1
|
Sun R, Liu J, Li X, Xu K, Huang J, Wang D, Xiong F, Zhang J, Pu Y. LncRNA TUG1 regulates mir-34a-5p / SIRT6 to participate in benzene-induced hematotoxicity through PI3K / AKT /mTOR signaling pathway. Food Chem Toxicol 2024; 193:115026. [PMID: 39357595 DOI: 10.1016/j.fct.2024.115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
LncRNA TUG1 plays pivotal roles in various diseases. However, its exact roles in benzene - induced hematotoxicity remain unclear. Herein, we aimed to investigate the role and mechanism of TUG1 in hematoxic injuries caused by benzene. In the current study, TUG1 was found dramatically decreased in WBCs of benzene exposure workers and negatively correlated with benzene exposure duration and urine SPMA. In vitro assays demonstrated that TUG1 overexpression attenuated 1,4-BQ-caused suppression of cell viability and proliferation, and promotion of ROS generation and apoptosis via PI3K/AKT/mTOR pathway. Bioinformatic prediction and molecular assay validated miR-34a-5p was negatively regulated by TUG1. The miR-34a-5p was upregulated in 1,4-BQ treated cells and downregulated in TUG1 overexpression cells. Moreover, miR-34a-5p upregulation partially reversed the protective effects of TUG1 overexpression on 1,4-BQ - caused cytotoxicity. Furthermore, SIRT6 was a downstream target gene of miR-34a-5p, whose expression was reduced in miR-34a-5p upregulation cells and elevated in TUG1 overexpression cells. Upregulated SIRT6 could counteract accelerated cytotoxicity mediated by miR-34a-5p upregulation after 1,4-BQ treatment. Taken together, our study revealed that the critical role of the TUG1/miR-34a-5p/SIRT6 axis in benzene-caused hematotoxicity, and provided scientific basis for further understanding the epigenetic regulatory mechanisms underlying benzene hematotoxicity.
Collapse
Affiliation(s)
- Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Jinyan Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Xiaoqin Li
- Yangzhou Center for Disease Control and Prevention, Yangzhou, 225100, Jiangsu, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jiawei Huang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Daqin Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Fei Xiong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
2
|
Fiorentino F, Fabbrizi E, Mai A, Rotili D. Activation and inhibition of sirtuins: From bench to bedside. Med Res Rev 2024. [PMID: 39215785 DOI: 10.1002/med.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
The sirtuin family comprises seven NAD+-dependent enzymes which catalyze protein lysine deacylation and mono ADP-ribosylation. Sirtuins act as central regulators of genomic stability and gene expression and control key processes, including energetic metabolism, cell cycle, differentiation, apoptosis, and aging. As a result, all sirtuins play critical roles in cellular homeostasis and organism wellness, and their dysregulation has been linked to metabolic, cardiovascular, and neurological diseases. Furthermore, sirtuins have shown dichotomous roles in cancer, acting as context-dependent tumor suppressors or promoters. Given their central role in different cellular processes, sirtuins have attracted increasing research interest aimed at developing both activators and inhibitors. Indeed, sirtuin modulation may have therapeutic effects in many age-related diseases, including diabetes, cardiovascular and neurodegenerative disorders, and cancer. Moreover, isoform selective modulators may increase our knowledge of sirtuin biology and aid to develop better therapies. Through this review, we provide critical insights into sirtuin pharmacology and illustrate their enzymatic activities and biological functions. Furthermore, we outline the most relevant sirtuin modulators in terms of their modes of action, structure-activity relationships, pharmacological effects, and clinical applications.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Emanuele Fabbrizi
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
- Pasteur Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Xu X, Zhang Q, Wang X, Jin J, Wu C, Feng L, Yang X, Zhao M, Chen Y, Lu S, Zheng Z, Lan X, Wang Y, Zheng Y, Lu X, Zhang Q, Zhang J. Discovery of a potent and highly selective inhibitor of SIRT6 against pancreatic cancer metastasis in vivo. Acta Pharm Sin B 2024; 14:1302-1316. [PMID: 38487000 PMCID: PMC10935062 DOI: 10.1016/j.apsb.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 10/18/2023] [Indexed: 03/17/2024] Open
Abstract
Pancreatic cancer, one of the most aggressive malignancies, has no effective treatment due to the lack of targets and drugs related to tumour metastasis. SIRT6 can promote the migration of pancreatic cancer and could be a potential target for antimetastasis of pancreatic cancer. However, highly selective and potency SIRT6 inhibitor that can be used in vivo is yet to be discovered. Here, we developed a novel SIRT6 allosteric inhibitor, compound 11e, with maximal inhibitory potency and an IC50 value of 0.98 ± 0.13 μmol/L. Moreover, compound 11e exhibited significant selectivity against other histone deacetylases (HADC1‒11 and SIRT1‒3) at concentrations up to 100 μmol/L. The allosteric site and the molecular mechanism of inhibition were extensively elucidated by cocrystal complex structure and dynamic structural analyses. Importantly, we confirmed the antimetastatic function of such inhibitors in four pancreatic cancer cell lines as well as in two mouse models of pancreatic cancer liver metastasis. To our knowledge, this is the first study to reveal the in vivo effects of SIRT6 inhibitors on liver metastatic pancreatic cancer. It not only provides a promising lead compound for subsequent inhibitor development targeting SIRT6 but also provides a potential approach to address the challenge of metastasis in pancreatic cancer.
Collapse
Affiliation(s)
- Xinyuan Xu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Medicinal Chemistry and BioinformaticsCenter, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qian Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Medicinal Chemistry and BioinformaticsCenter, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xufeng Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Jing Jin
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230026, China
| | - Chengwei Wu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Medicinal Chemistry and BioinformaticsCenter, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Feng
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Medicinal Chemistry and BioinformaticsCenter, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiuyan Yang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mingzhu Zhao
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yingyi Chen
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shaoyong Lu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhen Zheng
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaobing Lan
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yi Wang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei 230026, China
| | - Yan Zheng
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xuefeng Lu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qiufen Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Medicinal Chemistry and BioinformaticsCenter, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
4
|
Su J, Su Q, Hu S, Ruan X, Ouyang S. Research Progress on the Anti-Aging Potential of the Active Components of Ginseng. Nutrients 2023; 15:3286. [PMID: 37571224 PMCID: PMC10421173 DOI: 10.3390/nu15153286] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Aging is a cellular state characterized by a permanent cessation of cell division and evasion of apoptosis. DNA damage, metabolic dysfunction, telomere damage, and mitochondrial dysfunction are the main factors associated with senescence. Aging increases β-galactosidase activity, enhances cell spreading, and induces Lamin B1 loss, which further accelerate the aging process. It is associated with a variety of diseases, such as Alzheimer's disease, Parkinson's, type 2 diabetes, and chronic inflammation. Ginseng is a traditional Chinese medicine with anti-aging effects. The active components of ginseng, including saponins, polysaccharides, and active peptides, have antioxidant, anti-apoptotic, neuroprotective, and age-delaying effects. DNA damage is the main factor associated with aging, and the mechanism through which the active ingredients of ginseng reduce DNA damage and delay aging has not been comprehensively described. This review focuses on the anti-aging mechanisms of the active ingredients of ginseng. Furthermore, it broadens the scope of ideas for further research on natural products and aging.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Qiaofen Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xinglin Ruan
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China;
| | - Songying Ouyang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China; (Q.S.); (S.H.)
- Provincial University Key Laboratory of Microbial Pathogenesis and Interventions, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
- Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
5
|
CD38-Induced Metabolic Dysfunction Primes Multiple Myeloma Cells for NAD +-Lowering Agents. Antioxidants (Basel) 2023; 12:antiox12020494. [PMID: 36830052 PMCID: PMC9952390 DOI: 10.3390/antiox12020494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Cancer cells fuel growth and energy demands by increasing their NAD+ biosynthesis dependency, which therefore represents an exploitable vulnerability for anti-cancer strategies. CD38 is a NAD+-degrading enzyme that has become crucial for anti-MM therapies since anti-CD38 monoclonal antibodies represent the backbone for treatment of newly diagnosed and relapsed multiple myeloma patients. Nevertheless, further steps are needed to enable a full exploitation of these strategies, including deeper insights of the mechanisms by which CD38 promotes tumorigenesis and its metabolic additions that could be selectively targeted by therapeutic strategies. Here, we present evidence that CD38 upregulation produces a pervasive intracellular-NAD+ depletion, which impairs mitochondrial fitness and enhances oxidative stress; as result, genetic or pharmacologic approaches that aim to modify CD38 surface-level prime MM cells to NAD+-lowering agents. The molecular mechanism underlying this event is an alteration in mitochondrial dynamics, which decreases mitochondria efficiency and triggers energetic remodeling. Overall, we found that CD38 handling represents an innovative strategy to improve the outcomes of NAD+-lowering agents and provides the rationale for testing these very promising agents in clinical studies involving MM patients.
Collapse
|
6
|
Gaál Z. Targeted Epigenetic Interventions in Cancer with an Emphasis on Pediatric Malignancies. Biomolecules 2022; 13:61. [PMID: 36671446 PMCID: PMC9855367 DOI: 10.3390/biom13010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Over the past two decades, novel hallmarks of cancer have been described, including the altered epigenetic landscape of malignant diseases. In addition to the methylation and hyd-roxymethylation of DNA, numerous novel forms of histone modifications and nucleosome remodeling have been discovered, giving rise to a wide variety of targeted therapeutic interventions. DNA hypomethylating drugs, histone deacetylase inhibitors and agents targeting histone methylation machinery are of distinguished clinical significance. The major focus of this review is placed on targeted epigenetic interventions in the most common pediatric malignancies, including acute leukemias, brain and kidney tumors, neuroblastoma and soft tissue sarcomas. Upcoming novel challenges include specificity and potential undesirable side effects. Different epigenetic patterns of pediatric and adult cancers should be noted. Biological significance of epigenetic alterations highly depends on the tissue microenvironment and widespread interactions. An individualized treatment approach requires detailed genetic, epigenetic and metabolomic evaluation of cancer. Advances in molecular technologies and clinical translation may contribute to the development of novel pediatric anticancer treatment strategies, aiming for improved survival and better patient quality of life.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatric Hematology-Oncology, Institute of Pediatrics, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
7
|
Guo Z, Li P, Ge J, Li H. SIRT6 in Aging, Metabolism, Inflammation and Cardiovascular Diseases. Aging Dis 2022; 13:1787-1822. [PMID: 36465178 PMCID: PMC9662279 DOI: 10.14336/ad.2022.0413] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/13/2022] [Indexed: 07/28/2023] Open
Abstract
As an important NAD+-dependent enzyme, SIRT6 has received significant attention since its discovery. In view of observations that SIRT6-deficient animals exhibit genomic instability and metabolic disorders and undergo early death, SIRT6 has long been considered a protein of longevity. Recently, growing evidence has demonstrated that SIRT6 functions as a deacetylase, mono-ADP-ribosyltransferase and long fatty deacylase and participates in a variety of cellular signaling pathways from DNA damage repair in the early stage to disease progression. In this review, we elaborate on the specific substrates and molecular mechanisms of SIRT6 in various physiological and pathological processes in detail, emphasizing its links to aging (genomic damage, telomere integrity, DNA repair), metabolism (glycolysis, gluconeogenesis, insulin secretion and lipid synthesis, lipolysis, thermogenesis), inflammation and cardiovascular diseases (atherosclerosis, cardiac hypertrophy, heart failure, ischemia-reperfusion injury). In addition, the most recent advances regarding SIRT6 modulators (agonists and inhibitors) as potential therapeutic agents for SIRT6-mediated diseases are reviewed.
