1
|
Abdullah O, Fall A, Forman M, Howard C, Klein E, Mostafa HH. Respiratory Adenovirus Quantification with a Droplet Digital Polymerase Chain Reaction (ddPCR) Assay. Microbiol Spectr 2023; 11:e0026923. [PMID: 37070988 PMCID: PMC10269445 DOI: 10.1128/spectrum.00269-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/31/2023] [Indexed: 04/19/2023] Open
Abstract
Human adenoviruses (HAdVs) are double-stranded DNA viruses that can cause a wide spectrum of disease, including respiratory infections. Little is known about the value of respiratory HAdV quantification and its correlation with disease severity. In this study, we developed a quantitative HAdV droplet digital PCR (ddPCR) assay to study the association between viral loads, circulating types, and clinical outcomes. Remnant respiratory specimens positive for HAdV after the standard of care testing were collected from December 2020 to April 2022. A total of 129 samples were tested by a ddPCR method. Typing was performed using Nanopore sequencing of the hexon gene hypervariable region. Clinical chart reviews were performed to correlate the viral loads with the disease severity. The ddPCR assay showed an analytical sensitivity and a lower limit of quantification below 100 copies/mL. Of 129 positive clinical samples, 100 were quantified by ddPCR, 7 were too concentrated to be quantified, and 22 were negative. Of the 22 false negatives, only 3 were successfully typed; however, 99 of the 107 positive samples had a characterized genotype. The main HAdV types identified in this cohort were C1 (49.5%) followed by C2 (34.3%). No significant difference in HAdV loads was noted between patients who were admitted, those who required supplemental oxygen, and outpatients or between different HAdV types. HAdV ddPCR is a reliable absolute quantification approach for HAdV from respiratory samples. HAdV loads at initial presentation does not appear to differ between patients who require hospitalization versus outpatients. IMPORTANCE Measuring viral load using droplet digital PCR (ddPCR) is an absolute quantification approach that can facilitate comparability between different laboratories. This approach could prove valuable in studies that focus on the clinical utility of quantification. In this study, we evaluate a human adenovirus (HAdV) ddPCR assay and study the relationship between viral loads and outcomes after HAdV respiratory infections.
Collapse
Affiliation(s)
- Omar Abdullah
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Baltimore, Maryland, USA
| | - Amary Fall
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Baltimore, Maryland, USA
| | - Michael Forman
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Baltimore, Maryland, USA
| | - Craig Howard
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Baltimore, Maryland, USA
| | - Eili Klein
- Department of Emergency Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- Center for Disease Dynamics, Economics, and Policy, Washington, DC, USA
| | - Heba H Mostafa
- Johns Hopkins School of Medicine, Department of Pathology, Division of Medical Microbiology, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Punia M, Maan S, Batra K, Kumar A, Maan NS, Gahlawat SK. Development of a multiplexed Luminex assay for simultaneous detection of enteric viruses in cattle. VETERINARY RESEARCH FORUM : AN INTERNATIONAL QUARTERLY JOURNAL 2023; 15:13-19. [PMID: 38464606 PMCID: PMC10921133 DOI: 10.30466/vrf.2023.2005728.3925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/23/2023] [Indexed: 03/12/2024]
Abstract
Viral and bacterial gastroenteritis and diarrhea have long been a problem in livestock with devastating effects on animal health and production causing a heavy financial burden on producers. Therefore, the bead-based multiplex detection assay was created for simultaneous detection of three livestock viral diarrheic agents viz. bovine rotavirus (BRV), bovine coronavirus (BCoV) and bluetongue virus (BTV). The primers and probes for triplex MAGPIX assay for simultaneous detection of three enteric viruses were designed and the assay was optimized for hybridization temperature, primer-probe and bead concentrations. The newly developed MAGPIX assay was used to determine the prevalence of these diarrhea-associated viruses by testing 200 fecal samples collected from Haryana state of India during 2018-2019. The limit of detection of the developed triplex assay was 1 × 105, 1 × 104, and 1 × 105 RNA copies for BRV, BCoV, and BTV, respectively, being lower than the reverse transcription-quantitative polymerase chain reaction (RT-qPCR). However, it was higher than the conventional RT-PCR, showing it to be more sensitive. The newly developed MAGPIX assay was a rapid, cost-effective and high throughput diagnostic tool for identification of three major entero-pathogenic diarrhea associated viruses, either alone or in tandem, with the aim to prevent and control viral diarrhea in animals.
