1
|
Zhang CW, Wang YN, Ge XL. Lenalidomide use in multiple myeloma (Review). Mol Clin Oncol 2024; 20:7. [PMID: 38125742 PMCID: PMC10729307 DOI: 10.3892/mco.2023.2705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Lenalidomide is a second-generation new immunomodulatory medication used to treat multiple myeloma (MM). Its mechanism of action involves affecting the expression of vascular endothelial growth factor, interleukin-6, cytochrome c, caspase-8, as well as other factors including immunological modulation and the direct killing of cells, among others, rendering it a fundamental medication, useful for the treatment of MM. Combining lenalidomide with other medications such dexamethasone, bortezomib, ixazomib, carfilzomib and daratumumab can markedly alleviate MM. When autologous-hematopoietic stem cell transplantation (ASCT) cannot be utilized to treat newly diagnosed individuals with MM (NDMM), monotherapy maintenance following lenalidomide and dexamethasone may be employed. Following ASCT, single-agent maintenance with lenalidomide can be performed as an additional treatment. The combination of bortezomib and lenalidomide has been demonstrated to be associated with favorable response rates, tolerable toxicity, and therapeutic benefits although caution is warranted to prevent the onset of peripheral neuropathy with its use. A new-generation oral drug with an excellent safety profile, ixazomib, is more practical and therapeutically applicable in relapsed refractory MM. However, the frequent occurrence of cardiovascular events, hematocrit, and infections with it require flexible adjustment in its clinical application. Carfilzomib produces a rapid and profound response in patients with NDMM eligible for transplantation, but its cardiovascular side effects need to be closely monitored. The primary aim of the present review was to examine the pharmacological properties and pharmacokinetics of lenalidomide, as well as the efficacy and safety of lenalidomide-based treatments with reference to data from clinical trials and real-world studies.
Collapse
Affiliation(s)
- Chao-Wei Zhang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Ya-Nan Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Xue-Ling Ge
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
2
|
Steinebach C, Bricelj A, Murgai A, Sosič I, Bischof L, Ng YLD, Heim C, Maiwald S, Proj M, Voget R, Feller F, Košmrlj J, Sapozhnikova V, Schmidt A, Zuleeg MR, Lemnitzer P, Mertins P, Hansen FK, Gütschow M, Krönke J, Hartmann MD. Leveraging Ligand Affinity and Properties: Discovery of Novel Benzamide-Type Cereblon Binders for the Design of PROTACs. J Med Chem 2023; 66:14513-14543. [PMID: 37902300 PMCID: PMC10641816 DOI: 10.1021/acs.jmedchem.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/11/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023]
Abstract
Immunomodulatory imide drugs (IMiDs) such as thalidomide, pomalidomide, and lenalidomide are the most common cereblon (CRBN) recruiters in proteolysis-targeting chimera (PROTAC) design. However, these CRBN ligands induce the degradation of IMiD neosubstrates and are inherently unstable, degrading hydrolytically under moderate conditions. In this work, we simultaneously optimized physiochemical properties, stability, on-target affinity, and off-target neosubstrate modulation features to develop novel nonphthalimide CRBN binders. These efforts led to the discovery of conformationally locked benzamide-type derivatives that replicate the interactions of the natural CRBN degron, exhibit enhanced chemical stability, and display a favorable selectivity profile in terms of neosubstrate recruitment. The utility of the most potent ligands was demonstrated by their transformation into potent degraders of BRD4 and HDAC6 that outperform previously described reference PROTACs. Together with their significantly decreased neomorphic ligase activity on IKZF1/3 and SALL4, these ligands provide opportunities for the design of highly selective and potent chemically inert proximity-inducing compounds.
Collapse
Affiliation(s)
| | - Aleša Bricelj
- Faculty
of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Arunima Murgai
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Izidor Sosič
- Faculty
of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Luca Bischof
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
| | - Yuen Lam Dora Ng
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Christopher Heim
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
| | - Samuel Maiwald
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
| | - Matic Proj
- Faculty
of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Rabea Voget
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Felix Feller
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, SI 1000 Ljubljana, Slovenia
| | - Valeriia Sapozhnikova
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
- Max
Delbrück
Center for Molecular Medicine, D-13125 Berlin, Germany
- German
Cancer Consortium (DKTK), Partner Site Berlin, DKFZ, D-69120 Heidelberg, Germany
| | - Annika Schmidt
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Maximilian Rudolf Zuleeg
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Patricia Lemnitzer
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
| | - Philipp Mertins
- Max
Delbrück
Center for Molecular Medicine, D-13125 Berlin, Germany
- Berlin
Institute of Health, D-10178 Berlin, Germany
| | - Finn K. Hansen
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical
Institute, University of Bonn, D-53121 Bonn, Germany
| | - Jan Krönke
- Department
of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin
Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, D-12203 Berlin, Germany
- German
Cancer Consortium (DKTK), Partner Site Berlin, DKFZ, D-69120 Heidelberg, Germany
| | - Marcus D. Hartmann
- Max
Planck Institute for Biology Tübingen, D-72076 Tübingen, Germany
- Interfaculty
Institute of Biochemistry, University of
Tübingen, D-72076 Tübingen, Germany
| |
Collapse
|
3
|
Wahi A, Manchanda N, Jain P, Jadhav HR. Targeting the epigenetic reader "BET" as a therapeutic strategy for cancer. Bioorg Chem 2023; 140:106833. [PMID: 37683545 DOI: 10.1016/j.bioorg.2023.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Bromodomain and extraterminal (BET) proteins have the ability to bind to acetylated lysine residues present in both histones and non-histone proteins. This binding is facilitated by the presence of tandem bromodomains. The regulatory role of BET proteins extends to chromatin dynamics, cellular processes, and disease progression. The BET family comprises of BRD 2, 3, 4 and BRDT. The BET proteins are a class of epigenetic readers that regulate the transcriptional activity of a multitude of genes that are involved in the pathogenesis of cancer. Thus, targeting BET proteins has been identified as a potentially efficacious approach for the treatment of cancer. BET inhibitors (BETis) are known to interfere with the binding of BET proteins to acetylated lysine residues of chromatin, thereby leading to the suppression of transcription of several genes, including oncogenic transcription factors. Here in this review, we focus on role of Bromodomain and extra C-terminal (BET) proteins in cancer progression. Furthermore, numerous small-molecule inhibitors with pan-BET activity have been documented, with certain compounds currently undergoing clinical assessment. However, it is apparent that the clinical effectiveness of the present BET inhibitors is restricted, prompting the exploration of novel technologies to enhance their clinical outcomes and mitigate undesired adverse effects. Thus, strategies like development of selective BET-BD1, & BD2 inhibitors, dual and acting BET are also presented in this review and attempts to cover the chemistry needed for proper establishment of designed molecules into BRD have been made. Moreover, the review attempts to summarize the details of research till date and proposes a space for future development of BET inhibitor with diminished side effects. It can be concluded that discovery of isoform selective BET inhibitors can be a way forward in order to develop BET inhibitors with negligible side effects.
Collapse
Affiliation(s)
- Abhishek Wahi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Namish Manchanda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India.
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-Pilani Campus, Vidya Vihar Pilani, Rajasthan 333031, India
| |
Collapse
|
4
|
To KKW, Xing E, Larue RC, Li PK. BET Bromodomain Inhibitors: Novel Design Strategies and Therapeutic Applications. Molecules 2023; 28:molecules28073043. [PMID: 37049806 PMCID: PMC10096006 DOI: 10.3390/molecules28073043] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The mammalian bromodomain and extra-terminal domain (BET) family of proteins consists of four conserved members (Brd2, Brd3, Brd4, and Brdt) that regulate numerous cancer-related and immunity-associated genes. They are epigenetic readers of histone acetylation with broad specificity. BET proteins are linked to cancer progression due to their interaction with numerous cellular proteins including chromatin-modifying factors, transcription factors, and histone modification enzymes. The spectacular growth in the clinical development of small-molecule BET inhibitors underscores the interest and importance of this protein family as an anticancer target. Current approaches targeting BET proteins for cancer therapy rely on acetylation mimics to block the bromodomains from binding chromatin. However, bromodomain-targeted agents are suffering from dose-limiting toxicities because of their effects on other bromodomain-containing proteins. In this review, we provided an updated summary about the evolution of small-molecule BET inhibitors. The design of bivalent BET inhibitors, kinase and BET dual inhibitors, BET protein proteolysis-targeting chimeras (PROTACs), and Brd4-selective inhibitors are discussed. The novel strategy of targeting the unique C-terminal extra-terminal (ET) domain of BET proteins and its therapeutic significance will also be highlighted. Apart from single agent treatment alone, BET inhibitors have also been combined with other chemotherapeutic modalities for cancer treatment demonstrating favorable clinical outcomes. The investigation of specific biomarkers for predicting the efficacy and resistance of BET inhibitors is needed to fully realize their therapeutic potential in the clinical setting.