Collapse
Affiliation(s)
- Zhenyang Guo
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
| | - Peng Li
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, China.
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Role of Sirtuins in the Pathobiology of Onco-Hematological Diseases: A PROSPERO-Registered Study and In Silico Analysis. Cancers (Basel) 2022; 14:cancers14194611. [PMID: 36230534 PMCID: PMC9561980 DOI: 10.3390/cancers14194611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The aging of the hematological system can cause physiological disorders such as anemia, reduced immunity, and the increased incidence of blood cancer. Patients diagnosed with hematologic malignancies comprise nearly 10% of all cancer deaths identified in international epidemiologic studies. Therefore, it is considered a public health problem worldwide. Scientific evidence demonstrates the important involvement of sirtuins (SIRTs) in the pathogenesis of several types of solid tumors. However, the role of SIRTs in the pathobiology of malignant hematological diseases has not yet been systematically reviewed. In this systematic review, we highlight the role of different SIRTs in the pathogenesis of acute and chronic leukemias, lymphoma and myeloma. Also, we performed a bioinformatic analysis to identify whether the expression of SIRTs is altered in onco-hematological diseases, such as lymphomas and leukemias. The advent of new applicability of SIRTs in the process of aging and hematological carcinogenesis may allow the development of new diagnostic and therapeutic approaches for these diseases. Abstract The sirtuins (SIRT) gene family (SIRT1 to SIRT7) contains the targets implicated in cellular and organismal aging. The role of SIRTs expression in the pathogenesis and overall survival of patients diagnosed with solid tumors has been widely discussed. However, studies that seek to explain the role of these pathways in the hematopoietic aging process and the consequences of their instability in the pathogenesis of different onco-hematological diseases are still scarce. Therefore, we performed a systematic review (registered in PROSPERO database #CRD42022310079) and in silico analysis (based on GEPIA database) to discuss the role of SIRTs in the advancement of pathogenesis and/or prognosis for different hematological cancer types. In summary, given recent available scientific evidence and in silico gene expression analysis that supports the role of SIRTs in pathobiology of hematological malignances, such as leukemias, lymphomas and myeloma, it is clear the need for further high-quality research and clinical trials that expands the SIRT inhibition knowledge and its effect on controlling clonal progression caused by genomic instability characteristics of these diseases. Finally, SIRTs represent potential molecular targets in the control of the effects caused by aging on the failures of the hematopoietic system that can lead to the involvement of hematological neoplasms.
Collapse
|
9
|
Abbotto E, Scarano N, Piacente F, Millo E, Cichero E, Bruzzone S. Virtual Screening in the Identification of Sirtuins’ Activity Modulators. Molecules 2022; 27:molecules27175641. [PMID: 36080416 PMCID: PMC9457788 DOI: 10.3390/molecules27175641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Sirtuins are NAD+-dependent deac(et)ylases with different subcellular localization. The sirtuins’ family is composed of seven members, named SIRT-1 to SIRT-7. Their substrates include histones and also an increasing number of different proteins. Sirtuins regulate a wide range of different processes, ranging from transcription to metabolism to genome stability. Thus, their dysregulation has been related to the pathogenesis of different diseases. In this review, we discussed the pharmacological approaches based on sirtuins’ modulators (both inhibitors and activators) that have been attempted in in vitro and/or in in vivo experimental settings, to highlight the therapeutic potential of targeting one/more specific sirtuin isoform(s) in cancer, neurodegenerative disorders and type 2 diabetes. Extensive research has already been performed to identify SIRT-1 and -2 modulators, while compounds targeting the other sirtuins have been less studied so far. Beside sections dedicated to each sirtuin, in the present review we also included sections dedicated to pan-sirtuins’ and to parasitic sirtuins’ modulators. A special focus is dedicated to the sirtuins’ modulators identified by the use of virtual screening.
Collapse
Affiliation(s)
- Elena Abbotto
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Naomi Scarano
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Elena Cichero
- Department of Pharmacy, Section of Medicinal Chemistry, School of Medical and Pharmaceutical Sciences, University of Genoa, Viale Benedetto XV, 3, 16132 Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
- Correspondence:
| |
Collapse
|
10
|
Georgieva AM, Guo X, Bartkuhn M, Günther S, Künne C, Smolka C, Atzberger A, Gärtner U, Mamchaoui K, Bober E, Zhou Y, Yuan X, Braun T. Inactivation of Sirt6 ameliorates muscular dystrophy in mdx mice by releasing suppression of utrophin expression. Nat Commun 2022; 13:4184. [PMID: 35859073 PMCID: PMC9300598 DOI: 10.1038/s41467-022-31798-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
The NAD+-dependent SIRT1-7 family of protein deacetylases plays a vital role in various molecular pathways related to stress response, DNA repair, aging and metabolism. Increased activity of individual sirtuins often exerts beneficial effects in pathophysiological conditions whereas reduced activity is usually associated with disease conditions. Here, we demonstrate that SIRT6 deacetylates H3K56ac in myofibers to suppress expression of utrophin, a dystrophin-related protein stabilizing the sarcolemma in absence of dystrophin. Inactivation of Sirt6 in dystrophin-deficient mdx mice reduced damage of myofibers, ameliorated dystrophic muscle pathology, and improved muscle function, leading to attenuated activation of muscle stem cells (MuSCs). ChIP-seq and locus-specific recruitment of SIRT6 using a CRISPR-dCas9/gRNA approach revealed that SIRT6 is critical for removal of H3K56ac at the Downstream utrophin Enhancer (DUE), which is indispensable for utrophin expression. We conclude that epigenetic manipulation of utrophin expression is a promising approach for the treatment of Duchenne Muscular Dystrophy (DMD). Utrophin is a dystrophin-related protein stabilizing the sarcolemma in absence of dystrophin. Here the authors report that inactivation of the protein deacetylase SIRT6, involved in the deacetylation of the epigenetic mark H3K56ac in muscle cells, increases expression of utrophin and ameliorates dystrophic muscle pathology in mice.
Collapse
Affiliation(s)
- Angelina M Georgieva
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Xinyue Guo
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine, Justus Liebig University, Giessen, Germany
| | - Stefan Günther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Carsten Künne
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Christian Smolka
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Ann Atzberger
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Ulrich Gärtner
- Institute for Anatomy and Cell Biology, University of Giessen, Giessen, Germany
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013, Paris, France
| | - Eva Bober
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Yonggang Zhou
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany
| | - Xuejun Yuan
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany.
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, 61231, Bad Nauheim, Germany.
| |
Collapse
|
11
|
Li Y, Jin J, Wang Y. SIRT6 Widely Regulates Aging, Immunity, and Cancer. Front Oncol 2022; 12:861334. [PMID: 35463332 PMCID: PMC9019339 DOI: 10.3389/fonc.2022.861334] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
SIRT6 is a member of the Sir2-like family in mammals. Recent structural and biochemical studies have characterized SIRT6 as having deacetylation, defatty-acylation, and mono-ADP-ribosylation activities, which determine its important regulatory roles during physiological and pathological processes. This review focuses mainly on the regulatory functions of SIRT6 in aging, cancer, and, especially, immunity. Particular attention is paid to studies illustrating the critical role of SIRT6 in the regulation of immune cells from the viewpoints of immunesenescence, immunometabolism, and tumor immunology. Owing to its role in regulating the function of the immune system, SIRT6 can be considered to be a potential therapeutic target for the treatment of diseases.
Collapse
Affiliation(s)
- Yunjia Li
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
| | - Jing Jin
- Institute of Immunology and the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, China
| | - Yi Wang
- The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China.,Institute of Immunology and the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical Center, University of Science and Technology of China, Hefei, China
| |
Collapse
|
12
|
Raghu S, Prabhashankar AB, Shivanaiah B, Tripathi E, Sundaresan NR. Sirtuin 6 Is a Critical Epigenetic Regulator of Cancer. Subcell Biochem 2022; 100:337-360. [PMID: 36301499 DOI: 10.1007/978-3-031-07634-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sirtuin 6 (SIRT6) is a member of the mammalian sirtuin family with deacetylase, deacylase, and mono-ADP-ribosyl-transferase activities. It is a multitasking chromatin-associated protein regulating different cellular and physiological functions in cells. Specifically, SIRT6 dysfunction is implicated in several aging-related human diseases, including cancer. Studies indicate that SIRT6 has a tumor-specific role, and it is considered a tumor suppressor as well as a tumor growth inducer, depending on the type of cancer. In this chapter, we review the role of SIRT6 in metabolism, genomic stability, and cancer. Further, we provide an insight into the interplay of the tumor-suppressing and oncogenic roles of SIRT6 in cancer. Additionally, we discuss the use of small-molecule SIRT6 modulators as potential therapeutics.
Collapse
Affiliation(s)
- Sukanya Raghu
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru, Karnataka, India
| | - Arathi Bangalore Prabhashankar
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru, Karnataka, India
| | - Bhoomika Shivanaiah
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru, Karnataka, India
| | - Ekta Tripathi
- Department of Biotechnology, Faculty of Life and Allied Health Sciences, Ramaiah University of Applied Sciences, Bengaluru, India.
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru, Karnataka, India.
| | - Nagalingam Ravi Sundaresan
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science (IISc), Bengaluru, Karnataka, India.
| |
Collapse
|
13
|
Kalushkova A, Nylund P, Párraga AA, Lennartsson A, Jernberg-Wiklund H. One Omics Approach Does Not Rule Them All: The Metabolome and the Epigenome Join Forces in Haematological Malignancies. EPIGENOMES 2021; 5:epigenomes5040022. [PMID: 34968247 PMCID: PMC8715477 DOI: 10.3390/epigenomes5040022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/17/2021] [Accepted: 09/26/2021] [Indexed: 02/01/2023] Open
Abstract
Aberrant DNA methylation, dysregulation of chromatin-modifying enzymes, and microRNAs (miRNAs) play a crucial role in haematological malignancies. These epimutations, with an impact on chromatin accessibility and transcriptional output, are often associated with genomic instability and the emergence of drug resistance, disease progression, and poor survival. In order to exert their functions, epigenetic enzymes utilize cellular metabolites as co-factors and are highly dependent on their availability. By affecting the expression of metabolic enzymes, epigenetic modifiers may aid the generation of metabolite signatures that could be utilized as targets and biomarkers in cancer. This interdependency remains often neglected and poorly represented in studies, despite well-established methods to study the cellular metabolome. This review critically summarizes the current knowledge in the field to provide an integral picture of the interplay between epigenomic alterations and the cellular metabolome in haematological malignancies. Our recent findings defining a distinct metabolic signature upon response to enhancer of zeste homolog 2 (EZH2) inhibition in multiple myeloma (MM) highlight how a shift of preferred metabolic pathways may potentiate novel treatments. The suggested link between the epigenome and the metabolome in haematopoietic tumours holds promise for the use of metabolic signatures as possible biomarkers of response to treatment.
