1
|
Bhatt S, Argueta DA, Gupta K, Kundu S. Red Blood Cells as Therapeutic Target to Treat Sickle Cell Disease. Antioxid Redox Signal 2024; 40:1025-1049. [PMID: 37975291 DOI: 10.1089/ars.2023.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Significance: Sickle cell disease (SCD) is the most common inherited diathesis affecting mostly underserved populations globally. SCD is characterized by chronic pain and fatigue, severe acute painful crises requiring hospitalization and opioids, strokes, multiorgan damage, and a shortened life span. Symptoms may appear shortly after birth, and, in less developed countries, most children with SCD die before attaining age 5. Hematopoietic stem cell transplant and gene therapy offer a curative therapeutic approach, but, due to many challenges, are limited in their availability and effectiveness for a majority of persons with SCD. A critical unmet need is to develop safe and effective novel targeted therapies. A wide array of drugs currently undergoing clinical investigation hold promise for an expanded pharmacological armamentarium against SCD. Recent Advances: Hydroxyurea, the most widely used intervention for SCD management, has improved the survival in the Western world and more recently, voxelotor (R-state-stabilizer), l-glutamine, and crizanlizumab (anti-P-selectin antibody) have been approved by the Food and Drug Administration (FDA) for use in SCD. The recent FDA approval emphasizes the need to revisit the advances in understanding the core pathophysiology of SCD to accelerate novel evidence-based strategies to treat SCD. The biomechanical breakdown of erythrocytesis, the core pathophysiology of SCD, is associated with intrinsic factors, including the composition of hemoglobin, membrane integrity, cellular volume, hydration, andoxidative stress. Critical Issues and Future Directions: In this context, this review focuses on advances in emerging nongenetic interventions directed toward the therapeutic targets intrinsic to sickle red blood cells (RBCs), which can prevent impaired rheology of RBCs to impede disease progression and reduce the sequelae of comorbidities, including pain, vasculopathy, and organ damage. In addition, given the intricate pathophysiology of the disease, it is unlikely that a single pharmacotherapeutic intervention will comprehensively ameliorate the multifaceted complications associated with SCD. However, the availability of multiple drug options affords the opportunity for individualized therapeutic regimens tailored to specific SCD-related complications. Furthermore, it opens avenues for combination drug therapy, capitalizing on distinct mechanisms of action and profiles of adverse effects.
Collapse
Affiliation(s)
- Shruti Bhatt
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Donovan A Argueta
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, California, USA
| | - Kalpna Gupta
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, California, USA
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, Goa, India
| |
Collapse
|
2
|
Ibanez V, Vaitkus K, Ruiz MA, Lei Z, Maienschein-Cline M, Arbieva Z, Lavelle D. Effect of the LSD1 inhibitor RN-1 on γ-globin and global gene expression during erythroid differentiation in baboons (Papio anubis). PLoS One 2023; 18:e0289860. [PMID: 38134183 PMCID: PMC10745162 DOI: 10.1371/journal.pone.0289860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Elevated levels of Fetal Hemoglobin interfere with polymerization of sickle hemoglobin thereby reducing anemia, lessening the severity of symptoms, and increasing life span of patients with sickle cell disease. An affordable, small molecule drug that stimulates HbF expression in vivo would be ideally suited to treat the large numbers of SCD patients that exist worldwide. Our previous work showed that administration of the LSD1 (KDM1A) inhibitor RN-1 to normal baboons increased Fetal Hemoglobin (HbF) and was tolerated over a prolonged treatment period. HbF elevations were associated with changes in epigenetic modifications that included increased levels of H3K4 di-and tri-methyl lysine at the γ-globin promoter. While dramatic effects of the loss of LSD1 on hematopoietic differentiation have been observed in murine LSD1 gene deletion and silencing models, the effect of pharmacological inhibition of LSD1 in vivo on hematopoietic differentiation is unknown. The goal of these experiments was to investigate the in vivo mechanism of action of the LSD1 inhibitor RN-1 by determining its effect on γ-globin expression in highly purified subpopulations of bone marrow erythroid cells enriched for varying stages of erythroid differentiation isolated directly from baboons treated with RN-1 and also by investigating the effect of RN1 on the global transcriptome in a highly purified population of proerythroblasts. Our results show that RN-1 administered to baboons targets an early event during erythroid differentiation responsible for γ-globin repression and increases the expression of a limited number of genes including genes involved in erythroid differentiation such as GATA2, GFi-1B, and LYN.
Collapse
Affiliation(s)
- Vinzon Ibanez
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Kestis Vaitkus
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Maria Armila Ruiz
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| | - Zhengdeng Lei
- Research Informatics Core, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Ambry Genetics, Aliso Viejo, California, United States of America
| | - Mark Maienschein-Cline
- Research Informatics Core, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Zarema Arbieva
- Genomics Research Core, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Donald Lavelle
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Jesse Brown VA Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
3
|
Ibanez V, Vaitkus K, Zhang X, Ramasamy J, Rivers AE, Saunthararajah Y, Molokie R, Lavelle D. Combinatorial targeting of epigenome-modifying enzymes with decitabine and RN-1 synergistically increases HbF. Blood Adv 2023; 7:3891-3902. [PMID: 36884303 PMCID: PMC10405201 DOI: 10.1182/bloodadvances.2022009558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Increased fetal hemoglobin (HbF) levels reduce the symptoms of sickle cell disease (SCD) and increase the lifespan of patients. Because curative strategies for bone marrow transplantation and gene therapy technologies remain unavailable to a large number of patients, the development of a safe and effective pharmacological therapy that increases HbF offers the greatest potential for disease intervention. Although hydroxyurea increases HbF, a substantial proportion of patients fail to demonstrate an adequate response. Pharmacological inhibitors of DNA methyltransferase (DNMT1) and lysine-specific demethylase 1A (LSD1), 2 epigenome-modifying enzymes associated with the multiprotein corepressor complex recruited to the repressed γ-globin gene, are powerful in vivo inducers of HbF. The hematological side effects of these inhibitors limit feasible clinical exposures. We evaluated whether administering these drugs in combination could reduce the dose and/or time of exposure to any single agent to minimize adverse effects, while achieving additive or synergistic increases in HbF. The DNMT1 inhibitor decitabine (0.5 mg/kg per day) and the LSD1 inhibitor RN-1 (0.25 mg/kg per day) administered in combination 2 days per week produced synergistic increases in F-cells, F-reticulocytes, and γ-globin messenger RNA in healthy baboons. Large increases in HbF and F-cells were observed in healthy, nonanemic, and anemic (phlebotomized) baboons. Combinatorial therapy targeting epigenome-modifying enzymes could thus be a useful strategy for producing larger increases in HbF to modify the clinical course of SCD.
Collapse
Affiliation(s)
- Vinzon Ibanez
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL
| | - Kestis Vaitkus
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL
| | - Xu Zhang
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Jagadeesh Ramasamy
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL
| | - Angela E. Rivers
- Department of Pediatrics, School of Medicine, University of California at San Francisco Benioff Children’s Hospital Oakland, Oakland, CA
| | - Yogen Saunthararajah
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH
| | - Robert Molokie
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL
- Department of Pharmaceutical Science, University of Illinois at Chicago, Chicago, IL
| | - Donald Lavelle
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL
- Research and Development, Jesse Brown VA Medical Center, Chicago, IL
| |
Collapse
|
4
|
Gallivan A, Alejandro M, Kanu A, Zekaryas N, Horneman H, Hong LK, Vinchinsky E, Lavelle D, Diamond AM, Molokie RE, Ramasamy J, Rivers A. Reticulocyte mitochondrial retention increases reactive oxygen species and oxygen consumption in mouse models of sickle cell disease and phlebotomy-induced anemia. Exp Hematol 2023:S0301-472X(23)00033-4. [PMID: 36934777 DOI: 10.1016/j.exphem.2023.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/18/2023]
Abstract
Sickle cell disease (SCD) is caused by a mutation of the β-globin gene that results in the production of hemoglobin S (HbS). People with SCD experience anemia, severe acute pain episodes, persistent chronic pain, multiorgan damage, and a reduced life span. The pathophysiology of SCD caused by the polymerization of HbS on deoxygenation results in red cell deformability and the generation of reactive oxygen species (ROS). These 2 factors lead to red cell fragility and hemolysis. Reticulocytosis is an independent predictor of disease morbidity and mortality in SCD. We previously established that humans and mice with SCD exhibit abnormal mitochondrial retention in erythrocytes increasing ROS-associated hemolysis. Here, we investigated the hypothesis that mitochondrial retention and increased ROS are a consequence of stress erythropoiesis. Our results show clearly that stress erythropoiesis in phlebotomized, anemic AA mice results in mitochondrial retention and increased ROS in reticulocytes. We observed that elevated mitochondrial retention in reticulocytes also alters oxygen consumption and potentially contributes to increased HbS polymerization and red blood cell hemolysis. Therefore, these events occurring due to stress erythropoiesis contribute significantly to the pathology of SCD and suggest new therapeutic targets.
