1
|
Ji L, Yang W, Gao LJ, Zhang BY, Xu YQ, Xu XF. Treatment of acute myeloid leukemia with active pulmonary tuberculosis with venetoclax‑based anti‑acute myeloid leukemia regimen combined with an intensive and then individualized anti‑tuberculosis regimen: A report of two cases. Oncol Lett 2024; 28:601. [PMID: 39493431 PMCID: PMC11529375 DOI: 10.3892/ol.2024.14734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 06/11/2024] [Indexed: 11/05/2024] Open
Abstract
Patients with concurrent acute myeloid leukemia (AML) and active pulmonary tuberculosis (TB) exhibit certain characteristics; cough, phlegm, fever, hemoptysis, weight loss and dyspnea are common symptoms of both diseases. These patients often cannot tolerate traditional intensive chemotherapy regimens, and finding the optimal timing in the treatment of both AML and active pulmonary TB is complex. Neglecting timely treatment can lead to serious complications and even fatal outcomes. The present paper reports two cases of patients with AML who were diagnosed with active pulmonary TB. The patients received intensive anti-TB treatment with isoniazid, rifampicin, pyrazinamide and ethambutol for 10-15 days. After three consecutive negative sputum smears, the patients in cases 1 and 2 were treated with a venetoclax, homoharringtonine and cytarabine regimen; and a venetoclax and azacitidine regimen for anti-AML therapy, respectively, as well as individualized anti-TB regimens of isoniazid, pyrazinamide, ethambutol and quinolone. Subsequently, both patients achieved complete remission of AML and their active TB was well controlled.
Collapse
Affiliation(s)
- Lin Ji
- Department of Oncology and Hematology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Wei Yang
- Department of Oncology and Hematology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Liu Jie Gao
- Department of Oncology and Hematology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Bei Yuan Zhang
- Department of Oncology and Hematology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Ya Qing Xu
- Department of Oncology and Hematology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiao Feng Xu
- Department of Oncology and Hematology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
2
|
Shen S, Zhuang H. Homoharringtonine in the treatment of acute myeloid leukemia: A review. Medicine (Baltimore) 2024; 103:e40380. [PMID: 39496012 PMCID: PMC11537654 DOI: 10.1097/md.0000000000040380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by the accumulation of immature myeloid precursor cells. Over half of AML patients fail to achieve long-term disease-free survival under existing therapy, and the overall prognosis is poor, necessitating the urgent development of novel therapeutic approaches. The plant alkaloid homoharringtonine (HHT), which has anticancer properties, was first identified more than 40 years ago. It works in a novel method of action that prevents the early elongation phase of protein synthesis. HHT has been widely utilized in the treatment of AML, with strong therapeutic effects, few toxic side effects, and the ability to enhance AML patients' prognoses. In AML, HHT can induce cell apoptosis through multiple pathways, exerting synergistic antitumor effects, according to clinical and pharmacological research. About its modes of action, some findings have been made recently. This paper reviews the development of research on the mechanisms of HHT in treating AML to offer insights for further research and clinical therapy.
Collapse
Affiliation(s)
- Siyu Shen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Haifeng Zhuang
- Department of Clinical Hematology and Transfusion, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
3
|
Suo S, Zhao D, Li F, Zhang Y, Rodriguez-Rodriguez S, Nguyen LXT, Ghoda L, Carlesso N, Marcucci G, Zhang B, Jin J. Homoharringtonine inhibits the NOTCH/MYC pathway and exhibits antitumor effects in T-cell acute lymphoblastic leukemia. Blood 2024; 144:1343-1347. [PMID: 38968151 PMCID: PMC11451333 DOI: 10.1182/blood.2023023400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/14/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
ABSTRACT We report on the antileukemic activity of homoharringtonine (HHT) in T-cell acute lymphoblastic leukemia (T-ALL). We showed that HHT inhibited the NOTCH/MYC pathway and induced significantly longer survival in mouse and patient-derived T-ALL xenograft models, supporting HHT as a promising agent for T-ALL.
Collapse
Affiliation(s)
- Shanshan Suo
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, People's Republic of China
| | - Dandan Zhao
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA
| | - Fenglin Li
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, People's Republic of China
| | - Yi Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, People's Republic of China
| | - Sonia Rodriguez-Rodriguez
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA
| | - Le Xuan Truong Nguyen
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA
| | - Lucy Ghoda
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA
| | - Nadia Carlesso
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA
| | - Guido Marcucci
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA
| | - Bin Zhang
- Hematology Malignancies Research Institute, Gehr Family Center for Leukemia Research, City of Hope Medical Center, Duarte, CA
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, People's Republic of China
- Zhejiang University Cancer Center, Hangzhou, People's Republic of China
| |
Collapse
|
4
|
Qiu X, Zhang H, Tang Z, Fan Y, Yuan W, Feng C, Chen C, Cui P, Cui Y, Qi Z, Li T, Zhu Y, Xie L, Peng F, Deng T, Jiang X, Peng L, Dai H. Homoharringtonine promotes heart allograft acceptance by enhancing regulatory T cells induction in a mouse model. Chin Med J (Engl) 2024; 137:1453-1464. [PMID: 37962205 PMCID: PMC11188914 DOI: 10.1097/cm9.0000000000002813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Homoharringtonine (HHT) is an effective anti-inflammatory, anti-viral, and anti-tumor protein synthesis inhibitor that has been applied clinically. Here, we explored the therapeutic effects of HHT in a mouse heart transplant model. METHODS Healthy C57BL/6 mice were used to observe the toxicity of HHT in the liver, kidney, and hematology. A mouse heart transplantation model was constructed, and the potential mechanism of HHT prolonging allograft survival was evaluated using Kaplan-Meier analysis, immunostaining, and bulk RNA sequencing analysis. The HHT-T cell crosstalk was modeled ex vivo to further verify the molecular mechanism of HHT-induced regulatory T cells (Tregs) differentiation. RESULTS HHT inhibited the activation and proliferation of T cells and promoted their apoptosis ex vivo . Treatment of 0.5 mg/kg HHT for 10 days significantly prolonged the mean graft survival time of the allografts from 7 days to 48 days ( P <0.001) without non-immune toxicity. The allografts had long-term survival after continuous HHT treatment for 28 days. HHT significantly reduced lymphocyte infiltration in the graft, and interferon-γ-secreting CD4 + and CD8 + T cells in the spleen ( P <0.01). HHT significantly increased the number of peripheral Tregs (about 20%, P <0.001) and serum interleukin (IL)-10 levels. HHT downregulated the expression of T cell receptor (TCR) signaling pathway-related genes ( CD4 , H2-Eb1 , TRAT1 , and CD74 ) and upregulated the expression of IL-10 and transforming growth factor (TGF)-β pathway-related genes and Treg signature genes ( CTLA4 , Foxp3 , CD74 , and ICOS ). HHT increased CD4 + Foxp3 + cells and Foxp3 expression ex vivo , and it enhanced the inhibitory function of inducible Tregs. CONCLUSIONS HHT promotes Treg cell differentiation and enhances Treg suppressive function by attenuating the TCR signaling pathway and upregulating the expression of Treg signature genes and IL-10 levels, thereby promoting mouse heart allograft acceptance. These findings may have therapeutic implications for organ transplant recipients, particularly those with viral infections and malignancies, which require a more suitable anti-rejection medication.
Collapse
Affiliation(s)
- Xia Qiu
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Hedong Zhang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhouqi Tang
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yuxi Fan
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Wenjia Yuan
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chen Feng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Chao Chen
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Pengcheng Cui
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yan Cui
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Tengfang Li
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yuexing Zhu
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Liming Xie
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Fenghua Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Tuo Deng
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xin Jiang
- Department of Organ Transplantation, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan 450000, China
| | - Longkai Peng
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- National Clinical Research Center for Metabolic Diseases, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Helong Dai
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Department of Kidney Transplantation, Center of Organ Transplantation, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
- Department of Organ Transplantation, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan 450000, China
| |
Collapse
|
5
|
Gao X, Zuo X, Min T, Wan Y, He Y, Jiang B. Traditional Chinese medicine for acute myelocytic leukemia therapy: exploiting epigenetic targets. Front Pharmacol 2024; 15:1388903. [PMID: 38895633 PMCID: PMC11183326 DOI: 10.3389/fphar.2024.1388903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy with historically high mortality rates. The treatment strategies for AML is still internationally based on anthracyclines and cytarabine, which remained unchanged for decades. With the rapid advance on sequencing technology, molecular targets of leukemogenesis and disease progression related to epigenetics are constantly being discovered, which are important for the prognosis and treatment of AML. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity and limited side effects. Several biologically active ingredients of TCM are effective against AML. This review focuses on bioactive compounds in TCM targeting epigenetic mechanisms to address the complexities and heterogeneity of AML.
Collapse
Affiliation(s)
- Xinlong Gao
- Naval Medical Center of PLA, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xu Zuo
- Naval Medical Center of PLA, Shanghai, China
| | | | - Yu Wan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Ying He
- Naval Medical Center of PLA, Shanghai, China
| | - Beier Jiang
- Naval Medical Center of PLA, Shanghai, China
| |
Collapse
|
6
|
Zou C, Li W, Zhang Y, Feng N, Chen S, Yan L, He Q, Wang K, Li W, Li Y, Wang Y, Xu B, Zhang D. Identification of an anaplastic subtype of prostate cancer amenable to therapies targeting SP1 or translation elongation. SCIENCE ADVANCES 2024; 10:eadm7098. [PMID: 38569039 PMCID: PMC10990282 DOI: 10.1126/sciadv.adm7098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Histopathological heterogeneity is a hallmark of prostate cancer (PCa). Using spatial and parallel single-nucleus transcriptomics, we report an androgen receptor (AR)-positive but neuroendocrine-null primary PCa subtype with morphologic and molecular characteristics of small cell carcinoma. Such small cell-like PCa (SCLPC) is clinically aggressive with low AR, but high stemness and proliferation, activity. Molecular characterization prioritizes protein translation, represented by up-regulation of many ribosomal protein genes, and SP1, a transcriptional factor that drives SCLPC phenotype and overexpresses in castration-resistant PCa (CRPC), as two potential therapeutic targets in AR-indifferent CRPC. An SP1-specific inhibitor, plicamycin, effectively suppresses CRPC growth in vivo. Homoharringtonine, a Food And Drug Administration-approved translation elongation inhibitor, impedes CRPC progression in preclinical models and patients with CRPC. We construct an SCLPC-specific signature capable of stratifying patients for drug selectivity. Our studies reveal the existence of SCLPC in admixed PCa pathology, which may mediate tumor relapse, and establish SP1 and translation elongation as actionable therapeutic targets for CRPC.
