1
|
Oknińska M, Paterek A, Grzanka M, Zajda K, Surzykiewicz M, Rolski F, Zambrowska Z, Torbicki A, Kurzyna M, Kieda C, Piekiełko-Witkowska A, Mączewski M. Myo-inositol trispyrophosphate prevents right ventricular failure and improves survival in monocrotaline-induced pulmonary hypertension in the rat. Br J Pharmacol 2024; 181:4050-4066. [PMID: 38952183 DOI: 10.1111/bph.16482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/17/2024] [Accepted: 05/19/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary hypertension (PH) results from pulmonary vasculopathy, initially leading to a compensatory right ventricular (RV) hypertrophy, and eventually to RV failure. Hypoxia can trigger both pulmonary vasculopathy and RV failure. Therefore, we tested if myo-inositol trispyrophosphate (ITPP), which facilitates oxygen dissociation from haemoglobin, can relieve pulmonary vasculopathy and RV hypoxia, and eventually prevent RV failure and mortality in the rat model of monocrotaline-induced PH. EXPERIMENTAL APPROACH Rats were injected with monocrotaline (PH) or saline (control) and received ITPP or placebo for 5 weeks. Serial echocardiograms were obtained to monitor the disease, pressure-volume loops were recorded and evaluated, myocardial pO2 was measured using a fluorescent probe, and histological and molecular analyses were conducted at the conclusion of the experiment. KEY RESULTS AND CONCLUSIONS ITPP reduced PH-related mortality. It had no effect on progressive increase in pulmonary vascular resistance, yet significantly relieved intramyocardial RV hypoxia, which was associated with improvement of RV function and reduction of RV wall stress. ITPP also tended to prevent increased hypoxia inducible factor-1α expression in RV cardiac myocytes but did not affect RV capillary density. IMPLICATIONS Our study suggests that strategies aimed at increasing oxygen delivery to hypoxic RV in PH could potentially be used as adjuncts to other therapies that target pulmonary vessels, thus increasing the ability of the RV to withstand increased afterload and reducing mortality. ITPP may be one such potential therapy.
Collapse
Affiliation(s)
- Marta Oknińska
- Department of Clinical Physiology, Centre of Translational Research, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Aleksandra Paterek
- Department of Clinical Physiology, Centre of Translational Research, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Translational Research, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Karolina Zajda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warsaw, Poland
| | - Mateusz Surzykiewicz
- Department of Clinical Physiology, Centre of Translational Research, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Filip Rolski
- Department of Clinical Physiology, Centre of Translational Research, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Zuzanna Zambrowska
- Department of Clinical Physiology, Centre of Translational Research, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Adam Torbicki
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Marcin Kurzyna
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Claudine Kieda
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warsaw, Poland
- Centre for Molecular Biophysics, UPR, CNRS 4301, Orléans, France
| | - Agnieszka Piekiełko-Witkowska
- Department of Biochemistry and Molecular Biology, Centre of Translational Research, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Translational Research, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
2
|
Tran LNT, González-Fernández C, Gomez-Pastora J. Impact of Different Red Blood Cell Storage Solutions and Conditions on Cell Function and Viability: A Systematic Review. Biomolecules 2024; 14:813. [PMID: 39062526 PMCID: PMC11274915 DOI: 10.3390/biom14070813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Red blood cell (RBC) storage solutions have evolved significantly over the past decades to optimize the preservation of cell viability and functionality during hypothermic storage. This comprehensive review provides an in-depth analysis of the effects of various storage solutions and conditions on critical RBC parameters during refrigerated preservation. A wide range of solutions, from basic formulations such as phosphate-buffered saline (PBS), to advanced additive solutions (ASs), like AS-7 and phosphate, adenine, glucose, guanosine, saline, and mannitol (PAGGSM), are systematically compared in terms of their ability to maintain key indicators of RBC integrity, including adenosine triphosphate (ATP) levels, morphology, and hemolysis. Optimal RBC storage requires a delicate balance of pH buffering, metabolic support, oxidative damage prevention, and osmotic regulation. While the latest alkaline solutions enable up to 8 weeks of storage, some degree of metabolic and morphological deterioration remains inevitable. The impacts of critical storage conditions, such as the holding temperature, oxygenation, anticoagulants, irradiation, and processing methods, on the accumulation of storage lesions are also thoroughly investigated. Personalized RBC storage solutions, tailored to individual donor characteristics, represent a promising avenue for minimizing storage lesions and enhancing transfusion outcomes. Further research integrating omics profiling with customized preservation media is necessary to maximize post-transfusion RBC survival and functions. The continued optimization of RBC storage practices will not only enhance transfusion efficacy but also enable blood banking to better meet evolving clinical needs.