Collapse
Affiliation(s)
- Antonia Kalushkova
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
- Correspondence:
| | - Patrick Nylund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| | - Alba Atienza Párraga
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| | - Andreas Lennartsson
- Department of Biosciences and Nutrition, NEO, Karolinska Institutet, 14157 Huddinge, Sweden;
| | - Helena Jernberg-Wiklund
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden; (P.N.); (A.A.P.); (H.J.-W.)
| |
Collapse
|
14
|
Zhu C, Li K, Jiang M, Chen S. RBM5-AS1 promotes radioresistance in medulloblastoma through stabilization of SIRT6 protein. Acta Neuropathol Commun 2021; 9:123. [PMID: 34225779 PMCID: PMC8256544 DOI: 10.1186/s40478-021-01218-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 12/29/2022] Open
Abstract
Cancer stem cells (CSCs) contribute to radioresistance in medulloblastoma. Thus, identification of key regulators of medulloblastoma stemness is critical for improving radiotherapy for medulloblastoma. In the present study, we profiled CSC-related long non-coding RNAs (lncRNAs) between radioresistant and parental medulloblastoma cells. The roles of the lncRNA RBM5-AS1 in the stemness and radiosensitivity of medulloblastoma cells were investigated. We found that RBM5-AS1, a novel inducer of medulloblastoma stemness, was significantly upregulated in radioresistant medulloblastoma cells compared to parental cells. Knockdown of RBM5-AS1 diminished the viability and clonogenic survival of both radioresistant and parental medulloblastoma cells after radiation. Silencing of RBM5-AS1 significantly enhanced radiation-induced apoptosis and DNA damage. In vivo studies confirmed that depletion of RBM5-AS1 inhibited tumor growth and increased radiosensitivity in a medulloblastoma xenograft model. In contrast, overexpression of RBM5-AS1 reduced radiation-induced apoptosis and DNA damage in medulloblastoma cells. Mechanistically, RBM5-AS1 interacted with and stabilized sirtuin 6 (SIRT6) protein. Silencing of SIRT6 reduced the stemness and reinforced radiation-induced DNA damage in medulloblastoma cells. Overexpression of SIRT6 rescued medulloblastoma cells from RBM5-AS1 depletion-induced radiosensitization and DNA damage. Overall, we identify RBM5-AS1 as an inducer of stemness and radioresistance in medulloblastoma. Targeting RBM5-AS1 may represent a potential strategy to overcome the resistance to radiotherapy in this malignancy.
Collapse
|
15
|
Abstract
![]()
Sirtuin 6 (SIRT6)
is an NAD+-dependent protein deacylase
and mono-ADP-ribosyltransferase of the sirtuin family with a wide
substrate specificity. In vitro and in vivo studies have indicated that SIRT6 overexpression or activation has
beneficial effects for cellular processes such as DNA repair, metabolic
regulation, and aging. On the other hand, SIRT6 has contrasting roles
in cancer, acting either as a tumor suppressor or promoter in a context-specific
manner. Given its central role in cellular homeostasis, SIRT6 has
emerged as a promising target for the development of small-molecule
activators and inhibitors possessing a therapeutic potential in diseases
ranging from cancer to age-related disorders. Moreover, specific modulators
allow the molecular details of SIRT6 activity to be scrutinized and
further validate the enzyme as a pharmacological target. In this Perspective,
we summarize the current knowledge about SIRT6 pharmacology and medicinal
chemistry and describe the features of the activators and inhibitors
identified so far.
Collapse
Affiliation(s)
- Francesco Fiorentino
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Antonello Mai
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, P.le A Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, P.le A Moro 5, 00185 Rome, Italy
| |
Collapse
|
16
|
The Two-Faced Role of SIRT6 in Cancer. Cancers (Basel) 2021; 13:cancers13051156. [PMID: 33800266 PMCID: PMC7962659 DOI: 10.3390/cancers13051156] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Cancer therapy relies on the employment of different strategies aimed at inducing cancer cell death through different mechanisms, including DNA damage and apoptosis induction. One of the key regulators of these pathways is the epigenetic enzyme SIRT6, which has been shown to have a dichotomous function in cell fate determination and, consequently, cancer initiation and progression. In this review, we aim to summarize the current knowledge on the role of SIRT6 in cancer. We show that it can act as both tumor suppressor and promoter, even in the same cancer type, depending on the biological context. We then describe the most promising modulators of SIRT6 which, through enzyme activation or inhibition, may impair tumor growth. These molecules can also be used for the elucidation of SIRT6 function, thereby advancing the current knowledge on this crucial protein. Abstract Sirtuin 6 (SIRT6) is a NAD+-dependent nuclear deacylase and mono-ADP-ribosylase with a wide spectrum of substrates. Through its pleiotropic activities, SIRT6 modulates either directly or indirectly key processes linked to cell fate determination and oncogenesis such as DNA damage repair, metabolic homeostasis, and apoptosis. SIRT6 regulates the expression and activity of both pro-apoptotic (e.g., Bax) and anti-apoptotic factors (e.g., Bcl-2, survivin) in a context-depending manner. Mounting evidence points towards a double-faced involvement of SIRT6 in tumor onset and progression since the block or induction of apoptosis lead to opposite outcomes in cancer. Here, we discuss the features and roles of SIRT6 in the regulation of cell death and cancer, also focusing on recently discovered small molecule modulators that can be used as chemical probes to shed further light on SIRT6 cancer biology and proposed as potential new generation anticancer therapeutics.
Collapse
|
17
|
Liu G, Chen H, Liu H, Zhang W, Zhou J. Emerging roles of SIRT6 in human diseases and its modulators. Med Res Rev 2021; 41:1089-1137. [PMID: 33325563 PMCID: PMC7906922 DOI: 10.1002/med.21753] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
Abstract
The biological functions of sirtuin 6 (SIRT6; e.g., deacetylation, defatty-acylation, and mono-ADP-ribosylation) play a pivotal role in regulating lifespan and several fundamental processes controlling aging such as DNA repair, gene expression, and telomeric maintenance. Over the past decades, the aberration of SIRT6 has been extensively observed in diverse life-threatening human diseases. In this comprehensive review, we summarize the critical roles of SIRT6 in the onset and progression of human diseases including cancer, inflammation, diabetes, steatohepatitis, arthritis, cardiovascular diseases, neurodegenerative diseases, viral infections, renal and corneal injuries, as well as the elucidation of the related signaling pathways. Moreover, we discuss the advances in the development of small molecule SIRT6 modulators including activators and inhibitors as well as their pharmacological profiles toward potential therapeutics for SIRT6-mediated diseases.
Collapse
Affiliation(s)
- Gang Liu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| | - Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555, USA
| |
Collapse
|
18
|
Zhang P, Brinton LT, Williams K, Sher S, Orwick S, Tzung-Huei L, Mims AS, Coss CC, Kulp SK, Youssef Y, Chan WK, Mitchell S, Mustonen A, Cannon M, Phillips H, Lehman AM, Kauffman T, Beaver L, Canfield D, Grieselhuber NR, Alinari L, Sampath D, Yan P, Byrd JC, Blachly JS, Lapalombella R. Targeting DNA Damage Repair Functions of Two Histone Deacetylases, HDAC8 and SIRT6, Sensitizes Acute Myeloid Leukemia to NAMPT Inhibition. Clin Cancer Res 2021; 27:2352-2366. [PMID: 33542077 DOI: 10.1158/1078-0432.ccr-20-3724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/24/2020] [Accepted: 02/01/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors (NAMPTi) are currently in development, but may be limited as single-agent therapy due to compound-specific toxicity and cancer metabolic plasticity allowing resistance development. To potentially lower the doses of NAMPTis required for therapeutic benefit against acute myeloid leukemia (AML), we performed a genome-wide CRISPRi screen to identify rational disease-specific partners for a novel NAMPTi, KPT-9274. EXPERIMENTAL DESIGN Cell lines and primary cells were analyzed for cell viability, self-renewal, and responses at RNA and protein levels with loss-of-function approaches and pharmacologic treatments. In vivo efficacy of combination therapy was evaluated with a xenograft model. RESULTS We identified two histone deacetylases (HDAC), HDAC8 and SIRT6, whose knockout conferred synthetic lethality with KPT-9274 in AML. Furthermore, HDAC8-specific inhibitor, PCI-34051, or clinical class I HDAC inhibitor, AR-42, in combination with KPT-9274, synergistically decreased the survival of AML cells in a dose-dependent manner. AR-42/KPT-9274 cotreatment attenuated colony-forming potentials of patient cells while sparing healthy hematopoietic cells. Importantly, combined therapy demonstrated promising in vivo efficacy compared with KPT-9274 or AR-42 monotherapy. Mechanistically, genetic inhibition of SIRT6 potentiated the effect of KPT-9274 on PARP-1 suppression by abolishing mono-ADP ribosylation. AR-42/KPT-9274 cotreatment resulted in synergistic attenuation of homologous recombination and nonhomologous end joining pathways in cell lines and leukemia-initiating cells. CONCLUSIONS Our findings provide evidence that HDAC8 inhibition- or shSIRT6-induced DNA repair deficiencies are potently synergistic with NAMPT targeting, with minimal toxicity toward normal cells, providing a rationale for a novel-novel combination-based treatment for AML.