Collapse
Affiliation(s)
- Cheng Zou
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Wenchao Li
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Yuanzhen Zhang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Ninghan Feng
- Department of Urology and Wuxi School of Medicine, Jiangnan University Medical Center, Wuxi 214002, Jiangsu Province, China
| | - Saisai Chen
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Lianlian Yan
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
| | - Qinju He
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
| | - Kai Wang
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Wenjun Li
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Yingying Li
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| | - Yang Wang
- Department of Urology and Wuxi School of Medicine, Jiangnan University Medical Center, Wuxi 214002, Jiangsu Province, China
| | - Bin Xu
- Department of Urology, School of Medicine, Affiliated ZhongDa Hospital of Southeast University, Nanjing 210009, Jiangsu Province, China
- National Medicine-Engineering Interdisciplinary Industry-Education Integration Innovation Platform (Ministry of Education), Basic Medicine Research and Innovation Center, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Dingxiao Zhang
- The Affiliated XiangTan Central Hospital of Hunan University, School of Biomedical Sciences, Hunan University, Changsha 410082, Hunan Province, China
- Hunan Key Laboratory of Animal Models and Molecular Medicine, Hunan University, Changsha 410082, Hunan Province, China
- Shenzhen Research Institute, Hunan University, Shenzhen 518000, China
| |
Collapse
|
7
|
Berthier A, Gheeraert C, Johanns M, Vinod M, Staels B, Eeckhoute J, Lefebvre P. The Molecular Circadian Clock Is a Target of Anti-cancer Translation Inhibitors. J Biol Rhythms 2024; 39:20-34. [PMID: 37872767 DOI: 10.1177/07487304231202561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Circadian-paced biological processes are key to physiology and required for metabolic, immunologic, and cardiovascular homeostasis. Core circadian clock components are transcription factors whose half-life is precisely regulated, thereby controlling the intrinsic cellular circadian clock. Genetic disruption of molecular clock components generally leads to marked pathological events phenotypically affecting behavior and multiple aspects of physiology. Using a transcriptional signature similarity approach, we identified anti-cancer protein synthesis inhibitors as potent modulators of the cardiomyocyte molecular clock. Eukaryotic protein translation inhibitors, ranging from translation initiation (rocaglates, 4-EGI1, etc.) to ribosomal elongation inhibitors (homoharringtonine, puromycin, etc.), were found to potently ablate protein abundance of REV-ERBα, a repressive nuclear receptor and component of the molecular clock. These inhibitory effects were observed both in vitro and in vivo and could be extended to PER2, another component of the molecular clock. Taken together, our observations suggest that the activity spectrum of protein synthesis inhibitors, whose clinical use is contemplated not only in cancers but also in viral infections, must be extended to circadian rhythm disruption, with potential beneficial or iatrogenic effects upon acute or prolonged administration.
Collapse
Affiliation(s)
- Alexandre Berthier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Céline Gheeraert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Manuel Johanns
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Manjula Vinod
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Jérôme Eeckhoute
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Philippe Lefebvre
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
8
|
Arreola J, Pérez-Cornejo P, Segura-Covarrubias G, Corral-Fernández N, León-Aparicio D, Guzmán-Hernández ML. Function and Regulation of the Calcium-Activated Chloride Channel Anoctamin 1 (TMEM16A). Handb Exp Pharmacol 2024; 283:101-151. [PMID: 35768554 DOI: 10.1007/164_2022_592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Various human tissues express the calcium-activated chloride channel Anoctamin 1 (ANO1), also known as TMEM16A. ANO1 allows the passive chloride flux that controls different physiological functions ranging from muscle contraction, fluid and hormone secretion, gastrointestinal motility, and electrical excitability. Overexpression of ANO1 is associated with pathological conditions such as hypertension and cancer. The molecular cloning of ANO1 has led to a surge in structural, functional, and physiological studies of the channel in several tissues. ANO1 is a homodimer channel harboring two pores - one in each monomer - that work independently. Each pore is activated by voltage-dependent binding of two intracellular calcium ions to a high-affinity-binding site. In addition, the binding of phosphatidylinositol 4,5-bisphosphate to sites scattered throughout the cytosolic side of the protein aids the calcium activation process. Furthermore, many pharmacological studies have established ANO1 as a target of promising compounds that could treat several illnesses. This chapter describes our current understanding of the physiological roles of ANO1 and its regulation under physiological conditions as well as new pharmacological compounds with potential therapeutic applications.
Collapse
Affiliation(s)
- Jorge Arreola
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| | - Patricia Pérez-Cornejo
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Guadalupe Segura-Covarrubias
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - Nancy Corral-Fernández
- Department of Physiology and Biophysics, School of Medicine of Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Daniel León-Aparicio
- Physics Institute, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | |
Collapse
|
9
|
Li M, Zheng S, Gong Q, Zhuang H, Wu Z, Wang P, Zhang X, Xu R. An oral triple pill-based cocktail effectively controls acute myeloid leukemia with high translation. Biomed Pharmacother 2023; 167:115584. [PMID: 37778270 DOI: 10.1016/j.biopha.2023.115584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023] Open
Abstract
Acute myeloid leukemia (AML) is a deadly hematological malignancy characterized by oncogenic translational addiction that results in over-proliferation and apoptosis evasion of leukemia cells. Various chemo- and targeted therapies aim to reverse this hallmark, but most show only modest efficacy. Here we report a single oral pill containing a low-dose triple small molecule-based cocktail, a highly active anti-cancer therapy (HAACT) with unique mechanisms that can effectively control AML. The cocktail comprises oncogenic translation inhibitor HHT, drug efflux pump P-gpi ENC and anti-apoptotic protein Bcl-2i VEN. Mechanistically, the cocktail can potently kill both leukemia stem cells (LSC) and bulk leukemic cells via co-targeting oncogenic translation, apoptosis machinery, and drug efflux pump, resulting in deep and durable remissions of AML in diverse model systems. We also identified EphB4/Bcl-xL as the cocktail response biomarkers. Collectively, our studies provide proof that a single pill containing a triple combination cocktail might be a promising avenue for AML therapy.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shuwen Zheng
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qinyuan Gong
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Haifeng Zhuang
- Department of Clinical Hematology and Transfusion, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou 310006, China
| | - Zhaoxing Wu
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ping Wang
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuzhao Zhang
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Rongzhen Xu
- Department of Hematology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China; Institute of Hematology, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
10
|
Hsieh CH, Huang CT, Cheng YS, Hsu CH, Hsu WM, Chung YH, Liu YL, Yang TS, Chien CY, Lee YH, Huang HC, Juan HF. Homoharringtonine as a PHGDH inhibitor: Unraveling metabolic dependencies and developing a potent therapeutic strategy for high-risk neuroblastoma. Biomed Pharmacother 2023; 166:115429. [PMID: 37673018 DOI: 10.1016/j.biopha.2023.115429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023] Open
Abstract
Neuroblastoma, a childhood cancer affecting the sympathetic nervous system, continues to challenge the development of potent treatments due to the limited availability of druggable targets for this aggressive illness. Recent investigations have uncovered that phosphoglycerate dehydrogenase (PHGDH), an essential enzyme for de novo serine synthesis, serves as a non-oncogene dependency in high-risk neuroblastoma. In this study, we show that homoharringtonine (HHT) acts as a PHGDH inhibitor, inducing intricate alterations in cellular metabolism, and thus providing an efficient treatment for neuroblastoma. We have experimentally verified the reliance of neuroblastoma on PHGDH and employed molecular docking, thermodynamic evaluations, and X-ray crystallography techniques to determine the bond interactions between HHT and PHGDH. Administering HHT to treat neuroblastoma resulted in effective cell elimination in vitro and tumor reduction in vivo. Metabolite and functional assessments additionally disclosed that HHT treatment suppressed de novo serine synthesis, initiating intricate metabolic reconfiguration and oxidative stress in neuroblastoma. Collectively, these discoveries highlight the potential of targeting PHGDH using HHT as a potent approach for managing high-risk neuroblastoma.
Collapse
Affiliation(s)
- Chiao-Hui Hsieh
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC; Center for Computational and Systems Biology, National Taiwan University, Taipei, Taiwan, ROC
| | - Chen-Tsung Huang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, ROC
| | - Yi-Sheng Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC; Institute of Plant Biology, National Taiwan University, Taipei, Taiwan, ROC; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan, ROC
| | - Chun-Hua Hsu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan, ROC; Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, ROC
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Yun-Hsien Chung
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Yen-Lin Liu
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Tsai-Shan Yang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Chia-Yu Chien
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan, ROC
| | - Yu-Hsuan Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, Taipei, Taiwan, ROC; Center for Computational and Systems Biology, National Taiwan University, Taipei, Taiwan, ROC; Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, ROC; Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan, ROC; Center for Advanced Computing and Imaging in Biomedicine, Taipei, Taiwan, ROC.
| |
Collapse
|
11
|
Cao J, Tao X, Shi B, Wang J, Ma R, Zhao J, Tian J, Huang Q, Yu J, Wang L. NKD1 targeting PCM1 regulates the therapeutic effects of homoharringtonine on colorectal cancer. Mol Biol Rep 2023; 50:6543-6556. [PMID: 37338734 DOI: 10.1007/s11033-023-08572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is the most common primary malignancy. Recently, antineoplastic attributes of homoharringtonine (HHT) have attracted lots of attention. This study investigated the molecular target and underlying mechanism of HHT in the CRC process by using a cellular and animal models. METHODS This study first detected the effects of HHT on the proliferation, cell cycle and apoptosis ability of CRC cells using CCK-8, Edu staining, flow cytometry and Western blotting assay. In vitro recovery experiment and in vivo tumorigenesis experiment were used to detect the targeted interaction between HHT and NKD1. After that, the downstream target and mechanism of action of HHT targeting NKD1 was determined using quantitative proteomics combined with co-immunoprecipitation/immunofluorescence assay. RESULTS HHT suppressed CRC cells proliferation by inducing cell cycle arrest and apoptosis in vitro and vivo. HHT inhibited NKD1 expression in a concentration and time dependent manner. NKD1 was overexpressed in CRC and its depletion enhanced the therapeutic sensitivity of HHT on CRC, which indicating that NKD1 plays an important role in the development of CRC as the drug delivery target of HHT. Furthermore, proteomic analysis revealed that PCM1 participated the process of NKD1-regulated cell proliferation and cell cycle. NKD1 interacted with PCM1 and promoted PCM1 degradation through the ubiquitin-proteasome pathway. The overexpression of PCM1 effectively reversed the inhibition of siNKD1 on cell cycle. CONCLUSIONS The present findings revealed that HHT blocked NKD1 expression to participate in inhibiting cell proliferation and inducing cell apoptosis, ultimately leading to obstruction of CRC development through NKD1/PCM1 dependent mechanism. Our research provide evidence for clinical application of NKD1-targeted therapy in improving HHT sensitivity for CRC treatment.