Collapse
|
5
|
Kumar A, Emdad L, Fisher PB, Das SK. Targeting epigenetic regulation for cancer therapy using small molecule inhibitors. Adv Cancer Res 2023; 158:73-161. [PMID: 36990539 DOI: 10.1016/bs.acr.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cancer cells display pervasive changes in DNA methylation, disrupted patterns of histone posttranslational modification, chromatin composition or organization and regulatory element activities that alter normal programs of gene expression. It is becoming increasingly clear that disturbances in the epigenome are hallmarks of cancer, which are targetable and represent attractive starting points for drug creation. Remarkable progress has been made in the past decades in discovering and developing epigenetic-based small molecule inhibitors. Recently, epigenetic-targeted agents in hematologic malignancies and solid tumors have been identified and these agents are either in current clinical trials or approved for treatment. However, epigenetic drug applications face many challenges, including low selectivity, poor bioavailability, instability and acquired drug resistance. New multidisciplinary approaches are being designed to overcome these limitations, e.g., applications of machine learning, drug repurposing, high throughput virtual screening technologies, to identify selective compounds with improved stability and better bioavailability. We provide an overview of the key proteins that mediate epigenetic regulation that encompass histone and DNA modifications and discuss effector proteins that affect the organization of chromatin structure and function as well as presently available inhibitors as potential drugs. Current anticancer small-molecule inhibitors targeting epigenetic modified enzymes that have been approved by therapeutic regulatory authorities across the world are highlighted. Many of these are in different stages of clinical evaluation. We also assess emerging strategies for combinatorial approaches of epigenetic drugs with immunotherapy, standard chemotherapy or other classes of agents and advances in the design of novel epigenetic therapies.
Collapse
|
6
|
Zuo X, Liu D. Mechanism of immunomodulatory drug resistance and novel therapeutic strategies in multiple myeloma. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1110-1121. [PMID: 36121114 DOI: 10.1080/16078454.2022.2124694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The mechanism of immunomodulatory drugs (IMiDs) resistance to multiple myeloma (MM) cells has been gradually demonstrated by recently studies, and some potential novel strategies have been confirmed to have antimyeloma activity and be associated with IMiD activity in MM. METHODS This article searched the Pubmed library, reviewed some recently studies related to IMiD resistance to MM cells and summarized some potent agents to improve IMiD resistance to MM cells. RESULTS Studies have confirmed that cereblon is a primary direct protein target of IMiDs. IRF4 not only is affected by the IKZF protein but also can directly inhibit the expression of BMF and BIM, thereby promoting the survival of MM cells. Additionally, the expression of IRF4 and MYC also plays an important role in three important signaling pathways (Wnt, STAT3 and MAPK/ERK) related to IMiD resistance. Notably, MYC, a downstream factor of IRF4, may be upregulated by BRD4, and upregulation of MYC promotes cell proliferation in MM and disease progression. Recently, some novel therapeutic agents targeting BRD4, a histone modification-related 'reader' of epigenetic marks, or other important factors (e.g. TAK1) in relevant signaling pathways have been developed and they may provide new options for relapse/refractory MM therapy, such as BET inhibitors, CBP/EP300 inhibitors, dual-target BET-CBP/EP300 inhibitors, TAK1 inhibitors, and they may provide new options for relapsed/refractory MM therapy. CONCLUSIONS Accumulated studies have revealed that some key factors associated with the mechanism of IMiD resistance to MM cells. Some agents represent promising new therapeutics of MM to regulate the IRF4/MYC axis by inhibiting BRD4 expression or signaling pathway activation.
Collapse
Affiliation(s)
- Xiaojia Zuo
- Department of Hematology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People's Republic of China.,Department of Oncology and Hematology, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, People's Republic of China.,Guizhou Medical University, Guiyang, People's Republic of China
| | - Dingsheng Liu
- Department of Hematology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Abstract
Multiple myeloma (MM) remains incurable despite advances in current treatment. Patients with MM exhibit significant variations in their prognosis and survival. Recently, genetic abnormalities, such as chromosomal variations and gene mutations, have been increasingly recognized in MM. Therefore, better prognostic indicators of MM are required for the diagnosis and treatment of patients with MM. ncRNAs are non-protein-coding transcripts that regulate gene expression at the post-transcriptional level. Deregulation of ncRNAs affects cell cycle progression, cancer cell invasion and metastasis. The abnormal expression of these ncRNAs is also critical for the pathogenesis of several cancers, including MM. Hence, this review aims to discuss the recent findings on the role of regulatory ncRNAs and evaluate their potential value in MM.
Collapse
Affiliation(s)
- Songze Leng
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Huiting Qu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Xiao Lv
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China.,Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Xin Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
8
|
Agnarelli A, Mitchell S, Caalim G, Wood CD, Milton‐Harris L, Chevassut T, West MJ, Mancini EJ. Dissecting the impact of bromodomain inhibitors on the Interferon Regulatory Factor 4-MYC oncogenic axis in multiple myeloma. Hematol Oncol 2022; 40:417-429. [PMID: 35544413 PMCID: PMC9543246 DOI: 10.1002/hon.3016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
Abstract
B-cell progenitor fate determinant interferon regulatory factor 4 (IRF4) exerts key roles in the pathogenesis and progression of multiple myeloma (MM), a currently incurable plasma cell malignancy. Aberrant expression of IRF4 and the establishment of a positive auto-regulatory loop with oncogene MYC, drives a MM specific gene-expression program leading to the abnormal expansion of malignant immature plasma cells. Targeting the IRF4-MYC oncogenic loop has the potential to provide a selective and effective therapy for MM. Here we evaluate the use of bromodomain inhibitors to target the IRF4-MYC axis through combined inhibition of their known epigenetic regulators, BRD4 and CBP/EP300. Although all inhibitors induced cell death, we found no synergistic effect of targeting both of these regulators on the viability of MM cell-lines. Importantly, for all inhibitors over a time period up to 72 h, we detected reduced IRF4 mRNA, but a limited decrease in IRF4 protein expression or mRNA levels of downstream target genes. This indicates that inhibitor-induced loss of cell viability is not mediated through reduced IRF4 protein expression, as previously proposed. Further analysis revealed a long half-life of IRF4 protein in MM cells. In support of our experimental observations, gene network modeling of MM suggests that bromodomain inhibition is exerted primarily through MYC and not IRF4. These findings suggest that despite the autofeedback positive regulatory loop between IRF4 and MYC, bromodomain inhibitors are not effective at targeting IRF4 in MM and that novel therapeutic strategies should focus on the direct inhibition or degradation of IRF4.
Collapse
Affiliation(s)
- Alessandro Agnarelli
- Biochemistry and BiomedicineSchool of Life SciencesUniversity of SussexBrightonUK
| | - Simon Mitchell
- Brighton and Sussex Medical SchoolUniversity of SussexBrightonUK
| | - Gillian Caalim
- Biochemistry and BiomedicineSchool of Life SciencesUniversity of SussexBrightonUK
| | - C. David Wood
- Biochemistry and BiomedicineSchool of Life SciencesUniversity of SussexBrightonUK
| | - Leanne Milton‐Harris
- Biochemistry and BiomedicineSchool of Life SciencesUniversity of SussexBrightonUK
| | | | - Michelle J. West
- Biochemistry and BiomedicineSchool of Life SciencesUniversity of SussexBrightonUK
| | - Erika J. Mancini
- Biochemistry and BiomedicineSchool of Life SciencesUniversity of SussexBrightonUK
| |
Collapse
|
9
|
Ne E, Crespo R, Izquierdo-Lara R, Rao S, Koçer S, Górska A, van Staveren T, Kan TW, van de Vijver D, Dekkers D, Rokx C, Moulos P, Hatzis P, Palstra RJ, Demmers J, Mahmoudi T. Catchet-MS identifies IKZF1-targeting thalidomide analogues as novel HIV-1 latency reversal agents. Nucleic Acids Res 2022; 50:5577-5598. [PMID: 35640596 PMCID: PMC9177988 DOI: 10.1093/nar/gkac407] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/11/2022] [Accepted: 05/24/2022] [Indexed: 12/27/2022] Open
Abstract
A major pharmacological strategy toward HIV cure aims to reverse latency in infected cells as a first step leading to their elimination. While the unbiased identification of molecular targets physically associated with the latent HIV-1 provirus would be highly valuable to unravel the molecular determinants of HIV-1 transcriptional repression and latency reversal, due to technical limitations, this has been challenging. Here we use a dCas9 targeted chromatin and histone enrichment strategy coupled to mass spectrometry (Catchet-MS) to probe the differential protein composition of the latent and activated HIV-1 5′LTR. Catchet-MS identified known and novel latent 5′LTR-associated host factors. Among these, IKZF1 is a novel HIV-1 transcriptional repressor, required for Polycomb Repressive Complex 2 recruitment to the LTR. We find the clinically advanced thalidomide analogue iberdomide, and the FDA approved analogues lenalidomide and pomalidomide, to be novel LRAs. We demonstrate that, by targeting IKZF1 for degradation, these compounds reverse HIV-1 latency in CD4+ T-cells isolated from virally suppressed people living with HIV-1 and that they are able to synergize with other known LRAs.