Collapse
Affiliation(s)
- Anne Gallivan
- UCSF Benioff Children's Hospital Oakland, Oakland, CA
| | | | - Amarachi Kanu
- UCSF Benioff Children's Hospital Oakland, Oakland, CA
| | | | - Hart Horneman
- UCSF Benioff Children's Hospital Oakland, Oakland, CA
| | | | | | - Don Lavelle
- University of Illinois at Chicago, Chicago, IL; Jesse Brown VA Medical Center, Chicago, IL
| | | | - Robert E Molokie
- University of Illinois at Chicago, Chicago, IL; Jesse Brown VA Medical Center, Chicago, IL
| | | | - Angela Rivers
- UCSF Benioff Children's Hospital Oakland, Oakland, CA.
| |
Collapse
|
5
|
Fontana L, Alahouzou Z, Miccio A, Antoniou P. Epigenetic Regulation of β-Globin Genes and the Potential to Treat Hemoglobinopathies through Epigenome Editing. Genes (Basel) 2023; 14:genes14030577. [PMID: 36980849 PMCID: PMC10048329 DOI: 10.3390/genes14030577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Beta-like globin gene expression is developmentally regulated during life by transcription factors, chromatin looping and epigenome modifications of the β-globin locus. Epigenome modifications, such as histone methylation/demethylation and acetylation/deacetylation and DNA methylation, are associated with up- or down-regulation of gene expression. The understanding of these mechanisms and their outcome in gene expression has paved the way to the development of new therapeutic strategies for treating various diseases, such as β-hemoglobinopathies. Histone deacetylase and DNA methyl-transferase inhibitors are currently being tested in clinical trials for hemoglobinopathies patients. However, these approaches are often uncertain, non-specific and their global effect poses serious safety concerns. Epigenome editing is a recently developed and promising tool that consists of a DNA recognition domain (zinc finger, transcription activator-like effector or dead clustered regularly interspaced short palindromic repeats Cas9) fused to the catalytic domain of a chromatin-modifying enzyme. It offers a more specific targeting of disease-related genes (e.g., the ability to reactivate the fetal γ-globin genes and improve the hemoglobinopathy phenotype) and it facilitates the development of scarless gene therapy approaches. Here, we summarize the mechanisms of epigenome regulation of the β-globin locus, and we discuss the application of epigenome editing for the treatment of hemoglobinopathies.
Collapse
Affiliation(s)
- Letizia Fontana
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Zoe Alahouzou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Correspondence: (A.M.); (P.A.)
| | - Panagiotis Antoniou
- Laboratory of Chromatin and Gene Regulation during Development, INSERM UMR 1163, Imagine Institute, Université Paris Cité, F-75015 Paris, France
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, 431 50 Gothenburg, Sweden
- Correspondence: (A.M.); (P.A.)
| |
Collapse
|
6
|
Pavan AR, Lopes JR, Dos Santos JL. The state of the art of fetal hemoglobin-inducing agents. Expert Opin Drug Discov 2022; 17:1279-1293. [PMID: 36302760 DOI: 10.1080/17460441.2022.2141708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Sickle cell anemia (SCA) is a hematological genetic disorder caused by a mutation in the gene of the β-globin. Pharmacological treatments will continue to be an important approach, including the strategy to induce fetal hemoglobin (HbF). AREAS COVERED Here, we analyzed the articles described in the literature regarding the drug discovery of HbF inducers. The main approaches for such strategy will be discussed, highlighting those most promising. EXPERT OPINION The comprehension of the mechanisms involved in the β-globin regulation is the main key to design new drugs to induce HbF. Among the strategies, gamma-globin regulation by epigenetic enzymes seems to be a promising approach to be pursued, although the comprehension of the selectivity role for those new drugs is crucial to reduce adverse effects. The low druggability of transcription factors and their vital role in embryonic human development are critical points that should be taken in account for drug design. The guanylate cyclase and the NO/cGMP signaling pathway seem to be promising not only for HbF induction, but also for the protective effects in the cardiovascular system. The association of drugs acting through different mechanisms to induce HbF seems to be promising for the discovery of new drugs.
Collapse
Affiliation(s)
- Aline Renata Pavan
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil
| | - Juliana Romano Lopes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Drugs and Medicine Department, Araraquara, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), Institute of Chemistry, Araraquara, Brazil.,School of Pharmaceutical Sciences, São Paulo State University (UNESP), Drugs and Medicine Department, Araraquara, Brazil
| |
Collapse
|
7
|
Pavan AR, Lopes JR, Lima Imperador CH, Man Chin C, dos Santos JL. Perspectives and challenges to discovering hemoglobin-inducing agents in Sickle Cell Disease. Front Med (Lausanne) 2022; 9:1002063. [PMID: 36160143 PMCID: PMC9492863 DOI: 10.3389/fmed.2022.1002063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Affiliation(s)
- Aline Renata Pavan
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), São Paulo, Brazil
- Institute of Chemistry, São Paulo State University (UNESP), São Paulo, Brazil
| | - Juliana Romano Lopes
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Carlos Henrique Lima Imperador
- Advanced Research Center in Medicine (CEPAM), School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), Sao Jose do Rio Preto, SP, Brazil
| | - Chung Man Chin
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), São Paulo, Brazil
- Advanced Research Center in Medicine (CEPAM), School of Medicine, Union of the Colleges of the Great Lakes (UNILAGO), Sao Jose do Rio Preto, SP, Brazil
- *Correspondence: Chung Man Chin
| | - Jean Leandro dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), São Paulo, Brazil
- Jean Leandro dos Santos
| |
Collapse
|
8
|
Lysine-Specific Demethylase 1 (LSD1/KDM1A) Inhibition as a Target for Disease Modification in Myelofibrosis. Cells 2022; 11:cells11132107. [PMID: 35805191 PMCID: PMC9265913 DOI: 10.3390/cells11132107] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 02/04/2023] Open
Abstract
Myelofibrosis (MF) is the most symptomatic form of myeloproliferative neoplasm and carries the worst outcome. Allogeneic hematopoietic stem cell transplantation is the only therapy with potential for cure at present, but is limited by significant mortality and morbidity. JAK inhibition is the mainstay of treatment for intermediate- and high-risk MF. Ruxolitinib is the most widely used JAK1/2 inhibitor and provides durable effects in controlling symptom burden and spleen volumes. Nevertheless, ruxolitinib may not adequately address the underlying disease biology. Its effects on mutant allele burden, bone marrow fibrosis, and the prevention of leukemic transformation are minimal. Multiple small molecules are being tested in multiple phase 2 and 3 studies as either monotherapy or in combination with JAK2 inhibitors. In this review, the role of LSD1/KDM1A inhibition as a potential disease-modification strategy in patients with myelofibrosis is described and discussed.
Collapse
|
9
|
Iftikhar F, Rahman S, Khan MBN, Khan K, Khan MN, Uddin R, Musharraf SG. In Vitro and In Vivo Studies for the Investigation of γ-Globin Gene Induction by Adhatoda vasica: A Pre-Clinical Study of HbF Inducers for β-Thalassemia. Front Pharmacol 2022; 13:797853. [PMID: 35422700 PMCID: PMC9002120 DOI: 10.3389/fphar.2022.797853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Fetal hemoglobin (HbF) is a potent genetic modifier, and the γ-globin gene induction has proven to be a sustainable therapeutic approach for the management of β-thalassemia. In this study, we have evaluated the HbF induction ability of A. vasica in vitro and in vivo, and the identification of potential therapeutic compounds through a bioassay-guided approach. In vitro benzidine-Hb assay demonstrated strong erythroid differentiation of K562 cells by A. vasica extracts. Subsequently, an in vivo study with an aqueous extract of A. vasica (100 mg/kg) showed significant induction of the γ-globin gene and HbF production. While in the acute study, the hematological and biochemical indices were found to be unaltered at the lower dose of A. vasica. Following the bioassay-guided approach, two isolated compounds, vasicinol (1) and vasicine (2) strongly enhanced HbF levels and showed prominent cellular growth kinetics with ample accumulation of total hemoglobin in K562 cultures. High HbF levels were examined by immunofluorescence and flow cytometry analysis, concomitant with the overexpression in the γ-globin gene level. Compound 1 (0.1 µM) and compound 2 (1 µM) resulted in a greater increase in F-cells (90 and 83%) with marked up (8-fold and 5.1-fold) expression of the γ-globin gene, respectively. Molecular docking studies indicated strong binding affinities of (1) and (2) with HDAC2 and KDM1 protein that predict the possible mechanism of compounds in inhibition of these epigenetic regulators in the γ-globin gene reactivation. Altogether, these observations demonstrated the therapeutic usefulness of A. vasica for fostering HbF production in clinical implications for blood disorders.