Collapse
Affiliation(s)
- Monika Punia
- Department of Biotechnology, Faculty of Life Sciences, Chaudhary Devi Lal University, Sirsa, India
| | - Sushila Maan
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Kanisht Batra
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Aman Kumar
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Narender Singh Maan
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Suresh Kumar Gahlawat
- Department of Biotechnology, Faculty of Life Sciences, Chaudhary Devi Lal University, Sirsa, India
| |
Collapse
|
3
|
Xie LM, Yin X, Xie TA, Su JW, Huang Q, Zhang JH, Huang YF, Guo XG. Meta-Analysis of the Diagnostic Efficacy of the Luminex xTAG Respiratory Viral Panel FAST v2 Assay for Respiratory Viral Infections. Yonsei Med J 2022; 63:95-103. [PMID: 34913289 PMCID: PMC8688366 DOI: 10.3349/ymj.2022.63.1.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Acute respiratory viral infections pose significant morbidity and mortality, making it essential to diagnose respiratory viral infections rapidly. In this study, the diagnostic efficacy of the Luminex xTAG Respiratory Virus Panel (RVP) FAST v2 test was evaluated on respiratory viral infections. MATERIALS AND METHODS Information was retrieved from electronic databases, including Embase, Web of Science, PubMed, and Cochrane Library, for systematic review. Studies that fulfilled predefined inclusion criteria were included. After the extraction of information, statistical software was utilized for quality evaluation, data analysis, and assessment of publication bias. RESULTS Eighty groups in fourfold tables from nine articles were included to perform statistical analyses. Therein, the mean specificity and mean sensitivity of Luminex xTAG RVP FAST v2 test for the detection of respiratory viral infections were 0.99 (0.98-0.99) and 0.88 (0.87-0.90), respectively. Additionally, the negative and positive likelihood ratios were 0.14 (0.11-0.19) and 87.42 (61.88-123.50), respectively. Moreover, the diagnostic odds ratio and area under the curve of summary receiver operating characteristic were 714.80 and 0.9886, respectively. CONCLUSION The Luminex xTAG RVP FAST v2 test could be a reliable and rapid diagnostic method for multiple respiratory viral infections.
Collapse
Affiliation(s)
- Li-Min Xie
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Xin Yin
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Pediatrics, The Pediatrics School of Guangzhou Medical University, Guangzhou, China
| | - Tian-Ao Xie
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Jian-Wen Su
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Qin Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Jing-Hao Zhang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Yin-Fei Huang
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Nasrollahi F, Haghniaz R, Hosseini V, Davoodi E, Mahmoodi M, Karamikamkar S, Darabi MA, Zhu Y, Lee J, Diltemiz SE, Montazerian H, Sangabathuni S, Tavafoghi M, Jucaud V, Sun W, Kim H, Ahadian S, Khademhosseini A. Micro and Nanoscale Technologies for Diagnosis of Viral Infections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100692. [PMID: 34310048 PMCID: PMC8420309 DOI: 10.1002/smll.202100692] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/19/2021] [Indexed: 05/16/2023]
Abstract
Viral infection is one of the leading causes of mortality worldwide. The growth of globalization significantly increases the risk of virus spreading, making it a global threat to future public health. In particular, the ongoing coronavirus disease 2019 (COVID-19) pandemic outbreak emphasizes the importance of devices and methods for rapid, sensitive, and cost-effective diagnosis of viral infections in the early stages by which their quick and global spread can be controlled. Micro and nanoscale technologies have attracted tremendous attention in recent years for a variety of medical and biological applications, especially in developing diagnostic platforms for rapid and accurate detection of viral diseases. This review addresses advances of microneedles, microchip-based integrated platforms, and nano- and microparticles for sampling, sample processing, enrichment, amplification, and detection of viral particles and antigens related to the diagnosis of viral diseases. Additionally, methods for the fabrication of microchip-based devices and commercially used devices are described. Finally, challenges and prospects on the development of micro and nanotechnologies for the early diagnosis of viral diseases are highlighted.