Collapse
Affiliation(s)
- Pu Zhang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio.,College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Lindsey T Brinton
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Katie Williams
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Steven Sher
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Shelley Orwick
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Lai Tzung-Huei
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | | | - Samuel K Kulp
- College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Youssef Youssef
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Wing Keung Chan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Shaneice Mitchell
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Allison Mustonen
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Matthew Cannon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Hannah Phillips
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Amy M Lehman
- Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio
| | - Tierney Kauffman
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Larry Beaver
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Daniel Canfield
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Nicole R Grieselhuber
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Lapo Alinari
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Deepa Sampath
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Pearlly Yan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - John C Byrd
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio.,College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - James S Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
19
|
Becherini P, Caffa I, Piacente F, Damonte P, Vellone VG, Passalacqua M, Benzi A, Bonfiglio T, Reverberi D, Khalifa A, Ghanem M, Guijarro A, Tagliafico L, Sucameli M, Persia A, Monacelli F, Cea M, Bruzzone S, Ravera S, Nencioni A. SIRT6 enhances oxidative phosphorylation in breast cancer and promotes mammary tumorigenesis in mice. Cancer Metab 2021; 9:6. [PMID: 33482921 PMCID: PMC7821730 DOI: 10.1186/s40170-021-00240-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Sirtuin 6 (SIRT6) is a NAD+-dependent deacetylase with key roles in cell metabolism. High SIRT6 expression is associated with adverse prognosis in breast cancer (BC) patients. However, the mechanisms through which SIRT6 exerts its pro-oncogenic effects in BC remain unclear. Here, we sought to define the role of SIRT6 in BC cell metabolism and in mouse polyoma middle T antigen (PyMT)-driven mammary tumors. METHODS We evaluated the effect of a heterozygous deletion of Sirt6 on tumor latency and survival of mouse mammary tumor virus (MMTV)-PyMT mice. The effect of SIRT6 silencing on human BC cell growth was assessed in MDA-MB-231 xenografts. We also analyzed the effect of Sirt6 heterozygous deletion, of SIRT6 silencing, and of the overexpression of either wild-type (WT) or catalytically inactive (H133Y) SIRT6 on BC cell pyruvate dehydrogenase (PDH) expression and activity and oxidative phosphorylation (OXPHOS), including respiratory complex activity, ATP/AMP ratio, AMPK activation, and intracellular calcium concentration. RESULTS The heterozygous Sirt6 deletion extended tumor latency and mouse survival in the MMTV-PyMT mouse BC model, while SIRT6 silencing slowed the growth of MDA-MB-231 BC cell xenografts. WT, but not catalytically inactive, SIRT6 enhanced PDH expression and activity, OXPHOS, and ATP/AMP ratio in MDA-MB-231 and MCF7 BC cells. Opposite effects were obtained by SIRT6 silencing, which also blunted the expression of genes encoding for respiratory chain proteins, such as UQCRFS1, COX5B, NDUFB8, and UQCRC2, and increased AMPK activation in BC cells. In addition, SIRT6 overexpression increased, while SIRT6 silencing reduced, intracellular calcium concentration in MDA-MB-231 cells. Consistent with these findings, the heterozygous Sirt6 deletion reduced the expression of OXPHOS-related genes, the activity of respiratory complexes, and the ATP/AMP ratio in tumors isolated from MMTV-PyMT mice. CONCLUSIONS Via its enzymatic activity, SIRT6 enhances PDH expression and activity, OXPHOS, ATP/AMP ratio, and intracellular calcium concentration, while reducing AMPK activation, in BC cells. Thus, overall, SIRT6 inhibition appears as a viable strategy for preventing or treating BC.
Collapse
Affiliation(s)
- Pamela Becherini
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy.,Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Irene Caffa
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy.,Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Francesco Piacente
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy.,Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,Department of Experimental Medicine (DIMES), University of Genoa, V.le Benedetto XV 1, 16132, Genoa, Italy
| | - Patrizia Damonte
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - Valerio G Vellone
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,Department of Integrated, Surgical and Diagnostic Sciences (DISC), University of Genoa, L.go Rosanna Benzi 8, 16132, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine (DIMES), University of Genoa, V.le Benedetto XV 1, 16132, Genoa, Italy
| | - Andrea Benzi
- Department of Experimental Medicine (DIMES), University of Genoa, V.le Benedetto XV 1, 16132, Genoa, Italy
| | - Tommaso Bonfiglio
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - Daniele Reverberi
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Amr Khalifa
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - Moustafa Ghanem
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - Ana Guijarro
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Luca Tagliafico
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - Marzia Sucameli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - Angelica Persia
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy.,Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Michele Cea
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy.,Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine (DIMES), University of Genoa, V.le Benedetto XV 1, 16132, Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine (DIMES), University of Genoa, V.le Benedetto XV 1, 16132, Genoa, Italy.
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, V.le Benedetto XV 6, 16132, Genoa, Italy. .,Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
20
|
Kratz EM, Sołkiewicz K, Kubis-Kubiak A, Piwowar A. Sirtuins as Important Factors in Pathological States and the Role of Their Molecular Activity Modulators. Int J Mol Sci 2021; 22:ijms22020630. [PMID: 33435263 PMCID: PMC7827102 DOI: 10.3390/ijms22020630] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Sirtuins (SIRTs), enzymes from the family of NAD+-dependent histone deacetylases, play an important role in the functioning of the body at the cellular level and participate in many biochemical processes. The multi-directionality of SIRTs encourages scientists to undertake research aimed at understanding the mechanisms of their action and the influence that SIRTs have on the organism. At the same time, new substances are constantly being sought that can modulate the action of SIRTs. Extensive research on the expression of SIRTs in various pathological conditions suggests that regulation of their activity may have positive results in supporting the treatment of certain metabolic, neurodegenerative or cancer diseases or this connected with oxidative stress. Due to such a wide spectrum of activity, SIRTs may also be a prognostic markers of selected pathological conditions and prove helpful in assessing their progression, especially by modulating their activity. The article presents and discusses the activating or inhibiting impact of individual SIRTs modulators. The review also gathered selected currently available information on the expression of SIRTs in individual disease cases as well as the biological role that SIRTs play in the human organism, also in connection with oxidative stress condition, taking into account the progress of knowledge about SIRTs over the years, with particular reference to the latest research results.
Collapse
Affiliation(s)
- Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-(71)-784-01-52
| | - Katarzyna Sołkiewicz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Adriana Kubis-Kubiak
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.K.-K.); (A.P.)
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland; (A.K.-K.); (A.P.)
| |
Collapse
|
21
|
Shang JL, Ning SB, Chen YY, Chen TX, Zhang J. MDL-800, an allosteric activator of SIRT6, suppresses proliferation and enhances EGFR-TKIs therapy in non-small cell lung cancer. Acta Pharmacol Sin 2021; 42:120-131. [PMID: 32541922 PMCID: PMC7921659 DOI: 10.1038/s41401-020-0442-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022] Open
Abstract
Sirtuin 6 (SIRT6), a member of the sirtuin family, is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that is involved in various physiological and pathological processes. SIRT6 is generally downregulated and linked to tumorigenesis in non-small cell lung carcinoma (NSCLC), thus regarded as a promising therapeutic target of NSCLC. In this study, we investigated whether MDL-800, an allosteric activator of SIRT6, exerted antiproliferation effect against NSCLC cells in vitro and in vivo. We showed that MDL-800 increased SIRT6 deacetylase activity with an EC50 value of 11.0 ± 0.3 μM; MDL-800 (10-50 μM) induced dose-dependent deacetylation of histone H3 in 12 NSCLC cell lines. Treatment with MDL-800 dose dependently inhibited the proliferation of 12 NSCLC cell lines with IC50 values ranging from 21.5 to 34.5 μM. The antiproliferation effect of MDL-800 was significantly diminished by SIRT6 knockout. Treatment with MDL-800 induced remarkable cell cycle arrest at the G0/G1 phase in NSCLC HCC827 and PC9 cells. Furthermore, MDL-800 (25, 50 μM) enhanced the antiproliferation of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in osimertinib-resistant HCC827 and PC9 cells as well as in patient-derived primary tumor cells, and suppressed mitogen-activated protein kinase (MAPK) pathway. In HCC827 cell-derived xenograft nude mice, intraperitoneal administration of MDL-800 (80 mg · kg-1 · d-1, for 14 days) markedly suppressed the tumor growth, accompanied by enhanced SIRT6-dependent histone H3 deacetylation and decreased p-MEK and p-ERK in tumor tissues. Our results provide the pharmacological evidence for future clinical investigation of MDL-800 as a promising lead compound for NSCLC treatment alone or in combination with EGFR-TKIs.
Collapse
Affiliation(s)
- Jia-Lin Shang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shao-Bo Ning
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying-Yi Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Tian-Xiang Chen
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Jian Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
22
|
Han L, Jia L, Zan Y. Long intergenic noncoding RNA smad7 (Linc-smad7) promotes the epithelial-mesenchymal transition of HCC by targeting the miR-125b/SIRT6 axis. Cancer Med 2020; 9:9123-9137. [PMID: 33037850 PMCID: PMC7724296 DOI: 10.1002/cam4.3515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
Long intergenic noncoding RNA smad7 (Linc-smad7) has been recently identified as a new long non-coding RNA (lncRNA). However, the role of Linc-smad7 in the tumourigenesis of human cancers remains unknown. This study uncovered that Linc-smad7 was increased in HCC samples and HCC cell lines using RT-qPCR assays. Furthermore, the overexpression of Linc-smad7 indicated poor clinicopathological features and outcomes for HCC patients. In addition, Linc-smad7 promoted HCC cells proliferation, migration, invasion and EMT, as determined by MTT, colony formation, Transwell assays and western blot analysis. Functionally, it was demonstrated that Linc-smad7 could bind with microRNA-125b (miR-125b), and the restoration of miR-125b rescued the promoting effects of Linc-smad7 on HCC cells. Finally, it was observed that sirtuin 6 (SIRT6) was positively regulated by Linc-smad7 in HCC as the direct target of miR-125b, and decreased SIRT6 reversed the effects of Linc-smad7 on promoting HCC. In conclusion, the current study first identified Linc-smad7 is increased in HCC, facilitating HCC cells proliferation, migration, invasion and EMT via regulating the miR-125b/SIRT6 axis.
Collapse
Affiliation(s)
- Lili Han
- Department of OncologyThe Second Affiliated HospitalCollege of MedicineXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Lijun Jia
- Department of OncologyThe Second Affiliated HospitalCollege of MedicineXi'an Jiaotong UniversityXi'anShaanxiChina
| | - Ying Zan
- Department of OncologyThe Second Affiliated HospitalCollege of MedicineXi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
23
|
Soncini D, Minetto P, Martinuzzi C, Becherini P, Fenu V, Guolo F, Todoerti K, Calice G, Contini P, Miglino M, Rivoli G, Aquino S, Dominietto A, Cagnetta A, Passalacqua M, Bruzzone S, Nencioni A, Zucchetti M, Ceruti T, Neri A, Lemoli RM, Cea M. Amino acid depletion triggered by ʟ-asparaginase sensitizes MM cells to carfilzomib by inducing mitochondria ROS-mediated cell death. Blood Adv 2020; 4:4312-4326. [PMID: 32915979 PMCID: PMC7509874 DOI: 10.1182/bloodadvances.2020001639] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming is emerging as a cancer vulnerability that could be therapeutically exploitable using different approaches, including amino acid depletion for those tumors that rely on exogenous amino acids for their maintenance. ʟ-Asparaginase (ASNase) has contributed to a significant improvement in acute lymphoblastic leukemia outcomes; however, toxicity and resistance limit its clinical use in other tumors. Here, we report that, in multiple myeloma (MM) cells, the DNA methylation status is significantly associated with reduced expression of ASNase-related gene signatures, thus suggesting ASNase sensitivity for this tumor. Therefore, we tested the effects of ASNase purified from Erwinia chrysanthemi (Erw-ASNase), combined with the next-generation proteasome inhibitor (PI) carfilzomib. We observed an impressive synergistic effect on MM cells, whereas normal peripheral blood mononuclear cells were not affected. Importantly, this effect was associated with increased reactive oxygen species (ROS) generation, compounded mitochondrial damage, and Nrf2 upregulation, regardless of the c-Myc oncogenic-specific program. Furthermore, the cotreatment resulted in genomic instability and DNA repair mechanism impairment via increased mitochondrial oxidative stress, which further enhanced its antitumor activity. Interestingly, carfilzomib-resistant cells were found to be highly dependent on amino acid starvation, as reflected by their higher sensitivity to Erw-ASNase treatment compared with isogenic cells. Overall, by affecting several cellular programs, Erw-ASNase makes MM cells more vulnerable to carfilzomib, providing proof of concept for clinical use of this combination as a novel strategy to enhance PI sensitivity in MM patients.