Collapse
Affiliation(s)
- Enrico Ne
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Raquel Crespo
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Ray Izquierdo-Lara
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Shringar Rao
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Selin Koçer
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Alicja Górska
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Thomas van Staveren
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Tsung Wai Kan
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands.,Department of Pathology, Erasmus University Medical Center, The Netherlands.,Department of Urology, Erasmus University Medical Center, The Netherlands
| | - David van de Vijver
- Department of Viroscience, Erasmus University Medical Center, The Netherlands
| | - Dick Dekkers
- Proteomics Center, Erasmus University Medical Center, Ee679a PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Casper Rokx
- Department of Internal Medicine, Section of Infectious Diseases, Erasmus University Medical Center, Rg-530, PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Panagiotis Moulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", 16672, Vari, Greece
| | - Robert-Jan Palstra
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands.,Department of Pathology, Erasmus University Medical Center, The Netherlands.,Department of Urology, Erasmus University Medical Center, The Netherlands
| | - Jeroen Demmers
- Proteomics Center, Erasmus University Medical Center, Ee679a PO Box 2040, 3000CA Rotterdam, The Netherlands
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Ee622 PO Box 2040, 3000CA Rotterdam, The Netherlands.,Department of Pathology, Erasmus University Medical Center, The Netherlands.,Department of Urology, Erasmus University Medical Center, The Netherlands
| |
Collapse
|
10
|
Functional stratification of cancer drugs through integrated network similarity. NPJ Syst Biol Appl 2022; 8:11. [PMID: 35440787 PMCID: PMC9018743 DOI: 10.1038/s41540-022-00219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Abstract
Drugs not only perturb their immediate protein targets but also modulate multiple signaling pathways. In this study, we explored networks modulated by several drugs across multiple cancer cell lines by integrating their targets with transcriptomic and phosphoproteomic data. As a result, we obtained 236 reconstructed networks covering five cell lines and 70 drugs. A rigorous topological and pathway analysis showed that chemically and functionally different drugs may modulate overlapping networks. Additionally, we revealed a set of tumor-specific hidden pathways with the help of drug network models that are not detectable from the initial data. The difference in the target selectivity of the drugs leads to disjoint networks despite sharing a similar mechanism of action, e.g., HDAC inhibitors. We also used the reconstructed network models to study potential drug combinations based on the topological separation and found literature evidence for a set of drug pairs. Overall, network-level exploration of drug-modulated pathways and their deep comparison may potentially help optimize treatment strategies and suggest new drug combinations.
Collapse
|
11
|
Borowczak J, Szczerbowski K, Ahmadi N, Szylberg Ł. CDK9 inhibitors in multiple myeloma: a review of progress and perspectives. Med Oncol 2022; 39:39. [PMID: 35092513 PMCID: PMC8800928 DOI: 10.1007/s12032-021-01636-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/21/2021] [Indexed: 12/05/2022]
Abstract
Currently, multiple myeloma is not yet considered a curable disease. Despite the recent advances in therapy, the average patient lifespan is still unsatisfactory. Recently, CDK9 inhibitors emerged as a suitable agent to overcome resistance and prolong survival in patients with poor diagnoses. Downregulation of c-MYC, XIAP, Mcl-1 and restoration of p53 tumor-suppressive functions seems to play a key role in achieving clinical response. The applicability of the first generation of CDK9 inhibitors was limited due to relatively high toxicity, but the introduction of novel, highly selective drugs, seems to reduce the effects of off-target inhibition. CDK9 inhibitors were able to induce dose-dependent cytotoxicity in Doxorubicin-resistant, Lenalidomide-resistant and Bortezomib-resistant cell lines. They seem to be effective in cell lines with unfavorable prognostic factors, such as p53 deletion, t(4; 14) and t(14; 16). In preclinical trials, the application of CDK9 inhibitors led to tumor cells apoptosis, tumor growth inhibition and tumor mass reduction. Synergistic effects between CDK9 inhibitors and either Venetoclax, Bortezomib, Lenalidomide or Erlotinib have been proven and are awaiting verification in clinical trials. Although conclusions should be drawn with due care, obtained reports suggest that including CDK9 inhibitors into the current drug regimen may turn out to be beneficial, especially in poor prognosis patients.
Collapse
Affiliation(s)
- Jędrzej Borowczak
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland.
| | - Krzysztof Szczerbowski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Navid Ahmadi
- Department of Cardiothoracic Surgery, Royal Papworth Hospital, Cambridge, UK
| | - Łukasz Szylberg
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre-Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| |
Collapse
|
12
|
Singh S, Jain K, Sharma R, Singh J, Paul D. Epigenetic Modifications in Myeloma: Focused Review of Current Data and Potential Therapeutic Applications. Indian J Med Paediatr Oncol 2021. [DOI: 10.1055/s-0041-1732861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
AbstractMultiple myeloma is a common hematologic malignancy with an incidence of 1 per 100,000 population and is characterized by a nearly 100% risk of relapse, necessitating treatment with newer therapeutic agents at each instance of progression. However, use of newer agents is often precluded by cost and accessibility in a resource-constrained setting. Description of newer pathways of disease pathogenesis potentially provides opportunities for identification of therapeutic targets and a better understanding of disease biology. Identification of epigenetic changes in myeloma is an emerging premise, with several pathways contributing to pathogenesis and progression of disease. Greater understanding of epigenetic alterations provides opportunities to detect several targetable enzymes or pathways that can be of clinical use.
Collapse
Affiliation(s)
- Suvir Singh
- Department of Clinical Hematology and Stem Cell Transplantation, Dayanand Medical College, Ludhiana, Punjab, India
| | - Kunal Jain
- Department of Medical Oncology, Dayanand Medical College, Ludhiana, Punjab, India
| | - Rintu Sharma
- Department of Clinical Hematology and Stem Cell Transplantation, Dayanand Medical College, Ludhiana, Punjab, India
| | - Jagdeep Singh
- Department of Medical Oncology, Dayanand Medical College, Ludhiana, Punjab, India
| | - Davinder Paul
- Department of Medical Oncology, Dayanand Medical College, Ludhiana, Punjab, India
| |
Collapse
|
13
|
Ribeiro ML, Reyes-Garau D, Vinyoles M, Profitós Pelejà N, Santos JC, Armengol M, Fernández-Serrano M, Sedó Mor A, Bech-Serra JJ, Blecua P, Musulen E, De La Torre C, Miskin H, Esteller M, Bosch F, Menéndez P, Normant E, Roué G. Antitumor Activity of the Novel BTK Inhibitor TG-1701 Is Associated with Disruption of Ikaros Signaling in Patients with B-cell Non-Hodgkin Lymphoma. Clin Cancer Res 2021; 27:6591-6601. [PMID: 34551904 PMCID: PMC9401565 DOI: 10.1158/1078-0432.ccr-21-1067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/07/2021] [Accepted: 09/17/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Despite the remarkable activity of BTK inhibitors (BTKi) in relapsed B-cell non-Hodgkin lymphoma (B-NHL), no clinically-relevant biomarker has been associated to these agents so far. The relevance of phosphoproteomic profiling for the early identification of BTKi responders remains underexplored. EXPERIMENTAL DESIGN A set of six clinical samples from an ongoing phase I trial dosing patients with chronic lymphocytic leukemia (CLL) with TG-1701, a novel irreversible and highly specific BTKi, were characterized by phosphoproteomic and RNA sequencing (RNA-seq) analysis. The activity of TG-1701 was evaluated in a panel of 11 B-NHL cell lines and mouse xenografts, including two NF-κB- and BTKC481S-driven BTKi-resistant models. Biomarker validation and signal transduction analysis were conducted through real-time PCR, Western blot analysis, immunostaining, and gene knockout (KO) experiments. RESULTS A nonsupervised, phosphoproteomic-based clustering did match the early clinical outcomes of patients with CLL and separated a group of "early-responders" from a group of "late-responders." This clustering was based on a selected list of 96 phosphosites with Ikaros-pSer442/445 as a potential biomarker for TG-1701 efficacy. TG-1701 treatment was further shown to blunt Ikaros gene signature, including YES1 and MYC, in early-responder patients as well as in BTKi-sensitive B-NHL cell lines and xenografts. In contrast, Ikaros nuclear activity and signaling remained unaffected by the drug in vitro and in vivo in late-responder patients and in BTKC481S, BTKKO, and noncanonical NF-κB models. CONCLUSIONS These data validate phosphoproteomic as a valuable tool for the early detection of response to BTK inhibition in the clinic, and for the determination of drug mechanism of action.