Collapse
Affiliation(s)
- Fizza Iftikhar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Saeedur Rahman
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Behroz Naeem Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Muhammad Noman Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Reaz Uddin
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Ghulam Musharraf
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
10
|
Sun Y, Habara A, Le CQ, Nguyen N, Chen R, Murphy GJ, Chui DHK, Steinberg MH, Cui S. Pharmacologic induction of PGC-1α stimulates fetal haemoglobin gene expression. Br J Haematol 2022; 197:97-109. [PMID: 35118652 DOI: 10.1111/bjh.18042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022]
Abstract
Sickle cell disease (SCD) is a genetic disorder that affects millions around the world. Enhancement of fetal γ-globin levels and fetal haemoglobin (HbF) production in SCD patients leads to diminished severity of many clinical features of the disease. We recently identified the transcriptional co-activator PGC-1α as a new protein involved in the regulation of the globin genes. Here, we report that upregulation of PGC-1α by infection with a lentivirus expressing PGC-1α or by the small-molecule PGC-1α agonist ZLN005 in human primary erythroid progenitor CD34+ cells induces both fetal γ-globin mRNA and protein expression as well as the percentage of HbF-positive cell (F cells) without significantly affecting cell proliferation and differentiation. We further found that the combination of ZLN005 and hydroxyurea (hydroxycarbamide) exhibited an additive effect on the expression of γ-globin and the generation of F cells from cultured CD34+ cells. In addition, ZLN005 induced robust expression of the murine embryonic βh1-globin gene and to a lesser extent, human γ-globin gene expression in sickle mice. These findings suggest that activation of PGC-1α by ZLN005 might provide a new path for modulating HbF levels with potential therapeutic benefit in β-hemoglobinopathies.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Medicine, Section of Hematology-Medical Oncology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | - Alawi Habara
- Department of Medicine, Section of Hematology-Medical Oncology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA.,Department of Clinical Biochemistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Cuong Quang Le
- Department of Medicine, Section of Hematology-Medical Oncology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | - Nicole Nguyen
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts, USA
| | - Raymon Chen
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts, USA
| | - George J Murphy
- Department of Medicine, Section of Hematology-Medical Oncology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA.,Center for Regenerative Medicine, Boston University, Boston Medical Center, Boston, Massachusetts, USA
| | - David H K Chui
- Department of Medicine, Section of Hematology-Medical Oncology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | - Martin H Steinberg
- Department of Medicine, Section of Hematology-Medical Oncology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | - Shuaiying Cui
- Department of Medicine, Section of Hematology-Medical Oncology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Kaewsakulthong W, Pongpaksupasin P, Nualkaew T, Hongeng S, Fucharoen S, Jearawiriyapaisarn N, Sripichai O. Lysine-specific histone demethylase 1 inhibition enhances robust fetal hemoglobin induction in human β 0-thalassemia/hemoglobin E erythroid cells. Hematol Rep 2021; 13:9215. [PMID: 35003571 PMCID: PMC8672213 DOI: 10.4081/hr.2021.9215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
Induction of fetal hemoglobin (HbF) ameliorates the clinical severity of β-thalassemias. Histone methyltransferase LSD1 enzyme removes methyl groups from the activating chromatin mark histone 3 lysine 4 at silenced genes, including the γ-globin genes. LSD1 inhibitor RN-1 induces HbF levels in cultured human erythroid cells. Here, the HbF-inducing activity of RN-1 was investigated in erythroid progenitor cells derived from β0-thalassemia/ hemoglobin E (HbE) patients. The significant and reproducible increases in γ-globin transcript and HbF expression upon RN-1 treatment were demonstrated in erythroid cells with divergent HbF baseline levels, the average of HbF induction was 17.7±0.8%. RN-1 at low concentration did not affect viability and proliferation of erythroid cells, but decreases in cell number were observed in cells treated with RN-1 at high concentration. Delayed terminal erythroid differentiation was revealed in β0-thalassemia/HbE erythroid cells treated with RN-1 as similar to other compounds that target LSD1 activity. Downregulation of repressors of γ- globin expression; NCOR1 and SOX6, was observed in RN-1 treatment. These findings provide proof of the concept that LSD1 epigenetic enzyme is a potential therapeutic target for β0-thalassemia/HbE patients.
Collapse
Affiliation(s)
- Woratree Kaewsakulthong
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok
| | - Phitchapa Pongpaksupasin
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom
| | - Tiwaporn Nualkaew
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom
| | - Natee Jearawiriyapaisarn
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom
| | - Orapan Sripichai
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhonpathom.,National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| |
Collapse
|
12
|
Yu L, Myers G, Ku CJ, Schneider E, Wang Y, Singh SA, Jearawiriyapaisarn N, White A, Moriguchi T, Khoriaty R, Yamamoto M, Rosenfeld MG, Pedron J, Bushweller JH, Lim KC, Engel JD. An erythroid-to-myeloid cell fate conversion is elicited by LSD1 inactivation. Blood 2021; 138:1691-1704. [PMID: 34324630 PMCID: PMC8569417 DOI: 10.1182/blood.2021011682] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/18/2021] [Indexed: 01/28/2023] Open
Abstract
Histone H3 lysine 4 methylation (H3K4Me) is most often associated with chromatin activation, and removing H3K4 methyl groups has been shown to be coincident with gene repression. H3K4Me demethylase KDM1a/LSD1 is a therapeutic target for multiple diseases, including for the potential treatment of β-globinopathies (sickle cell disease and β-thalassemia), because it is a component of γ-globin repressor complexes, and LSD1 inactivation leads to robust induction of the fetal globin genes. The effects of LSD1 inhibition in definitive erythropoiesis are not well characterized, so we examined the consequences of conditional inactivation of Lsd1 in adult red blood cells using a new Gata1creERT2 bacterial artificial chromosome transgene. Erythroid-specific loss of Lsd1 activity in mice led to a block in erythroid progenitor differentiation and to the expansion of granulocyte-monocyte progenitor-like cells, converting hematopoietic differentiation potential from an erythroid fate to a myeloid fate. The analogous phenotype was also observed in human hematopoietic stem and progenitor cells, coincident with the induction of myeloid transcription factors (eg, PU.1 and CEBPα). Finally, blocking the activity of the transcription factor PU.1 or RUNX1 at the same time as LSD1 inhibition rescued myeloid lineage conversion to an erythroid phenotype. These data show that LSD1 promotes erythropoiesis by repressing myeloid cell fate in adult erythroid progenitors and that inhibition of the myeloid-differentiation pathway reverses the lineage switch induced by LSD1 inactivation.
Collapse
Affiliation(s)
- Lei Yu
- Department of Cell and Developmental Biology
| | - Greggory Myers
- Department of Cell and Developmental Biology
- Department of Internal Medicine, and
| | - Chia-Jui Ku
- Department of Cell and Developmental Biology
| | | | - Yu Wang
- Department of Cell and Developmental Biology
| | - Sharon A Singh
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI
| | - Natee Jearawiriyapaisarn
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Andrew White
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, MI
| | - Takashi Moriguchi
- Division of Medical Chemistry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Rami Khoriaty
- Department of Cell and Developmental Biology
- Department of Internal Medicine, and
| | - Masayuki Yamamoto
- Department of Cell and Developmental Biology
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Michael G Rosenfeld
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA; and
| | - Julien Pedron
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville , VA
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville , VA
| | | | | |
Collapse
|
13
|
De Simone G, Quattrocchi A, Mancini B, di Masi A, Nervi C, Ascenzi P. Thalassemias: From gene to therapy. Mol Aspects Med 2021; 84:101028. [PMID: 34649720 DOI: 10.1016/j.mam.2021.101028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/19/2021] [Indexed: 12/26/2022]
Abstract
Thalassemias (α, β, γ, δ, δβ, and εγδβ) are the most common genetic disorders worldwide and constitute a heterogeneous group of hereditary diseases characterized by the deficient synthesis of one or more hemoglobin (Hb) chain(s). This leads to the accumulation of unstable non-thalassemic Hb chains, which precipitate and cause intramedullary destruction of erythroid precursors and premature lysis of red blood cells (RBC) in the peripheral blood. Non-thalassemic Hbs display high oxygen affinity and no cooperativity. Thalassemias result from many different genetic and molecular defects leading to either severe or clinically silent hematologic phenotypes. Thalassemias α and β are particularly diffused in the regions spanning from the Mediterranean basin through the Middle East, Indian subcontinent, Burma, Southeast Asia, Melanesia, and the Pacific Islands, whereas δβ-thalassemia is prevalent in some Mediterranean regions including Italy, Greece, and Turkey. Although in the world thalassemia and malaria areas overlap apparently, the RBC protection against malaria parasites is openly debated. Here, we provide an overview of the historical, geographic, genetic, structural, and molecular pathophysiological aspects of thalassemias. Moreover, attention has been paid to molecular and epigenetic pathways regulating globin gene expression and globin switching. Challenges of conventional standard treatments, including RBC transfusions and iron chelation therapy, splenectomy and hematopoietic stem cell transplantation from normal donors are reported. Finally, the progress made by rapidly evolving fields of gene therapy and gene editing strategies, already in pre-clinical and clinical evaluation, and future challenges as novel curative treatments for thalassemia are discussed.
Collapse
Affiliation(s)
- Giovanna De Simone
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy
| | - Alberto Quattrocchi
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Facoltà di Farmacia e Medicina, "Sapienza" Università di Roma, Corso della Repubblica, 79, 04100, Latina, Italy
| | - Benedetta Mancini
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy
| | - Alessandra di Masi
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy
| | - Clara Nervi
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Facoltà di Farmacia e Medicina, "Sapienza" Università di Roma, Corso della Repubblica, 79, 04100, Latina, Italy.
| | - Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy; Accademia Nazionale dei Lincei, Via della Lungara 10, 00165, Roma, Italy.
| |
Collapse
|
14
|
Starlard-Davenport A, Fitzgerald A, Pace BS. Exploring epigenetic and microRNA approaches for γ-globin gene regulation. Exp Biol Med (Maywood) 2021; 246:2347-2357. [PMID: 34292080 DOI: 10.1177/15353702211028195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Therapeutic interventions aimed at inducing fetal hemoglobin and reducing the concentration of sickle hemoglobin is an effective approach to ameliorating acute and chronic complications of sickle cell disease, exemplified by the long-term use of hydroxyurea. However, there remains an unmet need for the development of additional safe and effective drugs for single agent or combination therapy for individuals with β-hemoglobinopathies. Regulation of the γ-globin to β-globin switch is achieved by chromatin remodeling at the HBB locus on chromosome 11 and interactions of major DNA binding proteins, such as KLF1 and BCL11A in the proximal promoters of the globin genes. Experimental evidence also supports a role of epigenetic modifications including DNA methylation, histone acetylation/methylation, and microRNA expression in γ-globin gene silencing during development. In this review, we will critically evaluate the role of epigenetic mechanisms in γ-globin gene regulation and discuss data generated in tissue culture, pre-clinical animal models, and clinical trials to support drug development to date. The question remains whether modulation of epigenetic pathways will produce sufficient efficacy and specificity for fetal hemoglobin induction and to what extent targeting these pathways form the basis of prospects for clinical therapy.