Collapse
Affiliation(s)
- Jia Cao
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiang Tao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Bin Shi
- Department of Emergency, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jia Wang
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Rong Ma
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jufen Zhao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jinhai Tian
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qi Huang
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jingjing Yu
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Libin Wang
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
12
|
Ji L, Yang W, Xu XF, Xu YQ. A case report of complete remission of acute myeloid leukemia combined with DNMT3A, FLT3-TKD, and IDH2 gene mutations and active pulmonary tuberculosis treated with homeharringtonine + venetoclax + azacytidine. Front Med (Lausanne) 2023; 10:1180757. [PMID: 37384044 PMCID: PMC10294669 DOI: 10.3389/fmed.2023.1180757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023] Open
Abstract
In March 2022, a 58-year-old man was admitted to the local hospital for nausea and vomiting. His blood routine indicated that he had leukocytosis and anemia. The patient was diagnosed with acute myeloid leukemia (AML)-M5b accompanied by DNMT3A, FLT3-TKD, and IDH2 mutations, chest CT revealed pulmonary tuberculosis (TB). Acid-fast bacillus (AFB) was detected in sputum. The patient then received anti-TB treatment with isoniazid + rifampicin + pyrazinamide + ethambutol. On April 8, he was transferred to our hospital's Hematology Department after three consecutive negative sputum smears. He was administered the VA (Venetoclax + Azacytidine) regimen of anti-leukemia treatment and also received levofloxacin + isohydrazide + pyrazinamide + ethambutol anti-TB treatment. After one course of VA therapy, there was no remission in the bone marrow. Therefore, the patient received the HVA (Homeharringtonine + Venetoclax + Azacytidine) regimen of anti-leukemia treatment. On May 25, the bone marrow smear revealed that the original mononuclear cells were 1%. Moreover, bone marrow flow cytometry revealed the absence of any abnormal cells. mNGS showed DNMT3A (mutation rate 44.7%), but no mutations were detected in FLT3-TKD and IDH2. The patient then received the HVA regimen three consecutive times, resulting in complete remission. Repeated chest CT examinations revealed progressive regression of pulmonary TB foci, no AFB was detected in the sputum. This AML patient with DNMT3A, FLT3-TKD, and IDH2 mutations and active TB is difficult to treat. It is very necessary for him to administer prompt anti-leukemia treatment under the premise of active anti-TB treatment. The HVA regimen is effective for this patient.
Collapse
|
13
|
Goel H, Kumar R, Tanwar P, Upadhyay TK, Khan F, Pandey P, Kang S, Moon M, Choi J, Choi M, Park MN, Kim B, Saeed M. Unraveling the therapeutic potential of natural products in the prevention and treatment of leukemia. Biomed Pharmacother 2023; 160:114351. [PMID: 36736284 DOI: 10.1016/j.biopha.2023.114351] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
Leukemia is a heterogeneous group of hematological malignancies distinguished by differentiation blockage and uncontrolled proliferation of myeloid or lymphoid progenitor cells in the bone marrow (BM) and peripheral blood (PB). There are various types of leukemia in which intensive chemotherapy regimens or hematopoietic stem cell transplantation (HSCT) are now the most common treatments associated with severe side effects and multi-drug resistance in leukemia cells. Therefore, it is crucial to develop novel therapeutic approaches with adequate therapeutic efficacy and selectively eliminate leukemic cells to improve the consequences of leukemia. Medicinal plants have been utilized for ages to treat multiple disorders due to their diverse bioactive compounds. Plant-derived products have been used as therapeutic medication to prevent and treat many types of cancer. Over the last two decades, 50 % of all anticancer drugs approved worldwide are from natural products and their derivatives. Therefore this study aims to review natural products such as polyphenols, alkaloids, terpenoids, nitrogen-containing, and organosulfur compounds as antileukemic agents. Current investigations have identified natural products efficiently destroy leukemia cells through diverse mechanisms of action by inhibiting proliferation, reactive oxygen species production, inducing cell cycle arrest, and apoptosis in both in vitro, in vivo, and clinical studies. Current investigations have identified natural products as suitable promising chemotherapeutic and chemopreventive agents. It played an essential role in drug development and emerged as a possible source of biologically active metabolites for therapeutic interventions, especially in leukemia. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Harsh Goel
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi 11023, India.
| | - Rahul Kumar
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi 11023, India.
| | - Pranay Tanwar
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi 11023, India.
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara 391760, India,.
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India.
| | - Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India.
| | - Sojin Kang
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Myunghan Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Min Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 05253, Republic of Korea.
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Hail 81411 Saudi Arabia.
| |
Collapse
|
14
|
Wang Y, Yang Y, Zheng X, Shi J, Zhong L, Duan X, Zhu Y. Application of iron oxide nanoparticles in the diagnosis and treatment of leukemia. Front Pharmacol 2023; 14:1177068. [PMID: 37063276 PMCID: PMC10097929 DOI: 10.3389/fphar.2023.1177068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Leukemia is a malignancy initiated by uncontrolled proliferation of hematopoietic stem cell from the B and T lineages, resulting in destruction of hematopoietic system. The conventional leukemia treatments induce severe toxic and a long series of unwanted side-effects which are caused by lack of specificity of anti-leukemic drugs. Recently, nanotechnology have shown tremendous application and clinical impact with respect to diagnosis and treatment of leukemia. According to considerable researches in the context of finding new nanotechnological platform, iron oxide nanoparticles have been gained increasing attention for the leukemia patients use. In this review, a short introduction of leukemia is described followed by the evaluation of the current approaches of iron oxide nanoparticles applied in the leukemia detection and treatment. The enormous advantages of iron oxide nanoparticles for leukemia have been discussed, which consist of the detection of magnetic resonance imaging (MRI) as efficient contrast agents, magnetic biosensors and targeted delivery of anti-leukemia drugs by coating different targeting moieties. In addition, this paper will briefly describe the application of iron oxide nanoparticles in the combined treatment of leukemia. Finally, the shortcomings of the current applications of iron-based nanoparticles in leukemia diagnosis and treatment will be discussed in particular.
Collapse
|
15
|
Weichenhan D, Riedel A, Meinen C, Basic A, Toth R, Bähr M, Lutsik P, Hey J, Sollier E, Toprak UH, Kelekçi S, Lin YY, Hakobyan M, Touzart A, Goyal A, Wierzbinska JA, Schlesner M, Westermann F, Lipka DB, Plass C. Translocation t(6;7) in AML-M4 cell line GDM-1 results in MNX1 activation through enhancer-hijacking. Leukemia 2023; 37:1147-1150. [PMID: 36949154 PMCID: PMC10169647 DOI: 10.1038/s41375-023-01865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/24/2023]
Affiliation(s)
- Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Riedel
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Charlotte Meinen
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alisa Basic
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Reka Toth
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Marion Bähr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Oncology KU Leuven, Leuven, Belgium
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Etienne Sollier
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Umut H Toprak
- Faculty of Biosciences, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simge Kelekçi
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Yu-Yu Lin
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mariam Hakobyan
- Faculty of Biosciences, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
- Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Aurore Touzart
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Université de Paris Cité, Institut Necker Enfants-Malades (INEM), Institut National de la Santé et de la Recherche Médicale (Inserm) U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, Paris, France
| | - Ashish Goyal
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Justyna A Wierzbinska
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Matthias Schlesner
- Faculty of Applied Informatics, University of Augsburg, Augsburg, Germany
| | - Frank Westermann
- Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Daniel B Lipka
- Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
- German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| |
Collapse
|
16
|
Zhang H, Chen F, Xu S, Zhang W, Li R, Yao Q, Zhao Y, Zhu Z, Chen L. Protective Effect of 20(S)-Protopanaxadiol on D-Gal-Induced Cognitively Impaired Mice Based on Its Target Protein Brain-type Creatine Kinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3484-3496. [PMID: 36752334 DOI: 10.1021/acs.jafc.2c07889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ginseng is an important medicinal herb consumed as dietary supplements. Ginsenosides and their metabolites have been reported to enhance cognitive performance, but their underlying mechanisms remain unclear. Brain-type creatine kinase (CK-BB) was previously screened out as one of the potential targets in brain tissues. In vitro, the strongest direct interaction between 20(S)-protopanaxadiol (PPD), a ginsenoside metabolite, and CK-BB was detected using biolayer interferometry (BLI). Drug affinity responsive target stability, cellular thermal shift assay, BLI, and isothermal titration calorimetry were subsequently used, and the binding of PPD to CK-BB was verified. The binding sites of the CK-BB/PPD complex were clarified by molecular docking and site-directed mutagenesis. Enzyme activity assay showed that the binding of PPD to CK-BB in vitro enhanced its activity. In vivo, PPD increased CK-BB activity in D-gal-induced mice. PPD also improved the D-gal-induced cognitive deficits and ameliorated alterations in oxidative stress and hippocampal synaptic plasticity. Therefore, the integration of PPD with its target protein CK-BB may promote CK-BB activity, thereby ameliorating hippocampal synaptic plasticity and cognitive deficits in D-gal-treated mice.
