). We measured plasma myeloperoxidase (MPO)-DNA complexes (NETs), platelet factor 4, RANTES, and selected cytokines. Three COVID-19 lung autopsies were examined for NETs and platelet involvement. We assessed NET formation ex vivo in COVID-19 neutrophils and in healthy neutrophils incubated with COVID-19 plasma. We also tested the ability of neonatal NET-inhibitory factor (nNIF) to block NET formation induced by COVID-19 plasma. Plasma MPO-DNA complexes increased in COVID-19, with intubation (P < .0001) and death (P < .0005) as outcome. Illness severity correlated directly with plasma MPO-DNA complexes (P = .0360), whereas Pao2/fraction of inspired oxygen correlated inversely (P = .0340). Soluble and cellular factors triggering NETs were significantly increased in COVID-19, and pulmonary autopsies confirmed NET-containing microthrombi with neutrophil-platelet infiltration. Finally, COVID-19 neutrophils ex vivo displayed excessive NETs at baseline, and COVID-19 plasma triggered NET formation, which was blocked by nNIF. Thus, NETs triggering immunothrombosis may, in part, explain the prothrombotic clinical presentations in COVID-19, and NETs may represent targets for therapeutic intervention.
Collapse
Affiliation(s)
- Elizabeth A Middleton
- Molecular Medicine Program and
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Xue-Yan He
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY
| | | | - Robert A Campbell
- Molecular Medicine Program and
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - David Ng
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY
| | - Steven P Salvatore
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, New York, NY
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Maria Mostyka
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, New York, NY
| | - Amelia Baxter-Stoltzfus
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, New York, NY
| | - Alain C Borczuk
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, New York, NY
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Massimo Loda
- Department of Pathology and Laboratory Medicine, New York Presbyterian Hospital, New York, NY
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Mark J Cody
- Molecular Medicine Program and
- Department of Pediatrics and
| | | | | | - Estelle S Harris
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Aaron C Petrey
- Molecular Medicine Program and
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Ellen J Beswick
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | | | - Anthony Iovino
- Department of Pediatrics and
- PEEL Therapeutics, Inc, Salt Lake City, UT; and
| | - Lisa M Abegglen
- Department of Pediatrics and
- PEEL Therapeutics, Inc, Salt Lake City, UT; and
| | - Andrew S Weyrich
- Molecular Medicine Program and
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Matthew T Rondina
- Molecular Medicine Program and
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
- Department of Internal Medicine and
- Geriatric Research, Education, and Clinical Center (GRECC), George E. Wahlen Veterans Affairs (VA) Medical Center, Salt Lake City, UT
| | - Mikala Egeblad
- Cold Spring Harbor Laboratory, Cancer Center, Cold Spring Harbor, NY
| | - Joshua D Schiffman
- Molecular Medicine Program and
- Department of Pediatrics and
- PEEL Therapeutics, Inc, Salt Lake City, UT; and
| | | |
Collapse
|
23
|
Semeraro F, Ammollo CT, Semeraro N, Colucci M. Extracellular histones promote fibrinolysis by single-chain urokinase-type plasminogen activator in a factor seven activating protease-dependent way. Thromb Res 2020; 196:193-199. [PMID: 32891905 DOI: 10.1016/j.thromres.2020.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Extracellular histones inhibit tissue plasminogen activator (t-PA)-mediated fibrinolysis by modifying fibrin structure and rheological properties. However, other plasminogen activators involved in intravascular and extravascular fibrinolysis have not been considered yet. OBJECTIVES We investigated the effect of histones on fibrinolysis driven by different plasminogen activators. METHODS Clot lysis induced by t-PA, urokinase (u-PA) and its single chain precursor (scu-PA) was evaluated by turbidimetry. Conversion of scu-PA to u-PA and activation of factor seven activating protease (FSAP) were assessed by fluorogenic and chromogenic assays, respectively. RESULTS Histones delayed t-PA- and u-PA-mediated fibrinolysis but strongly accelerated scu-PA-driven clot lysis through the enhancement of scu-PA to u-PA conversion. This effect required a plasma factor identified as FSAP by the following findings: 1) histones enhanced neither scu-PA activation nor scu-PA-mediated clot lysis under purified conditions; 2) in plasma, the enhancement of fibrinolytic activity by histones was abolished by a neutralizing anti-FSAP antibody; and 3) histones promoted the activation of plasma FSAP. The effect of the natural mixture of histones on scu-PA-driven fibrinolysis was differentially recapitulated by the individual recombinant histones, H4 displaying the strongest activity. When complexed to DNA, histones still accelerated scu-PA-mediated fibrinolysis but with a lesser efficiency due to a reduced FSAP activation. Finally, preincubation of histones with heparin or activated protein C, two known inhibitors of histones, further amplified histone-mediated boost of scu-PA-driven fibrinolysis. CONCLUSIONS Enhancement of FSAP-mediated scu-PA activity by histones may play yet unforeseen roles in intravascular fibrinolysis and contribute to extravascular proteolysis and tissue damage.