Collapse
Affiliation(s)
- Linh Nguyen T. Tran
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (C.G.-F.)
| | - Cristina González-Fernández
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (C.G.-F.)
- Chemical and Biomolecular Engineering Department, Universidad de Cantabria, Avda. Los Castros, s/n, 39005 Santander, Spain
| | - Jenifer Gomez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (C.G.-F.)
| |
Collapse
|
3
|
Anastasiadi AT, Arvaniti VZ, Hudson KE, Kriebardis AG, Stathopoulos C, D’Alessandro A, Spitalnik SL, Tzounakas VL. Exploring unconventional attributes of red blood cells and their potential applications in biomedicine. Protein Cell 2024; 15:315-330. [PMID: 38270470 PMCID: PMC11074998 DOI: 10.1093/procel/pwae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Affiliation(s)
- Alkmini T Anastasiadi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Vasiliki-Zoi Arvaniti
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece
| | | | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, 13001 Aurora, CO, USA
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Vassilis L Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| |
Collapse
|
4
|
Alves-Rosa MF, Tayler NM, Dorta D, Coronado LM, Spadafora C. P. falciparum Invasion and Erythrocyte Aging. Cells 2024; 13:334. [PMID: 38391947 PMCID: PMC10887143 DOI: 10.3390/cells13040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Plasmodium parasites need to find red blood cells (RBCs) that, on the one hand, expose receptors for the pathogen ligands and, on the other hand, maintain the right geometry to facilitate merozoite attachment and entry into the red blood cell. Both characteristics change with the maturation of erythrocytes. Some Plasmodia prefer younger vs. older erythrocytes. How does the life evolution of the RBC affect the invasion of the parasite? What happens when the RBC ages? In this review, we present what is known up until now.
Collapse
Affiliation(s)
| | | | | | | | - Carmenza Spadafora
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicio de Alta Tecnología (INDICASAT AIP), City of Knowledge, Panama City 0843-01103, Panama; (M.F.A.-R.); (N.M.T.); (D.D.); (L.M.C.)
| |
Collapse
|
5
|
Gibson JS, Stewart GW. A critical role for altered red cell cation permeability in pathogenesis of sickle cell disease and other haemolytic anaemias. Br J Haematol 2023; 202:462-464. [PMID: 37096935 DOI: 10.1111/bjh.18832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/26/2023]
Abstract
The aetiology of sickle cell disease is well known, but pathogenesis is complicated and details remain uncertain. A thorough understanding may suggest novel ways for designing more effective therapies. One area of importance, covered here in Nader et al., is the altered cation permeability of sickle cells and how the co-ordinated operation of a number of membrane transport proteins contributes to disease progression, all driven by the initial event of HbS polymerisation. There are echoes here of the cation leaks of hereditary stomatocytosis. Nader et al. propose a central role for PIEZO1, a novel mechanosensitive channel found in red cells, which may be aberrantly activated in sickle cells following HbS polymerisation and which may have potential as a novel target for future chemotherapies. Commentary on: Nader et al. Piezo1 activation augments sickling propensity and the adhesive properties of sickle red blood cells in a calcium-dependent manner. Br J Haematol 2023;202:657-668.