Collapse
Affiliation(s)
- Hantao Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feiyan Chen
- Research and Innovation Center, College of Traditional Chinese Medicine Integrated Chinese and Western Medicine College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuyi Xu
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjing Zhang
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Rimei Li
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Kunshan Huaqiao Senior High School, Suzhou 215332, China
| | - Qi Yao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yunan Zhao
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhu Zhu
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lin Chen
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
17
|
Rao MRP, Ghadge I, Kulkarni S, R. Madgulkar A. Importance of Plant Secondary Metabolites in Modern Therapy. REFERENCE SERIES IN PHYTOCHEMISTRY 2023:1-31. [DOI: 10.1007/978-3-031-30037-0_5-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 01/05/2025]
|
18
|
Qian Y, Zhang X, Mao S, Wei W, Lin X, Ling Q, Ye W, Li F, Pan J, Zhou Y, Zhao Y, Huang X, Huang J, Tong H, Sun J, Jin J. ACC010, a novel BRD4 inhibitor, synergized with homoharringtonine in acute myeloid leukemia with FLT3-ITD. Mol Oncol 2022. [PMID: 36567628 DOI: 10.1002/1878-0261.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/06/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022] Open
Abstract
Bromodomain-containing protein 4 (BRD4) inhibitors have been clinically developed to treat acute myeloid leukemia (AML), but their application is limited by the possibility of drug resistance, which is reportedly associated with the activation of the WNT/β-catenin pathway. Meanwhile, homoharringtonine (HHT), a classic antileukemia drug, possibly inhibits the WNT/β-catenin pathway. In this study, we attempted to combine a novel BRD4 inhibitor (ACC010) and HHT to explore their synergistic lethal effects in treating AML. Here, we found that co-treatment with ACC010 and HHT synergistically inhibited cell proliferation, induced apoptosis, and arrested the cell cycle in FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD)-positive AML cells in vitro, and significantly inhibiting AML progression in vivo. Mechanistically, ACC010 and HHT cooperatively downregulated MYC and inhibited FLT3 activation. Further, when HHT was added, ACC010-resistant cells demonstrated a good synergy. We also extended our study to the mouse BaF3 cell line with FLT3-inhibitor-resistant FLT3-ITD/tyrosine kinase domain mutations and AML cells without FLT3-ITD. Collectively, our results suggested that the combination treatment of ACC010 and HHT might be a promising strategy for AML patients, especially those carrying FLT3-ITD.
Collapse
Affiliation(s)
- Yu Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Shihui Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Wenwen Wei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Xiangjie Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Qing Ling
- Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Fenglin Li
- The Affiliated People's Hospital of Ningbo University, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Yutong Zhou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Yanchun Zhao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Jie Sun
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Hematopoietic Malignancy, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China.,Zhejiang University Cancer Center, Hangzhou, China.,Jinan Microecological Biomedicine Shandong Laboratory, China
| |
Collapse
|
19
|
Naeem A, Hu P, Yang M, Zhang J, Liu Y, Zhu W, Zheng Q. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules 2022; 27:molecules27238367. [PMID: 36500466 PMCID: PMC9737905 DOI: 10.3390/molecules27238367] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Natural products have been an invaluable and useful source of anticancer agents over the years. Several compounds have been synthesized from natural products by modifying their structures or by using naturally occurring compounds as building blocks in the synthesis of these compounds for various purposes in different fields, such as biology, medicine, and engineering. Multiple modern and costly treatments have been applied to combat cancer and limit its lethality, but the results are not significantly refreshing. Natural products, which are a significant source of new therapeutic drugs, are currently being investigated as potential cytotoxic agents and have shown a positive trend in preclinical research and have prompted numerous innovative strategies in order to combat cancer and expedite the clinical research. Natural products are becoming increasingly important for drug discovery due to their high molecular diversity and novel biofunctionality. Furthermore, natural products can provide superior efficacy and safety due to their unique molecular properties. The objective of the current review is to provide an overview of the emergence of natural products for the treatment and prevention of cancer, such as chemosensitizers, immunotherapeutics, combinatorial therapies with other anticancer drugs, novel formulations of natural products, and the molecular mechanisms underlying their anticancer properties.
Collapse
Affiliation(s)
- Abid Naeem
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Jing Zhang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yali Liu
- Key Laboratory of Pharmacodynamics and Safety Evaluation, Health Commission of Jiangxi Province, Nanchang Medical College, Nanchang 330006, China
- Key Laboratory of Pharmacodynamics and Quality Evaluation on Anti-Inflammatory Chinese Herbs, Jiangxi Administration of Traditional Chinese Medicine, Nanchang Medical College, Nanchang 330006, China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- Correspondence:
| |
Collapse
|
20
|
Zhu JF, Dai HP, Zhang QQ, Yin J, Li Z, Cui QY, Tian XP, Liu SN, Jin ZM, Zhu XM, Wu DP, Tang XW. Efficacy and safety of decitabine combined with HAAG (homoharringtonine, aclarubicin, low-dose cytarabine and G-CSF) for newly diagnosed acute myeloid leukemia. Front Oncol 2022; 12:998884. [PMID: 36313659 PMCID: PMC9605800 DOI: 10.3389/fonc.2022.998884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022] Open
Abstract
The 7 + 3 regimen is the front-line induction chemotherapy in patients with newly diagnosed acute myeloid leukemia, with a response rate of 60-80%. But it’s not suitable for all patients especially old/unfit patients because of a higher treatment related toxicity. Therefore, safer and more effective induction therapies are required. In this retrospective study, 50 patients with newly diagnosed acute myeloid leukemia received decitabine combined with HAAG (homoharringtonine, aclarubicin, low-dose cytarabine and G-CSF) as induction chemotherapy. Complete remission (CR) rate was 96% (48/50) and overall response rate was 100%. Of note, All 7 patients harboring FLT3-ITD mutation achieved CR. The median overall survival (OS) was 40.0 months (range 2.0, 58.0). The OS at 1, 3, and 5 years were 75.3%, 54.2%, and 49.3%. The median relapse free survival (RFS) was 38.0 months (range 2.0, 58.0). The RFS at 1, 3, and 5 years were 67.3%, 48.9%, and 45.1%. The OS and RFS of patients who received hematopoietic stem cell transplantation (HSCT) were significantly higher than those who did not undergo HSCT (p=0.017; 0.016). The incidence of grade 3-4 neutropenia and thrombocytopenia was 84% and 88%. Meanwhile, the incidence of grade 3-4 infection and bleeding was only 16% and 6%. There was no early death. In conclusion, DAC+HAAG regimen is effective and well-tolerated as induction therapy in patients with newly diagnosed AML.
Collapse
Affiliation(s)
- Jun-Feng Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hai-Ping Dai
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qian-Qian Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jia Yin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zheng Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Qin-Ya Cui
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiao-Peng Tian
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Si-Ning Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zheng-Ming Jin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xia-Ming Zhu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - De-Pei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Xiao-Wen Tang, ; De-Pei Wu,
| | - Xiao-Wen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Xiao-Wen Tang, ; De-Pei Wu,
| |
Collapse
|
21
|
Homoharringtonine Attenuates Dextran Sulfate Sodium-Induced Colitis by Inhibiting NF-κB Signaling. Mediators Inflamm 2022; 2022:3441357. [PMID: 36211988 PMCID: PMC9536985 DOI: 10.1155/2022/3441357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Homoharringtonine (HHT) exhibits an anti-inflammatory activity. The potential protective effects and mechanisms of HHT on dextran sulfate sodium- (DSS-) induced colitis were investigated. DSS-induced colitis mice were intraperitoneally injected with HHT. Body weight, colon length, disease activity index (DAI), and histopathological change were examined. The relative contents of interleukin- (IL-) 1β, tumor necrosis factor- (TNF-) α, IL-6, and the chemokine (C-C motif) ligand 2 (CCL2) in the colon tissues and HHT-treated RAW264.7 cells were detected with the enzyme-linked immunosorbent assay. In the meantime, the levels of p-p65 and p-IκBα were detected by Western blot. The proportion of macrophages (CD11b+F4/80+) in the colon tissues was detected by flow cytometry. HHT alleviated DSS-induced colitis with downregulated TNF-α, IL-1β, IL-6, and CCL2 expression; reduced activation of nuclear factor-kappa B (NF-κB) signaling; and diminished proportion of recruited macrophages in colon tissues. It was further testified that HHT inhibited lipopolysaccharide-induced macrophage activation with reduced activation of NF-κB signaling. In addition, HHT inhibited the M1 polarization of both human and mouse macrophages, while HHT did not affect the differentiation of human CD4 T cells into Th17, Th1, or Treg cells and did not affect the proliferation and migration of human colon epithelial cells. In summary, HHT attenuates DSS-induced colitis by inhibiting macrophage-associated NF-κB activation and M1 polarization, which could be an option for the treatment of ulcerative colitis.
Collapse
|
22
|
Bisht D, Arora A, Sachan M. Role of DNA De-methylation intermediate '5-hydroxymethylcytosine' in ovarian cancer management: A comprehensive review. Biomed Pharmacother 2022; 155:113674. [PMID: 36099791 DOI: 10.1016/j.biopha.2022.113674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer remains the most eminent silent killer, with high morbidity and mortality among all gynaecological cancers. The advanced-stage patient's diagnosis has a low survival rate caused by its asymptomatic progression and diverse histopathological sub-types, wherefore in poor prognosis and highly recurring malignancy with multidrug resistance towards chemotherapy. Epigenetic biomarkers open promising avenues of intriguing research to combat OC malignancy, furthermore a tool for its early diagnosis. 5-hydroxymethycytosine (5-hmC), alias the sixth base of the genome, is an intermediate formed during the recently established DNA demethylation process and catalysed via ten-eleven translocation (TET) family of enzymes. It plays a significant role in regulating gene expression and has sparked interest in various cancer types. This review summarizes the role of active DNA demethylation process, its enzymes and intermediate 5-hmC in epigenetic landscape of ovarian cancer as a potent biomarker for clinical translation in identification of therapeutic targets, diagnostic and prognostic evaluation.
Collapse
Affiliation(s)
- Deepa Bisht
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Arisha Arora
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039 Assam, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| |
Collapse
|
23
|
Yang Y, Yu Q, Hu L, Dai B, Qi R, Chang Y, Zhang Q, Zhang Z, Li Y, Zhang X. Enantioselective semisynthesis of novel cephalotaxine esters with potent antineoplastic activities against leukemia. Eur J Med Chem 2022; 244:114731. [DOI: 10.1016/j.ejmech.2022.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/04/2022]
|
24
|
Kim D, Byun J, Kim SI, Chung HH, Kim YW, Shim G, Oh YK. DNA-cloaked nanoparticles for tumor microenvironment-responsive activation. J Control Release 2022; 350:448-459. [PMID: 36037974 DOI: 10.1016/j.jconrel.2022.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/26/2022]
Abstract
Although progress has been made in developing tumor microenvironment-responsive delivery systems, the list of cargo-releasing stimuli remains limited. In this study, we report DNA nanothread-cloaked nanoparticles for reactive oxygen species (ROS)-rich tumor microenvironment-responsive delivery systems. ROS is well known to strongly induce DNA fragmentation via oxidative stress. As a model anticancer drug, hydrophobic omacetaxine was entrapped in branched cyclam ligand-modified nanoparticles (BNP). DNA nanothreads were prepared by rolling-circle amplification and complexed to BNP, yielding DNA nanothread-cloaked BNP (DBNP). DBNP was unmasked by DNA nanothread-degrading ROS and culture supernatants of LNCaP cells. The size and zeta potential of DBNP were changed by ROS. In ROShigh LNCaP cells, but not in ROSlow fibroblast cells, the uptake of DBNP was higher than that of other nanoparticles. Molecular imaging revealed that DBNP exhibited greater distribution to tumor tissues, compared to other nanoparticles. Ex vivo mass spectrometry-based imaging showed that omacetaxine metabolites were distributed in tumor tissues of mice treated with DBNP. Intravenous administration of DBNP reduced the tumor volume by 80% compared to untreated tumors. Profiling showed that omacetaxine treatment altered the transcriptional profile. These results collectively support the feasibility of using polymerized DNA-masked nanoparticles for selective activation in the ROS-rich tumor microenvironment.