Collapse
Affiliation(s)
- Debora Soncini
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Paola Minetto
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Division of Hematology and Hematopoietic Stem Cell Transplantation Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Martinuzzi
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Pamela Becherini
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Valeria Fenu
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Fabio Guolo
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Katia Todoerti
- Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
| | - Giovanni Calice
- IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | | | - Maurizio Miglino
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giulia Rivoli
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Sara Aquino
- Division of Hematology and Hematopoietic Stem Cell Transplantation Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Alida Dominietto
- Division of Hematology and Hematopoietic Stem Cell Transplantation Unit, Ospedale Policlinico San Martino, Genoa, Italy
| | - Antonia Cagnetta
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mario Passalacqua
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Alessio Nencioni
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine and
| | - Massimo Zucchetti
- Clinical Cancer Pharmacology Unit, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; and
| | - Tommaso Ceruti
- Clinical Cancer Pharmacology Unit, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; and
| | - Antonino Neri
- Hematology, Fondazione Cà Granda IRCCS Policlinico, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Roberto M Lemoli
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michele Cea
- Clinic of Hematology, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
24
|
Chen X, Sun W, Huang S, Zhang H, Lin G, Li H, Qiao J, Li L, Yang S. Discovery of Potent Small-Molecule SIRT6 Activators: Structure-Activity Relationship and Anti-Pancreatic Ductal Adenocarcinoma Activity. J Med Chem 2020; 63:10474-10495. [PMID: 32787077 DOI: 10.1021/acs.jmedchem.0c01183] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIRT6 activation is thought to be a promising target for the treatment of many diseases, particularly cancer. Herein, we report the discovery of a series of new small-molecule SIRT6 activators. Structure-activity relationship analyses led to the identification of the most potent compound, 2-(1-benzofuran-2-yl)-N-(diphenylmethyl) quinoline-4-carboxamide (12q), which showed an EC1.5 value of 0.58 ± 0.12 μM and an EC50 value of 5.35 ± 0.69 μM against SIRT6-dependent peptide deacetylation in FLUOR DE LYS assay. It exhibited weak or no activity against other HDAC family members as well as 415 kinases, indicating good selectivity for SIRT6. 12q significantly inhibited the proliferation and migration of pancreatic ductal adenocarcinoma (PDAC) cells in vitro. It also markedly suppressed the tumor growth in a PDAC tumor xenograft model. This compound showed attractive pharmacokinetic properties. Overall, 12q could be a good lead compound for the treatment of PDAC, and it is worthy of further study.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Weining Sun
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Shenzhen Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hailin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Guifeng Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Hui Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Jingxin Qiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Linli Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
25
|
Ferrara G, Benzi A, Sturla L, Marubbi D, Frumento D, Spinelli S, Abbotto E, Ivaldi F, von Holtey M, Murone M, Nencioni A, Uccelli A, Bruzzone S. Sirt6 inhibition delays the onset of experimental autoimmune encephalomyelitis by reducing dendritic cell migration. J Neuroinflammation 2020; 17:228. [PMID: 32736564 PMCID: PMC7393881 DOI: 10.1186/s12974-020-01906-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/20/2020] [Indexed: 01/14/2023] Open
Abstract
Background Experimental autoimmune encephalomyelitis (EAE) is the most common animal model of multiple sclerosis (MS), a neuroinflammatory and demyelinating disease characterized by multifocal perivascular infiltrates of immune cells. Although EAE is predominantly considered a T helper 1-driven autoimmune disease, mounting evidence suggests that activated dendritic cells (DC), which are the bridge between innate and adaptive immunity, also contribute to its pathogenesis. Sirtuin 6 (SIRT6), a NAD+-dependent deacetylase involved in genome maintenance and in metabolic homeostasis, regulates DC activation, and its pharmacological inhibition could, therefore, play a role in EAE development. Methods EAE was induced in female C57bl/6 mice by MOG35-55 injection. The effect of treatment with a small compound SIRT6 inhibitor, administered according to therapeutic and preventive protocols, was assessed by evaluating the clinical EAE score. SIRT6 inhibition was confirmed by Western blot analysis by assessing the acetylation of histone 3 lysine 9, a known SIRT6 substrate. The expression of DC activation and migration markers was evaluated by FACS in mouse lymph nodes. In addition, the expression of inflammatory and anti-inflammatory cytokines in the spinal cord were assessed by qPCR. T cell infiltration in spinal cords was evaluated by immunofluorescence imaging. The effect of Sirt6 inhibition on the migration of resting and activated bone marrow-derived dendritic cells was investigated in in vitro chemotaxis assays. Results Preventive pharmacological Sirt6 inhibition effectively delayed EAE disease onset through a novel regulatory mechanism, i.e., by reducing the representation of CXCR4-positive and of CXCR4/CCR7-double-positive DC in lymph nodes. The delay in EAE onset correlated with the early downregulation in the expression of CD40 on activated lymph node DC, with increased level of the anti-inflammatory cytokine IL-10, and with a reduced encephalitogenic T cell infiltration in the central nervous system. Consistent with the in vivo data, in vitro pharmacological Sirt6 inhibition in LPS-stimulated, bone marrow-derived DC reduced CCL19/CCL21- and SDF-1-induced DC migration. Conclusions Our findings indicate the ability of Sirt6 inhibition to impair DC migration, to downregulate pathogenic T cell inflammatory responses and to delay EAE onset. Therefore, Sirt6 might represent a valuable target for developing novel therapeutic agents for the treatment of early stages of MS, or of other autoimmune disorders.
Collapse
Affiliation(s)
- Giovanni Ferrara
- Ospedale Policlinico San Martino, IRCCS, Largo R. Benzi, 10, 16132, Genova, Italy.
| | - Andrea Benzi
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Laura Sturla
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Daniela Marubbi
- Ospedale Policlinico San Martino, IRCCS, Largo R. Benzi, 10, 16132, Genova, Italy.,Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Davide Frumento
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Sonia Spinelli
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Elena Abbotto
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| | - Federico Ivaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | | | | | - Alessio Nencioni
- Ospedale Policlinico San Martino, IRCCS, Largo R. Benzi, 10, 16132, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DIMI), University of Genova, Genova, Italy
| | - Antonio Uccelli
- Ospedale Policlinico San Martino, IRCCS, Largo R. Benzi, 10, 16132, Genova, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Genova, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine (DIMES), University of Genova, Genova, Italy
| |
Collapse
|
26
|
Activation of SIRT6 by DNA hypomethylating agents and clinical consequences on combination therapy in leukemia. Sci Rep 2020; 10:10325. [PMID: 32587297 PMCID: PMC7316973 DOI: 10.1038/s41598-020-67170-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/31/2020] [Indexed: 12/20/2022] Open
Abstract
The FDA-approved DNA hypomethylating agents (DHAs) like 5-azacytidine (5AC) and decitabine (DAC) demonstrate efficacy in the treatment of hematologic malignancies. Despite previous reports that showed histone acetylation changes upon using these agents, the exact mechanism underpinning these changes is unknown. In this study, we investigated the relative potency of the nucleoside analogs and non-nucleoside analogs DHAs on DNA methylation reversal using DNA pyrosequencing. Additionally, we screened their effect on the enzymatic activity of the histone deacetylase sirtuin family (SIRT1, SIRT2, SIRT3, SIRT5 and SIRT6) using both recombinant enzymes and nuclear lysates from leukemia cells. The nucleoside analogs (DAC, 5AC and zebularine) were the most potent DHAs and increased the enzymatic activity of SIRT6 without showing any significant increase in other sirtuin isoforms. ChIP-Seq analysis of bone marrow cells derived from six acute myeloid leukemia (AML) patients and treated with the nucleoside analog DAC induced genome-wide acetylation changes in H3K9, the physiological substrate for SIRT6. Data pooling from the six patients showed significant acetylation changes in 187 gene loci at different chromosomal regions including promoters, coding exons, introns and distal intergenic regions. Signaling pathway analysis showed that H3K9 acetylation changes are linked to AML-relevant signaling pathways like EGF/EGFR and Wnt/Hedgehog/Notch. To our knowledge, this is the first report to identify the nucleoside analogs DHAs as activators of SIRT6. Our findings provide a rationale against the combination of the nucleoside analogs DHAs with SIRT6 inhibitors or chemotherapeutic agents in AML due to the role of SIRT6 in maintaining genome integrity and DNA repair.
Collapse
|
27
|
Klein MA, Denu JM. Biological and catalytic functions of sirtuin 6 as targets for small-molecule modulators. J Biol Chem 2020; 295:11021-11041. [PMID: 32518153 DOI: 10.1074/jbc.rev120.011438] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Sirtuin 6 (SIRT6) is a nuclear NAD+-dependent deacetylase of histone H3 that regulates genome stability and gene expression. However, nonhistone substrates and additional catalytic activities of SIRT6, including long-chain deacylation and mono-ADP-ribosylation of other proteins, have also been reported, but many of these noncanonical roles remain enigmatic. Genetic studies have revealed critical homeostatic cellular functions of SIRT6, underscoring the need to better understand which catalytic functions and molecular pathways are driving SIRT6-associated phenotypes. At the physiological level, SIRT6 activity promotes increased longevity by regulating metabolism and DNA repair. Recent work has identified natural products and synthetic small molecules capable of activating the inefficient in vitro deacetylase activity of SIRT6. Here, we discuss the cellular functions of SIRT6 with a focus on attributing its catalytic activity to its proposed biological functions. We cover the molecular architecture and catalytic mechanisms that distinguish SIRT6 from other NAD+-dependent deacylases. We propose that combining specific SIRT6 amino acid substitutions identified in enzymology studies and activity-selective compounds could help delineate SIRT6 functions in specific biological contexts and resolve the apparently conflicting roles of SIRT6 in processes such as tumor development. We further highlight the recent development of small-molecule modulators that provide additional biological insight into SIRT6 functions and offer therapeutic approaches to manage metabolic and age-associated diseases.
