1
|
Qala Nou MS, Amirian Z, Dehghani F, Vejdan AK, Rooin R, Dehghanmehr S. Systematic review and meta-analysis on the carbapenem-resistant hypervirulent Klebsiella pneumoniae isolates. BMC Pharmacol Toxicol 2025; 26:25. [PMID: 39885589 DOI: 10.1186/s40360-025-00857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND The global dissemination of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) poses a critical threat to public health. However, comprehensive data on the prevalence and resistance rates of CR-hvKp are limited. This systematic review and meta-analysis aim to estimate the pooled prevalence of carbapenem resistance among hvKp strains and assess the distribution of carbapenemase genes. MATERIALS AND METHODS A systematic search of ISI Web of Science, PubMed, and Google Scholar was conducted to identify studies reporting carbapenem resistance rates in hvKp strains. The pooled prevalence of carbapenem resistance and carbapenemase genes was calculated using event rates with 95% confidence intervals. RESULTS A total of 36 studies encompassing 1,098 hvKp strains were included. The pooled resistance rates were 49% for imipenem, 53.2% for meropenem, and 38.2% for ertapenem. Carbapenemase gene prevalence was 19.1% for blaVIM, 22.0% for blaNDM, 43.4% for blaOXA-48, and 58.8% for blaKPC. CONCLUSION The high prevalence of carbapenem resistance and the widespread distribution of carbapenemase genes among hvKp strains underscore their significant threat to global health. These findings highlight the urgent need for enhanced surveillance, rapid diagnostic tools, and stringent infection control measures to mitigate the spread of CR-hvKp. Future research should focus on understanding resistance mechanisms and developing targeted therapeutic strategies to address this critical challenge.
Collapse
Affiliation(s)
| | - Zahra Amirian
- Department of Surgery, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Fatemeh Dehghani
- Department of Pediatrics, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Amir-Kazem Vejdan
- Department of General Surgery, Imam Ali Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Roghayeh Rooin
- Critical Care Nursing, Department of Nursing, School of Nursing and Midwifery, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Sadegh Dehghanmehr
- Medical Surgical Nursing, Department of Nursing, School of Nursing and Midwifery, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| |
Collapse
|
2
|
Han X, Yao J, He J, Liu H, Jiang Y, Zhao D, Shi Q, Zhou J, Hu H, Lan P, Zhou H, Li X. Clinical and laboratory insights into the threat of hypervirulent Klebsiella pneumoniae. Int J Antimicrob Agents 2024; 64:107275. [PMID: 39002700 DOI: 10.1016/j.ijantimicag.2024.107275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/15/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP) typically causes severe invasive infections affecting multiple sites in healthy individuals. In the past, hvKP was characterized by a hypermucoviscosity phenotype, susceptibility to antimicrobial agents, and its tendency to cause invasive infections in healthy individuals within the community. However, there has been an alarming increase in reports of multidrug-resistant hvKP, particularly carbapenem-resistant strains, causing nosocomial infections in critically ill or immunocompromised patients. This presents a significant challenge for clinical treatment. Early identification of hvKP is crucial for timely infection control. Notably, identifying hvKP has become confusing due to its prevalence in nosocomial settings and the limited predictive specificity of the hypermucoviscosity phenotype. Novel virulence predictors for hvKP have been discovered through animal models or machine learning algorithms, while standardization of identification criteria is still necessary. Timely source control and antibiotic therapy have been widely employed for the treatment of hvKP infections. Additionally, phage therapy is a promising alternative approach due to escalating antibiotic resistance. In summary, this narrative review highlights the latest research progress in the development, virulence factors, identification, epidemiology of hvKP, and treatment options available for hvKP infection.
Collapse
Affiliation(s)
- Xinhong Han
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jiayao Yao
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jintao He
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haiyang Liu
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongdong Zhao
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiucheng Shi
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junxin Zhou
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huangdu Hu
- Department of Infectious Diseases, Centre for General Practice Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peng Lan
- Department of Infectious Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, Zhejiang, China; Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hua Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Beig M, Aghamohammad S, Majidzadeh N, Asforooshani MK, Rezaie N, Abed S, Khiavi EHG, Sholeh M. Antibiotic resistance rates in hypervirulent Klebsiella pneumoniae strains: A systematic review and meta-analysis. J Glob Antimicrob Resist 2024; 38:376-388. [PMID: 39069234 DOI: 10.1016/j.jgar.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/26/2024] [Accepted: 06/16/2024] [Indexed: 07/30/2024] Open
Abstract
OBJECTIVES In response to the growing global concerns regarding antibiotic resistance, we conducted a meta-analysis to assess the prevalence of antibiotic resistance in hypervirulent Klebsiella pneumoniae (hvKp) strains. METHODS We conducted a meta-analysis of antibiotic resistance in the hvKp strains. Eligible studies published in English until April 10, 2023, were identified through a systematic search of various databases. After removing duplicates, two authors independently assessed and analysed the relevant publications, and a third author resolved any discrepancies. Data extraction included publication details and key information on antibiotic resistance. Data synthesis employed a random-effects model to account for heterogeneity, and various statistical analyses were conducted using R and the metafor package. RESULTS This meta-analysis of 77 studies from 17 countries revealed the prevalence of antibiotic resistance in hvKp strains. A high resistance rates have been observed against various classes of antibiotics. Ampicillin-sulbactam faced 45.3% resistance, respectively, rendering them largely ineffective. The first-generation cephalosporin cefazolin exhibited a resistance rate of 38.1%, whereas second-generation cefuroxime displayed 26.7% resistance. Third-generation cephalosporins, cefotaxime (65.8%) and ceftazidime (57.1%), and fourth-generation cephalosporins, cefepime (51.3%), showed substantial resistance. The last resort carbapenems, imipenem (45.7%), meropenem (51.0%) and ertapenem (40.6%), were not spared. CONCLUSION This study emphasizes the growing issue of antibiotic resistance in hvKp strains, with notable resistance to both older and newer antibiotics, increasing resistance over time, regional disparities and methodological variations. Effective responses should involve international cooperation, standardized testing and tailored regional interventions.