Collapse
Affiliation(s)
- Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hyun Hoon Chung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yong-Wan Kim
- Daegu Cancer Center, DongSung Bio-Pharmaceuticals, Daegu 41061, Republic of Korea
| | - Gayong Shim
- School of Systems Biomedical Science and Integrative Institute of Basic Sciences, Soongsil University, Seoul 06978, Republic of Korea.
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
25
|
Wang F, Xie M, Chen P, Wang D, Yang M. Homoharringtonine combined with cladribine and aclarubicin (HCA) in acute myeloid leukemia: A new regimen of conventional drugs and its mechanism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8212286. [PMID: 35873796 PMCID: PMC9300287 DOI: 10.1155/2022/8212286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 12/17/2022]
Abstract
Objective The prognosis of children with refractory acute myeloid leukemia (AML) is poor. Complete remission (CR) is not always achieved with current salvage chemotherapy regimens before transplantation, and some patients have no chance of transplantation. Here, we aimed to describe a new regimen of conventional chemotherapy drugs (homoharringtonine, cladribine , and aclarubicin (HCA)) for refractory AML and its mechanism in vitro. Methods We retrospectively collected the clinical data of 5 children with primary refractory AML using HCA as reinduction chemotherapy, and CR rates, adverse reactions, and disease-free survival (DFS) were analyzed. The effects of homoharringtonine, cladribine, and aclarubicin alone or in combination on the proliferation of HL60 and THP1 cells were analyzed by CCK-8 assay. Furthermore, CCK-8 was used to determine the effects of HCA, alone or in combination with apoptosis inhibitors, necroptosis inhibitors, ferroptosis inhibitors, or autophagy inhibitors, on the proliferation of HL60 and THP1 cells and to screen for possible HCA-mediated death pathways in AML cells. The pathway of HCA-mediated AML cell death was further verified by Hoechst/PI staining, flow cytometry, and Western blotting. Results After 2 cycles of conventional chemotherapy, none of the 5 children with AML achieved CR and were then treated with the HCA regimen for two cycles, 4 of 5 achieved CR, and another child achieved CR with incomplete hematological recovery (CRi). After CR, 3 children underwent hematopoietic stem cell transplantation (HSCT), and only 2 of them received consolidation therapy. As of the last follow-up, all 5 patients had been in DFS for a range of 23 to 28 months. The inhibition rate of homoharringtonine, cladribine, and aclarubicin in combination on HL60 and THP1 cells was significantly greater than that of a single drug or a combination of two drugs. We found that inhibitors of apoptosis and necroptosis were able to inhibit HCA-mediated cell death but not ferroptosis or autophagy inhibitors. Compared with the control group, the number of apoptotic cells in the HCA group was significantly increased and could be reduced by an apoptosis inhibitor. Western blot results showed that PARP, caspase-3, and caspase-8 proteins were activated and cleaved in the HCA group, the expression of Bax was upregulated and that of Bcl-2 was downregulated. The expression of apoptosis-related proteins could be reversed by apoptosis inhibition. Compared with the control group, the expression levels of the necroptosis-related proteins RIP1, RIP3, and MLKL were downregulated in the HCA group but were not phosphorylated. The necroptosis inhibitor increased the expression of RIP1 but caused no significant changes in RIP3 and MLKL, and none were phosphorylated. Conclusions HCA, as a new regimen of conventional drugs, was a safe and efficacious reinduction salvage strategy in children with refractory AML before HSCT. HCA exhibits the synergistic growth inhibition of AML cells and induces cell death mainly through apoptosis.
Collapse
Affiliation(s)
- Fenglin Wang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha 410013, Hunan, China
| | - Min Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Pan Chen
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Dan Wang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Minghua Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha 410013, Hunan, China
| |
Collapse
|
26
|
Zhang Y, Li N, Chang Z, Wang H, Pei H, Zhang D, Zhang Q, Huang J, Guo Y, Zhao Y, Pan Y, Chen C, Chen Y. The Metabolic Signature of AML Cells Treated With Homoharringtonine. Front Oncol 2022; 12:931527. [PMID: 35774129 PMCID: PMC9237253 DOI: 10.3389/fonc.2022.931527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy. The overall prognosis is poor and therapeutic strategies still need to be improved. Studies have found that abnormalities in metabolisms promote the survival of AML cells. In recent years, an increasing number of studies have reported the effectiveness of a protein synthesis inhibitor, homoharringtonine (HHT), for the treatment of AML. In this study, we demonstrated that HHT effectively inhibited AML cells, especially MV4-11, a cell line representing human AML carrying the poor prognostic marker FLT3-ITD. We analyzed the transcriptome of MV4-11 cells treated with HHT, and identified the affected metabolic pathways including the choline metabolism process. In addition, we generated a line of MV4-11 cells that were resistant to HHT. The transcriptome analysis showed that the resistant mechanism was closely related to the ether lipid metabolism pathway. The key genes involved in these processes were AL162417.1, PLA2G2D, and LPCAT2 by multiple intergroup comparison and Venn analysis. In conclusion, we found that the treatment of HHT significantly changed metabolic signatures of AML cells, which may contribute to the precise clinical use of HHT and the development of novel strategies to treat HHT-resistant AML.
Collapse
Affiliation(s)
- Yulong Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Na Li
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Zhiguang Chang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Huabin Wang
- Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Hanzhong Pei
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dengyang Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Qi Zhang
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Junbin Huang
- Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yao Guo
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yuming Zhao
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Yihang Pan
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Yun Chen, ; Chun Chen, ; Yihang Pan,
| | - Chun Chen
- Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Yun Chen, ; Chun Chen, ; Yihang Pan,
| | - Yun Chen
- Edmond H. Fischer Translational Medical Research Laboratory, Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- *Correspondence: Yun Chen, ; Chun Chen, ; Yihang Pan,
| |
Collapse
|
27
|
Zhang J, Gan Y, Li H, Yin J, He X, Lin L, Xu S, Fang Z, Kim BW, Gao L, Ding L, Zhang E, Ma X, Li J, Li L, Xu Y, Horne D, Xu R, Yu H, Gu Y, Huang W. Inhibition of the CDK2 and Cyclin A complex leads to autophagic degradation of CDK2 in cancer cells. Nat Commun 2022; 13:2835. [PMID: 35595767 PMCID: PMC9122913 DOI: 10.1038/s41467-022-30264-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/23/2022] [Indexed: 12/20/2022] Open
Abstract
Cyclin-dependent kinase 2 (CDK2) complex is significantly over-activated in many cancers. While it makes CDK2 an attractive target for cancer therapy, most inhibitors against CDK2 are ATP competitors that are either nonspecific or highly toxic, and typically fail clinical trials. One alternative approach is to develop non-ATP competitive inhibitors; they disrupt interactions between CDK2 and either its partners or substrates, resulting in specific inhibition of CDK2 activities. In this report, we identify two potential druggable pockets located in the protein-protein interaction interface (PPI) between CDK2 and Cyclin A. To target the potential druggable pockets, we perform a LIVS in silico screening of a library containing 1925 FDA approved drugs. Using this approach, homoharringtonine (HHT) shows high affinity to the PPI and strongly disrupts the interaction between CDK2 and cyclins. Further, we demonstrate that HHT induces autophagic degradation of the CDK2 protein via tripartite motif 21 (Trim21) in cancer cells, which is confirmed in a leukemia mouse model and in human primary leukemia cells. These results thus identify an autophagic degradation mechanism of CDK2 protein and provide a potential avenue towards treating CDK2-dependent cancers. CDK2 can drive the proliferation of cancer cells. Here, the authors screened for a non-ATP competitive inhibitor of the CDK2/cylinA complex and find that Homoharringtonine can disrupt the complex and promote the degradation of CDK2.
Collapse
Affiliation(s)
- Jiawei Zhang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.,Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yichao Gan
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Hongzhi Li
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Jie Yin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China
| | - Xin He
- Division of Hematopoietic Stem Cell & Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Liming Lin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.,Department of Hematology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - Senlin Xu
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA.,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Zhipeng Fang
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Byung-Wook Kim
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Lina Gao
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Lili Ding
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Eryun Zhang
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Xiaoxiao Ma
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Junfeng Li
- Department of Translational Research & Cellular Therapeutics, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Ling Li
- Division of Hematopoietic Stem Cell & Leukemia Research, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Yang Xu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.,Department of Hematology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - David Horne
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Rongzhen Xu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China.,Department of Hematology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Ying Gu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009, Hangzhou, China. .,Institute of Genetics, Zhejiang University and Department of Human Genetics, Zhejiang University School of Medicine, 310058, Hangzhou, Zhejiang, China. .,Zhejiang Provincial Key Lab of Genetic and Developmental Disorder, 310058, Hangzhou, Zhejiang, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, 311121, Hangzhou, Zhejiang, China.