Collapse
Affiliation(s)
- Fatemeh Nasrollahi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | - Elham Davoodi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
- Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooONN2L 3G1Canada
| | - Mahboobeh Mahmoodi
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
- Department of Biomedical EngineeringYazd BranchIslamic Azad UniversityYazd8915813135Iran
| | | | - Mohammad Ali Darabi
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Sibel Emir Diltemiz
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
- Department of ChemistryFaculty of ScienceEskisehir Technical UniversityEskisehir26470Turkey
| | - Hossein Montazerian
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | | | - Maryam Tavafoghi
- Department of BioengineeringUniversity of California‐Los AngelesLos AngelesCA90095USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Wujin Sun
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Han‐Jun Kim
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI)Los AngelesCA90024USA
| |
Collapse
|
5
|
Chung YN, Yoo IY, Yun SA, Kim JY, Lee NY, Huh HJ. Comparison of the AdvanSure RV Plus Real-Time RT-PCR and Real-Q RV II Detection Assays for Respiratory Viruses. Ann Lab Med 2021; 41:506-509. [PMID: 33824243 PMCID: PMC8041588 DOI: 10.3343/alm.2021.41.5.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/21/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yoo Na Chung
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - In Young Yoo
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sun Ae Yun
- Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Ji-Youn Kim
- Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Nam Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Assay System for Simultaneous Detection of SARS-CoV-2 and Other Respiratory Viruses. Diagnostics (Basel) 2021; 11:diagnostics11061084. [PMID: 34199257 PMCID: PMC8231941 DOI: 10.3390/diagnostics11061084] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 01/29/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggers disease with nonspecific symptoms that overlap those of infections caused by other seasonal respiratory viruses (RVs), such as the influenza virus (Flu) or respiratory syncytial virus (RSV). A molecular assay for accurate and rapid detection of RV and SARS-CoV-2 is crucial to manage these infections. Here, we compared the analytical performance and clinical reliability of Allplex™ SARS-CoV-2/FluA/FluB/RSV (SC2FabR; Seegene Inc., Seoul, South Korea) kit with those of four commercially available RV detection kits. Upon testing five target viral strains (SARS-CoV-2, FluA, FluB, RSV A, and RSV B), the analytical performance of SC2FabR was similar to that of the other kits, with no significant difference (p ≥ 0.78) in z-scores. The efficiency of SC2FabR (E-value, 81-104%) enabled reliable SARS-CoV-2 and seasonal RV detection in 888 nasopharyngeal swab specimens processed using a fully automated nucleic acid extraction platform. Bland-Altman analyses revealed an agreement value of 95.4% (SD ± 1.96) for the kits, indicating statistically similar results for all five. In conclusion, SC2FabR is a rapid and accurate diagnostic tool for both SARS-CoV-2 and seasonal RV detection, allowing for high-throughput RV analysis with efficiency comparable to that of commercially available kits. This can be used to help manage respiratory infections in patients during and after the coronavirus disease 2019 pandemic.
Collapse
|
7
|
Kim YK, Lee JH, Kim SY, Ahn JY, Choi KH, Lee YH, Jang KM, Hau YS, Lee JM. Rapid Molecular Tests for Detecting Respiratory Pathogens Reduced the Use of Antibiotics in Children. Antibiotics (Basel) 2021; 10:283. [PMID: 33801828 PMCID: PMC8001485 DOI: 10.3390/antibiotics10030283] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 12/25/2022] Open
Abstract
Multiplex polymerase chain reaction (mPCR) is increasingly being used to diagnose infections caused by respiratory pathogens in pediatric inpatient facilities. mPCR assays detect a broader array of viruses, with higher specificity and sensitivity and faster turnaround than previous assays. We adapted the FilmArray Respiratory Panel (FA-RP) for diagnosing respiratory infections. FA-RP is an in vitro mPCR assay that simultaneously and rapidly (in about 1 h) detects 20 pathogens directly from respiratory specimens. Here, we studied the clinical efficacy of FA-RP in children who underwent testing for respiratory pathogens at Yeungnam University Hospital from November 2015 to August 2018. From November 2015 to June 2016, routine mPCR testing was performed on nasopharyngeal swabs using the routine mPCR kit. From November 2016 to July 2018, mPCR testing was performed using FA-RP. A total of 321 tests by routine mPCR and 594 tests by FA-RP were included. The positive detection rates for routine mPCR and FA-RP were 71.3% and 83.3%, respectively. FA-RP reduced the lead time, waiting time, turnaround time, intravenous (IV) antibiotic use, and length of hospital stay for pediatric patients. The decreased use of antibiotics is expected to reduce antibiotic resistance in children.