Collapse
Affiliation(s)
- Masoumeh Beig
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran
| | | | - Nahal Majidzadeh
- Departments of Biological and Biomedical Sciences, Cancer Biomedical Center, Tehran, Iran
| | - Mahshid Khazani Asforooshani
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran; Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Niloofar Rezaie
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Sahar Abed
- Department of Microbial Biotechnology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | | | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
4
|
Hu YL, Bi SL, Zhang ZY, Kong NQ. Correlation between Antibiotics-Resistance, Virulence Genes and Genotypes among Klebsiella pneumoniae Clinical Strains Isolated in Guangzhou, China. Curr Microbiol 2024; 81:289. [PMID: 39078504 DOI: 10.1007/s00284-024-03818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
Klebsiella pneumoniae is an important opportunistic pathogen causing community-acquired and hospital-acquired infections. This aim of this study was to analysis the antibiotic-resistance phenotypes, carbapenemase genes, virulence genes, and genotypes the 62 K. pneumoniae clinical isolates, and to explore the correlations between these isolates. The antimicrobial susceptibility profiles were determined using the BD Phoenix-100 system. Carbapenemase and virulence genes were detected using multiplex PCR. Out of the 62 K. pneumoniae clinical isolates, 79.0% were exhibited resistance to antibiotics, with 69.4% displaying multi-drug resistance. The rate of antibiotic-resistance was highest for penicillin (71.0%), followed by cephalosporins (66.1%), and lowest for carbapenems (29.0%). The detection rates of carbapenemase genes were as follows: KPC (56.5%), VIM (35.5%), and NDM (1.61%). Additionally, seven virulence genes were detected with the highest prevalence rates, of which entB and mrkD were at the top of the carrier rates with 95.2% each. The study classified 62 isolates into 13 clusters and 46 genotypes using ERIC-PCR. Cluster A6 exhibited the highest genetic diversity, comprising 20 strains and 13 genotypes. The statistical analysis revealed a strong correlation between MDR and resistance to penicillin and cephalosporin. Furthermore, genes related to siderophores were closely associated with mrkD. Genotypes identified by ERIC-PCR showed a negative correlation with allS. The study revealed a negative correlation between antibiotic resistance and genes kfu, ybtS, iutA, rmpA, and allS. Conversely, a positive correlation was observed between antibiotic resistance and genes entB and mrkD. The correlations identified in this study provide insights into the occurrence of hospital-acquired infections. The findings of this study may guide the prevention and control of K. pneumoniae outbreaks by utilizing appropriate medication.
Collapse
Affiliation(s)
- Yi-Lin Hu
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
- College of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510220, China
| | - Shui-Lian Bi
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China.
| | - Zang-Yun Zhang
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| | - Nian-Qing Kong
- College of Food Science, Guangdong Pharmaceutical University, Zhongshan, 528458, China
| |
Collapse
|
5
|
Monteiro ADSS, Cordeiro SM, Reis JN. Virulence Factors in Klebsiella pneumoniae: A Literature Review. Indian J Microbiol 2024; 64:389-401. [PMID: 39011017 PMCID: PMC11246375 DOI: 10.1007/s12088-024-01247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 07/17/2024] Open
Abstract
Klebsiella pneumoniae, a member of the autochthonous human gut microbiota, utilizes a variety of virulence factors for survival and pathogenesis. Consequently, it is responsible for several human infections, including urinary tract infections, respiratory tract infections, liver abscess, meningitis, bloodstream infections, and medical device-associated infections. The main studied virulence factors in K. pneumoniae are capsule-associated, fimbriae, siderophores, Klebsiella ferric iron uptake, and the ability to metabolize allantoin. They are crucial for virulence and were associated with specific infections in the mice infection model. Notably, these factors are also prevalent in strains from the same infections in humans. However, the type and quantity of virulence factors may vary between strains, which defines the degree of pathogenicity. In this review, we summarize the main virulence factors investigated in K. pneumoniae from different human infections. We also cover the specific identification genes and their prevalence in K. pneumoniae, especially in hypervirulent strains.
Collapse
Affiliation(s)
- Adriano de Souza Santos Monteiro
- Laboratory of Pathology and Molecular Biology (LPBM), Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia Brazil
| | | | - Joice Neves Reis
- Laboratory of Pathology and Molecular Biology (LPBM), Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia Brazil
- Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia Brazil
| |
Collapse
|
6
|
Javid A, Ahmed M. A computational odyssey: uncovering classical β-lactamase inhibitors in dry fruits. J Biomol Struct Dyn 2024; 42:4578-4604. [PMID: 37288775 DOI: 10.1080/07391102.2023.2220817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
In the antibacterial arsenal, β-lactams have held a prominent position, but increasing resistance due to unauthorized use and genetic factors requires new strategies. Combining β-lactamase inhibitors with broad-spectrum β-lactams proves effective in combating this resistance. ESBL producers demand new inhibitors, leading to the exploration of plant-derived secondary metabolites for potent β-lactam antibiotics or alternative inhibitors. Using virtual screening, molecular docking, ADMET analysis, and molecular dynamic simulation, this study actively analyzed the inhibitory activity of figs, cashews, walnuts, and peanuts against SHV-1, NDM-1, KPC-2, and OXA-48 β-lactamases. Using AutoDock Vina, the docking affinities of various compounds for target enzymes were initially screened, revealing 12 bioactive compounds with higher affinities for the target enzymes compared to Avibactam and Tazobactam. Top-scoring metabolites, including Oleanolic acid, Protocatechuic acid, and Tannin, were subjected to MD simulation studies to further analyze the stability of the docked complexes using WebGro. The simulation coordinates, in terms of RMSD, RMSF, SASA, Rg, and hydrogen bonds formed, showed that these phytocompounds are stable enough to retain in the active sites at various orientations. The PCA and FEL analysis also showed the stability of the dynamic motion of Cα residues of phytochemical-bound enzymes. The pharmacokinetic analysis of the top phytochemicals was performed to analyze their bioavailability and toxicity. This study provides new insights into the therapeutic potential of phytochemicals of selected dry fruits and contributes to future experimental studies to identify βL inhibitors from plants.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Amina Javid
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| | - Mehboob Ahmed
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan
| |
Collapse
|
7
|
Dingiswayo L, Adelabu OA, Arko-Cobbah E, Pohl C, Mokoena NZ, Du Plessis M, Musoke J. Hypervirulent Klebsiella pneumoniae in a South African tertiary hospital-Clinical profile, genetic determinants, and virulence in Caenorhabditis elegans. Front Microbiol 2024; 15:1385724. [PMID: 38846562 PMCID: PMC11156222 DOI: 10.3389/fmicb.2024.1385724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Introduction A distinct strain of Klebsiella pneumoniae (K. pneumoniae) referred to as hypervirulent (hvKp) is associated with invasive infections such as pyogenic liver abscess in young and healthy individuals. In South Africa, limited information about the prevalence and virulence of this hvKp strain is available. The aim of this study was to determine the prevalence of hvKp and virulence-associated factors in K. pneumoniae isolates from one of the largest tertiary hospitals in a South African province. Methods A total of 74 K. pneumoniae isolates were received from Pelonomi Tertiary Hospital National Health Laboratory Service (NHLS), Bloemfontein. Virulence-associated genes (rmpA, capsule serotype K1/K2, iroB and irp2) were screened using Polymerase Chain Reaction (PCR). The iutA (aerobactin transporter) gene was used as a primary biomarker of hvKp. The extracted DNAs were sequenced using the next-generation sequencing pipeline and the curated sequences were used for phylogeny analyses using appropriate bioinformatic tools. The virulence of hvKp vs. classical Klebsiella pneumoniae (cKp) was investigated using the Caenorhabditis elegans nematode model. Results Nine (12.2%) isolates were identified as hvKp. Moreover, hvKp was significantly (p < 0.05) more virulent in vivo in Caenorhabditis elegans relative to cKp. The virulence-associated genes [rmpA, iroB, hypermucoviscous phenotype (hmv) phenotype and capsule K1/K2] were significantly (p < 0.05) associated with hvKp. A homology search of the curated sequences revealed a high percentage of identity between 99.8 and 100% with other homologous iutA gene sequences of other hvKp in the GenBank. Conclusion Findings from this study confirm the presence of hvKp in a large tertiary hospital in central South Africa. However, the low prevalence and mild to moderate clinical presentation of infected patients suggest a marginal threat to public health. Further studies in different settings are required to establish the true potential impact of hvKp in developing countries.