Collapse
Affiliation(s)
- Marcelo Lima Ribeiro
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain.,Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista, São Paulo, Brazil
| | - Diana Reyes-Garau
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Meritxell Vinyoles
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain.,Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain
| | - Núria Profitós Pelejà
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | | | - Marc Armengol
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain.,Autonomous University of Barcelona, Barcelona, Spain
| | - Miranda Fernández-Serrano
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain.,Autonomous University of Barcelona, Barcelona, Spain
| | - Alícia Sedó Mor
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain.,Autonomous University of Barcelona, Barcelona, Spain
| | - Joan J. Bech-Serra
- Proteomics Unit, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Pedro Blecua
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Eva Musulen
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain.,Department of Pathology, Hospital Universitari General de Catalunya-Grupo Quironsalud, Sant Cugat del Vallès, Spain
| | | | | | - Manel Esteller
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain.,Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain.,Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Francesc Bosch
- Autonomous University of Barcelona, Barcelona, Spain.,Department of Hematology, Vall d'Hebron University Hospital, Barcelona, Spain.,Experimental Hematology, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Pablo Menéndez
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain.,Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Barcelona, Spain.,Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Emmanuel Normant
- TG Therapeutics, New York, New York.,Corresponding Authors: Gaël Roué, Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, 08916, Spain. E-mail: ; and Emmanuel Normant, VP Preclinical Sciences, TG Therapeutics, 2 Gansevoort Street, New York, NY 10014. E-mail:
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain.,Autonomous University of Barcelona, Barcelona, Spain.,Department of Hematology, Vall d'Hebron University Hospital, Barcelona, Spain.,Experimental Hematology, Vall d'Hebron Institute of Oncology, Barcelona, Spain.,Corresponding Authors: Gaël Roué, Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, 08916, Spain. E-mail: ; and Emmanuel Normant, VP Preclinical Sciences, TG Therapeutics, 2 Gansevoort Street, New York, NY 10014. E-mail:
| |
Collapse
|
14
|
Hultmark S, Baudet A, Schmiderer L, Prabhala P, Palma-Tortosa S, Sandén C, Fioretos T, Sasidharan R, Larsson C, Lehmann S, Juliusson G, Ek F, Magnusson M. Combinatorial molecule screening identified a novel diterpene and the BET inhibitor CPI-203 as differentiation inducers of primary acute myeloid leukemia cells. Haematologica 2021; 106:2566-2577. [PMID: 32855276 PMCID: PMC8485661 DOI: 10.3324/haematol.2020.249177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Combination treatment has proven effective for patients with acute promyelocytic leukemia, exemplifying the importance of therapy targeting multiple components of oncogenic regulation for a successful outcome. However, recent studies have shown that the mutational complexity of acute myeloid leukemia (AML) precludes the translation of molecular targeting into clinical success. Here, as a complement to genetic profiling, we used unbiased, combinatorial in vitro drug screening to identify pathways that drive AML and to develop personalized combinatorial treatments. First, we screened 513 natural compounds on primary AML cells and identified a novel diterpene (H4) that preferentially induced differentiation of FLT3 wild-type AML, while FLT3-ITD/mutations conferred resistance. The samples responding to H4, displayed increased expression of myeloid markers, a clear decrease in the nuclear-cytoplasmic ratio and the potential of re-activation of the monocytic transcriptional program reducing leukemia propagation in vivo. By combinatorial screening using H4 and molecules with defined targets, we demonstrated that H4 induces differentiation by the activation of the protein kinase C (PKC) signaling pathway, and in line with this, activates PKC phosphorylation and translocation of PKC to the cell membrane. Furthermore, the combinatorial screening identified a bromo- and extra-terminal domain (BET) inhibitor that could further improve H4-dependent leukemic differentiation in FLT3 wild-type monocytic AML. These findings illustrate the value of an unbiased, multiplex screening platform for developing combinatorial therapeutic approaches for AML.
Collapse
Affiliation(s)
- Simon Hultmark
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Sweden
| | - Aurélie Baudet
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Sweden
| | - Ludwig Schmiderer
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Sweden
| | - Pavan Prabhala
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sara Palma-Tortosa
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Carl Sandén
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Christer Larsson
- Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Sören Lehmann
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Gunnar Juliusson
- Department of Hematology, Skane University Hospital, Lund, Sweden
| | - Fredrik Ek
- Chemical Biology and Therapeutics, Lund University, Lund, Sweden
| | - Mattias Magnusson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Sweden
| |
Collapse
|
15
|
miR-22 Modulates Lenalidomide Activity by Counteracting MYC Addiction in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13174365. [PMID: 34503175 PMCID: PMC8431372 DOI: 10.3390/cancers13174365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary MYC-driven deregulation of microRNAs represents a critical event in human malignancies, including multiple myeloma (MM). Although the introduction of new therapeutic strategies has prolonged survival of patients, MM remains an incurable disease, often due to the onset of drug resistance. MYC hyperactivation is involved in the development of resistance to immunomodulatory imide drugs (IMiDs), but the mechanism is still unclear. Here, we report that MYC represses the transcription of tumor suppressor miR-22 in MM, and that low miR-22 expression is associated with IMiD resistance in MM patients. By in silico and in vitro analysis, we show that miR-22 mimics affect MYC signaling, leading to MM cell death in MYC proficient cells. Furthermore, we demonstrate here that lenalidomide treatment enhances miR-22 activity by reducing the MYC inhibitory effect, and that the combination of lenalidomide with miR-22 mimics restores drug sensitivity, leading to synergistic anti-MM activity. Abstract Background: MYC is a master regulator of multiple myeloma (MM) by orchestrating several pro-tumoral pathways, including reprograming of the miRNA transcriptome. MYC is also involved in the acquirement of resistance to anti-MM drugs, including immunomodulatory imide drugs (IMiDs). Methods: In silico analysis was performed on MM proprietary and on public MMRF-CoMMpass datasets. Western blot and chromatin immunoprecipitation (ChIP) experiments were performed to validate miR-22 repression induced by MYC. Cell viability and apoptosis assays were used to evaluate lenalidomide sensitization after miR-22 overexpression. Results: We found an inverse correlation between MYC and miR-22 expression, which is associated with poor outcome in IMiD-treated MM patients. Mechanistically, we showed that MYC represses transcription of miR-22, which, in turn, targets MYC, thus establishing a feed-forward loop. Interestingly, we found that IMiD lenalidomide increases miR-22 expression by reducing MYC repression and, most importantly, that the combination of lenalidomide with miR-22 mimics results in a synergistic direct and NK-mediated cytotoxic activity. Conclusions: Taken together, our findings indicate that: (1) low miR-22 expression could represent a potential predictive biomarker of poor lenalidomide response in MM patients; and (2) miR-22 reduces MYC oncogenic activity, thus triggering a novel synthetic lethality loop, which sensitizes MM cells to lenalidomide.
Collapse
|
16
|
Martínez-Martín S, Soucek L. MYC inhibitors in multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:842-865. [PMID: 35582389 PMCID: PMC8992455 DOI: 10.20517/cdr.2021.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/30/2021] [Accepted: 08/12/2021] [Indexed: 11/25/2022]
Abstract
The importance of MYC function in cancer was discovered in the late 1970s when the sequence of the avian retrovirus that causes myelocytic leukemia was identified. Since then, over 40 years of unceasing research have highlighted the significance of this protein in malignant transformation, especially in hematologic diseases. Indeed, some of the earliest connections among the higher expression of proto-oncogenes (such as MYC), genetic rearrangements and their relation to cancer development were made in Burkitt lymphoma, chronic myeloid leukemia and mouse plasmacytomas. Multiple myeloma (MM), in particular, is a plasma cell malignancy strictly associated with MYC deregulation, suggesting that therapeutic strategies against it would be beneficial in treating this disease. However, targeting MYC was - and, somehow, still is - challenging due to its unique properties: lack of defined three-dimensional structure, nuclear localization and absence of a targetable enzymatic pocket. Despite these difficulties, however, many studies have shown the potential therapeutic impact of direct or indirect MYC inhibition. Different molecules have been tested, in fact, in the context of MM. In this review, we summarize the current status of the different compounds, including the results of their clinical testing, and propose to continue with the efforts to identify, repurpose, redesign or improve drug candidates to combine them with standard of care therapies to overcome resistance and enable better management of myeloma treatment.
Collapse
Affiliation(s)
- Sandra Martínez-Martín
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Peptomyc S.L., Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Laura Soucek
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Peptomyc S.L., Vall d’Hebron Barcelona Hospital Campus, Barcelona 08035, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
17
|
The Role of lncRNAs in the Pathobiology and Clinical Behavior of Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13081976. [PMID: 33923983 PMCID: PMC8074217 DOI: 10.3390/cancers13081976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Multiple myeloma (MM), the second most common hematological neoplasm, is still considered an incurable disease. Long non-coding RNAs (lncRNAs), genes that do not encode proteins, participate in numerous biological processes, but their deregulation, like that of coding genes, can contribute to carcinogenesis. Increasing evidence points to the relevant role of lncRNAs in the development of human tumors, such that they emerge as attractive biomarkers and therapeutic targets for cancer treatment, including MM. Here we review the oncogenic or tumor-suppressor functions of lncRNAs in MM and provide an overview of novel therapeutic approaches based on lncRNAs that will help to improve the management of these patients. Abstract MM is a hematological neoplasm that is still considered an incurable disease. Besides established genetic alterations, recent studies have shown that MM pathogenesis is also characterized by epigenetic aberrations, such as the gain of de novo active chromatin marks in promoter and enhancer regions and extensive DNA hypomethylation of intergenic regions, highlighting the relevance of these non-coding genomic regions. A recent study described how long non-coding RNAs (lncRNAs) correspond to 82% of the MM transcriptome and an increasing number of studies have demonstrated the importance of deregulation of lncRNAs in MM. In this review we focus on the deregulated lncRNAs in MM, including their biological or functional mechanisms, their role as biomarkers to improve the prognosis and monitoring of MM patients, and their participation in drug resistance. Furthermore, we also discuss the evidence supporting the role of lncRNAs as therapeutic targets through different novel RNA-based strategies.
Collapse
|
18
|
Theodorakakou F, Dimopoulos MA, Kastritis E. Mutation-dependent treatment approaches for patients with complex multiple myeloma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1893605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Foteini Theodorakakou
- Plasma Cell Dyscrasia Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Meletios A. Dimopoulos
- Plasma Cell Dyscrasia Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Kastritis
- Plasma Cell Dyscrasia Unit, Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
19
|
Cardona-Benavides IJ, de Ramón C, Gutiérrez NC. Genetic Abnormalities in Multiple Myeloma: Prognostic and Therapeutic Implications. Cells 2021; 10:336. [PMID: 33562668 PMCID: PMC7914805 DOI: 10.3390/cells10020336] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
Some genetic abnormalities of multiple myeloma (MM) detected more than two decades ago remain major prognostic factors. In recent years, the introduction of cutting-edge genomic methodologies has enabled the extensive deciphering of genomic events in MM. Although none of the alterations newly discovered have significantly improved the stratification of the outcome of patients with MM, some of them, point mutations in particular, are promising targets for the development of personalized medicine. This review summarizes the main genetic abnormalities described in MM together with their prognostic impact, and the therapeutic approaches potentially aimed at abrogating the undesirable pathogenic effect of each alteration.