Collapse
Affiliation(s)
- Mark A Klein
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - John M Denu
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin, USA .,Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
28
|
Wössner N, Alhalabi Z, González J, Swyter S, Gan J, Schmidtkunz K, Zhang L, Vaquero A, Ovaa H, Einsle O, Sippl W, Jung M. Sirtuin 1 Inhibiting Thiocyanates (S1th)-A New Class of Isotype Selective Inhibitors of NAD + Dependent Lysine Deacetylases. Front Oncol 2020; 10:657. [PMID: 32426286 PMCID: PMC7203344 DOI: 10.3389/fonc.2020.00657] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
Sirtuin 1 (Sirt1) is a NAD+ dependent lysine deacetylase associated with the pathogenesis of various diseases including cancer. In many cancer types Sirt1 expression is increased and higher levels have been associated with metastasis and poor prognosis. However, it was also shown, that Sirt1 can have tumor suppressing properties and in some instances even a dual role for the same cancer type has been reported. Increased Sirt1 activity has been linked to extension of the life span of cells, respectively, organisms by promoting DNA repair processes and downregulation of tumor suppressor proteins. This may have the downside of enhancing tumor growth and metastasis. In mice embryonic fibroblasts depletion of Sirt1 was shown to decrease levels of the DNA damage sensor histone H2AX. Impairment of DNA repair mechanisms by Sirt1 can promote tumorigenesis but also lower chemoresistance toward DNA targeting therapies. Despite many biological studies, there is currently just one small molecule Sirt1 inhibitor in clinical trials. Selisistat (EX-527) reached phase III clinical trials for treatment of Huntington's Disease. New small molecule Sirt1 modulators are crucial for further investigation of the contradicting roles of Sirt1 in cancer. We tested a small library of commercially available compounds that were proposed by virtual screening and docking studies against Sirt1, 2 and 3. A thienopyrimidone featuring a phenyl thiocyanate moiety was found to selectively inhibit Sirt1 with an IC50 of 13 μM. Structural analogs lacking the thiocyanate function did not show inhibition of Sirt1 revealing this group as key for the selectivity and affinity toward Sirt1. Further analogs with higher solubility were identified through iterative docking studies and in vitro testing. The most active compounds (down to 5 μM IC50) were further studied in cells. The ratio of phosphorylated γH2AX to unmodified H2AX is lower when Sirt1 is depleted or inhibited. Our new Sirtuin 1 inhibiting thiocyanates (S1th) lead to similarly lowered γH2AX/H2AX ratios in mouse embryonic fibroblasts as Sirt1 knockout and treatment with the reference inhibitor EX-527. In addition to that we were able to show antiproliferative activity, inhibition of migration and colony forming as well as hyperacetylation of Sirt1 targets p53 and H3 by the S1th in cervical cancer cells (HeLa). These results reveal thiocyanates as a promising new class of selective Sirt1 inhibitors.
Collapse
Affiliation(s)
- Nathalie Wössner
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| | - Zayan Alhalabi
- Department of Medicinal Chemistry, Institute of Pharmacy, University of Halle-Wittenberg, Halle, Germany
| | - Jessica González
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Sören Swyter
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jin Gan
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Karin Schmidtkunz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| | - Lin Zhang
- Department of Protein Crystallography, Institute of Biochemistry, University of Freiburg, Freiburg im Breisgau, Germany
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Huib Ovaa
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Oliver Einsle
- Department of Protein Crystallography, Institute of Biochemistry, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, University of Halle-Wittenberg, Halle, Germany
| | - Manfred Jung
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
29
|
Shang J, Zhu Z, Chen Y, Song J, Huang Y, Song K, Zhong J, Xu X, Wei J, Wang C, Cui L, Liu CY, Zhang J. Small-molecule activating SIRT6 elicits therapeutic effects and synergistically promotes anti-tumor activity of vitamin D 3 in colorectal cancer. Theranostics 2020; 10:5845-5864. [PMID: 32483423 PMCID: PMC7255010 DOI: 10.7150/thno.44043] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the leading cause of cancer death; however, targets with broad anti-CRC effects are limited. Sirtuin6 (SIRT6) is a conserved nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase that is widely pathologically downregulated in CRC, but its pharmacological effect in CRC remains undefined due to the lack of small-molecule SIRT6 activators. We searched for a compound activating SIRT6 and investigated its anti-CRC effect in various models. Methods: We identified an allosteric SIRT6 activator, MDL-811. Its ability to enhance SIRT6 deacetylation at protein and cellular levels was evaluated by Fluor de Lys (FDL) and western blots. We assessed the proliferation of 26 CRC cell lines and patient-derived organoids (PDOs) treated with MDL-811. In vivo efficacy of MDL-811 was evaluated in HCT116 cell line- and patient-derived xenografts as well as a spontaneous CRC model. RNA sequencing and real-time quantitative PCR assays were performed to analyze gene expression changes in MDL-811-treated HCT116 cells. Along with controls in SIRT6-overexpressing HCT116 cells, the SIRT6-mediated histone H3 deacetylation at the Cytochrome P450 family 24 subfamily A member 1 (CYP24A1) gene locus was assessed by chromatin immunoprecipitation (ChIP) in MDL-811-treated HCT116 cells. A combination therapy against CRC based on the downstream gene of SIRT6 activation was evaluated in cells and mouse models. Results: MDL-811 significantly activated SIRT6 histone H3 deacetylation (H3K9Ac, H3K18Ac, and H3K56Ac) in vitro and had broad antiproliferative effects on diverse CRC cell lines and PDOs. More importantly, the in vivo anti-tumor efficacy of MDL-811 was demonstrated across cell line- and patient-derived xenografts and in the APCmin/+ spontaneous CRC model. Mechanically, we identified a new downstream target gene of SIRT6 in CRC, CYP24A1. Based on these findings, a combination drug strategy with MDL-811 to synergistically enhance the anti-CRC effect of vitamin D3 was validated in vitro and in vivo. Conclusions: Our data provide proof of concept that targeting SIRT6 using a small-molecule activator is an attractive therapeutic strategy for CRC and that MDL-811 could be a promising lead compound for further preclinical and clinical studies of treatments for CRC.
Collapse
|
30
|
CD64-targeted HO-1 RNA interference enhances chemosensitivity in orthotopic model of acute myeloid leukemia and patient-derived bone marrow cells. Biomaterials 2020; 230:119651. [DOI: 10.1016/j.biomaterials.2019.119651] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023]
|
31
|
Kong Q, Li Y, Liang Q, Xie J, Li X, Fang J. SIRT6-PARP1 is involved in HMGB1 polyADP-ribosylation and acetylation and promotes chemotherapy-induced autophagy in leukemia. Cancer Biol Ther 2020; 21:320-331. [PMID: 31928132 DOI: 10.1080/15384047.2019.1702397] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
High mobility group box protein 1 (HMGB1) is an evolutionarily conserved non-histone chromatin-binding protein. In a previous study, we showed that treating leukemic cells with chemotherapeutic drugs leads to the translocation of HMGB1, which is involved in autophagy and ultimately promotes chemoresistance in leukemia. However, the underlying translocation mechanism of HMGB1 in chemotherapy-induced autophagy remains unclear. In this study, we showed that knockdown of SIRT6 or PARP1 gene expression significantly inhibited HMGB1 cytoplasmic translocation and autophagy. Meanwhile, we found that SIRT6, an important upstream protein of PARP1, associated with PARP1, leading to the stimulation of polyADP-ribose polymerase activity. We further demonstrated that SIRT6 and PARP1 activation were required for chemotherapy-induced ADP-ribosylation of HMGB1 in leukemic cells and then influenced the acetylation of HMGB1, finally promoting the autophagy of leukemic cells mediated by HMGB1 translocation. These findings provide new insights into the mechanism of chemotherapeutic drug resistance. Targeting the HMGB1 translocation may overcome autophagy-related chemoresistance in leukemia.
Collapse
Affiliation(s)
- Qian Kong
- Department of Pediatrics, TheThird Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yunyao Li
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.,Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangdong, P.R. China
| | - Qixiang Liang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, P.R. China
| | - Jianwei Xie
- Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.,Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangdong, P.R. China
| | - Xinyu Li
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangdong, P.R. China
| | - Jianpei Fang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangdong, P.R. China
| |
Collapse
|
32
|
Strub T, Ballotti R, Bertolotto C. The "ART" of Epigenetics in Melanoma: From histone "Alterations, to Resistance and Therapies". Theranostics 2020; 10:1777-1797. [PMID: 32042336 PMCID: PMC6993228 DOI: 10.7150/thno.36218] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Malignant melanoma is the most deadly form of skin cancer. It originates from melanocytic cells and can also arise at other body sites. Early diagnosis and appropriate medical care offer excellent prognosis with up to 5-year survival rate in more than 95% of all patients. However, long-term survival rate for metastatic melanoma patients remains at only 5%. Indeed, malignant melanoma is known for its notorious resistance to most current therapies and is characterized by both genetic and epigenetic alterations. In cutaneous melanoma (CM), genetic alterations have been implicated in drug resistance, yet the main cause of this resistance seems to be non-genetic in nature with a change in transcription programs within cell subpopulations. This change can adapt and escape targeted therapy and immunotherapy cytotoxic effects favoring relapse. Because they are reversible in nature, epigenetic changes are a growing focus in cancer research aiming to prevent or revert the drug resistance with current therapies. As such, the field of epigenetic therapeutics is among the most active area of preclinical and clinical research with effects of many classes of epigenetic drugs being investigated. Here, we review the multiplicity of epigenetic alterations, mainly histone alterations and chromatin remodeling in both cutaneous and uveal melanomas, opening opportunities for further research in the field and providing clues to specifically control these modifications. We also discuss how epigenetic dysregulations may be exploited to achieve clinical benefits for the patients, the limitations of these therapies, and recent data exploring this potential through combinatorial epigenetic and traditional therapeutic approaches.
Collapse
Affiliation(s)
- Thomas Strub
- Université Nice Côte d'Azur, Inserm, C3M, France
- Biology and pathologies of melanocytes, Equipe labellisée ARC 2019, C3M, team 1, France
| | - Robert Ballotti
- Université Nice Côte d'Azur, Inserm, C3M, France
- Biology and pathologies of melanocytes, Equipe labellisée ARC 2019, C3M, team 1, France
| | - Corine Bertolotto
- Université Nice Côte d'Azur, Inserm, C3M, France
- Biology and pathologies of melanocytes, Equipe labellisée ARC 2019, C3M, team 1, France
| |
Collapse
|
33
|
Garcia-Peterson LM, Guzmán-Pérez G, Krier CR, Ahmad N. The sirtuin 6: An overture in skin cancer. Exp Dermatol 2019; 29:124-135. [PMID: 31696978 DOI: 10.1111/exd.14057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/17/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022]
Abstract
In the recent past, the sirtuins have been under intense investigation for their roles in biology and disease, including cancer. The sirtuin SIRT6 is comparatively a lesser studied member of this family of seven proteins. Like certain other sirtuins, SIRT6 is emerging to have an oncogenic function as well as tumor suppressor roles in cancer. Limited studies have been conducted assessing the role and functional significance of SIRT6 in melanoma and non-melanoma skin cancers. In this review, we have attempted to critically dissect the potential role and significance of SIRT6 in skin carcinogenesis. With limited available information to date, SIRT6 appears to have a pro-proliferative function in non-melanoma skin cancers (NMSCs), including squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). In addition, SIRT6 is also emerging to have an oncogenic function in melanoma. Moreover, we have provided information regarding the available SIRT6 inhibitors. Conclusively, it appears that additional comprehensive studies are needed to establish the role of SIRT6 in skin biology and skin diseases, including cancer. Further, concerted efforts are needed to characterize the stage-specific role of SIRT6 in skin cancers.