Collapse
Affiliation(s)
- Fabrizio Semeraro
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari Aldo Moro, Bari, Italy.
| | - Concetta T Ammollo
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Nicola Semeraro
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Mario Colucci
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
24
|
Eustache JH, Tohme S, Milette S, Rayes RF, Tsung A, Spicer JD. Casting A Wide Net On Surgery: The Central Role of Neutrophil Extracellular Traps. Ann Surg 2020; 272:277-283. [PMID: 32675540 PMCID: PMC7373444 DOI: 10.1097/sla.0000000000003586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
: Since their discovery, neutrophil extracellular traps (NETs) have been implicated in a broad array of functions, both beneficial and detrimental to the host. Indeed, NETs have roles in infection, sepsis, wound healing, thrombotic disease, and cancer propagation, all of which are directly implicated in the care of surgical patients. Here we provide an updated review on the role of NETs in the perioperative period with specific emphasis on perioperative infections, wound healing, vascular complications, cancer propagation, as well as discussing ongoing, and future therapeutic targets. Surgeons will benefit from understanding the latest discoveries in neutrophil biology and how these novel functions affect the care of surgical patients. Furthermore, novel anti-NET therapies are being developed which may have profound effects on the care of surgical patients.
Collapse
Affiliation(s)
- Jules H Eustache
- Division of Upper GI and Thoracic Surgery, McGill University Health Centre, Montral, QC, Canada
| | - Samer Tohme
- Department of Surgery, University of Pittsburgh Medical Center, Hermitage, PA
| | - Simon Milette
- Division of Upper GI and Thoracic Surgery, McGill University Health Centre, Montral, QC, Canada
| | - Roni F Rayes
- Division of Upper GI and Thoracic Surgery, McGill University Health Centre, Montral, QC, Canada
| | - Allan Tsung
- Division of Surgical Oncology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Jonathan D Spicer
- Division of Upper GI and Thoracic Surgery, McGill University Health Centre, Montral, QC, Canada
| |
Collapse
|
25
|
Circulating Histones Are Major Mediators of Multiple Organ Dysfunction Syndrome in Acute Critical Illnesses. Crit Care Med 2020; 47:e677-e684. [PMID: 31162199 DOI: 10.1097/ccm.0000000000003839] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Multiple organ dysfunction syndrome is characterized by simultaneous multiple organ failure, which is the leading cause of death in acute critically ill patients. However, what mediates multiple organ dysfunction syndrome is not fully understood. The discovery of toxic effects by extracellular histones on different individual organs strongly suggests their involvement in multiple organ dysfunction syndrome. In this study, we investigate whether circulating histones are major mediators of multiple organ dysfunction syndrome in acute critical illnesses. DESIGN Combination of retrospective clinical studies and animal models with intervention. SETTING ICU in a tertiary hospital and research laboratories. PATIENTS Four hundred and twenty ICU patients, including sepsis (140), severe trauma (63), severe pancreatitis (89), and other admission diagnoses (128). LABORATORY INVESTIGATION Cells from major organs are treated with calf thymus histones or histone-containing sera. Animal models for sepsis, trauma, and acute pancreatitis are treated with antihistone reagents. INTERVENTION Antihistone reagents in in vitro, ex vivo, and animal models. MEASUREMENT AND MAIN RESULTS Retrospective analysis of a prospectively recruited ICU cohort demonstrated a strong correlation between circulating histones and organ injury