| | - Wendong Huang
- Molecular and Cellular Biology of Cancer Program & Department of Diabetes Complications and Metabolism, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA. .,Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
28
|
Zhang X, Cong Y, Chu Z, Shi L, Zheng Y, Zhao Q, Geng S, Guo K. Aberrant epigenetic regulation of RARβ by TET2 is involved in cutaneous squamous cell carcinoma resistance to retinoic acid. Int J Biochem Cell Biol 2022; 145:106190. [PMID: 35248720 DOI: 10.1016/j.biocel.2022.106190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVES With the growing incidence of cutaneous squamous cell carcinoma (CSCC), the treatment-resistant invasive CSCC should be taken seriously. Retinoic acid receptor β (RARβ) functions as a tumor suppressor gene and is associated with the proliferation inhibition to retinoic acid. Demethylase TET2 directed epigenetic landscape contributes to cell malignant transform and is involved in therapeutic resistance in tumors. Whether aberrant TET2 participated in the deficient RARβ remains largely unknown. Hereby, we identified the aberrant-TET2 directed epigenetic landscape contribute to the deficient RARβ in CSCC. METHODS The immunohistochemistry was used to detect the expression of RARβ and TET2. The bisulfite sequencing PCR was used to detect the RARβ promoter methylation. Plasmid transfection was used to upregulate TET2 in CSCC cells. Stable overxpressed TET2 cells were used to detect the effect of TET2 on RARβ and drug sensitivity in the CCSC. RESULTS We observed RARβ decreased with promoter hypermethylation in CSCC and aberrant TET2 associated with deficient RARβ. We upregulated TET2 could reverse promoter hypermethylation and showed a significantly increased expression of RARβ, which enhanced the sensitivity of tumor cells to retinoic acid treatment. CONCLUSION Aberrant TET2 leaded to the hypermethylation of RARβ promoter, which contributed to the deficient RARβ in CSCC. While reversing the hypermethylation of the RARβ promoter by recovering the TET2 could enhance tumor cells to be sensitive to retinoic acid.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Dermatology, The Second Hospital Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yan Cong
- Department of Dermatology, The Second Hospital Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Zhaowei Chu
- Department of Dermatology, The Second Hospital Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Linjing Shi
- Department of Dermatology, The Second Hospital Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Yi Zheng
- Department of Dermatology, The Second Hospital Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Qiang Zhao
- Department of Dermatology, The Second Hospital Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China
| | - Songmei Geng
- Department of Dermatology, The Second Hospital Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China.
| | - Kun Guo
- Department of Dermatology, The Second Hospital Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
29
|
Zhao J, Li Z, Puri R, Liu K, Nunez I, Chen L, Zheng S. Molecular profiling of individual FDA-approved clinical drugs identifies modulators of nonsense-mediated mRNA decay. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:304-318. [PMID: 35024243 PMCID: PMC8718828 DOI: 10.1016/j.omtn.2021.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) degrades transcripts with premature stop codons. Given the prevalence of nonsense single nucleotide polymorphisms (SNPs) in the general population, it is urgent to catalog the effects of clinically approved drugs on NMD activity: any interference could alter the expression of nonsense SNPs, inadvertently inducing adverse effects. This risk is higher for patients with disease-causing nonsense mutations or an illness linked to dysregulated nonsense transcripts. On the other hand, hundreds of disorders are affected by cellular NMD efficiency and may benefit from NMD-modulatory drugs. Here, we profiled individual FDA-approved drugs for their impact on cellular NMD efficiency using a sensitive method that directly probes multiple endogenous NMD targets for a robust readout of NMD modulation. We found most FDA-approved drugs cause unremarkable effects on NMD, while many elicit clear transcriptional responses. Besides several potential mild NMD modulators, the anticancer drug homoharringtonine (HHT or omacetaxine mepesuccinate) consistently upregulates various endogenous NMD substrates in a dose-dependent manner in multiple cell types. We further showed translation inhibition mediates HHT's NMD effect. In summary, many FDA drugs induce transcriptional changes, and a few impact global NMD, and direct measurement of endogenous NMD substrate expression is robust to monitor cellular NMD.
Collapse
Affiliation(s)
- Jingrong Zhao
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 91709, USA
| | - Zhelin Li
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 91709, USA
| | - Ruchira Puri
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 91709, USA
| | - Kelvin Liu
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 91709, USA
| | - Israel Nunez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 91709, USA
| | - Liang Chen
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | - Sika Zheng
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 91709, USA
| |
Collapse
|
30
|
Ochi A, Yoritate M, Miyamoto T, Usui K, Yusakul G, Putalun W, Tanaka H, Hirai G, Morimoto S, Sakamoto S. Harringtonine Ester Derivatives with Enhanced Antiproliferative Activities against HL-60 and HeLa Cells. JOURNAL OF NATURAL PRODUCTS 2022; 85:345-351. [PMID: 35148094 DOI: 10.1021/acs.jnatprod.1c00888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Harringtonine (HT), produced from Cephalotaxus species, is known to exhibit potent antiproliferative activity against myeloid leukemia cells by inhibiting protein synthesis. A previous study using acute promyelocytic leukemia (HL-60) cells raised the possibility that the C-5' methyl group of HT plays an important role in regulating leukemia cell line antiproliferative activity. In order to investigate the effect of hydrocarbon chains at C-5' on the resultant activity, the C-5' methyl group was replaced with various straight- and branched-chain hydrocarbons using the corresponding alcohols, and their antiproliferative activity against HL-60 and HeLa cells was investigated. As a result, 4'-n-heptyl-4'-demethylharringtonine (1f, n-heptyl derivative) showed the most potent cytotoxicity among the HT ester derivatives produced, with IC50 values of 9.4 nM and 0.4 μM for HL-60 and HeLa cells, respectively. Interestingly, the cytotoxicity of derivative 1f against HL-60 and HeLa cells respectively was ∼5 (IC50 = 50.5 nM) and ∼10 times (IC50 = 4.0 μM) those of HT and ∼2 (IC50 = 21.8 nM) and ∼4 times (IC50 = 1.7 μM) more than homoharringtonine (HHT). These results demonstrate the potential of the derivative 1f as a lead compound against leukemia.
Collapse
Affiliation(s)
- Akihiro Ochi
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Makoto Yoritate
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomofumi Miyamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kazuteru Usui
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Gorawit Yusakul
- School of Pharmacy, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Hiroyuki Tanaka
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-dori, Sanyo-Onoda City, Yamaguchi 756-0884, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoshi Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Seiichi Sakamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
31
|
Effective therapy for AML with RUNX1 mutation by cotreatment with inhibitors of protein translation and BCL2. Blood 2022; 139:907-921. [PMID: 34601571 PMCID: PMC8832475 DOI: 10.1182/blood.2021013156] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/19/2021] [Indexed: 11/20/2022] Open
Abstract
The majority of RUNX1 mutations in acute myeloid leukemia (AML) are missense or deletion-truncation and behave as loss-of-function mutations. Following standard therapy, AML patients expressing mtRUNX1 exhibit inferior clinical outcome than those without mutant RUNX1. Studies presented here demonstrate that as compared with AML cells lacking mtRUNX1, their isogenic counterparts harboring mtRUNX1 display impaired ribosomal biogenesis and differentiation, as well as exhibit reduced levels of wild-type RUNX1, PU.1, and c-Myc. Compared with AML cells with only wild-type RUNX1, AML cells expressing mtRUNX1 were also more sensitive to the protein translation inhibitor homoharringtonine (omacetaxine) and BCL2 inhibitor venetoclax. Homoharringtonine treatment repressed enhancers and their BRD4 occupancy and was associated with reduced levels of c-Myc, c-Myb, MCL1, and Bcl-xL. Consistent with this, cotreatment with omacetaxine and venetoclax or BET inhibitor induced synergistic in vitro lethality in AML expressing mtRUNX1. Compared with each agent alone, cotreatment with omacetaxine and venetoclax or BET inhibitor also displayed improved in vivo anti-AML efficacy, associated with improved survival of immune-depleted mice engrafted with AML cells harboring mtRUNX1. These findings highlight superior efficacy of omacetaxine-based combination therapies for AML harboring mtRUNX1.
Collapse
|
32
|
Zhang Y, Li X, Weng X, Shen Y, Chen Y, Zheng Y, Zhao H, You J, Mao Y, Wang L, Wu M, Sheng Y, Wu J, Hu J, Chen Q, Li J. Optimization of idarubicin and cytarabine induction regimen with homoharringtonine for newly diagnosed acute myeloid leukemia patients based on the peripheral blast clearance rate: A single-arm, phase 2 trial (RJ-AML 2014). Am J Hematol 2022; 97:43-51. [PMID: 34687467 DOI: 10.1002/ajh.26386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
Individualized chemotherapy, which is at the forefront of acute myeloid leukemia (AML) treatment, has moderately improved outcomes over the past decade. Monitoring the peripheral blood blast burden during induction by flow cytometry has shown significant value in the evaluation of treatment responses. Our previous study reported the day 5 peripheral blast clearance rate (D5-PBCR) as an indicator of early treatment response, and D5-PBCR (+) patients showed poor outcomes. We performed the present phase 2 trial of early intervention in D5-PBCR (+) patients with homoharringtonine (HHT) introduced in the traditional induction regimen with anthracycline and cytarabine. The primary endpoint was complete remission (CR). This study enrolled 151 patients, 65 patients were D5-PBCR (+) and 55 patients completed induction with HHT addition. The overall CR rate after one course of induction was 84.4%, with 87.5% and 80.0% for the D5-PBCR (-) and D5-PBCR (+) groups, respectively. The incidence of grade 3/4 adverse events was comparable between the two groups. At the median follow-up of 53.1 months, median overall survival (OS) was not reached in the entire cohort, and median event-free survival (EFS) was 42.2 months. Neither the OS nor EFS showed significant differences between the D5-PBCR (-) and D5-PBCR (+) groups. Compared to historical data, significant improvements in both OS (p = .020) and EFS (p = .020) were observed in the D5-PBCR (+) group. In conclusion, optimization of induction chemotherapy with idarubicin and cytarabine according to D5-PBCR is feasible in patients with newly diagnosed AML. The addition of HHT demonstrated a good efficacy and safety profile.
Collapse
Affiliation(s)
- Yunxiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiangqin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yang Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yu Zheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Huijin Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jianhua You
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yuanfei Mao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Lining Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Min Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yan Sheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jing Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jiong Hu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Qiusheng Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
33
|
Tilaoui M, Ait Mouse H, Zyad A. Update and New Insights on Future Cancer Drug Candidates From Plant-Based Alkaloids. Front Pharmacol 2021; 12:719694. [PMID: 34975465 PMCID: PMC8716855 DOI: 10.3389/fphar.2021.719694] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/23/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is a complex multifactorial disease that results from alterations in many physiological and biochemical functions. Over the last few decades, it has become clear that cancer cells can acquire multidrug resistance to conventional anticancer drugs, resulting in tumor relapse. Thus, there is a continuous need to discover new and effective anticancer drugs. Natural products from plants have served as a primary source of cancer drugs and continue to provide new plant-derived anticancer drugs. The present review describes plant-based alkaloids, which have been reported as active or potentially active in cancer treatment within the past 4 years (2017-2020), both in preclinical research and/or in clinical trials. In addition, recent insights into the possible molecular mechanism of action of alkaloid prodrugs naturally present in plants are also highlighted.