Collapse
Affiliation(s)
| | | | - Cassandre R Krier
- Department of Dermatology, University of Wisconsin, Madison, WI, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, Madison, WI, USA.,William S. Middleton VA Medical Center, Madison, WI, USA
| |
Collapse
|
34
|
Han LL, Jia L, Wu F, Huang C. Sirtuin6 (SIRT6) Promotes the EMT of Hepatocellular Carcinoma by Stimulating Autophagic Degradation of E-Cadherin. Mol Cancer Res 2019; 17:2267-2280. [PMID: 31551254 DOI: 10.1158/1541-7786.mcr-19-0321] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
EMT is a pivotal mechanism involved in tumor metastasis, which is the leading cause of poor prognosis for hepatocellular carcinoma (HCC). Sirtuin family members function as NAD+-dependent deacetylases that are essential for tumor metastasis and epithelial-mesenchymal transition (EMT). However, no causal association has been established between Sirtuin6 (SIRT6) and HCC metastasis. SIRT6 expression pattern and its association with HCC metastasis were investigated by informatic analysis, and verified by qRT-PCR and immunochemistry in HCC tissues. Transwell assay, qRT-PCR, and immunofluorescence assay were utilized to assess the effects of SIRT6 on metastasis and E-cadherin expression in vitro and in vivo. Immunoprecipitation assay was performed to observe whether SIRT6 deacetylated Beclin-1 in HCC cells. Immunofluorescence assay and inhibitor treatment rescue experiments were used to clarify the mechanism by which SIRT6 facilitated EMT and metastasis. SIRT6 upregulation was quite prevalent in HCC tissues and closely correlated with worse overall survival, disease-relapse free survival, and HCC metastasis. Furthermore, SIRT6 promoted HCC cell migration, invasion, and EMT. Mechanistically, we found that SIRT6 deacetylated Beclin-1 in HCC cells and this event led to the promotion of the autophagic degradation of E-cadherin. Noticeably, E-cadherin degradation and invasion, migration induced by SIRT6 overexpression could be rescued by dual mutation of Beclin-1 (inhibition of acetylation), CQ (autophagy inhibitor), and knockdown of Atg7. In addition, SIRT6 promoted N-cadherin and Vimentin expression via deacetylating FOXO3a in HCC. These results established a relationship between SIRT6 and HCC EMT and further elucidated the mechanisms underlying HCC metastasis, helping provide a promising approach for the treatment of HCC. IMPLICATIONS: Inhibiting SIRT6 represents a potential therapeutic approach to suppress HCC metastasis partially through reduction of autophagic degradation of E-cadherin.
Collapse
Affiliation(s)
- Li Li Han
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.
| | - Lijun Jia
- Department of Oncology, The Second Affiliated Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Fei Wu
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Chen Huang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
35
|
Costa-Machado LF, Fernandez-Marcos PJ. The sirtuin family in cancer. Cell Cycle 2019; 18:2164-2196. [PMID: 31251117 PMCID: PMC6738532 DOI: 10.1080/15384101.2019.1634953] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/27/2019] [Accepted: 06/14/2019] [Indexed: 01/02/2023] Open
Abstract
Sirtuins are a family of protein deacylases and ADP-ribosyl-transferases, homologs to the yeast SIR2 protein. Seven sirtuin paralogs have been described in mammals, with different subcellular locations, targets, enzymatic activities, and regulatory mechanisms. All sirtuins share NAD+ as substrate, placing them as central metabolic hubs with strong relevance in lifespan, metabolism, and cancer development. Much effort has been devoted to studying the roles of sirtuins in cancer, providing a wealth of data on sirtuins roles in mouse models and humans. Also, extensive data are available on the effects of pharmacological modulation of sirtuins in cancer development. Here, we present a comprehensive and organized resume of all the existing evidence linking every sirtuin with cancer development. From our analysis, we conclude that sirtuin modulation after tumor initiation results in unpredictable outcomes in most tumor types. On the contrary, all genetic and pharmacological models indicate that sirtuins activation prior to tumor initiation can constitute a powerful preventive strategy.
Collapse
Affiliation(s)
- Luis Filipe Costa-Machado
- Metabolic Syndrome group - BIOPROMET, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Pablo J. Fernandez-Marcos
- Metabolic Syndrome group - BIOPROMET, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| |
Collapse
|
36
|
Current role of mammalian sirtuins in DNA repair. DNA Repair (Amst) 2019; 80:85-92. [DOI: 10.1016/j.dnarep.2019.06.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/29/2019] [Indexed: 01/20/2023]
|
37
|
Affiliation(s)
- Vanessa Desantis
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "G. Baccelli", University of Bari Medical School, Policlinico, Bari, Italy
| | - Aurelia Lamanuzzi
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "G. Baccelli", University of Bari Medical School, Policlinico, Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, Unit of Internal Medicine "G. Baccelli", University of Bari Medical School, Policlinico, Bari, Italy
| |
Collapse
|
38
|
Zhang Y, Wang L, Meng L, Cao G, Wu Y. Sirtuin 6 overexpression relieves sepsis-induced acute kidney injury by promoting autophagy. Cell Cycle 2019; 18:425-436. [PMID: 30700227 DOI: 10.1080/15384101.2019.1568746] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sirtuin 6 (SIRT6) has the function of regulating autophagy. The aim of this study was to investigate the mechanism through which SIRT6 relieved acute kidney injury (AKI) caused by sepsis. The AKI model was established with lipopolysaccharides (LPS) using mice. Hematoxylin-eosin (HE) staining and streptavidin-perosidase (SP) staining was used to observe kidney tissue and test SIRT6 and LC3B proteins in kidney. Enzyme-linked immunosorbent assay (ELISA) was performed to detected the tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) concentrations. Cell counting kit-8 (CCK-8) assay and flow cytometry were carried out to test the cell viability and apoptosis rate respectively. Protein and mRNA were determined by Western blot and quantitative real-time polymerase chain reaction (qRT-PCR). AKI induced by LPS had self-repairing ability. At 12 h after modeling, the expression levels of TNF-α, IL-6, SIRT6 and LC3B-II/LC3B-I were first significantly increased and were then significantly decreased at 48 h after modeling. LPS inhibited the growth of HK-2 cells and promoted the expressions of TNF-α, IL-6, SIRT6 and LC3B. Overexpression of SIRT6 down-regulated the secretion of TNF-α and IL-6 induced by LPS. SIRT6 overexpression inhibited apoptosis induced by LPS and promoted autophagy in HK-2 cells. Silencing of the SIRT6 gene not only promoted the secretion of TNF-α and IL-6 by HK-2 cells, but also promoted apoptosis and reduced autophagy. LPS up-regulated the expression of SIRT6 gene in HK-2 cells. Overexpression of the SIRT6 gene could inhibit apoptosis and induce autophagy, which might be involved in repairing kidney damage caused by LPS.
Collapse
Affiliation(s)
- Yang Zhang
- a College of Anesthesia , Xuzhou Medical University , Xuzhou , China
| | - Ling Wang
- b Department of Nephrology , Xuzhou No.1 People's Hospital , Xuzhou , China
| | - Lei Meng
- c Department of Intensive Care Unit , The Affiliated Hospital of Xuzhou Medical University , Xuzhou , China
| | - Guangke Cao
- d Department of Intensive Care Unit , Xuzhou No.1 People's Hospital , Xuzhou , China
| | - Yu Wu
- b Department of Nephrology , Xuzhou No.1 People's Hospital , Xuzhou , China
| |
Collapse
|
39
|
Lamarche BJ, Orazio NI, Goben B, Meisenhelder J, You Z, Weitzman MD, Hunter T. Repair of protein-linked DNA double strand breaks: Using the adenovirus genome as a model substrate in cell-based assays. DNA Repair (Amst) 2018; 74:80-90. [PMID: 30583959 DOI: 10.1016/j.dnarep.2018.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 11/29/2022]
Abstract
The DNA double strand breaks (DSBs) created during meiotic recombination and during some types of chemotherapy contain protein covalently attached to their 5' termini. Removal of the end-blocking protein is a prerequisite to DSB processing by non-homologous end-joining or homologous recombination. One mechanism for removing the protein involves CtIP-stimulated Mre11-catalyzed nicking of the protein-linked strand distal to the DSB terminus, releasing the end-blocking protein while it remains covalently attached to an oligonucleotide. Much of what is known about this repair process has recently been deciphered through in vitro reconstitution studies. We present here a novel model system based on adenovirus (Ad), which contains the Ad terminal protein covalently linked to the 5' terminus of its dsDNA genome, for studying the repair of 5' protein-linked DSBs in vivo. It was previously shown that the genome of Ad mutants that lack early region 4 (E4) can be joined into concatemers in vivo, suggesting that the Ad terminal protein had been removed from the genome termini prior to ligation. Here we show that during infection with the E4-deleted Ad mutant dl1004, the Ad terminal protein is removed in a manner that recapitulates removal of end-blocking proteins from cellular DSBs. In addition to displaying a dependence on CtIP, and Mre11 acting as the endonuclease, the protein-linked oligonucleotides that are released from the viral genome are similar in size to the oligos that remain attached to Spo11 and Top2 after they are removed from the 5' termini of DSBs during meiotic recombination and etoposide chemotherapy, respectively. The single nucleotide resolution that is possible with this assay, combined with the single sequence context in which the lesion is presented, make it a useful tool for further refining our mechanistic understanding of how blocking proteins are removed from the 5' termini of DSBs.
Collapse
Affiliation(s)
- Brandon J Lamarche
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, 92037, USA; Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Nicole I Orazio
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Brittany Goben
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Jill Meisenhelder
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA
| | - Zhongsheng You
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, 63110, USA
| | - Matthew D Weitzman
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, 92037, USA.