markers and Sequential Organ Failure Assessment scores. Ex vivo experiments showed that patient sera containing high histone levels were toxic to cultured cells from different origins, suggesting their universal toxicity to multiple organs. Animal models of sepsis, trauma, and pancreatitis further demonstrated a temporal correlation between histone levels and disease severity and multiple organ injury. Importantly, antihistone reagents, that is, antihistone single-chain variable fragment and nonanticoagulant heparin, could dramatically reduce multiple organ injury, particularly of the heart and lungs, and improve survival in mouse models. CONCLUSIONS High levels of circulating histones are major mediators of multiple organ dysfunction syndrome. Our results indicate that monitoring upon ICU admission could inform on disease severity and developing antihistone therapy holds great potential of reducing multiple organ dysfunction syndrome and improving survival of critically ill patients.
Collapse
|
26
|
Fasipe TA, Hong SH, Da Q, Valladolid C, Lahey MT, Richards LM, Dunn AK, Cruz MA, Marrelli SP. Extracellular Vimentin/VWF (von Willebrand Factor) Interaction Contributes to VWF String Formation and Stroke Pathology. Stroke 2019; 49:2536-2540. [PMID: 30355099 DOI: 10.1161/strokeaha.118.022888] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background and Purpose- VWF (von Willebrand factor) strings mediate spontaneous platelet adhesion in the vascular lumen, which may lead to microthrombi formation and contribute to stroke pathology. However, the mechanism of VWF string attachment at the endothelial surface is unknown. We tested the novel hypothesis that VWF strings are tethered to the endothelial surface through an interaction between extracellular vimentin and the A2 domain of VWF. We further explored the translational value of blocking this interaction in a model of ischemic stroke. Methods- Human endothelial cells and pressurized cerebral arteries were stimulated with histamine to elicit VWF string formation. Recombinant proteins and antibodies were used to block VWF string formation. Mice underwent transient middle cerebral artery occlusion with reperfusion. Just before recanalization, mice were given either vehicle or A2 protein (recombinant VWF A2 domain) to disrupt the vimentin/VWF interaction. Laser speckle contrast imaging was used to monitor cortical perfusion. Results- Pressurized cerebral arteries produced VWF strings following histamine stimulation, which were reduced in arteries from Vim KO (vimentin knockout) mice. VWF string formation was significantly reduced in endothelial cells incubated with A2 protein or antivimentin antibodies. Lastly, A2 protein treatment significantly improved cortical reperfusion after middle cerebral artery occlusion. Conclusions- We provide the first direct evidence of cerebral VWF strings and demonstrate that extracellular vimentin significantly contributes to VWF string formation via A2 domain binding. Lastly, we show that pharmacologically targeting the vimentin/VWF interaction through the A2 domain can promote improved reperfusion after ischemic stroke. Together, these studies demonstrate the critical role of VWF strings in stroke pathology and offer new therapeutic targets for treatment of ischemic stroke.
Collapse
Affiliation(s)
- Titilope A Fasipe
- From the Section of Hematology-Oncology, Department of Pediatrics, Baylor College of Medicine Houston, TX (T.A.F.).,Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (T.A.F., S.-H.H., Q.D., C.V., M.A.C., S.P.M.)
| | - Sung-Ha Hong
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (T.A.F., S.-H.H., Q.D., C.V., M.A.C., S.P.M.).,Department of Neurology, McGovern Medical School at UTHealth, Houston, TX (S.-H.H., M.T.L., S.P.M.)