Collapse
Affiliation(s)
- Yu Kyung Kim
- Department of Clinical Pathology, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Jong Ho Lee
- Department of Laboratory Medicine, Yeungnam University College of Medicine, Daegu 42415, Korea;
| | - Sae Yoon Kim
- Department of Pediatrics, College of Medicine, Yeungnam University, Daegu 42415, Korea; (S.Y.K.); (J.Y.A.); (K.H.C.); (Y.H.L.); (K.M.J.)
| | - Ji Young Ahn
- Department of Pediatrics, College of Medicine, Yeungnam University, Daegu 42415, Korea; (S.Y.K.); (J.Y.A.); (K.H.C.); (Y.H.L.); (K.M.J.)
| | - Kwang Hae Choi
- Department of Pediatrics, College of Medicine, Yeungnam University, Daegu 42415, Korea; (S.Y.K.); (J.Y.A.); (K.H.C.); (Y.H.L.); (K.M.J.)
| | - Young Hwan Lee
- Department of Pediatrics, College of Medicine, Yeungnam University, Daegu 42415, Korea; (S.Y.K.); (J.Y.A.); (K.H.C.); (Y.H.L.); (K.M.J.)
| | - Kyung Mi Jang
- Department of Pediatrics, College of Medicine, Yeungnam University, Daegu 42415, Korea; (S.Y.K.); (J.Y.A.); (K.H.C.); (Y.H.L.); (K.M.J.)
| | - Yong Sauk Hau
- Department of Business Administration, School of Business, Yeungnam University, Gyeongsan 38541, Korea;
| | - Jae Min Lee
- Department of Pediatrics, College of Medicine, Yeungnam University, Daegu 42415, Korea; (S.Y.K.); (J.Y.A.); (K.H.C.); (Y.H.L.); (K.M.J.)
| |
Collapse
|
8
|
Mustafa Hellou M, Górska A, Mazzaferri F, Cremonini E, Gentilotti E, De Nardo P, Poran I, Leeflang MM, Tacconelli E, Paul M. Nucleic acid amplification tests on respiratory samples for the diagnosis of coronavirus infections: a systematic review and meta-analysis. Clin Microbiol Infect 2021; 27:341-351. [PMID: 33188933 PMCID: PMC7657614 DOI: 10.1016/j.cmi.2020.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/10/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Management and control of coronavirus disease 2019 (COVID-19) relies on reliable diagnostic testing. OBJECTIVES To evaluate the diagnostic test accuracy (DTA) of nucleic acid amplification tests (NAATs) for the diagnosis of coronavirus infections. DATA SOURCES PubMed, Web of Science, the Cochrane Library, Embase, Open Grey and conference proceeding until May 2019. PubMed and medRxiv were updated for COVID-19 on 31st August 2020. STUDY ELIGIBILITY Studies were eligible if they reported on agreement rates between different NAATs using clinical samples. PARTICIPANTS Symptomatic patients with suspected upper or lower respiratory tract coronavirus infection. METHODS The new NAAT was defined as the index test and the existing NAAT as reference standard. Data were extracted independently in duplicate. Risk of bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 tool. Confidence regions (CRs) surrounding summary sensitivity/specificity pooled by bivariate meta-analysis are reported. Heterogeneity was assessed using meta-regression. RESULTS Fifty-one studies were included, 22 of which included 10 181 persons before COVID-19 and 29 including 8742 persons diagnosed with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The overall summary sensitivity was 89.1% (95%CR 84.0-92.7%) and specificity 98.9% (95%CR 98.0-99.4%). Nearly all the studies evaluated different PCRs as both index and reference standards. Real-time RT PCR assays resulted in significantly higher sensitivity than other tests. Reference standards at high risk of bias possibly exaggerated specificity. The pooled sensitivity and specificity of studies evaluating SARS-COV-2 were 90.4% (95%CR 83.7-94.5%) and 98.1% (95%CR 95.9-99.2), respectively. SARS-COV-2 studies using samples from the lower respiratory tract, real-time RT-PCR, and tests targeting the N or S gene or more than one gene showed higher sensitivity, and assays based on reverse transcriptase loop-mediated isothermal amplification (RT-LAMP), especially when targeting only the RNA-dependent RNA polymerase (RdRp) gene, showed significantly lower sensitivity compared to other studies. CONCLUSIONS Pooling all studies to date shows that on average 10% of patients with coronavirus infections might be missed with PCR tests. Variables affecting sensitivity and specificity can be used for test selection and development.
