1
|
Huang YJ, Lim JQ, Hsu JS, Kuo MC, Wang PN, Kao HW, Wu JH, Chen CC, Tsai SF, Ong CK, Shih LY. Next-Generation Integrated Sequencing Identifies Poor Prognostic Factors in Patients with MYD88-Mutated Chronic Lymphocytic Leukemia in Taiwan. Pathobiology 2024:1-13. [PMID: 39357512 DOI: 10.1159/000541709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in the Western countries and is very rare in Asia. METHODS Peripheral blood or bone marrow mononuclear cells obtained at initial diagnosis from 215 patients with CLL were analyzed by using next-generation sequencing to investigate the ethnic differences in genetic abnormalities. RESULTS Whole-genome sequencing and whole-exome sequencing analyses on 30 cases showed that 9 genes, including IGLL5, MYD88, TCHH, DSCAM, AXDND1, BICRA, KMT2D, MYT1L, and RBM43, were more frequently mutated in our Taiwanese cohort compared with those of the Western cohorts. IGLL5, MYD88, and KMT2D genes were further analyzed by targeted sequencing in another 185 CLL patients, unraveling frequencies of 29.3%, 20.9%, and 15.0%, respectively. The most frequent positional mutation of MYD88 was V217F (26/45, 57.8%), followed by L265P (9/45, 20.0%). MYD88 mutations were significantly associated with IGLL5 mutations (p = 0.0004), mutated IGHV (p < 0.0001) and 13q deletion (p = 0.0164). CLL patients with co-occurrence of MYD88 mutations with KMT2D or/and IGLL5 mutations were associated with a significantly inferior survival compared to those with MYD88 mutation alone (not reached vs. 131.8 months, p = 0.007). In multivariate analysis, MYD88 mutation without KMT2D or IGLL5 mutations was an independently favorable predictor. CONCLUSIONS IGLL5, MYD88, and KMT2D mutations were enriched in Taiwanese CLL, and co-occurrence of MYD88 mutations with KMT2D or/and IGLL5 mutations was associated with a poorer prognosis.
Collapse
Affiliation(s)
- Ying-Jung Huang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jing Quan Lim
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- ONCO-ACP, Duke-NUS Medical School, Singapore, Singapore
| | - Jacob Shujui Hsu
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Chung Kuo
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Nan Wang
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Hsiao-Wen Kao
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jin-Hou Wu
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chiu-Chen Chen
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Feng Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Choon Kiat Ong
- Lymphoma Genomic Translational Research Laboratory, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Cao Y, Chen Y, Tao T, Gong Y, Xu C, Cen J, Shen H, Pan J, Chen S, Yao L. Molecular characteristics in Chinese with chronic lymphocytic leukemia by next-generation sequencing: A single-center retrospective analysis. Int J Lab Hematol 2023; 45:908-916. [PMID: 37551448 DOI: 10.1111/ijlh.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION Although the prevalence of Asian chronic lymphocytic leukemia (CLL) patients is not as high as that of Caucasians, there are more atypical CLLs in Asia whose genetic characteristics and their clinical significance are distinct and remain unclear. METHODS A retrospective analysis of 85 CLL samples in our center was conducted from 2019 to 2022. We used next-generation sequencing with a 172 gene panel to explore the multi-gene mutational data and the mutational status of immunoglobulin heavy variable (IGHV) gene. RESULTS MYD88 (20.0%) was the most frequently mutated gene, much higher than in Europe, followed in order by TP53 (18.8%), NOTCH1 (14.1%), IGLL5 (11.8%), and DNMT3A (8.2%). In addition, the incidence of ATM and SF3B1 mutations was relatively lower in our centre compared to Europe. Mutated (M)-IGHV patients were more likely to have a cooccurrence of MYD88 mutation, while complex karyotype and DNMT3A mutation were more common in the unmutated (U)-IGHV group. MYD88 mutated CLL was characterized by prevalence in young males in high-risk staging, with isolated 13q deletion and concomitant mutation of IGLL5. CLL patients with MYD88 and TP53 mutation showed an unfavorable prognosis. CONCLUSION These results would be valuable in helping to understand the characteristics and significance of cytogenetic genetics in Chinese patients with CLL.