Collapse
Affiliation(s)
- Likhona Dingiswayo
- Department of Medical Microbiology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Olusesan Adeyemi Adelabu
- Department of Medical Microbiology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Emmanuel Arko-Cobbah
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Carolina Pohl
- Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Nthabiseng Zelda Mokoena
- Department of Microbiology and Biochemistry, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Morne Du Plessis
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Jolly Musoke
- Department of Medical Microbiology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- National Health Laboratory Service, Department of Medical Microbiology, Universitas Academic Hospital, Bloemfontein, South Africa
| |
Collapse
|
8
|
Hyun M, Lee JY, Kim HA. Clinical and Microbiologic Analysis of Klebsiella pneumoniae Infection: Hypermucoviscosity, Virulence Factor, Genotype, and Antimicrobial Susceptibility. Diagnostics (Basel) 2024; 14:792. [PMID: 38667438 PMCID: PMC11048833 DOI: 10.3390/diagnostics14080792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Hypervirulent Klebsiella pneumoniae (KP) is defined according to hypermucoviscosity or various virulence factors and is clinically associated with community-acquired liver abscess (CLA). In this study, we investigated the clinical and microbiological characteristics of KP and significant factors associated with hypervirulence. The clinical characteristics, antimicrobial susceptibility, hypermucoviscosity, serotypes, hypervirulence-related genes, and biofilm formation of 414 KP isolates collected from the Keimyung University Dongsan Hospital between December 2013 and November 2015 were analyzed according to CLA. Significant risk factors for hypervirulent KP (HvKP) associated with CLA were investigated using logistic regression analysis. Notably, 155 (37.4%) isolates were hypermucoviscous, and 170 (41.1%) harbored aerobactin. CLA was present in 34 cases (8.2%). Epidemiology and treatment outcomes did not differ significantly between the CLA and non-CLA groups. The CLA group had significantly higher antibiotic susceptibility, K1/K2, rmpA, magA, allS, kfu, iutA, string test-positive result, and biofilm mass. Multivariate logistic regression revealed rmpA (OR, 5.67; 95% CI, 2.09-15.33; p = 0.001), magA (OR, 2.34; 95% CI, 1.01-5.40; p = 0.047), and biofilm mass >0.80 (OR, 2.13; 95% CI, 1.00-4.56; p = 0.050) as significant risk factors for CLA. rmpA was identified as the most significant risk factor for CLA among KP strains, implying that it is an important factor associated with HvKP.
Collapse
Affiliation(s)
| | | | - Hyun Ah Kim
- Department of Infectious Diseases, Keimyung University Dongsan Hospital, Keimyung University School of Medicine and Institute for Medical Science, Keimyung University, Daegu 42601, Republic of Korea; (M.H.); (J.Y.L.)
| |
Collapse
|
9
|
Lee J, Hwang JH, Yeom JH, Lee S, Hwang JH. Analysis of virulence profiles in clinical isolates of Klebsiella pneumoniae from renal abscesses: clinical significance of hypervirulent isolates. Front Cell Infect Microbiol 2024; 14:1367111. [PMID: 38606296 PMCID: PMC11007163 DOI: 10.3389/fcimb.2024.1367111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction Klebsiella pneumoniae can cause a wide range of infections. Hypervirulent K. pneumoniae (hvKp), particularly associated with the K1 and K2 capsular types, is an increasingly significant microorganism with the potential to cause invasive infections, including renal abscesses. Despite the rising prevalence of hvKp infections, information on renal abscesses caused by K. pneumoniae is limited, and the clinical significance of hvKp associated with specific virulence genes remains elusive. Methods This study performed at a 1200-bed tertiary hospital sought to identify the clinical and microbiological characteristics of renal abscesses caused by K. pneumoniae, focusing on various virulence genes, including capsular serotypes and multilocus sequence typing (MLST). Results Over an 8-year period, 64 patients with suspected renal abscesses were reviewed. Ten patients diagnosed with K. pneumoniae-related renal abscesses were ultimately enrolled in the study. Among the isolates from the 10 patients, capsular serotype K2 was predominant (40.0%), followed by K1 (30.0%). The most common sequence type by MLST was 23 (40.0%). In particular, six patients (60.0%) harbored specific genes indicative of hvKp: iucA, peg-344, rmpA, and rmpA2. Conclusions Our findings highlight the importance of hvKp as a pathogen in renal abscesses. Although the nature of hvKp is relatively unknown, it is widely recognized as a highly virulent pathogen that can infect relatively healthy individuals of various ages and simultaneously cause infections at multiple anatomical sites. Therefore, when treating patients with K. pneumoniae-related renal abscesses, caution is necessary when considering the characteristics of hvKp, such as potential bacteremia, multi-organ abscess formation, and metastatic spread.