Collapse
Affiliation(s)
| | - Anna Górska
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Fulvia Mazzaferri
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Eleonora Cremonini
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Elisa Gentilotti
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Pasquale De Nardo
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Itamar Poran
- Medicine E, Rabin Medical Centre, Beilinson Hospital, Petah-Tikva, Israel
| | - Mariska M Leeflang
- Epidemiology and Data Science, Amsterdam Public Health, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, the Netherlands
| | - Evelina Tacconelli
- Division of Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy; Infectious Diseases, Department of Internal Medicine I, Tu¨bingen University Hospital, Tu¨bingen, Germany
| | - Mical Paul
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
9
|
Practical Guidance for Clinical Microbiology Laboratories: Viruses Causing Acute Respiratory Tract Infections. Clin Microbiol Rev 2018; 32:32/1/e00042-18. [PMID: 30541871 DOI: 10.1128/cmr.00042-18] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Respiratory viral infections are associated with a wide range of acute syndromes and infectious disease processes in children and adults worldwide. Many viruses are implicated in these infections, and these viruses are spread largely via respiratory means between humans but also occasionally from animals to humans. This article is an American Society for Microbiology (ASM)-sponsored Practical Guidance for Clinical Microbiology (PGCM) document identifying best practices for diagnosis and characterization of viruses that cause acute respiratory infections and replaces the most recent prior version of the ASM-sponsored Cumitech 21 document, Laboratory Diagnosis of Viral Respiratory Disease, published in 1986. The scope of the original document was quite broad, with an emphasis on clinical diagnosis of a wide variety of infectious agents and laboratory focus on antigen detection and viral culture. The new PGCM document is designed to be used by laboratorians in a wide variety of diagnostic and public health microbiology/virology laboratory settings worldwide. The article provides guidance to a rapidly changing field of diagnostics and outlines the epidemiology and clinical impact of acute respiratory viral infections, including preferred methods of specimen collection and current methods for diagnosis and characterization of viral pathogens causing acute respiratory tract infections. Compared to the case in 1986, molecular techniques are now the preferred diagnostic approaches for the detection of acute respiratory viruses, and they allow for automation, high-throughput workflows, and near-patient testing. These changes require quality assurance programs to prevent laboratory contamination as well as strong preanalytical screening approaches to utilize laboratory resources appropriately. Appropriate guidance from laboratorians to stakeholders will allow for appropriate specimen collection, as well as correct test ordering that will quickly identify highly transmissible emerging pathogens.
Collapse
|
10
|
Li X, Chen B, Zhang S, Li X, Chang J, Tang Y, Wu Y, Lu X. Rapid Detection of Respiratory Pathogens for Community-Acquired Pneumonia by Capillary Electrophoresis-Based Multiplex PCR. SLAS Technol 2018; 24:105-116. [PMID: 30048599 DOI: 10.1177/2472630318787452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Community-acquired pneumonia (CAP) is a common infectious disease linked to high rates of morbidity and mortality. Fast and accurate identification of the pathogens responsible for CAP will aid in diagnosis. We established a capillary electrophoresis-based multiplex PCR (CEMP) panel to enable the detection of viral and bacterial pathogens associated with CAP. The assay simultaneously detects and identifies the 13 common unculturable CAP viral and bacterial pathogens within 4 h. We evaluated the performance of a commercially available panel with 314 samples collected from CAP patients. We compared the results to those obtained with the liquid chip-based Luminex xTAG Respiratory Viral Panel (RVP) Fast Kit (for viruses) and the agarose gel-based Seegene PneumoBacter ACE Detection Kit (for atypical bacteria). All positive samples were further verified by the Sanger sequencing method. The sensitivity, specificity, positive predictive value, and negative predictive value of CEMP were 97.31%, 100%, 100%, and 99.85%, respectively. CEMP provides a rapid and accurate method for the high-throughput detection of pathogens in patients with CAP.