Collapse
Affiliation(s)
- Yanglin Cao
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yan Chen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tingting Tao
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yanlei Gong
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chao Xu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jiannong Cen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hongjie Shen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jinlan Pan
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Suning Chen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Li Yao
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, NHC Key Laboratory of Thrombosis and Hemostasis, the First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Ayoub G, Sinan H, Kourie HR, Kattan J, Nasr F, Karak FE, Wakim J, Ghosn M, Chahine G, Farra C, Chebly A. Genetic markers of chronic lymphocytic leukemia: a retrospective study of 312 patients from a reference center in Lebanon. Future Oncol 2023; 19:1991-2002. [PMID: 37795707 DOI: 10.2217/fon-2023-0535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Aim: Chronic lymphocytic leukemia (CLL) is a highly heterogenous hemopathy. Genetic stratification of CLL patients has important prognostic and therapeutic values - mainly immunoglobulin heavy chain variable region gene (IGHV) mutational status and the presence of cytogenetic abnormalities. The genetics of CLL in Lebanon is scarcely described in the literature. Patients & methods: In this work, we studied the genetic biomarkers of 312 Lebanese CLL patients. Results: Prominent IGHV genes were IGHV4-34, IGHV1-69 and IGHV3-30; and CLL #1 and #5 presented major subsets. Some similarities as well as major differences were highlighted when comparing our data with previously published data. Conclusion: The distribution of IGHV alleles in our series differed from previously described distributions, suggesting involvement of antigenic selection and regional variables in CLL pathogenesis.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Retrospective Studies
- Genetic Markers
- Genes, Immunoglobulin Heavy Chain/genetics
- Lebanon/epidemiology
- Immunoglobulin Variable Region/genetics
- Prognosis
- Mutation
Collapse
Affiliation(s)
- Georges Ayoub
- Faculty of Medicine, Saint Joseph University of Beirut, Lebanon
| | - Hassan Sinan
- Faculty of Medicine, American University of Beirut, Lebanon
| | - Hampig Raphael Kourie
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Beirut, Lebanon
| | - Joseph Kattan
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Beirut, Lebanon
| | - Fadi Nasr
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Beirut, Lebanon
| | - Fadi El Karak
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Beirut, Lebanon
| | - Jad Wakim
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Beirut, Lebanon
| | - Marwan Ghosn
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Beirut, Lebanon
| | - Georges Chahine
- Department of Hematology-Oncology, Hotel-Dieu de France University Hospital, Beirut, Lebanon
| | - Chantal Farra
- Medical Genetics Unit, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon, till march 2022
| | - Alain Chebly
- Jacques Loiselet Center for Medical Genetics & Genomics (CGGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
- Higher Institute of Public Health, Saint Joseph University, Beirut, Lebanon
| |
Collapse
|
4
|
Wan Mohamad Zamri WN, Mohd Yunus N, Abdul Aziz AA, Zulkipli NN, Sulong S. Perspectives on the Application of Cytogenomic Approaches in Chronic Lymphocytic Leukaemia. Diagnostics (Basel) 2023; 13:964. [PMID: 36900108 PMCID: PMC10001075 DOI: 10.3390/diagnostics13050964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Chronic lymphocytic leukaemia (CLL) is a haematological malignancy characterised by the accumulation of monoclonal mature B lymphocytes (positive for CD5+ and CD23+) in peripheral blood, bone marrow, and lymph nodes. Although CLL is reported to be rare in Asian countries compared to Western countries, the disease course is more aggressive in Asian countries than in their Western counterparts. It has been postulated that this is due to genetic variants between populations. Various cytogenomic methods, either of the traditional type (conventional cytogenetics or fluorescence in situ hybridisation (FISH)) or using more advanced technology such as DNA microarrays, next generation sequencing (NGS), or genome wide association studies (GWAS), were used to detect chromosomal aberrations in CLL. Up until now, conventional cytogenetic analysis remained the gold standard in diagnosing chromosomal abnormality in haematological malignancy including CLL, even though it is tedious and time-consuming. In concordance with technological advancement, DNA microarrays are gaining popularity among clinicians as they are faster and better able to accurately diagnose the presence of chromosomal abnormalities. However, every technology has challenges to overcome. In this review, CLL and its genetic abnormalities will be discussed, as well as the application of microarray technology as a diagnostic platform.
Collapse
Affiliation(s)
| | - Nazihah Mohd Yunus
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Ahmad Aizat Abdul Aziz
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| | - Ninie Nadia Zulkipli
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Terengganu 21300, Malaysia
| | - Sarina Sulong
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
5
|
Genetic and Clinical Characteristics of Korean Chronic Lymphocytic Leukemia Patients with High Frequencies of MYD88 Mutations. Int J Mol Sci 2023; 24:ijms24043177. [PMID: 36834590 PMCID: PMC9959581 DOI: 10.3390/ijms24043177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in Western countries. However, CLL is relatively rare in Asia; its genetic features are rarely studied. Here, we aimed to genetically characterize Korean CLL patients and to elucidate the genetic and clinical associations based on data obtained from 113 patients at a single Korean institute. We used next-generation sequencing to explore the multi-gene mutational data and immunoglobulin heavy chain variable gene clonality with somatic hypermutation (SHM). MYD88 (28.3%), including L265P (11.5%) and V217F (13.3%), was the most frequently mutated gene, followed by KMT2D (6.2%), NOTCH1 (5.3%), SF3B1 (5.3%), and TP53 (4.4%). MYD88-mutated CLL was characterized by SHM and atypical immunophenotype with fewer cytogenetic abnormalities. The 5-year time to treatment (TTT) of the overall cohort was 49.8% ± 8.2% (mean ± standard deviation) and the 5-year overall survival was 86.2% ± 5.8%. Patients with SHM, isolated del(13q), TP53-wild type, and NOTCH1-wild type showed better results than those without these conditions. In the subgroup analyses, patients with SHM and L265P presented shorter TTT than patients with SHM but not L265P. In contrast, V217F was associated with a higher SHM percentage and showed a favorable prognosis. Our study revealed the distinct characteristics of Korean CLL patients with high frequencies of MYD88 mutations and their clinical relevance.