Collapse
Affiliation(s)
- Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ashley Fitzgerald
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Betty S Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
15
|
Pavan AR, Dos Santos JL. Advances in Sickle Cell Disease Treatments. Curr Med Chem 2021; 28:2008-2032. [PMID: 32520675 DOI: 10.2174/0929867327666200610175400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 11/22/2022]
Abstract
Sickle Cell Disease (SCD) is an inherited disorder of red blood cells that is caused by a single mutation in the β -globin gene. The disease, which afflicts millions of patients worldwide mainly in low income countries, is characterized by high morbidity, mortality and low life expectancy. The new pharmacological and non-pharmacological strategies for SCD is urgent in order to promote treatments able to reduce patient's suffering and improve their quality of life. Since the FDA approval of HU in 1998, there have been few advances in discovering new drugs; however, in the last three years voxelotor, crizanlizumab, and glutamine have been approved as new therapeutic alternatives. In addition, new promising compounds have been described to treat the main SCD symptoms. Herein, focusing on drug discovery, we discuss new strategies to treat SCD that have been carried out in the last ten years to discover new, safe, and effective treatments. Moreover, non-pharmacological approaches, including red blood cell exchange, gene therapy and hematopoietic stem cell transplantation will be presented.
Collapse
Affiliation(s)
- Aline Renata Pavan
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| | - Jean Leandro Dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
16
|
The methyltransferase PRMT1 regulates γ-globin translation. J Biol Chem 2021; 296:100417. [PMID: 33587951 PMCID: PMC7966866 DOI: 10.1016/j.jbc.2021.100417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/30/2022] Open
Abstract
Induction of fetal hemoglobin to overcome adult β-globin gene deficiency is an effective therapeutic strategy to ameliorate human β-hemoglobinopathies. Previous work has revealed that fetal γ-globin can be translationally induced via integrated stress signaling, but other studies have indicated that activating stress may eventually suppress γ-globin expression transcriptionally. The mechanism by which γ-globin expression is regulated at the translational level remains largely unknown, limiting our ability to determine whether activating stress is a realistic therapeutic option for these disorders. In this study, we performed a functional CRISPR screen targeting protein arginine methyltransferases (PRMTs) to look for changes in γ-globin expression in K562 cells. We not only discovered that several specific PRMTs may block γ-globin transcription, but also revealed PRMT1 as a unique family member that is able to suppress γ-globin synthesis specifically at the translational level. We further identified that a non-AUG uORF within the 5' untranslated region of γ-globin serves as a barrier for translation, which is bypassed upon PRMT1 deficiency. Finally, we found that this novel mechanism of γ-globin suppression could be pharmacologically targeted by the PRMT1 inhibitor, furamidine dihydrochloride. These data raise new questions regarding methyltransferase function and may offer a new therapeutic direction for β-hemoglobinopathies.
Collapse
|
17
|
Katayama K, Ishii K, Terashima H, Tsuda E, Suzuki M, Yotsumoto K, Hiramoto K, Yasumatsu I, Torihata M, Ishiyama T, Muto T, Katagiri T. Discovery of DS79932728: A Potent, Orally Available G9a/GLP Inhibitor for Treating β-Thalassemia and Sickle Cell Disease. ACS Med Chem Lett 2021; 12:121-128. [PMID: 33488973 DOI: 10.1021/acsmedchemlett.0c00572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
Therapeutic reactivation of the γ-globin genes for fetal hemoglobin (HbF) production is an attractive strategy for treating β-thalassemia and sickle cell disease. It was reported that genetic knockdown of the histone lysine methyltransferase EHMT2/1 (G9a/GLP) is sufficient to induce HbF production. The aim of the present work was to acquire a G9a/GLP inhibitor that induces HbF production sufficiently. It was revealed that tetrahydroazepine has versatility as a side chain in various skeletons. We ultimately obtained a promising aminoindole derivative (DS79932728), a potent and orally bioavailable G9a/GLP inhibitor that was found to induce γ-globin production in a phlebotomized cynomolgus monkey model. This work could facilitate the development of effective new approaches for treating β-thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Katsushi Katayama
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Ken Ishii
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hideki Terashima
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Eisuke Tsuda
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Makoto Suzuki
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Keiichi Yotsumoto
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kumiko Hiramoto
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Isao Yasumatsu
- Daiichi Sankyo RD Novare Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Munefumi Torihata
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takashi Ishiyama
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tsuyoshi Muto
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takahiro Katagiri
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
18
|
When basic science reaches into rational therapeutic design: from historical to novel leads for the treatment of β-globinopathies. Curr Opin Hematol 2021; 27:141-148. [PMID: 32167946 DOI: 10.1097/moh.0000000000000577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW β-hemoglobinopathies, such as β-Thalassemias (β-Thal) and sickle cell disease (SCD) are among the most common inherited genetic disorders in humans worldwide. These disorders are characterized by a quantitative (β-Thal) or qualitative (SCD) defects in adult hemoglobin production, leading to anemia, ineffective erythropoiesis and severe secondary complications. Reactivation of the fetal globin genes (γ-globin), making-up fetal hemoglobin (HbF), which are normally silenced in adults, represents a major strategy to ameliorate anemia and disease severity. RECENT FINDINGS Following the identification of the first 'switching factors' for the reactivation of fetal globin gene expression more than 10 years ago, a multitude of novel leads have recently been uncovered. SUMMARY Recent findings provided invaluable functional insights into the genetic and molecular networks controlling globin genes expression, revealing that complex repression systems evolved in erythroid cells to maintain HbF silencing in adults. This review summarizes these unique and exciting discoveries of the regulatory factors controlling the globin switch. New insights and novel leads for therapeutic strategies based on the pharmacological induction of HbF are discussed. This represents a major breakthrough for rational drug design in the treatment of β-Thal and SCD.
Collapse
|
19
|
Molokie R, DeSimone J, Lavelle D. Epigenetic regulation of hemoglobin switching in non-human primates. Semin Hematol 2020; 58:10-14. [PMID: 33509438 DOI: 10.1053/j.seminhematol.2020.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/01/2020] [Accepted: 12/19/2020] [Indexed: 11/11/2022]
Abstract
Human hemoglobin switching describes the highly regulated, sequential expression of the 5 β-like globin genes (HBE, HBG2, HBG1, HBD and HBB) of the human β-globin gene complex. The sequential activation of these β or β-like globin genes during human development from early embryonic through late fetal ('adult') stages, and during erythroid maturation, occurs in an order corresponding to their 5' to 3' location on chromosome 11. The β-hemoglobinopathies are the most common inherited diseases in humanity, and are diseases of mutated HBB or its altered regulation. Since the other β-like globin genes can potentially substitute for defective HBB, much translational research is directed toward understanding and manipulating sequential activation at the human β-globin gene complex to treat β-hemoglobinopathies. Non-human primates provide a vital contribution to such efforts because of their recapitulation of the developmental/maturational switch in hemoglobin production as observed in humans (mice do not model this switch). Valuable insights into druggable epigenetic forces that mediate the switch have been thereby gained. We review important lessons learned in non-human primates, complemented by other studies, and suggest rational next steps.
Collapse
Affiliation(s)
- Robert Molokie
- Sickle Cell Center, Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, and Jesse Brown VA Medical Center, Chicago, IL
| | - Joseph DeSimone
- Sickle Cell Center, Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, and Jesse Brown VA Medical Center, Chicago, IL
| | - Donald Lavelle
- Sickle Cell Center, Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, and Jesse Brown VA Medical Center, Chicago, IL.
| |
Collapse
|
20
|
J. Verheul TC, Trinh VT, Vázquez O, Philipsen S. Targeted Protein Degradation as a Promising Tool for Epigenetic Upregulation of Fetal Hemoglobin. ChemMedChem 2020; 15:2436-2443. [PMID: 33002296 PMCID: PMC7756256 DOI: 10.1002/cmdc.202000574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Indexed: 12/17/2022]
Abstract
The level of fetal hemoglobin (HbF) is an important disease modifier for β-thalassemia and sickle cell disease patients. Indeed, genetic tinkering with the HbF repression machinery has demonstrated great potential for disease mitigation. Such genetic treatments are costly and the high incidence of β-hemoglobinopathies in low-income countries, therefore, calls for the development of affordable, off-the-shelf, oral treatments. The use of PROTAC (PRoteolysis TArgeting Chimeras) technology to influence the epigenetic mechanisms involved in HbF suppression may provide a solution. In this minireview, we briefly explain the HbF repression network highlighting the epigenetic factors that could be targeted for degradation by PROTACs. We hope that this review will inspire clinicians, molecular and chemical biologists to collaborate and contribute to this fascinating field, which should ultimately deliver drugs that reactivate HbF expression with high specificity and low toxicity.
Collapse
Affiliation(s)
- Thijs C. J. Verheul
- Department of Cell BiologyErasmus University Medical Center RotterdamWytemaweg 803000 CARotterdamThe Netherlands
| | - Van Tuan Trinh
- Department of ChemistryUniversity of MarburgHans-Meerwein-Straβe 435043MarburgGermany
| | - Olalla Vázquez
- SYNMIKRO Research CenterUniversity of Marburg35043MarburgGermany
- Department of ChemistryUniversity of MarburgHans-Meerwein-Straβe 435043MarburgGermany
| | - Sjaak Philipsen
- Department of Cell BiologyErasmus University Medical Center RotterdamWytemaweg 803000 CARotterdamThe Netherlands
| |
Collapse
|
21
|
Abstract
Fetal hemoglobin (HbF) can blunt the pathophysiology, temper the clinical course, and offer prospects for curative therapy of sickle cell disease. This review focuses on (1) HbF quantitative trait loci and the geography of β-globin gene haplotypes, especially those found in the Middle East; (2) how HbF might differentially impact the pathophysiology and many subphenotypes of sickle cell disease; (3) clinical implications of person-to-person variation in the distribution of HbF among HbF-containing erythrocytes; and (4) reactivation of HbF gene expression using both pharmacologic and cell-based therapeutic approaches. A confluence of detailed understanding of the molecular basis of HbF gene expression, coupled with the ability to precisely target by genomic editing most areas of the genome, is producing important preliminary therapeutic results that could provide new options for cell-based therapeutics with curative intent.