Collapse
Affiliation(s)
- Mounir Tilaoui
- Experimental Oncology and Natural Substances Team, Cellular and Molecular Immuno-pharmacology, Faculty of Sciences and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | | | | |
Collapse
|
34
|
TMEM16A, a Homoharringtonine Receptor, as a Potential Endogenic Target for Lung Cancer Treatment. Int J Mol Sci 2021; 22:ijms222010930. [PMID: 34681590 PMCID: PMC8535866 DOI: 10.3390/ijms222010930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/25/2022] Open
Abstract
Lung cancer has the highest rate of incidence and mortality among all cancers. Most chemotherapeutic drugs used to treat lung cancer cause serious side effects and are susceptible to drug resistance. Therefore, exploring novel therapeutic targets for lung cancer is important. In this study, we evaluated the potential of TMEM16A as a drug target for lung cancer. Homoharringtonine (HHT) was identified as a novel natural product inhibitor of TMEM16A. Patch-clamp experiments showed that HHT inhibited TMEM16A activity in a concentration-dependent manner. HHT significantly inhibited the proliferation and migration of lung cancer cells with high TMEM16A expression but did not affect the growth of normal lung cells in the absence of TMEM16A expression. In vivo experiments showed that HHT inhibited the growth of lung tumors in mice and did not reduce their body weight. Finally, the molecular mechanism through which HHT inhibits lung cancer was explored by western blotting. The findings showed that HHT has the potential to regulate TMEM16A activity both in vitro and in vivo and could be a new lead compound for the development of anti-lung-cancer drugs.
Collapse
|
35
|
Cancer chemopreventive role of fisetin: Regulation of cell signaling pathways in different cancers. Pharmacol Res 2021; 172:105784. [PMID: 34302980 DOI: 10.1016/j.phrs.2021.105784] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
It is becoming progressively more understandable that pharmaceutical targeting of drug-resistant cancers is challenging because of intra- and inter-tumor heterogeneity. Interestingly, naturally derived bioactive compounds have unique ability to modulate wide-ranging deregulated oncogenic cell signaling pathways. In this review, we have focused on the available evidence related to regulation of PI3K/AKT/mTOR, Wnt/β-catenin, NF-κB and TRAIL/TRAIL-R by fisetin in different cancers. Fisetin has also been shown to inhibit the metastatic spread of cancer cells in tumor-bearing mice. We have also summarized how fisetin regulated autophagy in different cancers. In addition, this review also covers fisetin-mediated regulation of VEGF/VEGFR, EGFR, necroptosis and Hippo pathway. Fisetin has entered into clinical trials particularly in context of COVID19-associated inflammations. Furthermore, fisetin mediated effects are also being tested in clinical trials with reference to osteoarthritis and senescence. These developments will surely pave the way for full-fledge and well-designed clinical trials of fisetin in different cancers. However, we still have to comprehensively analyze and fully unlock pharmacological potential of fisetin against different oncogenic signaling cascades and non-coding RNAs. Fisetin has remarkable potential as chemopreventive agent and future studies must converge on the identification of additional regulatory roles of fisetin for inhibition and prevention of cancers.
Collapse
|
36
|
Wang F, Huang J, Guo T, Zheng Y, Zhang L, Zhang D, Wang F, Naren D, Cui Y, Liu X, Qu Y, Luo H, Yang Y, Wei H, Guo Y. Homoharringtonine synergizes with quizartinib in FLT3-ITD acute myeloid leukemia by targeting FLT3-AKT-c-Myc pathway. Biochem Pharmacol 2021; 188:114538. [PMID: 33831397 DOI: 10.1016/j.bcp.2021.114538] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/14/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023]
Abstract
Acute myeloid leukemia (AML) with FLT3 internal tandem duplication (FLT3-ITD) has a dismal prognosis. FLT3 inhibitors have been developed to treat patients with FLT3-ITD AML; however, when used alone, their efficacy is insufficient. FLT3 inhibitors combined with chemotherapy may be a promising treatment for FLT3-ITD AML. Homoharringtonine (HHT) is a classical anti-leukaemia drug with high sensitivity to FLT3-ITD AML cells. Here, we showed that HHT synergizes with a selective next-generation FLT3 inhibitor, quizartinib, to inhibit cell growth/viability and induce cell-cycle arrest and apoptosis in FLT3-ITD AML cells in vitro, significantly inhibit acute myeloid leukemia progression in vivo, and substantially prolong survival of mice-bearing human FLT3-ITD AML. Mechanistically, HHT and quizartinib cooperatively inhibit FLT3-AKT and its downstream targets GSK3β, c-Myc, and cyclin D1, cooperatively up-regulate the pro-apoptosis proteins Bim and Bax, and down-regulate the anti-apoptosis protein Mcl1. Most strikingly, HHT and quizartinib cooperatively reduce the numbers of side-population (SP) and aldehyde dehydrogenase (ALDH)-positive cells, which reportedly are rich in LSCs. In conclusion, HHT combined with quizartinib may be a promising treatment strategy for patients with FLT3-ITD AML.
Collapse
Affiliation(s)
- Fangfang Wang
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Jingcao Huang
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Tingting Guo
- Precision Medicine Research Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Yuhuan Zheng
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Li Zhang
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Dan Zhang
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Fujue Wang
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Duolan Naren
- Department of Hematology, The Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yushan Cui
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoyan Liu
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Ying Qu
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Hongmei Luo
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Yan Yang
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Haichen Wei
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China
| | - Yong Guo
- Hematology Research Laboratory, Department of Hematology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
37
|
Tang JF, Li GL, Zhang T, Du YM, Huang SY, Ran JH, Li J, Chen DL. Homoharringtonine inhibits melanoma cells proliferation in vitro and vivo by inducing DNA damage, apoptosis, and G2/M cell cycle arrest. Arch Biochem Biophys 2021; 700:108774. [PMID: 33548212 DOI: 10.1016/j.abb.2021.108774] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 01/03/2023]
Abstract
Homoharringtonine (HHT), an approved anti-leukemic alkaloid, has been reported effectively in many types of tumor cells. However, its effect on melanoma cells has not been investigated. And the anti-melanoma mechanism of HHT is still unknown. In this study, we detected the effects of HHT on two melanoma cell lines (A375 and B16F10) and on the A375 xenograft mouse model. HHT significantly inhibited the proliferation of melanoma cells as investigated by the CCK8 method, cell cloning assay, and EdU experiment. HHT induced A375 and B16F10 cells DNA damage, apoptosis, and G2/M cell cycle arrest as proved by TdT-mediated dUTP Nick-End Labeling (TUNEL) and flow cytometry assay. Additionally, the loss of mitochondrial membrane potential in HHT-treated cells were visualized by JC-1 fluorescent staining. For the molecule mechanism study, western blotting results indicated the protein expression levels of ATM, P53, p-P53, p-CHK2, γ-H2AX, PARP, cleaved-PARP, cleaved caspase-3, cleaved caspase-9, Bcl-2, Bax, Aurka, p-Aurka, Plk1, p-Plk1, Cdc25c, CDK1, cyclin B1, and Myt1 were regulated by HHT. And the relative mRNA expression level of Aurka, Plk1, Cdc25c, CDK1, cyclin B1, and Myt1 were ascertained by q-PCR assay. The results in vivo experiment showed that HHT can slow down the growth rate of tumors. At the same time, the protein expression levels in vivo were consistent with that in vitro. Collectively, our study provided evidence that HHT could be considered an effective anti-melanoma agent by inducing DNA damage, apoptosis, and cell cycle arrest.
Collapse
Affiliation(s)
- Jia-Feng Tang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China; Chongqing Three Gorges Medical College, Chongqing, Wanzhou, PR China
| | - Guo-Li Li
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China; Chongqing Three Gorges Medical College, Chongqing, Wanzhou, PR China
| | - Tao Zhang
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China; Chongqing Three Gorges Medical College, Chongqing, Wanzhou, PR China
| | - Yu-Mei Du
- College of Public Health and Management, Chongqing Medical University, Chongqing, PR China
| | - Shi-Ying Huang
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China
| | - Jian-Hua Ran
- Neuroscience Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, PR China
| | - Jing Li
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China.
| | - Di-Long Chen
- Lab of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing, PR China; Chongqing Three Gorges Medical College, Chongqing, Wanzhou, PR China.
| |
Collapse
|
38
|
Jeyabalan S, Muralidharan A, Scott JJX, Joseph L. Effect of homoharringtonine as a combined regimen for acute myeloid leukemia. J Pharmacol Pharmacother 2021. [DOI: 10.4103/jpp.jpp_52_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
39
|
Wei W, Liu Q, Song F, Cao H, Liu M, Jiang Y, Li Y, Gao S. Alkaloid-based regimen is beneficial for acute myeloid leukemia resembling acute promyelocytic leukemia with NUP98/RARG fusion and RUNX1 mutation: A case report. Medicine (Baltimore) 2020; 99:e22488. [PMID: 33019444 PMCID: PMC7535657 DOI: 10.1097/md.0000000000022488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/19/2020] [Accepted: 09/01/2020] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Some acute myeloid leukemia (AML) patients present with features mimicking the classical hypergranular subtype of acute promyelocytic leukemia (APL) but without the typical promyelocytic leukemia/retinoic acid receptor α (PML/RARα) rearrangement. Herein, we report an AML patient resembling APL but with nucleoporin 98/retinoid acid receptor gamma gene (NUP98/RARG) fusion transcript and Runt-related transcription factor 1 (RUNX1) mutation. PATIENT CONCERNS An 18-year-old male presented at the hospital with a diagnosis of AML. DIAGNOSES The patient was diagnosed with bone marrow examination. Bone marrow smear displayed 90.5% promyelocytes. Fluorescence in situ hybridization analysis failed to detect the PML/RARα fusion transcript or RARα amplification. While real-time polymerase chain reaction showed positivity for the NUP98/RARG fusion transcript. G-banding karyotype analysis showed a normal karyotype. INTERVENTIONS The patient showed resistance to arsenic trioxide and standard 3 + 7 chemotherapy, but eventually achieved complete remission through the Homoharringtonine, Cytarabine, and Aclarubicin chemotherapy. OUTCOMES These measures resulted in a rapid response and disease control. LESSONS Acute myeloid leukemia with the NUP98/RARG fusion gene and the RUNX1 mutation may be a special subtype of AML and may benefit from the alkaloid-based regimen.