Collapse
|
6
|
Wang R, Wang W, Liu X, Wang H, Zhang B, Li S, Zhang H, Yang J, Zhao J, He Q, Zhang J, Liu D, Hao L. Treatment for a B-cell acute lymphoblastic leukemia patient carrying a rare TP53 c.C275T mutation: A case report. Front Oncol 2023; 12:1018250. [PMID: 36798689 PMCID: PMC9928200 DOI: 10.3389/fonc.2022.1018250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/17/2022] [Indexed: 02/03/2023] Open
Abstract
TP53 mutations are associated with poor prognosis in the vast majority of cancers. In this study, we present a pediatric B-cell acute lymphoblastic leukemia (B-ALL) patient carrying a rare TP53 c.C275T mutation. This extremely rare mutation affects an amino acid residue located between the TAD domain and the DNA-binding domain of p53. The patient was resistant to most conventional chemotherapy regimens and remained minimal residual disease (MRD)-positive after five rounds of such regimens. We tested the sensitivity of the patient's leukemic cells to 21 anti-cancer drugs by performing in vitro drug sensitivity assays. The results showed that bortezomib had a very strong killing effect on the patient's leukemic cells. Therefore, we subsequently treated the patient with bortezomib combined with vindesine, cytarabine, and fludarabine. After one course of treatment, the patient became MRD-negative, and there was no recurrence during a 9-month follow-up. In conclusion, our report suggests that the TP53 c.C275T mutation is associated with poor prognosis in B-ALL. Fortunately, bortezomib combined with chemotherapy could achieve a better therapeutic effect than conventional regimens in this type of ALL.
Collapse
Affiliation(s)
- Runan Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Wenliang Wang
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Xuan Liu
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Huan Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Bin Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Shuang Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Haining Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Jiawei Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Jishun Zhao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Qiuying He
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Jihong Zhang
- Hematology Laboratory, Shengjing Hospital of China Medical University, Shengyang, Liangning, China
| | - Danping Liu
- Precision Targeted Therapy Discovery Center, Institute of Technology Innovation, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Liangchun Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shengyang, Liangning, China,*Correspondence: Liangchun Hao,
| |
Collapse
|
7
|
Henning AN, Budeebazar M, Boldbaatar D, Yagaanbuyant D, Duger D, Batsukh K, Zhou H, Baumann R, Allison RD, Alter HJ, Dashdorj N, De Giorgi V. Peripheral B cells from patients with hepatitis C virus-associated lymphoma exhibit clonal expansion and an anergic-like transcriptional profile. iScience 2022; 26:105801. [PMID: 36619973 PMCID: PMC9813790 DOI: 10.1016/j.isci.2022.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/27/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic HCV infection remains a global health concern due to its involvement in hepatic and extrahepatic diseases, including B cell non-Hodgkin lymphoma (BNHL). Clinical and epidemiological evidence support a causal role for HCV in BNHL development, although mechanistic insight is lacking. We performed RNA-sequencing on peripheral B cells from patients with HCV alone, BNHL alone, and HCV-associated BNHL to identify unique and shared transcriptional profiles associated with transformation. In patients with HCV-associated BNHL, we observed the enrichment of an anergic-like gene signature and evidence of clonal expansion that was correlated with the expression of epigenetic regulatory genes. Our data support a role for viral-mediated clonal expansion of anergic-like B cells in HCV-associated BNHL development and suggest epigenetic dysregulation as a potential mechanism driving expansion. We propose epigenetic mechanisms may be involved in both HCV-associated lymphoma and regulation of B cell anergy, representing an attractive target for clinical interventions.