| | - Qi Da
- Department of Medicine, Baylor College of Medicine Houston, TX (Q.D., M.A.C.).,Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (T.A.F., S.-H.H., Q.D., C.V., M.A.C., S.P.M.)
| | - Christian Valladolid
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine Houston, TX (C.V.).,Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (T.A.F., S.-H.H., Q.D., C.V., M.A.C., S.P.M.)
| | - Matthew T Lahey
- Department of Neurology, McGovern Medical School at UTHealth, Houston, TX (S.-H.H., M.T.L., S.P.M.)
| | - Lisa M Richards
- Department of Biomedical Engineering, University of Texas at Austin (L.M.R., A.K.D.)
| | - Andrew K Dunn
- Department of Biomedical Engineering, University of Texas at Austin (L.M.R., A.K.D.)
| | - Miguel A Cruz
- Department of Medicine, Baylor College of Medicine Houston, TX (Q.D., M.A.C.).,Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (T.A.F., S.-H.H., Q.D., C.V., M.A.C., S.P.M.)
| | - Sean P Marrelli
- Center for Translational Research on Inflammatory Diseases, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (T.A.F., S.-H.H., Q.D., C.V., M.A.C., S.P.M.).,Department of Neurology, McGovern Medical School at UTHealth, Houston, TX (S.-H.H., M.T.L., S.P.M.)
| |
Collapse
|
27
|
Preston RJS, O'Sullivan JM, O'Donnell JS. Advances in understanding the molecular mechanisms of venous thrombosis. Br J Haematol 2019; 186:13-23. [DOI: 10.1111/bjh.15869] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Roger J. S. Preston
- Irish Centre for Vascular Biology Department of Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
| | - Jamie M. O'Sullivan
- Irish Centre for Vascular Biology Department of Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
| | - James S. O'Donnell
- Irish Centre for Vascular Biology Department of Molecular and Cellular Therapeutics Royal College of Surgeons in Ireland Dublin Ireland
| |
Collapse
|
28
|
Cancer-Associated Thrombosis: An Overview of Mechanisms, Risk Factors, and Treatment. Cancers (Basel) 2018; 10:cancers10100380. [PMID: 30314362 PMCID: PMC6209883 DOI: 10.3390/cancers10100380] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer-associated thrombosis is a major cause of mortality in cancer patients, the most common type being venous thromboembolism (VTE). Several risk factors for developing VTE also coexist with cancer patients, such as chemotherapy and immobilisation, contributing to the increased risk cancer patients have of developing VTE compared with non-cancer patients. Cancer cells are capable of activating the coagulation cascade and other prothrombotic properties of host cells, and many anticancer treatments themselves are being described as additional mechanisms for promoting VTE. This review will give an overview of the main thrombotic complications in cancer patients and outline the risk factors for cancer patients developing cancer-associated thrombosis, focusing on VTE as it is the most common complication observed in cancer patients. The multiple mechanisms involved in cancer-associated thrombosis, including the role of anticancer drugs, and a brief outline of the current treatment for cancer-associated thrombosis will also be discussed.
Collapse
|
29
|
Szatmary P, Huang W, Criddle D, Tepikin A, Sutton R. Biology, role and therapeutic potential of circulating histones in acute inflammatory disorders. J Cell Mol Med 2018; 22:4617-4629. [PMID: 30085397 PMCID: PMC6156248 DOI: 10.1111/jcmm.13797] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/08/2018] [Accepted: 04/05/2018] [Indexed: 02/05/2023] Open
Abstract
Histones are positively charged nuclear proteins that facilitate packaging of DNA into nucleosomes common to all eukaryotic cells. Upon cell injury or cell signalling processes, histones are released passively through cell necrosis or actively from immune cells as part of extracellular traps. Extracellular histones function as microbicidal proteins and are pro‐thrombotic, limiting spread of infection or isolating areas of injury to allow for immune cell infiltration, clearance of infection and initiation of tissue regeneration and repair. Histone toxicity, however, is not specific to microbes and contributes to tissue and end‐organ injury, which in cases of systemic inflammation may lead to organ failure and death. This review details the processes of histones release in acute inflammation, the mechanisms of histone‐related tissue toxicity and current and future strategies for therapy targeting histones in acute inflammatory diseases.