Collapse
Affiliation(s)
- Jaehyeon Lee
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University—Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jeong-Hwan Hwang
- Research Institute of Clinical Medicine of Jeonbuk National University—Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Ji Hyun Yeom
- Research Institute of Clinical Medicine of Jeonbuk National University—Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Sik Lee
- Research Institute of Clinical Medicine of Jeonbuk National University—Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Joo-Hee Hwang
- Research Institute of Clinical Medicine of Jeonbuk National University—Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
- Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| |
Collapse
|
10
|
Ofosu-Appiah F, Acquah EE, Mohammed J, Sakyi Addo C, Agbodzi B, Ofosu DAS, Myers CJ, Mohktar Q, Ampomah OW, Ablordey A, Amissah NA. Klebsiella pneumoniae ST147 harboring blaNDM-1, multidrug resistance and hypervirulence plasmids. Microbiol Spectr 2024; 12:e0301723. [PMID: 38315028 PMCID: PMC10913492 DOI: 10.1128/spectrum.03017-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/17/2023] [Indexed: 02/07/2024] Open
Abstract
The spread of hypervirulent (hv) and carbapenem-/multidrug-resistant Klebsiella pneumoniae is an emerging problem in healthcare settings. The New Delhi metallo-β-lactamase-1 (blaNDM-1) is found in Enterobacteriaceae including K. pneumoniae. The blaNDM-1 is capable of hydrolyzing β-lactam antibiotics which are used for treatment of severe infections caused by multidrug-resistant Gram-negative bacteria. This is associated with the unacceptably high mortality rate in immunocompromised burn injury patients. This study reports on the characterization of blaNDM-1 gene and virulence factors in hv carbapenem-/multidrug-resistant K. pneumoniae ST147 in the burns unit of a tertiary teaching hospital during routine surveillance. Two K. pneumoniae strains were obtained from wounds of burn-infected patients from May 2020 to July 2021. The hypervirulence genes and genetic context of the blaNDM-1 gene and mobile genetic elements potentially involved in the transposition of the gene were analyzed. We identified a conserved genetic background and an IS26 and open reading frame flanking the blaNDM-1 gene that could suggest its involvement in the mobilization of the gene. The plasmid harbored additional antibiotic resistance predicted regions that were responsible for resistance to almost all the routinely used antibiotics. To ensure the identification of potential outbreak strains during routine surveillance, investigations on resistance genes and their environment in relation to evolution are necessary for molecular epidemiology.IMPORTANCEData obtained from this study will aid in the prompt identification of disease outbreaks including evolving resistance and virulence of the outbreak bacteria. This will help establish and implement antimicrobial stewardship programs and infection prevention protocols in fragile health systems in countries with limited resources. Integration of molecular surveillance and translation of whole-genome sequencing in routine diagnosis will provide valuable data for control of infection. This study reports for the first time a high-risk clone K. pneumoniae ST147 with hypervirulence and multidrug-resistance features in Ghana.
Collapse
Affiliation(s)
- Frederick Ofosu-Appiah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Ezra E. Acquah
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Jibril Mohammed
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Comfort Sakyi Addo
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Bright Agbodzi
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorcas A. S. Ofosu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Charles J. Myers
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Quaneeta Mohktar
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Opoku-Ware Ampomah
- The Burns Unit, Reconstructive Plastic Surgery and Burns Unit, Korle Bu Teaching Hospital, Accra, Ghana
| | - Anthony Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Nana Ama Amissah
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
11
|
Cai W, Kang J, Ma Y, Yin D, Song Y, Liu Y, Duan J. Molecular Epidemiology of Carbapenem Resistant Klebsiella Pneumoniae in Northern China: Clinical Characteristics, Antimicrobial Resistance, Virulence and Geographic Distribution. Infect Drug Resist 2023; 16:7289-7304. [PMID: 38023401 PMCID: PMC10676093 DOI: 10.2147/idr.s436284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose In this article, we studied in detail 74 Carbapenem Resistant Klebsiella pneumoniae (CRKP) in Shanxi to provide essential insight into development of effective strategies for control of CRKP. Patients and Methods From 2018 to 2021, we collected 74 clinical CRKP from 11 hospitals in Shanxi Province. Clinical data were obtained from medical records, and all isolates were subjected to antimicrobial susceptibility testing, multi locus sequence typing, capsular serotypes, resistant gene profiles and virulence gene profiles. The synergistic activity was performed by microdilution checkerboard method. Results Our study found differences in the clinical characteristics of CRKP between regions in Shanxi. Sequence type (ST) 11 was the dominant ST in Shanxi; however, the ST types in Shanxi had become more diverse over time and the proportion of STs showed a more balanced distribution with a significant decrease in ST11. NDM was the most common carbapenemase in Shanxi. In addition, the STs, carbapenemases, serotypes and virulence gene distribution varied by region in Shanxi. Moreover, tigecycline in combination with carbapenems and aztreonam had an excellent synergistic effect on CRKP in vitro. Conclusion The results of this study provide essential insight into development of effective strategies for control of CRKP in Shanxi.
Collapse
Affiliation(s)
- Wanni Cai
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Jianbang Kang
- Department of Microbiology, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yanbin Ma
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Donghong Yin
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yan Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yujie Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Jinju Duan
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| |
Collapse
|
12
|
Haddadi MH, Khoshnood S, Koupaei M, Heidary M, Moradi M, Jamshidi A, Behrouj H, Movahedpour A, Maleki MH, Ghanavati R. Evaluating the incidence of ampC-β-lactamase genes, biofilm formation, and antibiotic resistance among hypervirulent and classical Klebsiella pneumoniae strains. J Appl Microbiol 2023; 134:lxad241. [PMID: 37881066 DOI: 10.1093/jambio/lxad241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/18/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
AIM Both immunocompetent and healthy individuals can become life-threateningly ill when exposed to the hypervirulent (hvKp) strains of Klebsiella pneumoniae (Kp). The main objectives of this study were to evaluate the presence of ampC-lactamase genes, biofilm formation, and antibiotic resistance in clinical strains of hvKp and cKp (classical K. pneumoniae). MATERIALS AND METHODS Kp strains were collected from patients referred to Shahidzadeh Hospital in Behbahan City, Khuzestan Province, Iran. Several techniques were used to identify hvKp. The hypermucoviscosity phenotype was determined using the string test. Isolates that developed dark colonies on tellurite agar were assumed to be hvKp strains. If any of the iucA, iutA, or peg-344 genes were detected, the isolates were classified as hvKp. Phenotypic and genotypic detection of AmpC β-lactamases of hvKp strains was performed by the combined disk method and polymerase chain reaction, respectively. In addition, crystal violet staining was used to determine the biofilm formation of these isolates. RESULTS For this study, 76 non-duplicative isolates of Kp were collected. Overall, 22 (28.94%) strains had positive string test results, and 31 (40.78%) isolates were grown in tellurite-containing medium. The genes iucA and iutA or peg-344 were found in 23.68% of all Kp strains and in 50% of tellurite-resistant isolates, respectively. The most effective antibiotics against hvKp isolates were tetracycline (85.52%) and chloramphenicol (63.15%). Using the cefoxitin disc diffusion method, we observed that 56.57% (43/76) of the strains were AmpC producer. A total of 30.26% (n = 23/76) of the isolates tested positive for at least one ampC gene, including blaDHA (52.63%, n = 40), blaCIT (40.78%, n = 31), blaACC (19.76%, n = 15), blaMOX (25%, n = 19), and blaFOX (43.42%, n = 33). Biofilm formation analysis revealed that most hvKp isolates were weak (n = 6, 40%) and moderate (n = 5, 33.33%) biofilm producers. CONCLUSION Healthcare practitioners should consider the possibility of the existence and acquisition of hvKp everywhere. The exact mechanisms of bacterial acquisition are also unknown, and it is unclear whether the occurrence of infections is related to healthcare or not. Thus, there are still many questions about hvKp that need to be investigated.