Collapse
Affiliation(s)
- Amanda N. Henning
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA,Corresponding author
| | - Myagmarjav Budeebazar
- Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia,Liver Center, Ulaanbaatar 14230, Mongolia
| | | | | | - Davaadorj Duger
- Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia
| | - Khishigjargal Batsukh
- Center of Hematology and Bone Marrow Transplantation, First Central Hospital of Mongolia, Ulaanbaatar 14210, Mongolia
| | - Huizhi Zhou
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan Baumann
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert D. Allison
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Harvey J. Alter
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naranjargal Dashdorj
- Liver Center, Ulaanbaatar 14230, Mongolia,Onom Foundation, Ulaanbaatar 17011, Mongolia
| | - Valeria De Giorgi
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA,Corresponding author
| |
Collapse
|
8
|
Distinct Immunogenetic Profiles of Chronic Lymphocytic Leukemia in Asia: A Taiwan Cooperative Oncology Group Registry Study. Hemasphere 2022; 6:e803. [PMCID: PMC9704955 DOI: 10.1097/hs9.0000000000000803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022] Open
|
9
|
Wu JL, Wu HY, Wu SJ, Tsai HY, Weng SH, Lin KT, Lin LI, Yao CY, Zamanova M, Lee YY, Angata T, Tien HF, Chen YJ, Lin KI. Phosphoproteomics Reveals the Role of Constitutive KAP1 Phosphorylation by B-Cell Receptor Signaling in Chronic Lymphocytic Leukemia. Mol Cancer Res 2022; 20:1222-1232. [PMID: 35533307 DOI: 10.1158/1541-7786.mcr-21-0722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/02/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
Application of B-cell receptor (BCR) pathway inhibitor ibrutinib for chronic lymphocytic leukemia (CLL) is a major breakthrough, yet the downstream effects following inhibition of BCR signaling and during relapse await further clarification. By comparative phosphoproteomic profiling of B cells from patients with CLL and healthy donors, as well as CLL B cells collected at multiple time points during the course of ibrutinib treatment, we provided the landscape of dysregulated phosphoproteome in CLL and its dynamic alterations associated with ibrutinib treatment. Particularly, differential phosphorylation events associated with several signaling pathways, including BCR pathway, were enriched in patient CLL cells. A constitutively elevated phosphorylation level of KAP1 at serine 473 (S473) was found in the majority of CLL samples prior to treatment. Further verification showed that BCR activation promoted KAP1 S473 phosphorylation, whereas ibrutinib treatment abolished it. Depletion of KAP1 in primary CLL cells decelerated cell cycle progression and ectopic expression of a KAP1 S473 phospho-mimicking mutant accelerated G2/M cell cycle transition of CLL cells. Moreover, temporal phosphoproteomic profiles using a series of CLL cells isolated from one patient during the ibrutinib treatment revealed the dynamic changes of several molecules associated with BCR signaling in the ibrutinib responsive and recurrent stages. Implications: This phosphoproteomic analysis and functional validation illuminated the phosphorylation of KAP1 at S473 as an important downstream BCR signaling event and a potential indicator for the success of ibrutinib treatment in CLL.
Collapse
Affiliation(s)
| | - Hsin-Yi Wu
- National Taiwan University, Taipei, Taipei, Taiwan
| | - Shang-Ju Wu
- National Taiwan University Hospital, Taipei city, Taiwan
| | | | | | | | | | - Chi-Yuan Yao
- National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | - Hwei-Fang Tien
- National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | | | | |
Collapse
|
10
|
Cabrera ME, Marinov N, Roa M, Castillo JJ, Matutes E. Epidemiology of chronic lymphocytic leukemia in Chilean and Amerindian population in Chile. Leuk Lymphoma 2021; 63:1137-1143. [PMID: 34886754 DOI: 10.1080/10428194.2021.2012663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The study aim was to analyze incidence and presentation features of chronic lymphocytic leukemia (CLL) in Chile, in Amerindian population and in non-Native. Between 2012 and 2019, 912 patients were diagnosed, and 13 (1.4%) were Amerindian. The estimated incidence in Chilean population was 1.17/100,000 person per year, while in Amerindian, 0.09/100,000 person per year. Median age was 73 years. At diagnosis, 48, 27, and 25%, had low (0), intermediate (I/II) and high-risk (III/IV) disease on Rai classification. Diagnostic immunophenotypic Matutes score was ≥4 in 90%. Median follow-up was 37 months (range 2-87). 5-year OS was 56%, with median overall survival (OS) not reached. It was worse in men, ≥65 years, high-risk and those with increased prolymphocytes (CLL/PL). This study shows low incidence and worse OS in Chilean CLL patients, compared to those from European countries, despite similar clinical features. It also demonstrates that CLL is very uncommon in Amerindian population.