Collapse
Affiliation(s)
- Xue Li
- 1 Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 College of Medicine, Capital Medical University, Beijing, China
| | - Bo Chen
- 3 Ningbo HEALTH Gene Technologies Co., Ltd., Ningbo, China
| | - Shaoya Zhang
- 1 Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiuyuan Li
- 1 Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 College of Medicine, Capital Medical University, Beijing, China
| | - Junxia Chang
- 4 Department of Laboratory Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yanyan Tang
- 1 Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 College of Medicine, Capital Medical University, Beijing, China
| | - Yong Wu
- 3 Ningbo HEALTH Gene Technologies Co., Ltd., Ningbo, China
| | - Xinxin Lu
- 1 Department of Laboratory Medicine, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,2 College of Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Gimferrer L, Andrés C, Rando A, Piñana M, Codina MG, Martin MDC, Fuentes F, Rubio S, Alcubilla P, Pumarola T, Antón A. Evaluation of Seegene Allplex Respiratory Panel 1 kit for the detection of influenza virus and human respiratory syncytial virus. J Clin Virol 2018; 105:31-34. [PMID: 29883908 PMCID: PMC7106510 DOI: 10.1016/j.jcv.2018.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/18/2018] [Accepted: 05/14/2018] [Indexed: 02/03/2023]
Abstract
Allplex RP1 assay is a highly sensitive, specific, and suitable for detection of FLUV and HRSV, including FLUAV subtyping. Allplex RP1 is a hands-on-time saving assay due to the automated nucleic acid extraction and PCR setup on the NIMBUS platform suitable for the hospital routine diagnostic. Beyond the respiratory virus detection, Allplex RP1 assay provides a valuable data for epidemiological purposes.
Background Influenza (FLUV) and human respiratory syncytial (HRSV) viruses are etiological agents of respiratory infections that cause a significant morbidity and mortality worldwide. A rapid and accurate diagnosis of these respiratory viruses is essential for an appropriate patient management. Molecular tests are the best detection option due to their high sensitivity and specificity. Seegene’s Allplex™ Respiratory Panel 1 (Allplex RP1) is a real-time one-step RT-PCR assay for the simultaneous detection of FLUAV, FLUBV, HRSV-A and HRSV-B. In addition, it allows the determination of FLUAV subtype (H1, H3 and H1pdm09). Objectives This study aims to evaluate Allplex RP1 as a rapid molecular test for the detection of FLUAV, FLUBV, HRSV-A and HRSV-B viruses. Study design The Allplex RP1 assay will be compared with other two commercial molecular assays, Prodesse ProFlu+ and ProFAST+ (Hologic, Madison, WI, USA), and GeneXpert Flu/RSV XC (Cepheid, USA). Results Allplex RP1, ProFlu+ and GeneXpert tests showed 95%, 91% and 96% of accuracy; and 94%, 88% and 95% of sensitivity, respectively. Moreover, Allplex RP1 showed a FLUAV subtype sensitivity of 91% and 88% for FLUAV-H1pdm09 and FLUAV-H3 respectively, and ProFAST+ assay showed sensitivities of 100% for both targets. The three assays showed a 100% of specificity and PPV, while the NPV were 84%, 73% and 86% for Allplex RP1, Prodesse and GeneXpert, respectively. Conclusions In this study, Seegene’s Allplex RP1 assay showed to be highly sensitive, specific, and suitable for detection of FLUV and HRSV, including FLUAV subtyping. In addition, it is also a hands-on-time saving assay due to the automated nucleic acid extraction and PCR setup.
Collapse
Affiliation(s)
- Laura Gimferrer
- Virology Unit, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona, Spain
| | - Cristina Andrés
- Virology Unit, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona, Spain
| | - Ariadna Rando
- Virology Unit, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona, Spain
| | - Maria Piñana
- Virology Unit, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona, Spain
| | - Maria Gema Codina
- Virology Unit, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona, Spain
| | - Maria Del Carmen Martin
- Virology Unit, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona, Spain
| | - Francisco Fuentes
- Virology Unit, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona, Spain
| | - Susana Rubio
- Virology Unit, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona, Spain
| | - Pilar Alcubilla
- Virology Unit, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona, Spain
| | - Tomàs Pumarola
- Virology Unit, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona, Spain.
| | - Andrés Antón
- Virology Unit, Microbiology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron, 119-129, Barcelona, Spain
| |
Collapse
|