Collapse
Affiliation(s)
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam 69316, Iran
| | - Maryam Koupaei
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan 8759187131, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar 6971938668 , Iran
| | - Melika Moradi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6136763316, Iran
| | - Ali Jamshidi
- Behbahan Faculty of Medical Sciences, Behbahan 6361796819, Iran
| | - Hamid Behrouj
- Behbahan Faculty of Medical Sciences, Behbahan 6361796819, Iran
| | | | - Mohammad Hassan Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam 69316, Iran
| | - Roya Ghanavati
- School of Paramedical Sciences, Behbahan Faculty of Medical Sciences, Behbahan 63617, Iran
| |
Collapse
|
13
|
Wang C, Wang Q, Mi Z, Zhao L, Bai C. Genomic analysis of K47-type Klebsiella pneumoniae phage IME305, a newly isolated member of the genus Teetrevirus. Arch Virol 2023; 168:280. [PMID: 37889322 DOI: 10.1007/s00705-023-05900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 09/05/2023] [Indexed: 10/28/2023]
Abstract
We isolated a K47-type Klebsiella pneumoniae phage from untreated hospital sewage: vB_KpnP_IME305 (GenBank no. OK149215). Next-generation sequencing (NGS) demonstrated that IME305 has a double-stranded DNA genome of 38,641 bp with 50.9% GC content. According to BLASTn comparisons, the IME305 genome sequence shares similarity with that of Klebsiella phage 6998 (97.37% identity and 95% coverage). IME305 contains 45 open reading frames (ORFs) and no rRNA, tRNA, or virulence-related gene sequences. Bioinformatic analysis showed that IME305 belongs to the phage subfamily Studiervirinae and genus Teetrevirus.
Collapse
Affiliation(s)
- Can Wang
- Department of Respiratory Medicine, Fuyang Hospital of Anhui Medical University, No.99 Huang Shan road, Yingzhou District Anhui province, 236000, Fuyang city, China
| | - Qiang Wang
- Department of Respiratory Medicine, Fuyang Hospital of Anhui Medical University, No.99 Huang Shan road, Yingzhou District Anhui province, 236000, Fuyang city, China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China
| | - Lei Zhao
- Department of Respiratory Medicine, Fuyang Hospital of Anhui Medical University, No.99 Huang Shan road, Yingzhou District Anhui province, 236000, Fuyang city, China.
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, 100071, Beijing, China.
| | - Changqing Bai
- Department of Respiratory and Critical Care Diseases, the fifth Medical Center, Chinese PLA General Hospital (Former 307th Hospital of PLA), No. 8 Dongda Street, Fengtai District, 100071, Beijing, China.
- Department of Respiratory and Critical Care Diseases, General Hospital of Shenzhen University, 518060, Guangdong province, China.
| |
Collapse
|
14
|
Kao CY, Zhang YZ, Bregente CJB, Kuo PY, Chen PK, Chao JY, Duong TTT, Wang MC, Thuy TTD, Hidrosollo JH, Tsai PF, Li YC, Lin WH. A 24-year longitudinal study of Klebsiella pneumoniae isolated from patients with bacteraemia and urinary tract infections reveals the association between capsular serotypes, antibiotic resistance, and virulence gene distribution. Epidemiol Infect 2023; 151:e155. [PMID: 37675569 PMCID: PMC10548544 DOI: 10.1017/s0950268823001486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023] Open
Abstract
Longitudinal studies on the variations of phenotypic and genotypic characteristics of K. pneumoniae across two decades are rare. We aimed to determine the antimicrobial susceptibility and virulence factors for K. pneumoniae isolated from patients with bacteraemia or urinary tract infection (UTI) from 1999 to 2022. A total of 699 and 1,267 K. pneumoniae isolates were isolated from bacteraemia and UTI patients, respectively, and their susceptibility to twenty antibiotics was determined; PCR was used to identify capsular serotypes and virulence-associated genes. K64 and K1 serotypes were most frequently observed in UTI and bacteraemia, respectively, with an increasing frequency of K20, K47, and K64 observed in recent years. entB and wabG predominated across all isolates and serotypes; the least frequent virulence gene was htrA. Most isolates were susceptible to carbapenems, amikacin, tigecycline, and colistin, with the exception of K20, K47, and K64 where resistance was widespread. The highest average number of virulence genes was observed in K1, followed by K2, K20, and K5 isolates, which suggest their contribution to the high virulence of K1. In conclusion, we found that the distribution of antimicrobial susceptibility, virulence gene profiles, and capsular types of K. pneumoniae over two decades were associated with their clinical source.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Zhen Zhang
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Carl Jay Ballena Bregente
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Yun Kuo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pek Kee Chen
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jo-Yen Chao
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tran Thi Thuy Duong
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tran Thi Dieu Thuy
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jazon Harl Hidrosollo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Fang Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chi Li
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hung Lin
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
15
|
Jesumirhewe C, Cabal-Rosel A, Allerberger F, Springer B, Ruppitsch W. Genetic characterization of Escherichia coli and Klebsiella spp. from humans and poultry in Nigeria. Access Microbiol 2023; 5:acmi000509.v4. [PMID: 37601433 PMCID: PMC10436014 DOI: 10.1099/acmi.0.000509.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/31/2023] [Indexed: 08/22/2023] Open
Abstract
The emergence of antibiotic resistance in livestock, especially food-producing animals, is of major public health importance as a result of the possibility of these bacteria entering the food chain. In this study, the genetic characteristics of antibiotic-resistant Escherichia coli and Klebsiella spp. isolates from humans and poultry in Edo state, Nigeria, were investigated. In April 2017, 45 Klebsiella spp. and 46 E. coli isolates were obtained from urine, clinical wounds, nasal and chicken faecal samples. Isolates were recovered and identified as previously described. Species identification was achieved by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and ribosomal multilocus sequence typing. Antimicrobial susceptibility testing was carried out using the Kirby-Bauer method for 12 antibiotics. A double disc synergy test was used to screen for extended-spectrum beta-lactamse (ESBL) production. Whole genome sequencing was performed for strain characterization of the isolates. Thirteen Klebsiella spp. isolates yielded positive results by the ESBL phenotypic test and harboured ESBL genes. Of the 46 E. coli isolates, 21 human and 13 poultry isolates were resistant to at least one of the tested antibiotics. Four human E. coli isolates harboured ESBL genes and revealed positive results when applying ESBL double disc synergy tests. ESBL genes in the Klebsiella spp. and E. coli isolates include bla CTX-M-15 and bla SHV-28. Whole genome-based core gene multilocus sequence typing of the Klebsiella spp. and E. coli isolates revealed a close relatedness among the isolates. An integrated 'One Health' surveillance system is required to monitor transmission of antimicrobial resistance in Nigeria.