Collapse
Affiliation(s)
- María Elena Cabrera
- Medicine Service, Hematology Section, Hospital del Salvador, Universidad de Chile, Santiago de Chile, Chile
| | - Neda Marinov
- Hematologia, Hospital Del Salvador, Santiago, Chile
| | - Macarena Roa
- Hematologia, Hospital Del Salvador, Santiago, Chile
| | | | - Estella Matutes
- Haematopathology, Hospital Clinic Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Genome-Wide Association Study of Lithium-Induced Dry Mouth in Bipolar I Disorder. J Pers Med 2021; 11:jpm11121265. [PMID: 34945737 PMCID: PMC8706003 DOI: 10.3390/jpm11121265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 11/17/2022] Open
Abstract
Dry mouth is a rather common unpleasant adverse drug reaction (ADR) to lithium treatment in bipolar disorders that often lead to poor adherence or early dropout. The aim of this study was to identify the genetic variants of dry mouth associated with lithium treatment in patients with bipolar I (BPI) disorder. In total, 1242 BPI patients who had ever received lithium treatment were identified by the Taiwan Bipolar Consortium for this study. The proportions of patients who experienced impaired drug compliance during lithium medication were comparable between those only with dry mouth and those with any other ADR (86% and 93%, respectively). Dry mouth appeared to be the most prevalent (47.3%) ADR induced by lithium treatment. From the study patients, 921 were included in a genome-wide association study (GWAS), and replication was conducted in the remaining 321 patients. The SNP rs10135918, located in the immunoglobulin heavy chain locus (IGH), showed the strongest associations in the GWAS (p = 2.12 × 10−37) and replication groups (p = 6.36 × 10−13) (dominant model) for dry mouth with a sensitivity of 84.9% in predicting dry mouth induced by lithium. Our results may be translated into clinical recommendation to help identify at-risk individuals for early identification and management of dry mouth, which will improve medication adherence.
Collapse
|
12
|
Yi S, Yan Y, Jin M, Xiong W, Yu Z, Yu Y, Cui R, Wang J, Wang Y, Lin Y, Jia Y, Zhang D, Wang T, Lv R, Liu W, Sui W, Huang W, Fu M, Xu Y, Deng S, An G, Zou D, Li Z, Shi J, Xiao Z, Wang J, Cheng T, Gale RP, Wang L, Qiu L. High incidence of MYD88 and KMT2D mutations in Chinese with chronic lymphocytic leukemia. Leukemia 2021; 35:2412-2415. [PMID: 33483618 PMCID: PMC8295410 DOI: 10.1038/s41375-021-01124-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/29/2020] [Accepted: 01/07/2021] [Indexed: 01/29/2023]
Affiliation(s)
- Shuhua Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Yuting Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Meiling Jin
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, California, USA, 91016
| | - Wenjie Xiong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Ying Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Rui Cui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020,Department of Hematology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Jun Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Yi Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Yani Lin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Yujiao Jia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Donglei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Tingyu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Rui Lv
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Wei Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Mingwei Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Shuhui Deng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Dehui Zou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Zengjun Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| | - Robert Peter Gale
- Centre for Haematology Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Lili Wang
- Department of Systems Biology, Beckman Research Institute, City of Hope National Comprehensive Cancer Center, Monrovia, California, USA, 91016
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Blood Diseases Hospital & Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China, 300020
| |
Collapse
|
13
|
Biderman BV, Likold EB, Smirnova SY, Nikitin EA, Koroleva DA, Zvonkov EE, Al-Radi LS, Julhakyan HL, Sudarikov AB. Repertoire of Rearranged Immunoglobulin Heavy Chain Genes in Russian Patients With B-Cell Lymphoproliferative Diseases. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2021; 21:e938-e945. [PMID: 34384734 DOI: 10.1016/j.clml.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Immunoglobulin heavy chain variable region (IGHV) repertoire narrowing could be an evidence for the involvement of a limited set of antigens in the development of lymphomas. For chronic lymphocytic leukemia (CLL) the existence of more than 200 subgroups of tumor IGHV antigen-binding sites, so called "stereotypical" antigen receptors (SAR) has been shown. For others lymphomas the possibility of SARs is also suggested. The aim of this study is to compare the tumor IGHVs and possible SARs in various B-cell malignancies in Russia and other countries. MATERIALS AND METHODS The study included samples of 1800 CLL patients, 52 patients with mantle cell lymphoma, 48 patients with hairy cell lymphoma and 37 patients with splenic marginal cell lymphoma. The nucleotide sequences of the IGHV genes were determined according to ERIC protocol. RESULTS In CLL most common IGHV genes were IGHV1-69, IGHV1-2, IGHV3-30 and IGHV4-34. The most common SARs were CLL#1, CLL#6, CLL#2, CLL#3. In MCL the most common genes were IGHV4-34, IGHV3-21, IGHV3-23. In 5 MCL patients CDR3 sequences were identified matching definitions of a stereotyped. In the half of SMZL patients was identified gene IGHV1-2. Other IGHV genes were much less common. Two pairs of SMZL patients have motives similar to each other. In HCL IGHV repertoire was the most variable, no trends for antigen receptor stereotypy were observed. It was found that SARs are highly disease-specific both at the level of nucleotide and amino acid sequences. CONCLUSION Our results suggest that antigens crucial for the pathogenesis of B-cell malignancies could be disease-specific. Further studies on extended samples of non-CLL patients concerning the role of SARs in pathogenesis of these diseases may also contribute to the development of new diagnostic and prognostic markers.