Collapse
Affiliation(s)
- Ignacio J. Cardona-Benavides
- Hematology Department, University Hospital, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.J.C.-B.); (C.d.R.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Cristina de Ramón
- Hematology Department, University Hospital, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.J.C.-B.); (C.d.R.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
| | - Norma C. Gutiérrez
- Hematology Department, University Hospital, Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain; (I.J.C.-B.); (C.d.R.)
- Cancer Research Center-IBMCC (USAL-CSIC), 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| |
Collapse
|
20
|
Ryan KR, Giles F, Morgan GJ. Targeting both BET and CBP/EP300 proteins with the novel dual inhibitors NEO2734 and NEO1132 leads to anti-tumor activity in multiple myeloma. Eur J Haematol 2020; 106:90-99. [PMID: 32997383 DOI: 10.1111/ejh.13525] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Two promising epigenetic therapeutic targets have emerged for the treatment of hematologic malignancies, BET and CBP/EP300 proteins. Several studies have shown that targeting these individual classes of proteins has anti-tumor activity in multiple myeloma (MM), as well as other cancers. Here, we present the first data exploring the anti-tumor activity of two novel dual inhibitors, NEO2734 and NEO1132, of both BET and CBP/EP300 proteins in MM. METHODS Sixteen MM cell lines (MMCLs) were treated with the dual inhibitors NEO2734 and NEO1132, the single BET inhibitors JQ1, OTX015, IBET-762, and IBET-151, and a single CBP/EP300 inhibitor CPI-637. RESULTS The dual inhibitor NEO2734 showed strong anti-tumor activity and was consistently highly active against all MMCLs, being as potent as JQ1 and more so than other single inhibitors. NEO2734 and NEO11132 induced a significant G1 cell cycle arrest and decreased c-MYC and IRF4 protein levels in MMCLs compared to the other single inhibitors. Sensitivity to the dual inhibitors was not dependent on a specific MM molecular subgroup but correlated with c-MYC protein expression levels. CONCLUSIONS The dual inhibition of BET and CBP/EP300 has potential therapeutic benefits for patients with MM.
Collapse
Affiliation(s)
| | - Francis Giles
- Developmental Therapeutics Consortium, Chicago, IL, USA
| | | |
Collapse
|
21
|
Kong IY, Rimes JS, Light A, Todorovski I, Jones S, Morand E, Knight DA, Bergman YE, Hogg SJ, Falk H, Monahan BJ, Stupple PA, Street IP, Heinzel S, Bouillet P, Johnstone RW, Hodgkin PD, Vervoort SJ, Hawkins ED. Temporal Analysis of Brd4 Displacement in the Control of B Cell Survival, Proliferation, and Differentiation. Cell Rep 2020; 33:108290. [PMID: 33086063 DOI: 10.1016/j.celrep.2020.108290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/24/2020] [Accepted: 09/29/2020] [Indexed: 12/16/2022] Open
Abstract
JQ1 is a BET-bromodomain inhibitor that has immunomodulatory effects. However, the precise molecular mechanism that JQ1 targets to elicit changes in antibody production is not understood. Our results show that JQ1 induces apoptosis, reduces cell proliferation, and as a consequence, inhibits antibody-secreting cell differentiation. ChIP-sequencing reveals a selective displacement of Brd4 in response to acute JQ1 treatment (<2 h), resulting in specific transcriptional repression. After 8 h, subsequent alterations in gene expression arise as a result of the global loss of Brd4 occupancy. We demonstrate that apoptosis induced by JQ1 is solely attributed to the pro-apoptotic protein Bim (Bcl2l11). Conversely, cell-cycle regulation by JQ1 is associated with multiple Myc-associated gene targets. Our results demonstrate that JQ1 drives temporal changes in Brd4 displacement that results in a specific transcriptional profile that directly affects B cell survival and proliferation to modulate the humoral immune response.
Collapse
Affiliation(s)
- Isabella Y Kong
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Joel S Rimes
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Amanda Light
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Izabela Todorovski
- Cancer Therapeutics and Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Sarah Jones
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Eric Morand
- Centre for Inflammatory Diseases, School of Clinical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Deborah A Knight
- Cancer Therapeutics and Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Ylva E Bergman
- Cancer Therapeutics CRC (CTx), Melbourne, VIC 3000, Australia; Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Simon J Hogg
- Cancer Therapeutics and Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Hendrik Falk
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Cancer Therapeutics CRC (CTx), Melbourne, VIC 3000, Australia
| | - Brendon J Monahan
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Cancer Therapeutics CRC (CTx), Melbourne, VIC 3000, Australia
| | - Paul A Stupple
- Cancer Therapeutics CRC (CTx), Melbourne, VIC 3000, Australia; Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Ian P Street
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Cancer Therapeutics CRC (CTx), Melbourne, VIC 3000, Australia
| | - Susanne Heinzel
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Philippe Bouillet
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ricky W Johnstone
- Cancer Therapeutics and Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Philip D Hodgkin
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephin J Vervoort
- Cancer Therapeutics and Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Edwin D Hawkins
- Walter and Eliza Hall Institute of Medical Research, The University of Melbourne, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
22
|
Spriano F, Stathis A, Bertoni F. Targeting BET bromodomain proteins in cancer: The example of lymphomas. Pharmacol Ther 2020; 215:107631. [PMID: 32693114 DOI: 10.1016/j.pharmthera.2020.107631] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
The Bromo- and Extra-Terminal domain (BET) family proteins act as "readers" of acetylated histones and they are important transcription regulators. BRD2, BRD3, BRD4 and BRDT, part of the BET family, are important in different tumors, where upregulation or translocation often occurs. The potential of targeting BET proteins as anti-cancer treatment originated with data obtained with a first series of compounds, and there are now several data supporting BET inhibition in both solid tumors and hematological malignancies. Despite very positive preclinical data in different tumor types, the clinical results have been so far moderate. Using lymphoma as an example to review the data produced in the laboratory and in the context of the early clinical trials, we discuss the modalities to make BET targeting more efficient both generating novel generation of compounds and by exploring the combination with small molecules affecting various signaling pathways, BCL2, or DNA damage response signaling, but also with additional epigenetic agents and with immunotherapy. We also discuss the mechanisms of resistance and the toxicity profiles so far reported.
Collapse
Affiliation(s)
- Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland; Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland; Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
| |
Collapse
|
23
|
Kulka LAM, Fangmann PV, Panfilova D, Olzscha H. Impact of HDAC Inhibitors on Protein Quality Control Systems: Consequences for Precision Medicine in Malignant Disease. Front Cell Dev Biol 2020; 8:425. [PMID: 32582706 PMCID: PMC7291789 DOI: 10.3389/fcell.2020.00425] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Lysine acetylation is one of the major posttranslational modifications (PTM) in human cells and thus needs to be tightly regulated by the writers of this process, the histone acetyl transferases (HAT), and the erasers, the histone deacetylases (HDAC). Acetylation plays a crucial role in cell signaling, cell cycle control and in epigenetic regulation of gene expression. Bromodomain (BRD)-containing proteins are readers of the acetylation mark, enabling them to transduce the modification signal. HDAC inhibitors (HDACi) have been proven to be efficient in hematologic malignancies with four of them being approved by the FDA. However, the mechanisms by which HDACi exert their cytotoxicity are only partly resolved. It is likely that HDACi alter the acetylation pattern of cytoplasmic proteins, contributing to their anti-cancer potential. Recently, it has been demonstrated that various protein quality control (PQC) systems are involved in recognizing the altered acetylation pattern upon HDACi treatment. In particular, molecular chaperones, the ubiquitin proteasome system (UPS) and autophagy are able to sense the structurally changed proteins, providing additional targets. Recent clinical studies of novel HDACi have proven that proteins of the UPS may serve as biomarkers for stratifying patient groups under HDACi regimes. In addition, members of the PQC systems have been shown to modify the epigenetic readout of HDACi treated cells and alter proteostasis in the nucleus, thus contributing to changing gene expression profiles. Bromodomain (BRD)-containing proteins seem to play a potent role in transducing the signaling process initiating apoptosis, and many clinical trials are under way to test BRD inhibitors. Finally, it has been demonstrated that HDACi treatment leads to protein misfolding and aggregation, which may explain the effect of panobinostat, the latest FDA approved HDACi, in combination with the proteasome inhibitor bortezomib in multiple myeloma. Therefore, proteins of these PQC systems provide valuable targets for precision medicine in cancer. In this review, we give an overview of the impact of HDACi treatment on PQC systems and their implications for malignant disease. We exemplify the development of novel HDACi and how affected proteins belonging to PQC can be used to determine molecular signatures and utilized in precision medicine.