Collapse
Affiliation(s)
- Christiana Jesumirhewe
- Department of Pharmaceutical Microbiology, College of Pharmacy, Igbinedion University, Okada, Edo state, Nigeria
| | - Adriana Cabal-Rosel
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Franz Allerberger
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Burkhard Springer
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
| |
Collapse
|
16
|
Clonal transmission of polymyxin B-resistant hypervirulent Klebsiella pneumoniae isolates coharboring bla NDM-1 and bla KPC-2 in a tertiary hospital in China. BMC Microbiol 2023; 23:64. [PMID: 36882683 PMCID: PMC9990273 DOI: 10.1186/s12866-023-02808-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND The prevalence of multidrug-resistant hypervirulent K. pneumoniae (MDR-hvKP) has gradually increased. It poses a severe threat to human health. However, polymyxin-resistant hvKP is rare. Here, we collected eight polymyxin B-resistant K. pneumoniae isolates from a Chinese teaching hospital as a suspected outbreak. RESULTS The minimum inhibitory concentrations (MICs) were determined by the broth microdilution method. HvKP was identified by detecting virulence-related genes and using a Galleria mellonella infection model. Their resistance to serum, growth, biofilm formation, and plasmid conjugation were analyzed in this study. Molecular characteristics were analyzed using whole-genome sequencing (WGS) and mutations of chromosome-mediated two-component systems pmrAB and phoPQ, and the negative phoPQ regulator mgrB to cause polymyxin B (PB) resistance were screened. All isolates were resistant to polymyxin B and sensitive to tigecycline; four were resistant to ceftazidime/avibactam. Except for KP16 (a newly discovered ST5254), all were of the K64 capsular serotype and belonged to ST11. Four strains co-harbored blaKPC-2, blaNDM-1, and the virulence-related genes prmpA, prmpA2, iucA, and peg344, and were confirmed to be hypervirulent by the G. mellonella infection model. According to WGS analysis, three hvKP strains showed evidence of clonal transmission (8-20 single nucleotide polymorphisms) and had a highly transferable pKOX_NDM1-like plasmid. KP25 had multiple plasmids carrying blaKPC-2, blaNDM-1, blaSHV-12, blaLAP-2, tet(A), fosA5, and a pLVPK-like virulence plasmid. Tn1722 and multiple additional insert sequence-mediated transpositions were observed. Mutations in chromosomal genes phoQ and pmrB, and insertion mutations in mgrB were major causes of PB resistance. CONCLUSIONS Polymyxin-resistant hvKP has become an essential new superbug prevalent in China, posing a serious challenge to public health. Its epidemic transmission characteristics and mechanisms of resistance and virulence deserve attention.
Collapse
|
17
|
Recombination Drives Evolution of Carbapenem-Resistant Klebsiella pneumoniae Sequence Type 11 KL47 to KL64 in China. Microbiol Spectr 2023; 11:e0110722. [PMID: 36622219 PMCID: PMC9927301 DOI: 10.1128/spectrum.01107-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Carbapenem-resistant Enterobacteriaceae, especially carbapenemase-producing Klebsiella pneumoniae, is an urgent problem in health care facilities worldwide. K. pneumoniae isolates classified as sequence type 11 (ST11) are largely responsible for the spread of carbapenem-resistant K. pneumoniae (CRKP) in China. Our previous phylogenetic reconstruction suggested that CRKP ST11 capsular locus 64 (KL64) was derived from an ST11-KL47 ancestor through recombination. However, the molecular origin of KL64 remains largely unknown, and our understanding of the recombination is incomplete. Here, we screened a global sample of 22,600 K. pneumoniae genomes and searched for KL64-harboring STs, which were found to be ST1764, ST3685, ST1764-1LV, ST30, ST505, ST147, and ST11, wherein ST1764, ST3685, ST1764-1LV, and ST30 belonged to a clonal complex, CC1764. We compared the genetic structures of representative strains from ST11-KL47, ST11-KL64, CC1764-KL64, ST505-KL64, and ST147-KL64 and further performed phylogenetic analysis and single-nucleotide polymorphism analysis among 248 isolates from all these STs. The results suggested a recombination event has occurred in a homologous ~154-kb region covering KL and the lipopolysaccharide biosynthesis locus (OL) between a recipient ST11-KL47-OL101 and a donor CC1764 (except ST30), giving rise to ST11-KL64-O2v1 strains (recombination I). Furthermore, we also found an infrequent ST11-KL64-O2v1 subclone which was not produced by recombination I but was hybridized from ST11-KL47-OL101 and ST147-KL64-O2v1 strains through recombination of a homologous ~485-kb region covering KL and OL (recombination II). Our findings provide important insights into the role of recombination in the evolution of clinical strains and the diversity of capsule and lipopolysaccharide of widely distributed KPC-associated ST11 K. pneumoniae in China. IMPORTANCE Chromosomal recombination events are considered to contribute to the genetic diversification and ultimate success of many bacterial pathogens. A previous study unravelled the molecular evolution history of ST258 strains, which have been largely responsible for the spread of KPC in the United States. Here, we used comparative genomic analyses to discover two recombination events in ST11 CRKP strains, which is a predominant KPC-associated CRKP clone in China. Two new ST11-CRKP subclones with altered capsule and lipopolysaccharide, which are two primary determinants of antigenicity and antigenic diversity among K. pneumoniae, were produced through these two recombination events, respectively. Horizontal transfer of the KL and OL appears to be a crucial element driving the molecular evolution of K. pneumoniae strains. These findings not only extend our understanding of the molecular evolutionary history of ST11 but also are an important step toward the development of preventive, diagnostic, and therapeutic strategies for CRKP.
Collapse
|
18
|
Liu Z, Hang X, Yan T, Chu W, Gong Z, Liu Y, Dai Y, Yang M, Li J, Zhou Q. A Simple Disk Stacking Plus Micro-Elution Method for Rapid Detection of the Synergistic Effect of Aztreonam and Ceftazidime/Avibactam Against Metallo-β-Lactamase Producing Enterobacterales. Infect Drug Resist 2023; 16:1537-1543. [PMID: 36937146 PMCID: PMC10020030 DOI: 10.2147/idr.s402275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
Purpose To establish and evaluate a simple disk stacking plus micro-elution (DSE) method that can be routinely performed to rapidly detect the synergistic effect between aztreonam (ATM) and ceftazidime/avibactam (CZA) against metallo-β-lactamase (MBL)-producing carbapenem-resistant Enterobacterales (CRE). Methods The DSE method was established, and a total of 32 MBL-producing CRE isolates collected from multiple centers were tested for ATM-CZA synergy. The results obtained after 8 h of incubation were compared with those obtained by a reference checkerboard assay (CBA) after 18~24 h. Reproducibility experiments were completed on three separate days. Results The reproducibility study showed that the results of the DSE method were precise. Compared with CBA, the DSE method exhibited excellent performance, with 92.8% sensitivity, 100.0% specificity 93.8% categorical agreement, 0.0% very major error, 0.0% major error, and 6.2% minor error over three days of testing. Conclusion The DSE method is a simple, rapid and practical method for ATM-CZA combination testing. Further evaluation should be completed to improve its clinical application.