Collapse
Affiliation(s)
- Peter Szatmary
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Wei Huang
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, UK.,Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Center, West China Hospital of Sichuan University, Chengdu, China
| | - David Criddle
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Alexei Tepikin
- Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, UK
| | - Robert Sutton
- Liverpool Pancreatitis Research Group, Royal Liverpool University Hospital and Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
30
|
Meegan JE, Yang X, Coleman DC, Jannaway M, Yuan SY. Neutrophil-mediated vascular barrier injury: Role of neutrophil extracellular traps. Microcirculation 2018; 24. [PMID: 28120468 DOI: 10.1111/micc.12352] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022]
Abstract
Neutrophils play an essential role in host defense against infection or injury. While neutrophil activation is necessary for pathogen clearance and tissue repair, a hyperactive response can lead to tissue damage and microcirculatory disorders, a process involving complex neutrophil-endothelium cross talk. This review highlights recent research findings about neutrophil-mediated signaling and structural changes, including those induced by neutrophil extracellular traps, which ultimately lead to vascular barrier injury.
Collapse
Affiliation(s)
- Jamie E Meegan
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL, USA
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL, USA
| | - Danielle C Coleman
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL, USA
| | - Melanie Jannaway
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
31
|
Alhamdi Y, Toh CH. Recent advances in pathophysiology of disseminated intravascular coagulation: the role of circulating histones and neutrophil extracellular traps. F1000Res 2017; 6:2143. [PMID: 29399324 PMCID: PMC5785716 DOI: 10.12688/f1000research.12498.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2017] [Indexed: 12/29/2022] Open
Abstract
Disseminated intravascular coagulation (DIC) is an acquired condition that develops as a complication of systemic and sustained cell injury in conditions such as sepsis and trauma. It represents major dysregulation and increased thrombin generation in vivo. A poor understanding and recognition of the complex interactions in the coagulation, fibrinolytic, inflammatory, and innate immune pathways have resulted in continued poor management and high mortality rates in DIC. This review focuses attention on significant recent advances in our understanding of DIC pathophysiology. In particular, circulating histones and neutrophil extracellular traps fulfil established criteria in DIC pathogenesis. Both are damaging to the vasculature and highly relevant to the cross talk between coagulation and inflammation processes, which can culminate in adverse clinical outcomes. These molecules have a strong potential to be novel biomarkers and therapeutic targets in DIC, which is still considered synonymous with 'death is coming'.
Collapse
Affiliation(s)
- Yasir Alhamdi
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Cheng-Hock Toh
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Roald Dahl Haemostasis & Thrombosis Centre, Royal Liverpool University Hospital, Liverpool, UK
| |
Collapse
|
32
|
Hunt R, Hoffman CM, Emani S, Trenor CC, Emani SM, Faraoni D, Kimchi-Sarfaty C, Ibla JC. Elevated preoperative von Willebrand factor is associated with perioperative thrombosis in infants and neonates with congenital heart disease. J Thromb Haemost 2017; 15:2306-2316. [PMID: 28981194 DOI: 10.1111/jth.13860] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 01/19/2023]
Abstract
Essentials Perioperative thrombosis is a major cause of morbidity and mortality in congenital heart disease. Neonates and infants undergoing repair of congenital heart lesions were prospectively followed. Elevated von Willebrand factor (VWF) to ADAMTS-13 activity ratios typified the postoperative period. Thrombosis was associated with preoperative VWF activity and cryoprecipitate transfusion SUMMARY: Background The surgical repair of congenital heart malformations is frequently complicated by perioperative thrombosis of unclear etiology. An imbalance between von Willebrand factor (VWF) and ADAMTS-13 is an emerging variable in thrombosis. Objectives To describe perioperative changes to VWF, ADAMTS-13 and NETosis, and evaluate clinical and biochemical associations with postoperative thrombosis. Methods Neonates and infants undergoing palliation or definitive surgical repair of congenital heart malformations were recruited (n = 133). Preoperative