Collapse
Affiliation(s)
- Linda Anna Michelle Kulka
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Pia-Victoria Fangmann
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Diana Panfilova
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Heidi Olzscha
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
24
|
Fu L, Cheng Z, Dong F, Quan L, Cui L, Liu Y, Zeng T, Huang W, Chen J, Pang Y, Ye X, Wu G, Qian T, Chen Y, Si C. Enhanced expression of FCER1G predicts positive prognosis in multiple myeloma. J Cancer 2020; 11:1182-1194. [PMID: 31956364 PMCID: PMC6959079 DOI: 10.7150/jca.37313] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/03/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Multiple myeloma (MM) is the second most common hematologic malignancy worldwide and does not have sufficient prognostic indicators. FCER1G (Fc fragment Of IgE receptor Ig) is located on chromosome 1q23.3 and is involved in the innate immunity. Early studies have shown that FCER1G participates in many immune-related pathways encompassing multiple cell types. Meanwhile, it is associated with many malignancies. However, the relationship between MM and FCER1G has not been studied. Methods: In this study, we integrated nine independent gene expression omnibus (GEO) datasets and analyzed the associations of FCER1G expression and myeloma progression, ISS stage, 1q21 amplification and survival in 2296 myeloma patients and 48 healthy donors. Results: The expression of FCER1G showed a decreasing trend with the advance of myeloma. As ISS stage and 1q21 amplification level increased, the expression of FCER1G decreased (P = 0.0012 and 0.0036, respectively). MM patients with high FCER1G expression consistently had longer EFS and OS across three large sample datasets (EFS: P = 0.0057, 0.0049, OS: P = 0.0014, 0.00065, 0.0019 and 0.0029, respectively). Meanwhile, univariate and multivariate analysis indicated that high FCER1G expression was an independent favorable prognostic factor for EFS and OS in MM patients (EFS: P = 0.006, 0.027, OS: P =0.002,0.025, respectively). Conclusions: The expression level of FCER1G negatively correlated with myeloma progression, and high FCER1G expression may be applied as a favorable biomarker in MM patients.
Collapse
Affiliation(s)
- Lin Fu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Zhiheng Cheng
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Fen Dong
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Liang Quan
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Longzhen Cui
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yan Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, China
| | - Tiansheng Zeng
- Department of Biomedical Sciences, University of Sassari, Sassari, 07100, Italy
| | - Wenhui Huang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Jinghong Chen
- Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Ying Pang
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Xu Ye
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Guangsheng Wu
- Department of Hematology, First Affiliated Hospital, Medical College of Shihezi University, Shihezi 832008, China
| | - Tingting Qian
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.,Translational Medicine Center, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yang Chen
- MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic & Systems Biology, TNLIST; Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Chaozeng Si
- Department of Operations and Information Management, China-Japan Friendship Hospital, Beijing, 100029, China
| |
Collapse
|
25
|
High-Risk Multiple Myeloma: Integrated Clinical and Omics Approach Dissects the Neoplastic Clone and the Tumor Microenvironment. J Clin Med 2019; 8:jcm8070997. [PMID: 31323969 PMCID: PMC6678140 DOI: 10.3390/jcm8070997] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma (MM) is a genetically heterogeneous disease that includes a subgroup of 10–15% of patients facing dismal survival despite the most intensive treatment. Despite improvements in biological knowledge, MM is still an incurable neoplasia, and therapeutic options able to overcome the relapsing/refractory behavior represent an unmet clinical need. The aim of this review is to provide an integrated clinical and biological overview of high-risk MM, discussing novel therapeutic perspectives, targeting the neoplastic clone and its microenvironment. The dissection of the molecular determinants of the aggressive phenotypes and drug-resistance can foster a better tailored clinical management of the high-risk profile and therapy-refractoriness. Among the current clinical difficulties in MM, patients’ management by manipulating the tumor niche represents a major challenge. The angiogenesis and the stromal infiltrate constitute pivotal mechanisms of a mutual collaboration between MM and the non-tumoral counterpart. Immuno-modulatory and anti-angiogenic therapy hold great efficacy, but variable and unpredictable responses in high-risk MM. The comprehensive understanding of the genetic heterogeneity and MM high-risk ecosystem enforce a systematic bench-to-bedside approach. Here, we provide a broad outlook of novel druggable targets. We also summarize the existing multi-omics-based risk profiling tools, in order to better select candidates for dual immune/vasculogenesis targeting.
Collapse
|
26
|
Anwer F, Gee KM, Iftikhar A, Baig M, Russ AD, Saeed S, Zar MA, Razzaq F, Carew J, Nawrocki S, Al-Kateb H, Cavalcante Parr NN, McBride A, Valent J, Samaras C. Future of Personalized Therapy Targeting Aberrant Signaling Pathways in Multiple Myeloma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2019; 19:397-405. [PMID: 31036508 PMCID: PMC6626550 DOI: 10.1016/j.clml.2019.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/19/2019] [Accepted: 03/17/2019] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a genetically complex disease. Identification of mutations and aberrant signaling pathways that contribute to the progression of MM and drug resistance has potential to lead to specific targets and personalized treatment. Aberrant signal pathways include RAS pathway activation due to RAS or BRAF mutations (targeted by vemurafenib alone or combined with cobimetinib), BCL-2 overexpression in t(11:14) (targeted by venetoclax), JAK2 pathway activation (targeted by ruxolitinib), NF-κB pathway activation (treated with DANFIN combined with bortezomib), MDM2 overexpression, and PI3K/mTOR pathway activation (targeted by BEZ235). Cyclin D1 (CCND1) and MYC are also emerging as key potential targets. In addition, histone deacetylase inhibitors are already in use for the treatment of MM in combination therapy, and targeted inhibition of FGFR3 (AZD4547) is effective in myeloma cells with t(4;14) translocation. Bromodomain and extra terminal (BET) protein antagonists decrease the expression of MYC and have displayed promising antimyeloma activity. A better understanding of the alterations in signaling pathways that promote MM progression will further inform the development of precision therapy for patients.
Collapse
Affiliation(s)
- Faiz Anwer
- Taussig Cancer Center, Department of Hematology, Medical Oncology, Cleveland Clinic, Cleveland, OH.
| | - Kevin Mathew Gee
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ
| | - Ahmad Iftikhar
- Department of Medicine, The University of Arizona, Tucson, AZ
| | - Mirza Baig
- Department of Medicine, Summit Medical Group, Summit, NJ
| | | | - Sabina Saeed
- College of Public Health, The University of Arizona, Tucson, AZ
| | - Muhammad Abu Zar
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Faryal Razzaq
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Jennifer Carew
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Steffan Nawrocki
- Department of Medicine, Division of Hematology & Oncology, The University of Arizona, Tucson, AZ
| | - Hussam Al-Kateb
- Division of Human Genetics, Children's Hospital, Cincinnati, OH
| | | | - Ali McBride
- College of Pharmacy, The University of Arizona, Tucson, AZ
| | - Jason Valent
- Taussig Cancer Center, Department of Hematology, Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Christy Samaras
- Taussig Cancer Center, Department of Hematology, Medical Oncology, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
27
|
A novel bromodomain inhibitor, CPI-203, serves as an HIV-1 latency-reversing agent by activating positive transcription elongation factor b. Biochem Pharmacol 2019; 164:237-251. [DOI: 10.1016/j.bcp.2019.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/07/2019] [Indexed: 01/12/2023]
|
28
|
Cui YS, Song YP, Fang BJ. The role of long non-coding RNAs in multiple myeloma. Eur J Haematol 2019; 103:3-9. [PMID: 30985973 DOI: 10.1111/ejh.13237] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/12/2022]
Abstract
Multiple myeloma (MM) is still an incurable disease, and its pathogenesis involves cytogenetics and epigenetics. In recent years, the roles of long non-coding RNAs (lncRNAs) in MM have been deeply studied by scholars. LncRNAs are defined as a class of non-protein-coding transcripts greater than 200 nucleotides in length, which are involved in a large spectrum of biological processes, including proliferation, differentiation, apoptosis, invasion, and chromatin remodeling. However, little is known about the specific mechanisms of these lncRNAs. They can act as oncogenic and/or tumor-suppressive factors in the development and progression of MM. But that how do they work remains unclear. In this review, the recent progress in the study of functional lncRNAs associated with MM was summarized and the present knowledge about their expression and roles was discussed, to provide guidance for the in-depth functional study of lncRNAs.
Collapse
Affiliation(s)
- Yu-Shan Cui
- Department of Hematology, Henan Institute of Haematology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong-Ping Song
- Department of Hematology, Henan Institute of Haematology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Bai-Jun Fang
- Department of Hematology, Henan Institute of Haematology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Abruzzese MP, Bilotta MT, Fionda C, Zingoni A, Soriani A, Petrucci MT, Ricciardi MR, Molfetta R, Paolini R, Santoni A, Cippitelli M. The homeobox transcription factor MEIS2 is a regulator of cancer cell survival and IMiDs activity in Multiple Myeloma: modulation by Bromodomain and Extra-Terminal (BET) protein inhibitors. Cell Death Dis 2019; 10:324. [PMID: 30975979 PMCID: PMC6459881 DOI: 10.1038/s41419-019-1562-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
The transcription factor Myeloid Ecotropic Insertion Site 2 (MEIS2) has been identified as a cellular substrate of the E3-ubiquitin ligase complex CRL4-cereblon (CRL4CRBN) in crystal structure and by biochemical screen. Emerging evidence suggests that IMiDs can block MEIS2 from binding to CRBN facilitating the subsequent activation of a CRL4CRBNIMiD-E3-ubiquitin ligase activity and proteasome-mediated degradation of critical substrates regulators of Multiple Myeloma (MM) cell survival and proliferation. Bromodomain and Extra-Terminal (BET) family of proteins are important epigenetic regulators involved in promoting gene expression of several oncogenes, and many studies have revealed important anticancer activities mediated by BET inhibitors (BETi) in hematologic malignancies including MM. Here, we investigated MEIS2 in MM, the role of this protein as a modulator of IMiDs activity and the ability of BETi to inhibit its expression. Our observations indicate that inhibition of MEIS2 in MM cells by RNA interference correlates with reduced growth, induction of apoptosis and enhanced efficacy of different anti-MM drugs. In addition, MEIS2 regulates the expression of Cyclin E/CCNE1 in MM and induction of apoptosis after treatment with the CDK inhibitor Seliciclib/Roscovitine. Interestingly, modulation of MEIS2 can regulate the expression of NKG2D and DNAM-1 NK cell-activating ligands and, importantly, the activity of IMiDs in MM cells. Finally, BETi have the ability to inhibit the expression of MEIS2 in MM, underscoring a novel anticancer activity mediated by these drugs. Our study provides evidence on the role of MEIS2 in MM cell survival and suggests therapeutic strategies targeting of MEIS2 to enhance IMiDs anti-myeloma activity.