Collapse
Affiliation(s)
- Zhou Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Xiubing Hang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Tao Yan
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Wenwen Chu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Zhen Gong
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yanyan Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, People’s Republic of China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Yuanyuan Dai
- Department of Laboratory Medicine, Anhui Provincial Hospital, Hefei, Anhui, People’s Republic of China
| | - Min Yang
- Department of Intensive Care, The Second Affiliated Hospital of Anhui Medical University
, Hefei, Anhui, People’s Republic of China
- Correspondence: Min Yang, Department of Intensive Care, The Second Affiliated Hospital of Anhui Medical University
, Furong Road No. 678, Hefei, Anhui, 230032, People’s Republic of China, Email
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, Anhui, People’s Republic of China
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Qiang Zhou
- Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People’s Republic of China
- Qiang Zhou, Department of Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University
, Furong Road No. 678, Hefei, People’s Republic of China, Email
| |
Collapse
|
19
|
Dai P, Hu D. The making of hypervirulent Klebsiella pneumoniae. J Clin Lab Anal 2022; 36:e24743. [PMID: 36347819 PMCID: PMC9757020 DOI: 10.1002/jcla.24743] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/01/2022] [Accepted: 10/09/2022] [Indexed: 10/08/2023] Open
Abstract
Klebsiella pneumoniae is a notorious bacterium in clinical practice. Virulence, carbapenem-resistance and their convergence among K. pneumoniae are extensively discussed in this article. Hypervirulent K. pneumoniae (HvKP) has spread from the Asian Pacific Rim to the world, inducing various invasive infections, such as pyogenic liver abscess, endophthalmitis, and meningitis. Furthermore, HvKP has acquired more and more drug resistance. Among multidrug-resistant HvKP, hypervirulent carbapenem-resistant K. pneumoniae (Hv-CRKP), and carbapenem-resistant hypervirulent K. pneumoniae (CR-HvKP) are both devastating for their extreme drug resistance and virulence. The hypervirulence of HvKP is primarily attributed to hypercapsule, macromolecular exopolysaccharides, or excessive siderophores, although it has many other factors, for example, lipopolysaccharides, fimbriae, and porins. In contrast with classical determination of HvKP, that is, animal lethality test, molecular determination could be an optional and practical method after improvement. HvKP, including Hv-CRKP and CR-HvKP, has been progressing. R-M and CRISPR-Cas systems may play pivotal roles in such evolutions. Hv-CRKP and CR-HvKP, in particular the former, should be of severe concern due to their being more and more prevalent.
Collapse
Affiliation(s)
- Piaopiao Dai
- Department of Laboratory MedicineTaizhou Municipal HospitalTaizhouChina
| | - Dakang Hu
- Department of Laboratory MedicineTaizhou Municipal HospitalTaizhouChina
| |
Collapse
|
20
|
Duan Q, Wang Q, Sun S, Cui Q, Ding Q, Wang R, Wang H. ST11 Carbapenem-Resistant Klebsiella pneumoniae Clone Harboring blaNDM Replaced a blaKPC Clone in a Tertiary Hospital in China. Antibiotics (Basel) 2022; 11:antibiotics11101373. [PMID: 36290031 PMCID: PMC9598860 DOI: 10.3390/antibiotics11101373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The nosocomial spread of carbapenem-resistant Enterobacterales (CRE) is extremely common, resulting in severe burdens on healthcare systems. In particular, the high-risk Klebsiella pneumoniae ST11 strain has a wide endemic area in China. The current study describes the results of continuous monitoring of CRE genotypes and phenotypes in a tertiary hospital in North China from 2012 to 2020. A total of 160 isolates were collected, including 109 Klebsiella. pneumoniae (68.13%), 29 Escherichia coli (26.60%), 12 Enterobacter cloacae (7.50%), and 10 other strains (6.25%). A total of 149 carbapenemase genes were detected, of which blaKPC-2 (51.0%) was the most common, followed by blaNDM-1 (22.82%), and blaNDM-5 (23.49%). Based on multi-locus sequence typing, the ST11 strain (66.1%) dominates K. pneumoniae, followed by ST15 (13.8%). Interestingly, the proportion of blaNDM (22.2%, 16/72) in ST11 K. pneumoniae was significantly increased in 2018−2019. Hence, whole-genome sequencing was performed on ST11 K. pneumoniae. Growth curves and in vitro competition experiments showed that K. pneumoniae carrying blaNDM exhibited a stronger growth rate (p < 0.001) and competition index (p < 0.001) than K. pneumoniae carrying blaKPC. Moreover, K. pneumoniae carrying blaNDM had a stronger biofilm-forming ability than K. pneumoniae carrying blaKPC (t = 6.578; p < 0.001). K. pneumoniae carrying blaKPC exhibited increased defense against bactericidal activity than K. pneumoniae carrying blaNDM. Thus, ST11 K. pneumoniae carrying blaNDM has strong adaptability and can locally replace K. pneumoniae carrying blaKPC to become an epidemic strain. Based on these findings, infection control and preventive measures should focus on the high-risk ST11-K. pneumoniae strain.