Collapse
|
14
|
Zou YX, Tang HN, Zhang J, Tang XL, Qin SC, Xia Y, Zhu HY, Qiao C, Wang L, Fan L, Xu W, Li JY, Miao Y. Low prevalence and independent prognostic role of del(11q) in Chinese patients with chronic lymphocytic leukemia. Transl Oncol 2021; 14:101176. [PMID: 34273750 PMCID: PMC8287238 DOI: 10.1016/j.tranon.2021.101176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/04/2021] [Accepted: 07/08/2021] [Indexed: 10/31/2022] Open
Abstract
The 11q deletion (del(11q)) is a conventional cytogenetic aberration observed in chronic lymphocytic leukemia (CLL) patients. However, the prevalence and the prognostic value of del(11q) are still controversial. In this research, we retrospectively explored the prevalence, association, and prognostic significance of del(11q) in 352 untreated and 99 relapsed/refractory Chinese CLL patients. Totally 11.4% of untreated and 19.2% of relapsed/refractory patients harbored del(11q). Del(11q) was more common in patients with β2-microglobulin > 3.5 mg/L, positive CD38, positive zeta-chain associated protein kinase 70, unmutated immunoglobulin heavy variable-region gene and ataxia telangiectasia mutated mutation. Kaplan-Meier method and univariate Cox regression indicated that del(11q) was an independent prognostic factor for overall survival (OS). Based on the results of univariate Cox regression analysis, two nomograms that included del(11q) were established to predict survival. Desirable area under curve of receiver operating characteristic curves was obtained in the training and validation cohorts. In addition, the calibration curves for the probability of survival showed good agreement between the prediction by nomogram and actual observation. In summary, the prevalence of del(11q) is relatively low in our cohort and del(11q) is an unfavorable prognostic factor for untreated CLL patients. Besides, these two nomograms could be used to accurately predict the prognosis of untreated CLL patients.
Collapse
Affiliation(s)
- Yi-Xin Zou
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China; Pukou CLL Center, Nanjing 210000, China
| | - Han-Ning Tang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China; Pukou CLL Center, Nanjing 210000, China
| | - Jing Zhang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China; Pukou CLL Center, Nanjing 210000, China
| | - Xiao-Lu Tang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China; Pukou CLL Center, Nanjing 210000, China
| | - Shu-Chao Qin
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China; Pukou CLL Center, Nanjing 210000, China
| | - Yi Xia
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China; Pukou CLL Center, Nanjing 210000, China
| | - Hua-Yuan Zhu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China; Pukou CLL Center, Nanjing 210000, China
| | - Chun Qiao
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China; Pukou CLL Center, Nanjing 210000, China
| | - Li Wang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China; Pukou CLL Center, Nanjing 210000, China
| | - Lei Fan
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China; Pukou CLL Center, Nanjing 210000, China
| | - Wei Xu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China; Pukou CLL Center, Nanjing 210000, China
| | - Jian-Yong Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China; Pukou CLL Center, Nanjing 210000, China.
| | - Yi Miao
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China; Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China; Pukou CLL Center, Nanjing 210000, China.
| |
Collapse
|
15
|
Phase 1/2 study of venetoclax, a BCL-2 inhibitor, in Japanese patients with relapsed or refractory chronic lymphocytic leukemia and small lymphocytic lymphoma. Int J Hematol 2020; 113:370-380. [PMID: 33094474 DOI: 10.1007/s12185-020-03024-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Patients with relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL) have limited treatment options. Venetoclax is a potent BCL-2 inhibitor that induces apoptosis in CLL cells. This open-label, phase 1/2 study (NCT02265731) evaluated the safety, pharmacokinetics, and efficacy of venetoclax in Japanese patients with R/R CLL/SLL. Patients enrolled in phase 1 received 400 mg/day venetoclax monotherapy. Patients enrolled in phase 2 received 400 mg/day venetoclax, plus rituximab. Venetoclax was administered with a weekly stepwise ramp-up in doses. In phase 2, efficacy was evaluated by objective response rate (ORR). Twelve patients were enrolled, six in each arm. The most common grade ≥ 3 adverse events were neutropenia (83%), lymphopenia (67%), leukopenia (33%), and thrombocytopenia (17%). Patients receiving venetoclax monotherapy achieved an ORR of 100%, including a complete remission (CR) rate of 17%. Patients receiving combination therapy had an ORR of 67% and a CR rate of 50%. The venetoclax pharmacokinetics profile in Japanese patients was similar to that of Western patients. Venetoclax 400 mg/day monotherapy or in combination with rituximab was well-tolerated and induced promising responses in Japanese patients with R/R CLL/SLL. Although patient numbers were small, the safety profile was largely consistent with other Western studies. Clinical trial registration: clinicaltrials.gov; NCT02265731.