Collapse
Affiliation(s)
| | | | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandra Soriani
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Maria Teresa Petrucci
- Division of Hematology, Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy
| | - Maria Rosaria Ricciardi
- Hematology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rosa Molfetta
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Rossella Paolini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy. .,Istituto Pasteur-Fondazione Cenci Bolognetti, Roma, RM, Italy. .,IRCCS, Neuromed, Pozzilli, Italy.
| | - Marco Cippitelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
30
|
Adamik J, Roodman GD, Galson DL. Epigenetic-Based Mechanisms of Osteoblast Suppression in Multiple Myeloma Bone Disease. JBMR Plus 2019; 3:e10183. [PMID: 30918921 PMCID: PMC6419609 DOI: 10.1002/jbm4.10183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/29/2018] [Accepted: 02/03/2019] [Indexed: 12/18/2022] Open
Abstract
Multiple myeloma (MM) bone disease is characterized by the development of osteolytic lesions, which cause severe complications affecting the morbidity, mortality, and treatment of myeloma patients. Myeloma tumors seeded within the bone microenvironment promote hyperactivation of osteoclasts and suppression of osteoblast differentiation. Because of this prolonged suppression of bone marrow stromal cells’ (BMSCs) differentiation into functioning osteoblasts, bone lesions in patients persist even in the absence of active disease. Current antiresorptive therapy provides insufficient bone anabolic effects to reliably repair MM lesions. It has become widely accepted that myeloma‐exposed BMSCs have an altered phenotype with pro‐inflammatory, immune‐modulatory, anti‐osteogenic, and pro‐adipogenic properties. In this review, we focus on the role of epigenetic‐based modalities in the establishment and maintenance of myeloma‐induced suppression of osteogenic commitment of BMSCs. We will focus on recent studies demonstrating the involvement of chromatin‐modifying enzymes in transcriptional repression of osteogenic genes in MM‐BMSCs. We will further address the epigenetic plasticity in the differentiation commitment of osteoprogenitor cells and assess the involvement of chromatin modifiers in MSC‐lineage switching from osteogenic to adipogenic in the context of the inflammatory myeloma microenvironment. Lastly, we will discuss the potential of employing small molecule epigenetic inhibitors currently used in the MM research as therapeutics and bone anabolic agents in the prevention or repair of osteolytic lesions in MM. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Juraj Adamik
- Department of Medicine Division of Hematology/Oncology, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine University of Pittsburgh Pittsburgh PA USA
| | - G David Roodman
- Department of Medicine Division of Hematology-Oncology Indiana University Indianapolis IN USA.,Richard L Roudebush VA Medical Center Indianapolis IN USA
| | - Deborah L Galson
- Department of Medicine Division of Hematology/Oncology, UPMC Hillman Cancer Center, The McGowan Institute for Regenerative Medicine University of Pittsburgh Pittsburgh PA USA
| |
Collapse
|
31
|
Alqahtani A, Choucair K, Ashraf M, Hammouda DM, Alloghbi A, Khan T, Senzer N, Nemunaitis J. Bromodomain and extra-terminal motif inhibitors: a review of preclinical and clinical advances in cancer therapy. Future Sci OA 2019; 5:FSO372. [PMID: 30906568 PMCID: PMC6426170 DOI: 10.4155/fsoa-2018-0115] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/04/2019] [Indexed: 01/18/2023] Open
Abstract
Histone lysine acetylation is critical in regulating transcription. Dysregulation of this process results in aberrant gene expression in various diseases, including cancer. The bromodomain, present in several proteins, recognizes promotor lysine acetylation and recruits other transcription factors. The bromodomain extra-terminal (BET) family of proteins consists of four conserved mammalian members that regulate transcription of oncogenes such as MYC and the NUT fusion oncoprotein. Targeting the acetyl-lysine-binding property of BET proteins is a potential therapeutic approach of cancer. Consequently, following the demonstration that thienotriazolodiazepine small molecules effectively inhibit BET, clinical trials were initiated. We thus discuss the mechanisms of action of various BET inhibitors and the prospects for their clinical use as cancer therapeutics.
Collapse
Affiliation(s)
- Ali Alqahtani
- Department of Internal Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - Khalil Choucair
- Division of Hematology & Medical Oncology, Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - Mushtaq Ashraf
- Division of Hematology & Medical Oncology, Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - Danae M Hammouda
- Division of Hematology & Medical Oncology, Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - Abduraham Alloghbi
- Department of Internal Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - Talal Khan
- Division of Hematology & Medical Oncology, Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - Neil Senzer
- Division of Hematology & Medical Oncology, Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
| | - John Nemunaitis
- Division of Hematology & Medical Oncology, Department of Medicine, University of Toledo College of Medicine & Life Sciences, Toledo, OH, 43614, USA
- ProMedica Health System, Toledo, OH, 43606, USA
| |
Collapse
|
32
|
Gu J, Song S, Han H, Xu H, Fan G, Qian C, Qiu Y, Zhou W, Zhuang W, Li B. The BET Bromodomain Inhibitor OTX015 Synergizes with Targeted Agents in Multiple Myeloma. Mol Pharm 2018; 15:5387-5396. [PMID: 30339013 DOI: 10.1021/acs.molpharmaceut.8b00880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Treatment failure remains a main challenge in the management of high-risk multiple myeloma (MM) even with the expanding repertoire of new drugs. Combinatorial therapy is considered an encouraging strategy that can overcome the compensatory mechanisms and undesirable off-target effects that limit the benefits of many prospective agents. Preliminary results of a current phase I trial have indicated that the new BET bromodomain inhibitor OTX015 has favorable activity and tolerability. However, OTX015 is not efficacious enough as a monotherapy. Here, we provide evidence that synergistic drug combinations with OTX015 were generally more specific to particular cellular contexts than single agent activities. In addition, pairing OTX015 with three classes of drugs dramatically enhanced the antitumor activity in mouse models of disseminated human myeloma. Our studies further underscored that the BET inhibitor OTX015 sensitized MM cells by interrupting several pathways and genes critical for MM cell proliferation and drug response, which provided the rationale for multiple myeloma therapy with OTX015 combined with conventional chemotherapeutic drugs. Thus, the context specificity of synergistic combinations not only provide profound insights into therapeutically relevant selectivity but also improve control of complex biological systems.
Collapse
Affiliation(s)
- Jie Gu
- Department of Haematology , The Second Affiliated Hospital of Soochow University , Suzhou , China
| | - Sha Song
- Department of Cell Biology, School of Biology & Basic Medical Sciences , Soochow University , Suzhou , China
| | - Huiying Han
- Department of Cell Biology, School of Biology & Basic Medical Sciences , Soochow University , Suzhou , China
| | - Hongxia Xu
- Department of Cell Biology, School of Biology & Basic Medical Sciences , Soochow University , Suzhou , China
| | - Gao Fan
- Department of Cell Biology, School of Biology & Basic Medical Sciences , Soochow University , Suzhou , China
| | - Chen'ao Qian
- Department of Bioinformatics, School of Biology & Basic Medical Sciences , Soochow University , Suzhou , China
| | - Yingchun Qiu
- Department of Cell Biology, School of Biology & Basic Medical Sciences , Soochow University , Suzhou , China
| | - Wenqi Zhou
- Department of Cell Biology, School of Biology & Basic Medical Sciences , Soochow University , Suzhou , China
| | - Wenzhuo Zhuang
- Department of Cell Biology, School of Biology & Basic Medical Sciences , Soochow University , Suzhou , China
| | - Bingzong Li
- Department of Haematology , The Second Affiliated Hospital of Soochow University , Suzhou , China
| |
Collapse
|
33
|
Recasens-Zorzo C, Cardesa-Salzmann T, Petazzi P, Ros-Blanco L, Esteve-Arenys A, Clot G, Guerrero-Hernández M, Rodríguez V, Soldini D, Valera A, Moros A, Climent F, González-Barca E, Mercadal S, Arenillas L, Calvo X, Mate JL, Gutiérrez-García G, Casanova I, Mangues R, Sanjuan-Pla A, Bueno C, Menéndez P, Martínez A, Colomer D, Tejedor RE, Teixidó J, Campo E, López-Guillermo A, Borrell JI, Colomo L, Pérez-Galán P, Roué G. Pharmacological modulation of CXCR4 cooperates with BET bromodomain inhibition in diffuse large B-cell lymphoma. Haematologica 2018; 104:778-788. [PMID: 29954928 PMCID: PMC6442946 DOI: 10.3324/haematol.2017.180505] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 06/25/2018] [Indexed: 01/15/2023] Open
Abstract
Constitutive activation of the chemokine receptor CXCR4 has been associated with tumor progression, invasion, and chemotherapy resistance in different cancer subtypes. Although the CXCR4 pathway has recently been suggested as an adverse prognostic marker in diffuse large B-cell lymphoma, its biological relevance in this disease remains underexplored. In a homogeneous set of 52 biopsies from patients, an antibody-based cytokine array showed that tissue levels of CXCL12 correlated with high microvessel density and bone marrow involvement at diagnosis, supporting a role for the CXCL12-CXCR4 axis in disease progression. We then identified the tetra-amine IQS-01.01RS as a potent inverse agonist of the receptor, preventing CXCL12-mediated chemotaxis and triggering apoptosis in a panel of 18 cell lines and primary cultures, with superior mobilizing properties in vivo than those of the standard agent. IQS-01.01RS activity was associated with downregulation of p-AKT, p-ERK1/2 and destabilization of MYC, allowing a synergistic interaction with the bromodomain and extra-terminal domain inhibitor, CPI203. In a xenotransplant model of diffuse large B-cell lymphoma, the combination of IQS-01.01RS and CPI203 decreased tumor burden through MYC and p-AKT downregulation, and enhanced the induction of apoptosis. Thus, our results point out an emerging role of CXCL12-CXCR4 in the pathogenesis of diffuse large B-cell lymphoma and support the simultaneous targeting of CXCR4 and bromodomain proteins as a promising, rationale-based strategy for the treatment of this disease.