Collapse
Affiliation(s)
- Martin H Steinberg
- Division of Hematology/Oncology, Department of Medicine, Center of Excellence for Sickle Cell Disease, Center for Regenerative Medicine, Genome Science Institute, Boston University School of Medicine and Boston Medical Center, Boston, MA
| |
Collapse
|
22
|
Demirci S, Leonard A, Tisdale JF. Genome editing strategies for fetal hemoglobin induction in beta-hemoglobinopathies. Hum Mol Genet 2020; 29:R100-R106. [PMID: 32406490 PMCID: PMC7673473 DOI: 10.1093/hmg/ddaa088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 04/28/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022] Open
Abstract
Genome editing to correct a defective β-globin gene or induce fetal globin (HbF) for patients with beta-hemoglobinopathies has the potential to be a curative strategy available to all. HbF reactivation has long been an area of intense interest given the HbF inhibition of sickle hemoglobin (HbS) polymerization. Patients with HbS who also have high HbF tend to have less severe or even minimal clinical manifestations. Approaches to genetically engineer high HbF include de novo generation of naturally occurring hereditary persistence of fetal hemoglobin (HPFH) mutations, editing of transcriptional HbF repressors or their binding sites and/or regulating epigenetic intermediates controlling HbF expression. Recent preclinical and early clinical trial data show encouraging results; however, long-term follow-up is lacking, and the safety and efficacy concerns of genome editing remain.
Collapse
Affiliation(s)
- Selami Demirci
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes, National Institutes of Health, Bethesda, MD, USA
| | - Alexis Leonard
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes, National Institutes of Health, Bethesda, MD, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart Lung and Blood Institutes, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
23
|
Holshouser S, Cafiero R, Robinson M, Kirkpatrick J, Casero RA, Hyacinth HI, Woster PM. Epigenetic Reexpression of Hemoglobin F Using Reversible LSD1 Inhibitors: Potential Therapies for Sickle Cell Disease. ACS OMEGA 2020; 5:14750-14758. [PMID: 32596612 PMCID: PMC7315572 DOI: 10.1021/acsomega.0c01585] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Sickle cell disease (SCD) is caused by a single nucleotide polymorphism on chromosome 11 in the β-globin gene. The resulting mutant hemoglobin S (HbS) is a poor oxygen transporter and causes a variety of vascular symptoms and organ failures. At birth, the DRED epigenetic complex forms and silences the γ-globin gene, and fetal hemoglobin (HbF, 2 α-, and 2 γ-subunits) is replaced by adult HbA (α2β2) or HbS (α2βs 2) in SCD patients. HbF is a potent inhibitor of HbS polymerization, thus alleviating the symptoms of SCD. The current therapy, hydroxyurea (HU), increases γ-globin and the HbF content in sickle cells but is highly underutilized due to concern for adverse effects and other complications. The DRED complex contains the epigenetic eraser lysine-specific demethylase 1 (LSD1), which appears to serve as a scaffolding protein. Our recently discovered 1,2,4-triazole derivatives and cyclic peptide LSD1 inhibitors promote the upregulation of γ-globin production in vitro without significant toxicity. Herein, we demonstrate that these LSD1 inhibitors can be used to disrupt the DRED complex and increase the cellular HbF content in vitro and in vivo. This approach could lead to an innovative and effective treatment for SCD.
Collapse
Affiliation(s)
- Steven Holshouser
- Department
of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, South Carolina 29414, United States
| | - Rebecca Cafiero
- Department
of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, South Carolina 29414, United States
| | - Mayra Robinson
- Department
of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, South Carolina 29414, United States
| | - Joy Kirkpatrick
- Department
of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, South Carolina 29414, United States
| | - Robert A. Casero
- Sidney
Kimmel Comprehensive Cancer Center, Johns
Hopkins School of Medicine, 1650 Orleans St. Room 551, Baltimore, Maryland 21287, United States
| | - Hyacinth I. Hyacinth
- Department
of Pediatrics, School of Medicine, Emory
University, 2015 Uppergate Dr., Atlanta, Georgia 30322, United
States
| | - Patrick M. Woster
- Department
of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, South Carolina 29414, United States
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW The current review focuses on recent insights into the development of small molecule therapeutics to treat the β-globinopathies. RECENT FINDINGS Recent studies of fetal γ-globin gene regulation reveal multiple insights into how γ-globin gene reactivation may lead to novel treatment for β-globinopathies. SUMMARY We summarize current information regarding the binding of transcription factors that appear to be impeded or augmented by different hereditary persistence of fetal hemoglobin (HPFH) mutations. As transcription factors have historically proven to be difficult to target for therapeutic purposes, we next address the contributions of protein complexes associated with these HPFH mutation-affected transcription factors with the aim of defining proteins that might provide additional targets for chemical molecules to inactivate the corepressors. Among the enzymes associated with the transcription factor complexes, a group of corepressors with currently available inhibitors were initially thought to be good candidates for potential therapeutic purposes. We discuss possibilities for pharmacological inhibition of these corepressor enzymes that might significantly reactivate fetal γ-globin gene expression. Finally, we summarize the current clinical trial data regarding the inhibition of select corepressor proteins for the treatment of sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Lei Yu
- Departments of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109
| | - Greggory Myers
- Departments of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109
| | - James Douglas Engel
- Departments of Cell and Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109
| |
Collapse
|
25
|
Liu L, Zhu X, Yu A, Ward CM, Pace BS. δ-Aminolevulinate induces fetal hemoglobin expression by enhancing cellular heme biosynthesis. Exp Biol Med (Maywood) 2019; 244:1220-1232. [PMID: 31475864 DOI: 10.1177/1535370219872995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sickle cell disease (SCD) and β-thalassemia are inherited blood disorders caused by genetic defects in the β-globin gene on chromosome 11, producing severe disease in people worldwide. Induction of fetal hemoglobin consisting of two α-globin and two γ-globin chains ameliorates the clinical symptoms of both disorders. In the present study, we investigated the ability of δ-aminolevulinate (ALA), the heme precursor, to activate γ-globin gene expression as well as its effects on cellular functions in erythroid cell systems. We demonstrated that ALA induced γ-globin expression at both the transcriptional and protein levels in the KU812 erythroid cell line. Using inhibitors targeting two enzymes in the heme biosynthesis pathway, we showed that cellular heme biosynthesis was involved in ALA-mediated γ-globin activation. Moreover, the transcription factor NRF2 (nuclear factor [erythroid-derived 2]-like 2), a critical regulator of the cellular antioxidant response, was activated by ALA and contributed to mechanisms of γ-globin activation; ALA did not affect cell proliferation and was not toxic to cells. Subsequent studies demonstrated ALA-induced γ-globin activation in erythroid progenitors generated from normal human CD34+ stem cells. These data support future study to explore the potential of stimulating intracellular heme biosynthesis by ALA or similar compounds as a novel therapeutic strategy for treating SCD and β-thalassemia. Impact statement Inherited mutations in the β-globin-like genes result in the most common forms of genetic blood disease including sickle cell disease (SCD) and β-thalassemia worldwide. Therefore, effective inexpensive therapies that can be distributed widely are highly desirable. Currently, drug-mediated fetal hemoglobin (HbF) induction can ameliorate clinical symptoms of SCD and β-thalassemia and is the most effective strategy for developing new therapeutic options. In the current study, we confirmed that δ-Aminolevulinate (ALA), the precursor of heme, induces γ-globin expression at both the transcriptional and translational levels in primary human erythroid progenitors. Moreover, the results indicate activation of the transcription factor NRF2 (nuclear factor (erythroid-derived 2)-like 2) by ALA to enhance HbF expression. These data support future study to explore the potential of stimulating intracellular heme biosynthesis by ALA or similar compounds as a novel therapeutic strategy for treating SCD and β-thalassemia.
Collapse
Affiliation(s)
- Li Liu
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Xingguo Zhu
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Alexander Yu
- Department of Medicine, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Christina M Ward
- Department of Biochemistry and Molecular Biology, Boston University, Boston, MA 02118, USA
| | - Betty S Pace
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA.,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
26
|
Saunthararajah Y. Targeting sickle cell disease root-cause pathophysiology with small molecules. Haematologica 2019; 104:1720-1730. [PMID: 31399526 PMCID: PMC6717594 DOI: 10.3324/haematol.2018.207530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022] Open
Abstract
The complex, frequently devastating, multi-organ pathophysiology of sickle cell disease has a single root cause: polymerization of deoxygenated sickle hemoglobin. A logical approach to disease modification is, therefore, to interdict this root cause. Ideally, such interdiction would utilize small molecules that are practical and accessible for worldwide application. Two types of such small molecule strategies are actively being evaluated in the clinic. The first strategy intends to shift red blood cell precursor hemoglobin manufacturing away from sickle hemoglobin and towards fetal hemoglobin, which inhibits sickle hemoglobin polymerization by a number of mechanisms. The second strategy intends to chemically modify sickle hemoglobin directly in order to inhibit its polymerization. Important lessons have been learnt from the pre-clinical and clinical evaluations to date. Open questions remain, but this review summarizes the valuable experience and knowledge already gained, which can guide ongoing and future efforts for molecular mechanism-based, practical and accessible disease modification of sickle cell disease.