Collapse
Affiliation(s)
- John S Gibson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Gordon W Stewart
- Division of Medicine, Faculty of Medical Sciences, University College London, London, UK
| |
Collapse
|
6
|
Giosheva I, Strijkova V, Komsa-Penkova R, Krumova S, Langari A, Danailova A, Taneva SG, Stoyanova T, Topalova L, Gartchev E, Georgieva G, Todinova S. Membrane Lesions and Reduced Life Span of Red Blood Cells in Preeclampsia as Evidenced by Atomic Force Microscopy. Int J Mol Sci 2023; 24:ijms24087100. [PMID: 37108270 PMCID: PMC10138579 DOI: 10.3390/ijms24087100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Preeclampsia (PE) presents with maternal de novo hypertension and significant proteinuria and is one of the leading causes of maternal and perinatal morbidity and mortality with unknown etiology. The disease is associated with inflammatory vascular response and severe red blood cell (RBC) morphology changes. This study examined the nanoscopic morphological changes of RBCs from PE women versus normotensive healthy pregnant controls (PCs) and non-pregnant controls (NPCs) applying atomic force microscopy (AFM) imaging. The results revealed that the membrane of fresh PE RBCs differed significantly from healthy ones by the presence of invaginations and protrusions and an increased roughness value (Rrms) (4.7 ± 0.8 nm for PE vs. 3.8 ± 0.5 nm and 2.9 ± 0.4 nm for PCs and NPCs, respectively). PE-cells aging resulted in more pronounced protrusions and concavities, with exponentially increasing Rrms values, in contrast to the controls, where the Rrms parameter decreased linearly with time. The Rrms, evaluated on a 2 × 2 µm2 scanned area, for senescent PE cells (13 ± 2.0 nm) was significantly higher (p < 0.01) than that of PCs (1.5 ± 0.2 nm) and NPCs (1.9 ± 0.2 nm). Furthermore, the RBCs from PE patients appeared fragile, and often only ghosts were observed instead of intact cells at 20-30 days of aging. Oxidative-stress simulation on healthy cells led to RBC membrane features similar to those observed for PE cells. The results demonstrate that the most pronounced effects on RBCs in PE patients are related to impaired membrane homogeneity and strongly altered roughness values, as well as to vesiculation and ghost formation in the course of cell aging.
Collapse
Affiliation(s)
- Ina Giosheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- University Obstetrics and Gynecology Hospital "Maichin Dom", 1431 Sofia, Bulgaria
| | - Velichka Strijkova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Institute of Optical Materials and Technologies "Acad. Yordan Malinovski", Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | | | - Sashka Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Ariana Langari
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Avgustina Danailova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Stefka G Taneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Tanya Stoyanova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Lora Topalova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Emil Gartchev
- University Obstetrics and Gynecology Hospital "Maichin Dom", 1431 Sofia, Bulgaria
| | - Galya Georgieva
- Department of Biochemistry, Medical University-Pleven, 5800 Pleven, Bulgaria
| | - Svetla Todinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
7
|
Hsu K, Lee TY, Lin JY, Chen PL. A Balance between Transmembrane-Mediated ER/Golgi Retention and Forward Trafficking Signals in Glycophorin-Anion Exchanger-1 Interaction. Cells 2022; 11:3512. [PMID: 36359907 PMCID: PMC9653601 DOI: 10.3390/cells11213512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 12/04/2023] Open
Abstract
Anion exchanger-1 (AE1) is the main erythroid Cl-/HCO3- transporter that supports CO2 transport. Glycophorin A (GPA), a component of the AE1 complexes, facilitates AE1 expression and anion transport, but Glycophorin B (GPB) does not. Here, we dissected the structural components of GPA/GPB involved in glycophorin-AE1 trafficking by comparing them with three GPB variants-GPBhead (lacking the transmembrane domain [TMD]), GPBtail (mainly the TMD), and GP.Mur (glycophorin B-A-B hybrid). GPB-derived GP.Mur bears an O-glycopeptide that encompasses the R18 epitope, which is present in GPA but not GPB. By flow cytometry, AE1 expression in the control erythrocytes increased with the GPA-R18 expression; GYP.Mur+/+ erythrocytes bearing both GP.Mur and GPA expressed more R18 epitopes and more AE1 proteins. In contrast, heterologously expressed GPBtail and GPB were predominantly localized in the Golgi apparatus of HEK-293 cells, whereas GBhead was diffuse throughout the cytosol, suggesting that glycophorin transmembrane encoded an ER/Golgi retention signal. AE1 coexpression could reduce the ER/Golgi retention of GPB, but not of GPBtail or GPBhead. Thus, there are forward-trafficking and transmembrane-driven ER/Golgi retention signals encoded in the glycophorin sequences. How the balance between these opposite trafficking signals could affect glycophorin sorting into AE1 complexes and influence erythroid anion transport remains to be explored.
Collapse
Affiliation(s)
- Kate Hsu
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City 251020, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, New Taipei City 25245, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 25245, Taiwan
- Department of Exercise & Health Sciences, University of Taipei, Taipei 100234, Taiwan
| | - Ting-Ying Lee
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City 251020, Taiwan
| | - Jian-Yi Lin
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City 251020, Taiwan
| | - Pin-Lung Chen
- The Laboratory of Immunogenetics, Department of Medical Research, MacKay Memorial Hospital, Tamsui, New Taipei City 251020, Taiwan
| |
Collapse
|