Collapse
|
16
|
de Groen RAL, Schrader AMR, Kersten MJ, Pals ST, Vermaat JSP. MYD88 in the driver's seat of B-cell lymphomagenesis: from molecular mechanisms to clinical implications. Haematologica 2019; 104:2337-2348. [PMID: 31699794 PMCID: PMC6959184 DOI: 10.3324/haematol.2019.227272] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
More than 50 subtypes of B-cell non-Hodgkin lymphoma (B-NHL) are recognized in the most recent World Health Organization classification of 2016. The current treatment paradigm, however, is largely based on 'one-size-fits-all' immune-chemotherapy. Unfortunately, this therapeutic strategy is inadequate for a significant number of patients. As such, there is an indisputable need for novel, preferably targeted, therapies based on a biologically driven classification and risk stratification. Sequencing studies identified mutations in the MYD88 gene as an important oncogenic driver in B-cell lymphomas. MYD88 mutations constitutively activate NF-κB and its associated signaling pathways, thereby promoting B-cell proliferation and survival. High frequencies of the hotspot MYD88(L265P) mutation are observed in extranodal diffuse large B-cell lymphoma and Waldenström macroglobulinemia, thereby demonstrating this mutation's potential as a disease marker. In addition, the presence of mutant MYD88 predicts survival outcome in B-NHL subtypes and it provides a therapeutic target. Early clinical trials targeting MYD88 have shown encouraging results in relapsed/refractory B-NHL. Patients with these disorders can benefit from analysis for the MYD88 hotspot mutation in liquid biopsies, as a minimally invasive method to demonstrate treatment response or resistance. Given these clear clinical implications and the crucial role of MYD88 in lymphomagenesis, we expect that analysis of this gene will increasingly be used in routine clinical practice, not only as a diagnostic classifier, but also as a prognostic and therapeutic biomarker directing precision medicine. This review focuses on the pivotal mechanistic role of mutated MYD88 and its clinical implications in B-NHL.
Collapse
Affiliation(s)
| | | | - Marie José Kersten
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam.,Lymphoma and Myeloma Center Amsterdam-LYMMCARE, Amsterdam.,Cancer Center Amsterdam, Amsterdam
| | - Steven T Pals
- Department of Hematology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam.,Cancer Center Amsterdam, Amsterdam.,Department of Pathology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | |
Collapse
|
17
|
Huang YJ, Kuo MC, Chang H, Wang PN, Wu JH, Huang YM, Ma MC, Tang TC, Kuo CY, Shih LY. Distinct immunoglobulin heavy chain variable region gene repertoire and lower frequency of del(11q) in Taiwanese patients with chronic lymphocytic leukaemia. Br J Haematol 2019; 187:82-92. [PMID: 31230372 PMCID: PMC6790605 DOI: 10.1111/bjh.16051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/29/2019] [Indexed: 11/28/2022]
Abstract
Chronic lymphocytic leukaemia (CLL) is the most common leukaemia in Western countries but very rare in Asia. Peripheral blood or bone marrow mononuclear cells obtained at initial diagnosis from 194 patients with CLL were analysed to determine the ethnic difference in genetic abnormalities. Mutated IGHV was detected in 71·2% of Taiwanese CLL and IGHV3‐23 was the most frequently used gene. Stereotyped BCR was present in 18·3% with subset 8 being the most frequent. All cases with subset 8 belonged to IGHV 4‐39 and were exclusively associated with un‐mutated IGHV and poor outcome. Mutation frequencies of SF3B1 (9·7%), NOTCH1 (8·6%), BIRC3 (1·1%), ATM (16·9%) or TP53 (8·1%), and frequencies of cytogenetic abnormalities including trisomy 12 (18·6%), del(17p) (10·4%), del(13q) (43·7%) and IGH translocation (10·1%) were comparable to those reported from Western countries, except del(11q) (6·9%) which was lower in our patients. Patients with un‐mutated IGHV, subset 8, disrupted TP53, trisomy 12, and SF3B1 mutations had a worse outcome compared to patients without these mutations. In conclusion, IGHV3‐23 usage, stereotyped subset 8 and lower frequency of del(11q) show an ethnicity‐dependent association in Taiwanese CLL patients.