and postoperative plasma levels of VWF, ADAMTS-13 and markers of NETosis were determined. Patients were followed for up to 30 days for the occurrence of thrombosis. Univariate and multivariate logistic regression analyses were conducted to identify variables associated with thrombosis. Results We identified significant postoperative increases in VWF activity, VWF level, DNA-histone complexes and cell-free DNA with an overall decrease in ADAMTS-13 activity. Patients experiencing postoperative thrombotic events (9%) were characterized by surgery performed at a lower intraoperative temperature, higher preoperative lactic acid levels, and higher preoperative VWF activity and level. A multivariate logistic regression model identified preoperative VWF activity (odds ratio (OR) 8.39 per IU mL-1 , 95% confidence interval [CI] 1.73-40.55) and transfusion of cryoprecipitate (OR 1.10 per mL kg-1 , 95% CI 1.03-1.17) as being associated with thrombosis. Conclusions Pediatric patients undergoing surgical repair of congenital heart malformations are exposed to high levels of VWF with diminished or minimal change to ADAMTS-13 in the immediate postoperative period. Elevated preoperative VWF activity is associated with postoperative thrombosis in pediatric congenital heart disease.
Collapse
Affiliation(s)
- R Hunt
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapeutics, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - C M Hoffman
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapeutics, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - S Emani
- Department of Cardiac Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - C C Trenor
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - S M Emani
- Department of Cardiac Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - D Faraoni
- Division of Cardiac Anesthesia, Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - C Kimchi-Sarfaty
- Hemostasis Branch, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapeutics, Center for Biologics Evaluation and Research, US FDA, Silver Spring, MD, USA
| | - J C Ibla
- Department of Anesthesiology Perioperative and Pain Medicine, Division of Cardiac Anesthesia, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Michels A, Swystun LL, Mewburn J, Albánez S, Lillicrap D. Investigating von Willebrand Factor Pathophysiology Using a Flow Chamber Model of von Willebrand Factor-platelet String Formation. J Vis Exp 2017. [PMID: 28829426 DOI: 10.3791/55917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Von Willebrand factor (VWF) is a multimeric glycoprotein coagulation factor that mediates platelet adhesion and aggregation at sites of endothelial damage and that carries factor VIII in the circulation. VWF is synthesized by endothelial cells and is either released constitutively into the plasma or is stored in specialized organelles, called Weibel-Palade bodies (WPBs), for on-demand release in response to hemostatic challenge. Procoagulant and proinflammatory stimuli can rapidly induce WPB exocytosis and VWF release. The majority of VWF released by endothelial cells circulates in the plasma; however, a proportion of VWF is anchored to the endothelial cell surface. Under conditions of physiological shear, endothelial-anchored VWF can bind to platelets, forming a VWF-platelet string that may represent the nidus of thrombus formation. A flow chamber system can be used to visually observe the release of VWF from endothelial cells and the subsequent platelet capture in a manner that is reproducible and relevant to the pathophysiology of VWF-mediated thrombus formation. Using this methodology, endothelial cells are cultured in a flow chamber and are subsequently stimulated with secretagogues to induce WPB exocytosis. Washed platelets are then perfused over the activated endothelium. The platelets are activated and subsequently bind to elongated VWF strings in the direction of fluid flow. Using extracellular histones as a procoagulant and proinflammatory stimulus, we observed increased VWF-platelet string formation on histone-treated endothelial cells compared to untreated endothelial cells. This protocol describes a quantitative, visual, and real-time assessment of the activation of VWF-platelet interactions in models of thrombosis and hemostasis.
Collapse
Affiliation(s)
- Alison Michels
- Department of Pathology and Molecular Medicine, Queen's University
| | - Laura L Swystun
- Department of Pathology and Molecular Medicine, Queen's University
| | | | - Silvia Albánez
- Department of Pathology and Molecular Medicine, Queen's University
| | - David Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University;
| |
Collapse
|