Collapse
MESH Headings
- Adolescent
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Core Binding Factor Alpha 2 Subunit/genetics
- Diagnosis, Differential
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Promyelocytic, Acute/diagnosis
- Male
- Nuclear Pore Complex Proteins/genetics
- Receptors, Retinoic Acid/genetics
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- Wei Wei
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun
| | - Qiuju Liu
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun
| | - Fei Song
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun
| | - He Cao
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun
| | - Mengmeng Liu
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun
| | - Yan Jiang
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun
| | - Yanchun Li
- Peking High Trust Diagnostics, Co., Ltd., Peking, China
| | - Sujun Gao
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun
| |
Collapse
|
40
|
Zhu M, Gong Z, Wu Q, Su Q, Yang T, Yu R, Xu R, Zhang Y. Homoharringtonine suppresses tumor proliferation and migration by regulating EphB4-mediated β-catenin loss in hepatocellular carcinoma. Cell Death Dis 2020; 11:632. [PMID: 32801343 PMCID: PMC7429962 DOI: 10.1038/s41419-020-02902-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 08/06/2020] [Indexed: 11/08/2022]
Abstract
Overexpressed EphB4 conduce to tumor development and is regarded as a potential anticancer target. Homoharringtonine (HHT) has been approved for hematologic malignancies treatment, but its effect on hepatocellular carcinoma (HCC) has not been studied. This study elucidated HHT could restrain the proliferation and migration of HCC via an EphB4/β-catenin-dependent manner. We found that the antiproliferative activity of HHT in HCC cells and tumor xenograft was closely related to EphB4 expression. In HepG2, Hep3B and SMMC-7721 cells, EphB4 overexpression or EphrinB2 Fc stimulation augmented HHT-induced inhibitory effect on cell growth and migration ability, and such effect was abrogated when EphB4 was knocked down. The similar growth inhibitory effect of HHT was observed in SMMC-7721 and EphB4+/SMMC-7721 cells xenograft in vivo. Preliminary mechanistic investigation indicated that HHT directly bound to EphB4 and suppressed its expression. Data obtained from HCC patients revealed increased β-catenin expression and a positive correlation between EphB4 expression and β-catenin levels. HHT-induced EphB4 suppression promoted the phosphorylation and loss of β-catenin, which triggered regulation of β-catenin downstream signaling related to migration, resulting in the reversion of EMT in TGF-β-induced HepG2 cells. Collectively, this study provided a groundwork for HHT as an effective antitumor agent for HCC in an EphB4/β-catenin-dependent manner.
Collapse
Affiliation(s)
- Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, 710061, Xi'an, Shaanxi, P.R. China
| | - Zhengyan Gong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, 710061, Xi'an, Shaanxi, P.R. China
| | - Qing Wu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, 710061, Xi'an, Shaanxi, P.R. China
| | - Qi Su
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, 710061, Xi'an, Shaanxi, P.R. China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, 710061, Xi'an, Shaanxi, P.R. China
| | - Runze Yu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, 710061, Xi'an, Shaanxi, P.R. China
| | - Rui Xu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, 710061, Xi'an, Shaanxi, P.R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta Weststreet, #54, 710061, Xi'an, Shaanxi, P.R. China.
| |
Collapse
|
41
|
Blecua P, Martinez‐Verbo L, Esteller M. The DNA methylation landscape of hematological malignancies: an update. Mol Oncol 2020; 14:1616-1639. [PMID: 32526054 PMCID: PMC7400809 DOI: 10.1002/1878-0261.12744] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
The rapid advances in high-throughput sequencing technologies have made it more evident that epigenetic modifications orchestrate a plethora of complex biological processes. During the last decade, we have gained significant knowledge about a wide range of epigenetic changes that crucially contribute to some of the most aggressive forms of leukemia, lymphoma, and myelodysplastic syndromes. DNA methylation is a key epigenetic player in the abnormal initiation, development, and progression of these malignancies, often acting in synergy with other epigenetic alterations. It also contributes to the acquisition of drug resistance. In this review, we summarize the role of DNA methylation in hematological malignancies described in the current literature. We discuss in detail the dual role of DNA methylation in normal and aberrant hematopoiesis, as well as the involvement of this type of epigenetic change in other aspects of the disease. Finally, we present a comprehensive overview of the main clinical implications, including a discussion of the therapeutic strategies that regulate or reverse aberrant DNA methylation patterns in hematological malignancies, including their combination with (chemo)immunotherapy.
Collapse
Affiliation(s)
- Pedro Blecua
- Cancer Epigenetics GroupJosep Carreras Leukaemia Research Institute (IJC)BarcelonaSpain
| | - Laura Martinez‐Verbo
- Cancer Epigenetics GroupJosep Carreras Leukaemia Research Institute (IJC)BarcelonaSpain
| | - Manel Esteller
- Cancer Epigenetics GroupJosep Carreras Leukaemia Research Institute (IJC)BarcelonaSpain
- Centro de Investigación Biomedica en Red Cancer (CIBERONC)MadridSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
- Physiological Sciences DepartmentSchool of Medicine and Health SciencesUniversity of BarcelonaSpain
| |
Collapse
|
42
|
Epigenetic regulation of protein translation in KMT2A-rearranged AML. Exp Hematol 2020; 85:57-69. [PMID: 32437908 DOI: 10.1016/j.exphem.2020.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 01/31/2023]
Abstract
Inhibition of the H3K79 histone methyltransferase DOT1L has exhibited encouraging preclinical and early clinical activity in KMT2A (MLL)-rearranged leukemia, supporting the development of combinatorial therapies. Here, we investigated two novel combinations: dual inhibition of the histone methyltransferases DOT1L and EZH2, and the combination with a protein synthesis inhibitor. EZH2 is the catalytic subunit in the polycomb repressive complex 2 (PRC2), and inhibition of EZH2 has been reported to have preclinical activity in KMT2A-r leukemia. When combined with DOT1L inhibition, however, we observed both synergistic and antagonistic effects. Interestingly, antagonistic effects were not due to PRC2-mediated de-repression of HOXA9. HOXA cluster genes are key canonical targets of both KMT2A and the PRC2 complex. The independence of the HOXA cluster from PRC2 repression in KMT2A-r leukemia thus affords important insights into leukemia biology. Further studies revealed that EZH2 inhibition counteracted the effect of DOT1L inhibition on ribosomal gene expression. We thus identified a previously unrecognized role of DOT1L in regulating protein production. Decreased translation was one of the earliest effects measurable after DOT1L inhibition and specific to KMT2A-rearranged cell lines. H3K79me2 chromatin immunoprecipitation sequencing patterns over ribosomal genes were similar to those of the canonical KMT2A-fusion target genes in primary AML patient samples. The effects of DOT1L inhibition on ribosomal gene expression prompted us to evaluate the combination of EPZ5676 with a protein translation inhibitor. EPZ5676 was synergistic with the protein translation inhibitor homoharringtonine (omacetaxine), supporting further preclinical/clinical development of this combination. In summary, we discovered a novel epigenetic regulation of a metabolic process-protein synthesis-that plays a role in leukemogenesis and affords a combinatorial therapeutic opportunity.
Collapse
|
43
|
Zhang J, Li J, Zhu Y, Miao Z, Tian Y. Forced running exercise mitigates radiation-induced cognitive deficits via regulated DNA hydroxymethylation. Epigenomics 2020; 12:385-396. [PMID: 32041423 DOI: 10.2217/epi-2019-0370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Roles of forced running exercise (FE) in remediation of neurogenesis inhibition and radiation-induced cognitive dysfunction were investigated in a whole-brain irradiation mice model via the regulation of DNA 5-hydroxymethylation modification (5 hmC) and its catalytic enzymes ten-eleven translocation (Tet) proteins. Materials & methods: Hippocampal neurogenesis and cognitive function, DNA 5 hmC level and Tet expression were determined in mice. Results: The expression of DNA 5 hmC and Tet2, brain-derived neurotrophic factor significantly decreased in hippocampus postradiation. FE mitigated radiation-induced neurogenesis deficits and cognitive dysfunction. Furthermore, FE increased 5 hmC and brain-derived neurotrophic factor expression. SC1, a Tet inhibitor, reversed partly such changes. Conclusion: Tet-mediated 5 hmC modification represents a kind of diagnostic biomarkers of radiation-induced cognitive dysfunction. Targeting Tet-related epigenetic modification may be a novel therapeutic strategy for radiation-induced brain injury.
Collapse
Affiliation(s)
- Junjun Zhang
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou City, 215000, PR China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou City, 215000, PR China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou City, 215000, PR China
| | - Junyan Li
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou City, 215000, PR China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou City, 215000, PR China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou City, 215000, PR China
| | - Yiwen Zhu
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou City, 215000, PR China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou City, 215000, PR China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou City, 215000, PR China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou City, 215000, PR China
| | - Ye Tian
- Department of Radiotherapy & Oncology, The Second Affiliated Hospital of Soochow University, Suzhou City, 215000, PR China.,Institute of Radiotherapy & Oncology, Soochow University, Suzhou City, 215000, PR China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou City, 215000, PR China
| |
Collapse
|
44
|
Wang XJ, Chen JY, Fu LQ, Yan MJ. Recent advances in natural therapeutic approaches for the treatment of cancer. J Chemother 2020; 32:53-65. [PMID: 31928332 DOI: 10.1080/1120009x.2019.1707417] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xue-Jun Wang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an Branch), Zhejiang Province, Hangzhou, China
| | - Jin-Yang Chen
- Research and Development Department, Zhejiang Healthfuture Institute for Cell-Based Applied Technology, Zhejiang Province, Hangzhou, China
| | - Luo-Qin Fu
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People's Hospital Chun’an Branch), Zhejiang Province, Hangzhou, China
| | - Mei-Juan Yan
- Department of Anesthesiology, Zhejiang Provincial People’s Hospital (People’s Hospital of Hangzhou Medical College), Zhejiang Province, Hangzhou, China
| |
Collapse
|
45
|
Bohlander SK. A new kid on the block for acute myeloid leukemia treatment? Homoharringtonine interferes with key pathways in acute myeloid leukemia cells. Haematologica 2020; 105:7-9. [PMID: 31894095 PMCID: PMC6939538 DOI: 10.3324/haematol.2019.234880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Stefan K Bohlander
- Marijana Kumerich Chair in Leukaemia and Lymphoma Research, Leukaemia and Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|