Collapse
Affiliation(s)
- Ying-Jung Huang
- Division of Haematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ming-Chung Kuo
- Division of Haematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Chang Gung University, Taoyuan, Taiwan
| | - Hung Chang
- Division of Haematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Chang Gung University, Taoyuan, Taiwan
| | - Po-Nan Wang
- Division of Haematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Jin-Hou Wu
- Division of Haematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yen-Min Huang
- Division of Haematology-Oncology, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| | - Ming-Chun Ma
- Division of Haematology-Oncology, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan
| | - Tzung-Chih Tang
- Division of Haematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Ching-Yuan Kuo
- Division of Haematology-Oncology, Chang Gung Memorial Hospital at Kaohsiung, Kaohsiung, Taiwan
| | - Lee-Yung Shih
- Division of Haematology-Oncology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.,Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
18
|
Miao Y, Zou YX, Gu DL, Zhu HC, Zhu HY, Wang L, Liang JH, Xia Y, Wu JZ, Shao CL, Fan L, Zhang Z, Xu W, Li JY. SF3B1 mutation predicts unfavorable treatment-free survival in Chinese chronic lymphocytic leukemia patients. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:176. [PMID: 31168457 DOI: 10.21037/atm.2019.03.63] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Splicing factor 3b subunit 1 (SF3B1), a splicing factor modulating RNA alternative splicing, is frequently mutated in multiple hematological malignancies including myelodysplastic syndromes and chronic lymphocytic leukemia (CLL). The clinical impact of SF3B1 mutation on CLL remains controversial especially for patients of Asian descent. Methods We retrospectively analyzed the frequency of SF3B1 mutation by Sanger sequencing in 399 newly diagnosed Chinese CLL patients. Results SF3B1 mutation was detected in 5.5% (22/399) of the studied cohort with 59.1% of them being c.A2098G (p.K700E). SF3B1 mutation was common in patients with unmutated immunoglobulin heavy chain variable region gene, positive CD38 and positive ZAP-70. Survival analysis showed that SF3B1 mutation was associated with short treatment-free survival (TFS), but not overall survival (OS). We then developed 2 new risk models, named CLL-IPI-S and CLL-PI, according to the SF3B1 mutation status and CLL-international prognostic index (CLL-IPI); CLL-PI showed greater power to predict TFS than CLL-IPI in Chinese CLL patients. Conclusions Our data suggest a low incidence and adverse clinical significance of SF3B1 mutation in newly diagnosed Chinese CLL patients.
Collapse
Affiliation(s)
- Yi Miao
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Yi-Xin Zou
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Dan-Ling Gu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Hong-Cheng Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Hua-Yuan Zhu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Li Wang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jin-Hua Liang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Yi Xia
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jia-Zhu Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Chun-Lin Shao
- Institute of Radiation Medicine, Fudan University, Shanghai 200032, China
| | - Lei Fan
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Wei Xu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| | - Jian-Yong Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing 210029, China
| |
Collapse
|
19
|
Zou Y, Fan L, Xia Y, Miao Y, Wu W, Cao L, Wu J, Zhu H, Qiao C, Wang L, Xu W, Li J. NOTCH1 mutation and its prognostic significance in Chinese chronic lymphocytic leukemia: a retrospective study of 317 cases. Cancer Med 2018; 7:1689-1696. [PMID: 29573199 PMCID: PMC5943423 DOI: 10.1002/cam4.1396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/20/2018] [Accepted: 01/28/2018] [Indexed: 12/14/2022] Open
Abstract
The proto-oncogene NOTCH1 is frequently mutated in around 10% of patients with chronic lymphocytic leukemia (CLL). This study analyzed NOTCH1 mutation status of 317 Chinese patients with CLL by Sanger sequencing. The frequencies of NOTCH1 mutation in the PEST (proline (P), glutamic acid (E), serine (S), threonine (T)-rich protein sequence) domain and the 3' untranslated regions (UTR) were 8.2% and 0.9%, with the most frequent mutation being c.7541_7542delCT and c.*371A>G, respectively. Clinical and biological associations were determined including NOTCH1 mutations with advanced stage (Binet stage, P = 0.010), unmutated immunoglobulin heavy-chain variable region (IGHV) gene (P < 0.001) and trisomy 12 (+12) (P = 0.014). NOTCH1-mutated patients had lower CD20 expression intensity than NOTCH1-unmutated patients (P = 0.029). In addition, NOTCH1-mutated patients had shorter overall survival (OS) (P = 0.002) and treatment-free survival (TFS) (P = 0.002) than NOTCH1-unmutated patients, especially for patients with NOTCH1 c.7541_7542delCT and/or c.*371A>G mutations. Patients with both mutated NOTCH1 and unmutated IGHV had shorter OS (P < 0.001) and TFS (P < 0.001) than those with unmutated NOTCH1 or mutated IGHV. These data provide a comprehensive view of the clinical relevance and prognostic impact of NOTCH1 mutations on Chinese patients with CLL.
Collapse
Affiliation(s)
- Yixin Zou
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Lei Fan
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Yi Xia
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Yi Miao
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Lei Cao
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jiazhu Wu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Huayuan Zhu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Chun Qiao
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Li Wang
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Xu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Jianyong Li
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing, 210029, China.,Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| |
Collapse
|