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, 92037, USA.
| |
Collapse
|
40
|
Sociali G, Grozio A, Caffa I, Schuster S, Becherini P, Damonte P, Sturla L, Fresia C, Passalacqua M, Mazzola F, Raffaelli N, Garten A, Kiess W, Cea M, Nencioni A, Bruzzone S. SIRT6 deacetylase activity regulates NAMPT activity and NAD(P)(H) pools in cancer cells. FASEB J 2018; 33:3704-3717. [PMID: 30514106 DOI: 10.1096/fj.201800321r] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is the rate-limiting enzyme in the NAD+ salvage pathway from nicotinamide. By controlling the biosynthesis of NAD+, NAMPT regulates the activity of NAD+-converting enzymes, such as CD38, poly-ADP-ribose polymerases, and sirtuins (SIRTs). SIRT6 is involved in the regulation of a wide number of metabolic processes. In this study, we investigated the ability of SIRT6 to regulate intracellular NAMPT activity and NAD(P)(H) levels. BxPC-3 cells and MCF-7 cells were engineered to overexpress a catalytically active or a catalytically inactive SIRT6 form or were engineered to silence endogenous SIRT6 expression. In SIRT6-overexpressing cells, NAD(H) levels were up-regulated, as a consequence of NAMPT activation. By immunopurification and incubation with recombinant SIRT6, NAMPT was found to be a direct substrate of SIRT6 deacetylation, with a mechanism that up-regulates NAMPT enzymatic activity. Extracellular NAMPT release was enhanced in SIRT6-silenced cells. Also glucose-6-phosphate dehydrogenase activity and NADPH levels were increased in SIRT6-overexpressing cells. Accordingly, increased SIRT6 levels reduced cancer cell susceptibility to H2O2-induced oxidative stress and to doxorubicin. Our data demonstrate that SIRT6 affects intracellular NAMPT activity, boosts NAD(P)(H) levels, and protects against oxidative stress. The use of SIRT6 inhibitors, together with agents inducing oxidative stress, may represent a promising treatment strategy in cancer.-Sociali, G., Grozio, A., Caffa, I., Schuster, S., Becherini, P., Damonte, P., Sturla, L., Fresia, C., Passalacqua, M., Mazzola, F., Raffaelli, N., Garten, A., Kiess, W., Cea, M., Nencioni, A., Bruzzone, S. SIRT6 deacetylase activity regulates NAMPT activity and NAD(P)(H) pools in cancer cells.
Collapse
Affiliation(s)
- Giovanna Sociali
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Alessia Grozio
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Irene Caffa
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Susanne Schuster
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Pamela Becherini
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Patrizia Damonte
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Laura Sturla
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Chiara Fresia
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Mario Passalacqua
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Francesca Mazzola
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Nadia Raffaelli
- Department of Agricultural, Food, and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Antje Garten
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany.,Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Wieland Kiess
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
| | - Michele Cea
- Department of Internal Medicine, University of Genoa, Genoa, Italy.,Scientific Institute for Research and Healthcare (IRCCS), San Martino University Hospital-National Institute for Cancer Research (IST), Genoa, Italy
| | - Alessio Nencioni
- Department of Internal Medicine, University of Genoa, Genoa, Italy.,Scientific Institute for Research and Healthcare (IRCCS), San Martino University Hospital-National Institute for Cancer Research (IST), Genoa, Italy
| | - Santina Bruzzone
- Section of Biochemistry, Department of Experimental Medicine, Center for Excellence in Biomedical Research (CEBR), University of Genoa, Genoa, Italy.,Institute of Protein Biochemistry, National Research Council, Naples, Italy
| |
Collapse
|
41
|
Bae JS, Noh SJ, Kim KM, Park SH, Hussein UK, Park HS, Park BH, Ha SH, Lee H, Chung MJ, Moon WS, Cho DH, Jang KY. SIRT6 Is Involved in the Progression of Ovarian Carcinomas via β-Catenin-Mediated Epithelial to Mesenchymal Transition. Front Oncol 2018; 8:538. [PMID: 30524965 PMCID: PMC6256124 DOI: 10.3389/fonc.2018.00538] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
SIRT6 is involved in various cellular signaling pathways including those involved in tumorigenesis in association with β-catenin. However, the role of SIRT6 in tumorigenesis has been controversially reported and the studies on the role of SIRT6 in ovarian cancers is limited. In this study, we evaluated the expression and roles of SIRT6 in conjunction with the expression of active β-catenin in 104 human ovarian carcinomas and ovarian cancer cells. In human ovarian carcinomas, the expressions of SIRT6 and active β-catenin were associated with higher tumor stage, higher histologic grade, and platinum-resistance. Moreover, nuclear expression of SIRT6 (104 ovarian carcinomas; P = 0.010, 63 high-grade serous carcinomas; P = 0.040), and activated β-catenin (104 ovarian carcinomas; P = 0.013, 63 high-grade serous carcinomas; P = 0.005) were independent indicators of shorter overall survival of ovarian carcinoma patients in multivariate analysis. In OVCAR3 and OVCAR5 ovarian cancer cells, knock-down of SIRT6 significantly inhibited the migration and invasion of cells, but did not inhibit the proliferation of cells. SIRT6-mediated invasiveness of ovarian cancer cells was associated with the expression of epithelial-to-mesenchymal transition-related signaling molecules such as snail, vimentin, N-cadherin, E-cadherin, and activated β-catenin. Especially, SIRT6-mediated increase of invasiveness and activation of epithelial-to-mesenchymal transition signaling was attenuated by knock-down of β-catenin. In conclusion, this study suggests that SIRT6-β-catenin signaling is involved in the epithelial-to-mesenchymal transition of ovarian cancer cells, and the expression of SIRT6 and active β-catenin might be used as indicators of poor prognosis of ovarian carcinoma patients. In addition, our results suggest that SIRT6-β-catenin signaling might be a new therapeutic target of ovarian carcinomas.
Collapse
Affiliation(s)
- Jun Sang Bae
- Department of Pathology, Chonbuk National University Medical School, Chonbuk National University, Jeonju, South Korea.,Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, South Korea.,Research Institute for Clinical Medicine, Chonbuk National University, Jeonju, South Korea
| | - Sang Jae Noh
- Research Institute for Clinical Medicine, Chonbuk National University, Jeonju, South Korea.,Department of Forensic Medicine, Chonbuk National University Medical School, Chonbuk National University, Jeonju, South Korea
| | - Kyoung Min Kim
- Department of Pathology, Chonbuk National University Medical School, Chonbuk National University, Jeonju, South Korea.,Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, South Korea.,Research Institute for Clinical Medicine, Chonbuk National University, Jeonju, South Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, South Korea
| | - Usama Khamis Hussein
- Department of Pathology, Chonbuk National University Medical School, Chonbuk National University, Jeonju, South Korea.,Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Ho Sung Park
- Department of Pathology, Chonbuk National University Medical School, Chonbuk National University, Jeonju, South Korea.,Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, South Korea.,Research Institute for Clinical Medicine, Chonbuk National University, Jeonju, South Korea
| | - Byung-Hyun Park
- Department of Biochemistry, Chonbuk National University Medical School, Chonbuk National University, Jeonju, South Korea
| | - Sang Hoon Ha
- Division of Biotechnology, Chonbuk National University, Iksan, South Korea
| | - Ho Lee
- Department of Forensic Medicine, Chonbuk National University Medical School, Chonbuk National University, Jeonju, South Korea
| | - Myoung Ja Chung
- Department of Pathology, Chonbuk National University Medical School, Chonbuk National University, Jeonju, South Korea.,Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, South Korea.,Research Institute for Clinical Medicine, Chonbuk National University, Jeonju, South Korea
| | - Woo Sung Moon
- Department of Pathology, Chonbuk National University Medical School, Chonbuk National University, Jeonju, South Korea.,Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, South Korea.,Research Institute for Clinical Medicine, Chonbuk National University, Jeonju, South Korea
| | - Dong Hyu Cho
- Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, South Korea.,Research Institute for Clinical Medicine, Chonbuk National University, Jeonju, South Korea.,Department of Obstetrics and Gynecology, Chonbuk National University Medical School, Chonbuk National University, Jeonju, South Korea
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Medical School, Chonbuk National University, Jeonju, South Korea.,Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, South Korea.,Research Institute for Clinical Medicine, Chonbuk National University, Jeonju, South Korea.,Research Institute for Endocrine Sciences, Chonbuk National University, Jeonju, South Korea
| |
Collapse
|
42
|
Khan RI, Nirzhor SSR, Akter R. A Review of the Recent Advances Made with SIRT6 and its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets. Biomolecules 2018; 8:biom8030044. [PMID: 29966233 PMCID: PMC6164879 DOI: 10.3390/biom8030044] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
Sirtuin 6 (SIRT6) is a nicotinamide adenine dinucleotide+ (NAD+) dependent enzyme and stress response protein that has sparked the curiosity of many researchers in different branches of the biomedical sciences. A unique member of the known Sirtuin family, SIRT6 has several different functions in multiple different molecular pathways related to DNA repair, glycolysis, gluconeogenesis, tumorigenesis, neurodegeneration, cardiac hypertrophic responses, and more. Only in recent times, however, did the potential usefulness of SIRT6 come to light as we learned more about its biochemical activity, regulation, biological roles, and structure Frye (2000). Even until very recently, SIRT6 was known more for chromatin signaling but, being a nascent topic of study, more information has been ascertained and its potential involvement in major human diseases including diabetes, cancer, neurodegenerative diseases, and heart disease. It is pivotal to explore the mechanistic workings of SIRT6 since future research may hold the key to engendering strategies involving SIRT6 that may have significant implications for human health and expand upon possible treatment options. In this review, we are primarily concerned with exploring the latest advances in understanding SIRT6 and how it can alter the course of several life-threatening diseases such as processes related to aging, cancer, neurodegenerative diseases, heart disease, and diabetes (SIRT6 has also shown to be involved in liver disease, inflammation, and bone-related issues) and any recent promising pharmacological investigations or potential therapeutics that are of interest.
Collapse
Affiliation(s)
| | | | - Raushanara Akter
- Department of Pharmacy, BRAC University, 1212 Dhaka, Bangladesh.
| |
Collapse
|
43
|
Abstract
Sirt6 is one of the sirtuin family members, a kind of NAD+-dependent histone deacetylase and ADP-ribose transferase enzyme. It has an important role in physiological and pathological processes, regulating aging, cancer, obesity, insulin resistance, inflammation, and energy metabolism. Recent studies have suggested that reduced Sirt6 action is related to obesity and diabetes. Aging and overnutrition, two major risk factors for obesity and diabetes, lead to decreased Sirt6 level and function, which results in abnormal glucose and lipid metabolism. Whole-body ablation of Sirt6 in mice results in severe hypoglycemia. Sirt6 deficiency leads to liver steatosis and promotes diet-induced obesity and insulin resistance. Sirt6 has a protective effect on obesity and diabetes. This review surveys evidence for an emerging role of Sirt6 as a regulator of metabolism in mammals and summarizes its major functions in obesity and diabetes.
Collapse
Affiliation(s)
- Jiangying Kuang
- State Key Laboratory of Biotherapy, Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiology, The Second Hospital of Shandong University, Shandong University, Jinan, China
| | - Lei Chen
- State Key Laboratory of Biotherapy, Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Qin Tang
- State Key Laboratory of Biotherapy, Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Zhang
- State Key Laboratory of Biotherapy, Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Yanping Li
- State Key Laboratory of Biotherapy, Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhan He
- State Key Laboratory of Biotherapy, Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Dávila-Rodríguez MI, Cortés-Gutiérrez EI, Hernández-Valdés R, Guzmán-Cortés K, De León-Cantú RE, Cerda-Flores RM, Báez-De la Fuente E. DNA damage in acute myeloid leukemia patients of Northern Mexico. Eur J Histochem 2017; 61:2851. [PMID: 29313600 PMCID: PMC5733396 DOI: 10.4081/ejh.2017.2851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 01/08/2023] Open
|