Collapse
Affiliation(s)
- Yogen Saunthararajah
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
27
|
Inhibition of LSD1 by small molecule inhibitors stimulates fetal hemoglobin synthesis. Blood 2019; 133:2455-2459. [PMID: 30992270 DOI: 10.1182/blood.2018892737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Yu L, Jearawiriyapaisarn N, Lee MP, Hosoya T, Wu Q, Myers G, Lim KC, Kurita R, Nakamura Y, Vojtek AB, Rual JF, Engel JD. BAP1 regulation of the key adaptor protein NCoR1 is critical for γ-globin gene repression. Genes Dev 2018; 32:1537-1549. [PMID: 30463901 PMCID: PMC6295165 DOI: 10.1101/gad.318436.118] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022]
Abstract
Human globin gene production transcriptionally "switches" from fetal to adult synthesis shortly after birth and is controlled by macromolecular complexes that enhance or suppress transcription by cis elements scattered throughout the locus. The DRED (direct repeat erythroid-definitive) repressor is recruited to the ε-globin and γ-globin promoters by the orphan nuclear receptors TR2 (NR2C1) and TR4 (NR2C2) to engender their silencing in adult erythroid cells. Here we found that nuclear receptor corepressor-1 (NCoR1) is a critical component of DRED that acts as a scaffold to unite the DNA-binding and epigenetic enzyme components (e.g., DNA methyltransferase 1 [DNMT1] and lysine-specific demethylase 1 [LSD1]) that elicit DRED function. We also describe a potent new regulator of γ-globin repression: The deubiquitinase BRCA1-associated protein-1 (BAP1) is a component of the repressor complex whose activity maintains NCoR1 at sites in the β-globin locus, and BAP1 inhibition in erythroid cells massively induces γ-globin synthesis. These data provide new mechanistic insights through the discovery of novel epigenetic enzymes that mediate γ-globin gene repression.
Collapse
Affiliation(s)
- Lei Yu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Natee Jearawiriyapaisarn
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Mary P Lee
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Tomonori Hosoya
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Qingqing Wu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Greggory Myers
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Anne B Vojtek
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Jean-François Rual
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
29
|
Stomper J, Ihorst G, Suciu S, Sander PN, Becker H, Wijermans PW, Plass C, Weichenhan D, Bissé E, Claus R, Lübbert M. Fetal hemoglobin induction during decitabine treatment of elderly patients with high-risk myelodysplastic syndrome or acute myeloid leukemia: a potential dynamic biomarker of outcome. Haematologica 2018; 104:59-69. [PMID: 30171030 PMCID: PMC6312014 DOI: 10.3324/haematol.2017.187278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 08/28/2018] [Indexed: 12/18/2022] Open
Abstract
Hematologic responses to hypomethylating agents are often delayed in patients with myelodysplastic syndrome or acute myeloid leukemia. Fetal hemoglobin is a potential novel bio-marker of response: recently, we demonstrated that a high fetal hemoglobin level prior to decitabine treatment was associated with superior outcome. Here we investigated whether early fetal hemoglobin induction during decitabine treatment also had prognostic value, and studied the potential of decitabine to induce erythroid differentiation and fetal hemoglobin expression in vitro Fetal hemoglobin levels were measured by high-performance liquid chromatography in patients with higher-risk myelodysplastic syndrome (n=16) and acute myeloid leukemia (n=37) before treatment and after each course of decitabine. Levels above 1.0% were considered induced. Patients achieving complete or partial remission as best response had attained a median fetal hemoglobin of 1.9% after two courses of treatment, whereas the median value in patients who did not reach complete or partial remission was 0.8% (P=0.015). Fetal hemoglobin induction after two courses of decitabine treatment was associated with early platelet doubling (P=0.006), and its subsequent decrease with hematologic relapse. In patients with myelodysplastic syndrome, induction of fetal hemoglobin after course 2 of treatment was associated with longer overall survival: median of 22.9 versus 7.3 months in patients with or without induction of fetal hemoglobin, respectively [hazard ratio=0.2 (95% confidence interval: 0.1-0.9); P=0.03]. In vitro decitabine treatment of two bi-potential myeloid leukemia cell lines (K562 and HEL) resulted in induction of an erythroid (not megakaryocytic) differentiation program, and of fetal hemoglobin mRNA and protein, associated with GATA1 gene demethylation and upregulation. In conclusion, fetal hemoglobin may provide a useful dynamic biomarker during hypomethylating agent therapy in patients with myelodysplastic syndrome or acute myeloid leukemia.
Collapse
Affiliation(s)
- Julia Stomper
- Department of Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine and Medical Center, University of Freiburg, Germany
| | - Gabriele Ihorst
- Clinical Trials Unit, Faculty of Medicine and Medical Center, University of Freiburg, Germany
| | | | - Philipp N Sander
- Department of Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine and Medical Center, University of Freiburg, Germany.,Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Heiko Becker
- Department of Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine and Medical Center, University of Freiburg, Germany
| | | | - Christoph Plass
- DKFZ Heidelberg, Division of Epigenomics and Cancer Risk Factors, Heidelberg, Germany.,German Cancer Research Consortium (DKTK), Heidelberg, Germany
| | - Dieter Weichenhan
- DKFZ Heidelberg, Division of Epigenomics and Cancer Risk Factors, Heidelberg, Germany
| | - Emmanuel Bissé
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Germany
| | - Rainer Claus
- Department of Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine and Medical Center, University of Freiburg, Germany.,Department of Internal Medicine II, Hematology/Oncology, Augsburg Medical Center, Germany
| | - Michael Lübbert
- Department of Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine and Medical Center, University of Freiburg, Germany .,German Cancer Research Consortium (DKTK), Freiburg, Germany
| |
Collapse
|
30
|
Rivers A, Vaitkus K, Jagadeeswaran R, Ruiz MA, Ibanez V, Ciceri F, Cavalcanti F, Molokie RE, Saunthararajah Y, Engel JD, DeSimone J, Lavelle D. Oral administration of the LSD1 inhibitor ORY-3001 increases fetal hemoglobin in sickle cell mice and baboons. Exp Hematol 2018; 67:60-64.e2. [PMID: 30125603 DOI: 10.1016/j.exphem.2018.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 11/18/2022]
Abstract
Increased levels of fetal hemoglobin (HbF) lessen the severity of symptoms and increase the life span of patients with sickle cell disease (SCD). More effective strategies to increase HbF are needed because the current standard of care, hydroxyurea, is not effective in a significant proportion of patients. Treatment of the millions of patients projected worldwide would best be accomplished with an orally administered drug therapy that increased HbF. LSD1 is a component of corepressor complexes that repress γ-globin gene expression and are a therapeutic target for HbF reactivation. We have shown that subcutaneous administration of RN-1, a pharmacological LSD1 inhibitor, increased γ-globin expression in SCD mice and baboons, which are widely acknowledged as the best animal model in which to test the activity of HbF-inducing drugs. The objective of this investigation was to test the effect of oral administration of a new LSD1 inhibitor, ORY-3001. Oral administration of ORY-3001 to SCD mice (n = 3 groups) increased γ-globin expression, Fetal Hemoglobin (HbF)-containing (F) cells, and F reticulocytes (retics). In normal baboons (n = 7 experiments) treated with ORY-3001, increased F retics, γ-globin chain synthesis, and γ-globin mRNA were observed. Experiments in anemic baboons (n = 2) showed that ORY-3001 increased F retics (PA8695, predose = 24%, postdose = 66.8%; PA8698: predose = 13%, postdose = 93.6%), γ-globin chain synthesis (PA8695: predose = 0.07 γ/γ+β, postdose = 0.20 γ/γ+β; PA8698: predose = 0.02 γ/γ+β, postdose = 0.44 γ/γ+β), and γ-globin mRNA (PA8695: predose = 0.06 γ/γ+β, postdose = 0.18 γ/γ+β; PA8698: predose = 0.03 γ/γ+β, postdose = 0.33 γ/γ+β). We conclude that oral administration of ORY-3001 increases F retics, γ-globin chain synthesis, and γ-globin mRNA in baboons and SCD mice, supporting further efforts toward the development of this drug for SCD therapy.