Collapse
Affiliation(s)
- Clara Recasens-Zorzo
- Division of Hemato-Oncology, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona
| | | | - Paolo Petazzi
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona
| | - Laia Ros-Blanco
- Grup d'Enginyeria Molecular, IQS School of Engineering, Universitat Ramon Llull, Barcelona
| | - Anna Esteve-Arenys
- Division of Hemato-Oncology, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona
| | - Guillem Clot
- Division of Hemato-Oncology, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona
| | - Martina Guerrero-Hernández
- Division of Hemato-Oncology, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona
| | - Vanina Rodríguez
- Division of Hemato-Oncology, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona
| | - Davide Soldini
- Hematopathology Unit, Department of Pathology, Hospital Clinic, Barcelona
| | - Alexandra Valera
- Hematopathology Unit, Department of Pathology, Hospital Clinic, Barcelona
| | - Alexandra Moros
- Division of Hemato-Oncology, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona
| | - Fina Climent
- Pathology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat
| | - Eva González-Barca
- Institut Catalá d'Oncología, Hospital Duran I Reynals, L'Hospitalet de Llobregat
| | - Santiago Mercadal
- Institut Catalá d'Oncología, Hospital Duran I Reynals, L'Hospitalet de Llobregat
| | | | - Xavier Calvo
- Pathology Department, IMIM, Hospital del Mar, Barcelona
| | - José Luís Mate
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona
| | | | - Isolda Casanova
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona.,Grup d'Oncogènesi i Antitumorals, lnstitut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau) and Centro de Investigación Biomédica en Red CIBER-BBN, Barcelona
| | - Ramón Mangues
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona.,Grup d'Oncogènesi i Antitumorals, lnstitut d'Investigacions Biomèdiques Sant Pau (IIB-Sant Pau) and Centro de Investigación Biomédica en Red CIBER-BBN, Barcelona
| | | | - Clara Bueno
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona
| | - Pablo Menéndez
- Josep Carreras Leukemia Research Institute, Department of Biomedicine, School of Medicine, University of Barcelona.,Institucio Catalana de Recerca I Estudis Avançats (ICREA), CIBERONC, Barcelona
| | - Antonio Martínez
- Division of Hemato-Oncology, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona.,Hematopathology Unit, Department of Pathology, Hospital Clinic, Barcelona
| | - Dolors Colomer
- Division of Hemato-Oncology, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona.,Hematopathology Unit, Department of Pathology, Hospital Clinic, Barcelona
| | - Roger Estrada Tejedor
- Grup d'Enginyeria Molecular, IQS School of Engineering, Universitat Ramon Llull, Barcelona
| | - Jordi Teixidó
- Grup d'Enginyeria Molecular, IQS School of Engineering, Universitat Ramon Llull, Barcelona
| | - Elias Campo
- Division of Hemato-Oncology, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona.,Hematopathology Unit, Department of Pathology, Hospital Clinic, Barcelona
| | - Armando López-Guillermo
- Division of Hemato-Oncology, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona.,Department of Hematology, Hospital Clinic, Barcelona
| | - José Ignacio Borrell
- Grup d'Enginyeria Molecular, IQS School of Engineering, Universitat Ramon Llull, Barcelona
| | - Luis Colomo
- Hematopathology Unit, Department of Pathology, Hospital Clinic, Barcelona.,Pathology Department, IMIM, Hospital del Mar, Barcelona
| | - Patricia Pérez-Galán
- Division of Hemato-Oncology, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona
| | - Gaël Roué
- Division of Hemato-Oncology, Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS), CIBERONC, Barcelona .,Laboratory of Experimental Hematology, Department of Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
34
|
IRF4 Mediates the Oncogenic Effects of STAT3 in Anaplastic Large Cell Lymphomas. Cancers (Basel) 2018; 10:cancers10010021. [PMID: 29346274 PMCID: PMC5789371 DOI: 10.3390/cancers10010021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 11/17/2022] Open
Abstract
Systemic anaplastic large cell lymphomas (ALCL) are a category of T-cell non-Hodgkin’s lymphomas which can be divided into anaplastic lymphoma kinase (ALK) positive and ALK negative subgroups, based on ALK gene rearrangements. Among several pathways aberrantly activated in ALCL, the constitutive activation of signal transducer and activator of transcription 3 (STAT3) is shared by all ALK positive ALCL and has been detected in a subgroup of ALK negative ALCL. To discover essential mediators of STAT3 oncogenic activity that may represent feasible targets for ALCL therapies, we combined gene expression profiling analysis and RNA interference functional approaches. A shRNA screening of STAT3-modulated genes identified interferon regulatory factor 4 (IRF4) as a key driver of ALCL cell survival. Accordingly, ectopic IRF4 expression partially rescued STAT3 knock-down effects. Treatment with immunomodulatory drugs (IMiDs) induced IRF4 down regulation and resulted in cell death, a phenotype rescued by IRF4 overexpression. However, the majority of ALCL cell lines were poorly responsive to IMiDs treatment. Combination with JQ1, a bromodomain and extra-terminal (BET) family antagonist known to inhibit MYC and IRF4, increased sensitivity to IMiDs. Overall, these results show that IRF4 is involved in STAT3-oncogenic signaling and its inhibition provides alternative avenues for the design of novel/combination therapies of ALCL.
Collapse
|
35
|
Crucial role of HO-1/IRF4-dependent apoptosis induced by panobinostat and lenalidomide in multiple myeloma. Exp Cell Res 2018; 363:196-207. [PMID: 29317217 DOI: 10.1016/j.yexcr.2018.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 11/22/2022]
Abstract
Inhibition of histone deacetylase (HDAC) is a promising therapeutic strategy for various hematologic cancers. Panobinostat has been approved for treating patients with multiple myeloma (MM) by the FDA. Since the mechanism for the resistance of panobinostat to MM remains elusive, we aimed to clarify this mechanism and the synergism of panobinostat with lenalidomide. The mRNA and protein of transcription factor IRF4 were overexpressed in CD138+ mononuclear cells from MM patients compared with in those from healthy donors. Given that direct IRF4 inhibitors are clinically unavailable, we intended to explore the mechanism by which IRF4 expression was regulated in MM. Heme oxygenase-1 (HO-1) promotes the growth and drug resistance of various malignant tumors, and its expression is positively correlated with IRF4 mRNA and protein expression levels. Herein, panobinostat induced acetylation of histone H3K9 and activation of caspase-3 in MM cells, being inversely correlated with the reduction of HO-1/IRF4/MYC protein levels. Adding Z-DEVD-FMK, a caspase-3 inhibitor, abolished the HO-1/IRF4 reduction by panobinostat alone or in combination with lenalidomide, suggesting that caspase-3-mediated HO-1/IRF4/MYC degradation occurred. Given that lenalidomide stabilized cereblon and facilitated IRF4 degradation in MM cells, we combined it with LBH589, an HDAC inhibitor. LBH589 and lenalidomide exerted synergistic effects, and LBH589 reversed the efficacy of lenalidomide on the resistance of CD138+ primary MM cells, in part due to simultaneous suppression of HO-1, IRF4 and MYC. The results provide an eligible therapeutic strategy for targeting MM depending on the IRF4 network and clinical testing of this drug combination in MM patients.
Collapse
|
36
|
Epigenetics in multiple myeloma: From mechanisms to therapy. Semin Cancer Biol 2017; 51:101-115. [PMID: 28962927 DOI: 10.1016/j.semcancer.2017.09.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/25/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022]
Abstract
Multiple myeloma (MM) is a tumor of antibody producing plasmablasts/plasma cells that resides within the bone marrow (BM). In addition to the well-established role of genetic lesions and tumor-microenvironment interactions in the development of MM, deregulated epigenetic mechanisms are emerging as important in MM pathogenesis. Recently, MM sequencing and expression projects have revealed that mutations and copy number variations as well as deregulation in the expression of epigenetic modifiers are characteristic features of MM. In the past decade, several studies have suggested epigenetic mechanisms via DNA methylation, histone modifications and non-coding RNAs as important contributing factors in MM with impacts on disease initiation, progression, clonal heterogeneity and response to treatment. Herein we review the present view and knowledge that has accumulated over the past decades on the role of epigenetics in MM, with focus on the interplay between epigenetic mechanisms and the potential use of epigenetic inhibitors as future treatment modalities for MM.
Collapse
|