Collapse
Affiliation(s)
- Angela Rivers
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Kestis Vaitkus
- Jesse Brown VA Medical Center, Chicago, IL, USA; Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ramasamy Jagadeeswaran
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Maria Armila Ruiz
- Jesse Brown VA Medical Center, Chicago, IL, USA; Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Vinzon Ibanez
- Jesse Brown VA Medical Center, Chicago, IL, USA; Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | | | - Robert E Molokie
- Jesse Brown VA Medical Center, Chicago, IL, USA; Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yogen Saunthararajah
- Department of Hematology and Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Joseph DeSimone
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Donald Lavelle
- Jesse Brown VA Medical Center, Chicago, IL, USA; Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
31
|
Rivers A, Jagadeeswaran R, Lavelle D. Potential role of LSD1 inhibitors in the treatment of sickle cell disease: a review of preclinical animal model data. Am J Physiol Regul Integr Comp Physiol 2018; 315:R840-R847. [PMID: 30067082 DOI: 10.1152/ajpregu.00440.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sickle cell disease (SCD) is caused by a mutation of the β-globin gene (Ingram VM. Nature 180: 326-328, 1957), which triggers the polymerization of deoxygenated sickle hemoglobin (HbS). Approximately 100,000 SCD patients in the United States and millions worldwide (Piel FB, et al. PLoS Med 10: e1001484, 2013) suffer from chronic hemolytic anemia, painful crises, multisystem organ damage, and reduced life expectancy (Rees DC, et al. Lancet 376: 2018-2031, 2010; Serjeant GR. Cold Spring Harb Perspect Med 3: a011783, 2013). Hematopoietic stem cell transplantation can be curative, but the majority of patients do not have a suitable donor (Talano JA, Cairo MS. Eur J Haematol 94: 391-399, 2015). Advanced gene-editing technologies also offer the possibility of a cure (Goodman MA, Malik P. Ther Adv Hematol 7: 302-315, 2016; Lettre G, Bauer DE. Lancet 387: 2554-2564, 2016), but the likelihood that these strategies can be mobilized to treat the large numbers of patients residing in developing countries is remote. A pharmacological treatment to increase fetal hemoglobin (HbF) as a therapy for SCD has been a long-sought goal, because increased levels of HbF (α2γ2) inhibit the polymerization of HbS (Poillin WN, et al. Proc Natl Acad Sci USA 90: 5039-5043, 1993; Sunshine HR, et al. J Mol Biol 133: 435-467, 1979) and are associated with reduced symptoms and increased lifespan of SCD patients (Platt OS, et al. N Engl J Med 330: 1639-1644, 1994; Platt OS, et al. N Engl J Med 325: 11-16, 1991). Only two drugs, hydroxyurea and l-glutamine, are approved by the US Food and Drug Administration for treatment of SCD. Hydroxyurea is ineffective at HbF induction in ~50% of patients (Charache S, et al. N Engl J Med 332: 1317-1322, 1995). While polymerization of HbS has been traditionally considered the driving force in the hemolysis of SCD, the excessive reactive oxygen species generated from red blood cells, with further amplification by intravascular hemolysis, also are a major contributor to SCD pathology. This review highlights a new class of drugs, lysine-specific demethylase (LSD1) inhibitors, that induce HbF and reduce reactive oxygen species.
Collapse
Affiliation(s)
- Angela Rivers
- Department of Pediatrics, University of Illinois at Chicago , Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| | - Ramasamy Jagadeeswaran
- Department of Pediatrics, University of Illinois at Chicago , Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| | - Donald Lavelle
- Department of Medicine, University of Illinois at Chicago , Chicago, Illinois.,Jesse Brown Veterans Affairs Medical Center , Chicago, Illinois
| |
Collapse
|
32
|
Shet AS, Thein SL. Therapeutic advances in sickle cell disease in the last decade. Indian J Med Res 2018; 145:708-712. [PMID: 29067969 PMCID: PMC5674537 DOI: 10.4103/ijmr.ijmr_1153_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Arun S Shet
- Sickle Cell Branch, National Heart, Lung & Blood Institute, The National Institutes of Health, Bethesda, MD 20892-1589, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart, Lung & Blood Institute, The National Institutes of Health, Bethesda, MD 20892-1589, USA
| |
Collapse
|
33
|
Lavelle D, Engel JD, Saunthararajah Y. Fetal Hemoglobin Induction by Epigenetic Drugs. Semin Hematol 2018; 55:60-67. [PMID: 29958562 DOI: 10.1053/j.seminhematol.2018.04.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/13/2018] [Indexed: 12/11/2022]
Abstract
Fetal hemoglobin (HbF) inhibits the root cause of sickle pathophysiology, sickle hemoglobin polymerization. Individuals who naturally express high levels of HbF beyond infancy thus receive some protection from sickle complications. To mimic this natural genetic experiment using drugs, one guiding observation was that HbF is increased during recovery of bone marrow from extreme stress. This led to evaluation and approval of the cytotoxic (cell killing) drug hydroxyurea to treat sickle cell disease. Cytotoxic approaches are limited in potency and sustainability, however, since they require hematopoietic reserves sufficient to repeatedly mount recoveries from stress that destroys their counterparts, and such reserves are finite. HbF induction even by stress ultimately involves chromatin remodeling of the gene for HbF (HBG), therefore, a logical alternative approach is to directly inhibit epigenetic enzymes that repress HBG-implicated enzymes include DNA methyltransferase 1, histone deacetylases, lysine demethylase 1, protein arginine methyltransferase 5, euchromatic histone lysine methyltransferase 2 and chromodomain helicase DNA-binding protein 4. Clinical proof-of-principle that this alternative, noncytotoxic approach can generate substantial HbF and total hemoglobin increases has already been generated. Thus, with continued careful attention to fundamental biological and pharmacologic considerations (reviewed herein), there is potential that rational, molecular-targeted, safe and highly potent disease-modifying therapy can be realized for patients with sickle cell disease, with the accessibility and cost-effective properties needed for world-wide effect.
Collapse
Affiliation(s)
- Donald Lavelle
- Department of Medicine, University of Illinois Hospital and Health Sciences System, Chicago, IL; Department of Medicine, Jesse Brown VA Medical Center, Chicago, IL
| | | | - Yogen Saunthararajah
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
34
|
Castelli G, Pelosi E, Testa U. Targeting histone methyltransferase and demethylase in acute myeloid leukemia therapy. Onco Targets Ther 2017; 11:131-155. [PMID: 29343972 PMCID: PMC5749389 DOI: 10.2147/ott.s145971] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acute myeloid leukemia (AML) is a clonal disorder of myeloid progenitors characterized by the acquisition of chromosomal abnormalities, somatic mutations, and epigenetic changes that determine a consistent degree of biological and clinical heterogeneity. Advances in genomic technologies have increasingly shown the complexity and heterogeneity of genetic and epigenetic alterations in AML. Among the genetic alterations occurring in AML, frequent are the genetic alterations at the level of various genes involved in the epigenetic control of the DNA methylome and histone methylome. In fact, genes involved in DNA demethylation (such as DNMT3A, TET2, IDH1, and IDH2) or histone methylation and demethylation (EZH2, MLL, DOT1L) are frequently mutated in primary and secondary AML. Furthermore, some histone demethylases, such as LSD1, are frequently overexpressed in AML. These observations have strongly supported a major role of dysregulated epigenetic regulatory processes in leukemia onset and development. This conclusion was further supported by the observation that mutations in genes encoding epigenetic modifiers, such as DMT3A, ASXL1, TET2, IDH1, and IDH2, are usually acquired early and are present in the founding leukemic clone. These observations have contributed to development of the idea that targeting epigenetic abnormalities could represent a potentially promising strategy for the development of innovative treatments of AML. In this review, we analyze those proteins and their inhibitors that have already reached the first stages of clinical trials in AML, namely the histone methyltransferase DOT1L, the demethylase LSD1, and the MLL-interacting protein menin.
Collapse
Affiliation(s)
- Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
35
|
Jagadeeswaran R, Rivers A. Evolving treatment paradigms in sickle cell disease. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2017; 2017:440-446. [PMID: 29222291 PMCID: PMC6142561 DOI: 10.1182/asheducation-2017.1.440] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Sickle cell disease (SCD) is an inheritable hemoglobinopathy characterized by polymerization of hemoglobin S in red blood cells resulting in chronic hemolytic anemia, vaso-occlusive painful crisis, and multiorgan damage. In SCD, an increased reactive oxygen species (ROS) generation occurs both inside the red blood cells and inside the vascular lumen, which augment hemolysis and cellular adhesion. This review discusses the evolving body of literature on the role of ROS in the pathophysiology of SCD as well as some emerging therapeutic approaches to SCD with a focus on the reduction of ROS.
Collapse
Affiliation(s)
- Ramasamy Jagadeeswaran
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL; and
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL
| | - Angela Rivers
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL; and
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL
| |
Collapse
|
36
|
Vinjamur DS, Bauer DE, Orkin SH. Recent progress in understanding and manipulating haemoglobin switching for the haemoglobinopathies. Br J Haematol 2017; 180:630-643. [PMID: 29193029 DOI: 10.1111/bjh.15038] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The major β-haemoglobinopathies, sickle cell disease and β-thalassaemia, represent the most common monogenic disorders worldwide and a steadily increasing global disease burden. Allogeneic haematopoietic stem cell transplantation, the only curative therapy, is only applied to a small minority of patients. Common clinical management strategies act mainly downstream of the root causes of disease. The observation that elevated fetal haemoglobin expression ameliorates these disorders has motivated longstanding investigations into the mechanisms of haemoglobin switching. Landmark studies over the last decade have led to the identification of two potent transcriptional repressors of γ-globin, BCL11A and ZBTB7A. These regulators act with additional trans-acting epigenetic repressive complexes, lineage-defining factors and developmental programs to silence fetal haemoglobin by working on cis-acting sequences at the globin gene loci. Rapidly advancing genetic technology is enabling researchers to probe deeply the interplay between the molecular players required for γ-globin (HBG1/HBG2) silencing. Gene therapies may enable permanent cures with autologous modified haematopoietic stem cells that generate persistent fetal haemoglobin expression. Ultimately rational small molecule pharmacotherapies to reactivate HbF could extend benefits widely to patients.
Collapse
Affiliation(s)
- Divya S Vinjamur
- Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Daniel E Bauer
- Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Stuart H Orkin
- Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, USA.,Howard Hughes Medical Institute, Boston, MA, USA
| |
Collapse
|
37
|
Abstract
Fetal haemoglobin (HbF, α2γ2) induction has long been an area of investigation, as it is known to ameliorate the clinical complications of sickle cell disease (SCD). Progress in identifying novel HbF-inducing strategies has been stymied by limited understanding of gamma (γ)-globin regulation. Genome-wide association studies (GWAS) have identified variants in BCL11A and HBS1L-MYB that are associated with HbF levels. Functional studies have established the roles of BCL11A, MYB, and KLF1 in γ-globin regulation, but this information has not yielded new pharmacological agents. Several drugs are under investigation in clinical trials as HbF-inducing agents, but hydroxycarbamide remains the only widely used pharmacologic therapy for SCD. Autologous transplant of edited haematopoietic stem cells holds promise as a cure for SCD, either through HbF induction or correction of the causative mutation, but several technical and safety hurdles must be overcome before this therapy can be offered widely, and pharmacological therapies are still needed.
Collapse
Affiliation(s)
- Alireza Paikari
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Vivien A Sheehan
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
38
|
Habara AH, Shaikho EM, Steinberg MH. Fetal hemoglobin in sickle cell anemia: The Arab-Indian haplotype and new therapeutic agents. Am J Hematol 2017; 92:1233-1242. [PMID: 28736939 PMCID: PMC5647233 DOI: 10.1002/ajh.24872] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 12/28/2022]
Abstract
Fetal hemoglobin (HbF) has well-known tempering effects on the symptoms of sickle cell disease and its levels vary among patients with different haplotypes of the sickle hemoglobin gene. Compared with sickle cell anemia haplotypes found in patients of African descent, HbF levels in Saudi and Indian patients with the Arab-Indian (AI) haplotype exceed that in any other haplotype by nearly twofold. Genetic association studies have identified some loci associated with high HbF in the AI haplotype but these observations require functional confirmation. Saudi patients with the Benin haplotype have HbF levels almost twice as high as African patients with this haplotype but this difference is unexplained. Hydroxyurea is still the only FDA approved drug for HbF induction in sickle cell disease. While most patients treated with hydroxyurea have an increase in HbF and some clinical improvement, 10 to 20% of adults show little response to this agent. We review the genetic basis of HbF regulation focusing on sickle cell anemia in Saudi Arabia and discuss new drugs that can induce increased levels of HbF.
Collapse
Affiliation(s)
- Alawi H Habara
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Elmutaz M Shaikho
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, 02118
| | - Martin H Steinberg
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, 02118
| |
Collapse
|
39
|
Dai Y, Chen T, Ijaz H, Cho EH, Steinberg MH. SIRT1 activates the expression of fetal hemoglobin genes. Am J Hematol 2017; 92:1177-1186. [PMID: 28776729 DOI: 10.1002/ajh.24879] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 02/06/2023]
Abstract
High fetal hemoglobin (HbF, α2 γ2 ) levels ameliorate the clinical manifestations of sickle cell disease and β thalassemia. The mechanisms that repress HbF expression and silence γ-globin genes in adults are incompletely characterized and only a single HbF inducer, hydroxyurea, is approved for treatment, and only in patients with sickle cell disease. We identified SIRT1, a protein deacetylase, as a new inducer of γ-globin. SIRT1 knockdown decreased, while SIRT1 ectopic expression upregulated γ-globin gene (HBG) expression in primary human erythroid cells and in K562 cells. The small molecule SIRT1 activators SRT2104 and SRT1720 enhanced HBG expression in cord blood human erythroblasts and reactivated silenced HBG in adult human erythroblasts. Furthermore, SIRT1 binds in the β-globin gene cluster locus control region (LCR) and HBG promoters, promotes the looping of the LCR to HBG promoter, and increases the binding of RNA polymerase II and H4K16Ac in the HBG promoter. SIRT1 suppressed the expression of the HBG suppressors BCL11A, KLF1, HDAC1 and HDAC2. Lastly, SIRT1 did not change the proliferation of human erythroid progenitor cells or the expression of differentiation marker CD235a. These data suggest that SIRT1 activates HBG expression through facilitating LCR looping to the HBG promoter, inhibiting the expression of transcriptional suppressors of HBG, and indirectly increasing histone acetylation in the HBG promoter. SIRT1 is a potential therapeutic target for γ-globin gene induction, and small molecule SIRT1 activators might serve as a lead compound for the development of new HbF inducers.
Collapse
Affiliation(s)
- Yan Dai
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Tyngwei Chen
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Heba Ijaz
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Elizabeth H. Cho
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| | - Martin H. Steinberg
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts 02118
| |
Collapse
|
40
|
Lee WS, McColl B, Maksimovic J, Vadolas J. Epigenetic interplay at the β-globin locus. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:393-404. [DOI: 10.1016/j.bbagrm.2017.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/28/2017] [Accepted: 01/30/2017] [Indexed: 02/02/2023]
|
41
|
Jagadeeswaran R, Vazquez BA, Thiruppathi M, Ganesh BB, Ibanez V, Cui S, Engel JD, Diamond AM, Molokie RE, DeSimone J, Lavelle D, Rivers A. Pharmacological inhibition of LSD1 and mTOR reduces mitochondrial retention and associated ROS levels in the red blood cells of sickle cell disease. Exp Hematol 2017; 50:46-52. [PMID: 28238805 DOI: 10.1016/j.exphem.2017.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 12/21/2022]
Abstract
Sickle cell disease (SCD), an inherited blood disorder caused by a point mutation that renders hemoglobin susceptible to polymerization when deoxygenated, affects millions of people worldwide. Manifestations of SCD include chronic hemolytic anemia, inflammation, painful vaso-occlusive crises, multisystem organ damage, and reduced life expectancy. Part of SCD pathophysiology is the excessive formation of intracellular reactive oxygen species (ROS) in SCD red blood cells (RBCs), which accelerates their hemolysis. Normal RBC precursors eliminate their mitochondria during the terminal differentiation process. Strikingly, we observed an increased percentage of RBCs retaining mitochondria in SCD patient blood samples compared with healthy individuals. In addition, using an experimental SCD mouse model, we demonstrate that excessive levels of ROS in SCD are associated with this abnormal mitochondrial retention. Interestingly, the LSD1 inhibitor, RN-1, and the mitophagy-inducing agent mammalian target of rapamycin (mTOR) inhibitor, sirolimus, increased RBC lifespan and reduced ROS accumulation in parallel with reducing mitochondria-retaining RBCs in the SCD mouse model. Furthermore, gene expression analysis of SCD mice treated with RN-1 showed increased expression of mitophagy genes. Our findings suggest that reduction of mitochondria-retaining RBCs may provide a new therapeutic approach to preventing excessive ROS in SCD.
Collapse
Affiliation(s)
- Ramasamy Jagadeeswaran
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Benjamin A Vazquez
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Muthusamy Thiruppathi
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Balaji B Ganesh
- Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Vinzon Ibanez
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA; Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Shuaiying Cui
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - James D Engel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Alan M Diamond
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert E Molokie
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA; Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Joseph DeSimone
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA; Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Donald Lavelle
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA; Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Angela Rivers
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| |
Collapse
|
42
|
|
43
|
Sripichai O, Fucharoen S. Fetal hemoglobin regulation in β-thalassemia: heterogeneity, modifiers and therapeutic approaches. Expert Rev Hematol 2016; 9:1129-1137. [PMID: 27801605 DOI: 10.1080/17474086.2016.1255142] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Stress erythropoiesis induces fetal hemoglobin (HbF) expression in β-thalassemias, however the level of expression is highly variable. The last decade has seen dramatic advances in our understanding of the molecular regulators of HbF production and the genetic factors associated with HbF levels, leading to the promise of new methods of the clinical induction of HbF. Areas covered: This article will review the heterogeneity and genetic modifiers of HbF and HbF induction therapy in β-thalassemia. Expert commentary: One promising curative β-thalassemia therapy is to induce HbF synthesis in β-thalassemic erythrocytes to therapeutic levels before clinical symptom occurs. Further understanding of HbF level variation and regulation is needed in order to predict the response from HbF-inducing approaches.
Collapse
Affiliation(s)
- Orapan Sripichai
- a Thalassemia Research Center, Institute of Molecular Biosciences , Mahidol University , Nakhonpathom , Thailand
| | - Suthat Fucharoen
- a Thalassemia Research Center, Institute of Molecular Biosciences , Mahidol University , Nakhonpathom , Thailand
| |
Collapse
|
44
|
Telen MJ. Developing new pharmacotherapeutic approaches to treating sickle-cell disease. ACTA ACUST UNITED AC 2016; 12:239-247. [PMID: 28484512 DOI: 10.1111/voxs.12305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Survival for patients with SCD has been prolonged by improvements in supportive care, including vaccinations, antibiotic prophylaxis, and overall medical management, including tra nsfusion. However, there remains only one approved, partially effective drug for sickle cell disease-hydroxyurea (hydroxycarbamide). The world desperately needs better ways of both treating and preventing the recurrent painful vaso-occlusive episodes pathognomonic of sickle cell disease as well as the end-organ damage that still leads inexorably to severely shortened life expectancies throughout the world. Based on accumulating knowledge about how the abnormal red blood cells of sickle cell disease cause the double scourge of acute painful episodes and progressive end-organ damage, both pharmaceutical enterprises and individual investigators are now pursuing multiple new avenues for treating sickle cell disease. As a result, many compounds are in active development, both in preclinical models as well as in phase I, II, and III clinical trials. These agents target many pathophysiologic processes thought to be critical in sickle cell disease, including the chemical and physical behavior of haemoglobin S, cell adhesion, coagulation pathways, platelet activation, inflammatory pathways, and upregulation of haemoglobin F expression. In addition, recent explorations of the genetic variations that predispose to certain types of sickle cell disease-related tissue injury, such as stroke or nephropathy, are expected to lead to identification of drugs targeting the pathways uncovered by such work. Thus, the next five to ten years holds a promise of new treatments for sickle cell disease.
Collapse
Affiliation(s)
- Marilyn J Telen
- Division of Hematology, Department of Medicine, Duke Comprehensive Sickle Cell Center, Duke University, Durham, NC, USA, Box 2615 DUMC, Durham, NC 27710, TEL: +1 919 684 5378, FAX: +1 919 681 7688,
| |
Collapse
|