Collapse
Affiliation(s)
- Qiaoyan Duan
- Department of Clinical Laboratory, Shanxi Provincial People’s Hospital, Taiyuan 030012, China
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Qiaozhen Cui
- Department of Clinical Laboratory, Shanxi Provincial People’s Hospital, Taiyuan 030012, China
| | - Qi Ding
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
- Correspondence:
| |
Collapse
|
21
|
Tao G, Tan H, Ma J, Chen Q. Resistance Phenotype and Molecular Epidemiology of Carbapenem-Resistant Klebsiella pneumoniae Isolated from Nanjing Children's Hospital in Jiangsu Province, China. Infect Drug Resist 2022; 15:5435-5447. [PMID: 36131812 PMCID: PMC9482959 DOI: 10.2147/idr.s377068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022] Open
Abstract
Objective The drug resistance phenotype and molecular epidemiological characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP) were identified among children in Jiangsu Province, China. Methods CRKP strains were collected from the Children’s Hospital of Nanjing Medical University from December 2020 to March 2022. CRKP strains were characterized for further study: antimicrobial susceptibility testing, carbapenem resistance genes and homology analysis. Results Among 86 strains of CRKP, 85 carried carbapenemase genes; the dominant gene was blaKPC-2 (88.2%, 75/85), followed by blaNDM-1 (4.7%, 4/85), blaNDM-5 (4.7%, 4/85), blaIMP-8 (2.3%, 2/85), and blaOXA-181 (1.2%, 1/85). Among the 86 strains of CRKP, one isolate contained both the blaNDM-5 and blaOXA-181 genes, which is the first time that Klebsiella pneumoniae has been shown to jointly carry these genes in China. Another CRKP strain did not carry any carbapenemase gene. MLST analysis identified a total of 10 different sequence types, among which sequence type (ST) 11 was the most common. PFGE analysis identified 75 blaKPC-2-producing CRKP ST11 strains, of which 68 were dominant clusters distributed among 11 different wards, mainly the neonatal medical centre (18 strains), neonatal surgery (17 strains) and cardiac care unit (CCU) (8 strains) wards. Conclusion Clonal dissemination of KPC-2-producing CRKP ST11 was observed in multiple departments. Additionally, non-ST11 strains showed high polymorphism based on molecular typing, indicating increasing diversity in CRKP strains. To our knowledge, this is the first report of NDM-5 and OXA-181-coproducing Klebsiella pneumoniae causing infection in children in China, which poses a significant health risk for paediatric patients. Active surveillance and effective control measures are urgently needed to prevent further transmission of these strains among children.
Collapse
Affiliation(s)
- Guixiang Tao
- Institute of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hua Tan
- Department of Laboratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jingjing Ma
- Institute of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Qian Chen
- Institute of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
22
|
Han YL, Wen XH, Zhao W, Cao XS, Wen JX, Wang JR, Hu ZD, Zheng WQ. Epidemiological characteristics and molecular evolution mechanisms of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Front Microbiol 2022; 13:1003783. [PMID: 36188002 PMCID: PMC9524375 DOI: 10.3389/fmicb.2022.1003783] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/24/2022] [Indexed: 12/01/2022] Open
Abstract
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP), a type of Klebsiella pneumoniae (KP) that exhibits hypervirulence and carbapenem resistance phenotypes, can cause severe infections, both hospital- and community-acquired infections. CR-hvKP has brought great challenges to global public health and is associated with significant morbidity and mortality. There are many mechanisms responsible for the evolution of the hypervirulence and carbapenem resistance phenotypes, such as the horizontal transfer of the plasmid carrying the carbapenem resistance gene to hypervirulent Klebsiella pneumoniae (hvKP) or carbapenemase-producing Klebsiella pneumoniae (CRKP) acquiring a hypervirulence plasmid carrying a virulence-encoding gene. Notably, KP can evolve into CR-hvKP by acquiring a hybrid plasmid carrying both the carbapenem resistance and hypervirulence genes. In this review, we summarize the evolutionary mechanisms of resistance and plasmid-borne virulence as well as the prevalence of CR-hvKP.
Collapse
Affiliation(s)
- Yu-Ling Han
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical College of Inner Mongolia Medical University, Hohhot, China
| | - Xu-Hui Wen
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical College of Inner Mongolia Medical University, Hohhot, China
| | - Wen Zhao
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xi-Shan Cao
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jian-Xun Wen
- Department of Medical Experiment Center, The Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Jun-Rui Wang
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Department of Parasitology, The Basic Medical College of Inner Mongolia Medical University, Hohhot, China
- *Correspondence: Wen-Qi Zheng,
| |
Collapse
|
23
|
Zhang Z, Wen H, Wang H, Zhang P, Li J, Liang Y, Liu Y, Sun L, Xie S. A Case of Meningitis in an Infant Due to Hypervirulent Klebsiella pneumoniae Transmission Within a Family. Infect Drug Resist 2022; 15:4927-4933. [PMID: 36060238 PMCID: PMC9439645 DOI: 10.2147/idr.s376055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP), an emerging pathotype derived from K. pneumoniae, frequently causes invasive infections of multiple organs and is associated with both high disability and fatality rates. In this study, a case of meningitis in a young infant caused by hvKP is presented. Cytological and biochemical examinations of the cerebrospinal fluid (CSF) revealed purulent meningitis, a diagnosis that was confirmed by a positive CSF culture result. The pathogen was identified as hvKP through analysis of positive virulence-associated genes. Meanwhile, hvKP was also isolated from stool samples of both the infant and her father. Antimicrobial susceptibility, capsular typing, and multilocus sequence typing (MLST) of three isolates from the infant's CSF and stool and her father's stool samples were analyzed. The three K. pneumoniae isolates were susceptible to all antibiotics except ampicillin and were identified as capsular serotype K2 and sequence type 86. These genetic relatedness analyses indicated that the strain isolated from the infant's CSF might have originated from her father's stool via familial transmission. This case is the first report of meningitis in an infant due to hvKP transmitted within a family.
Collapse
Affiliation(s)
- Zongwei Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
| | - Hainan Wen
- Department of Clinical Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
| | - Hui Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
| | - Pan Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
| | - Jing Li
- Department of Clinical Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
| | - Yueyi Liang
- Department of Clinical Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
| | - Yanchao Liu
- Department of Clinical Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
| | - Lihong Sun
- Department of Clinical Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
| | - Shoujun Xie
- Department of Clinical Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
| |
Collapse
|
24
|
Pavan HK, Shreevatsa B, Dharmashekara C, Shruthi G, Prasad KS, S Patil S, Shivamallu C. Review of Known and Unknown Facts of Klebsiella Pneumoniae and its Relationship with Antibiotics. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2022; 15:643-650. [DOI: 10.13005/bpj/2403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Antibiotics are commonly used to treat bacterial respiratory infections, but they can exacerbate inflammation by releasing microbial components that overstimulate the immune system, leading to greater tissue damage. Klebsiella pneumoniae is a gram-negative, rod-shaped bacteria of the family Enterobacteriaceae. Knowing about Klebsiella pneumoniae is extremely important in the present situation, as it is one of the major causal organisms of pneumonia. Internal and external factors of K. pneumoniae are responsible for the entry and multiplication inside the host. Antibiotics against K. pneumoniae are a class of Penicillins, Cephalosporins, Monobactams, and Carbapenems which have the β-lactam ring in common with variable side chains. Combating the antibiotics by synthesizing the enzymes like beta-lactamases is the main reason for the survival of these organisms against newer generation antibiotics. In this review, we have tried to discuss about Klebsiella pneumoniae, antibiotics, and their mechanism of action.
Collapse
Affiliation(s)
- Heggadadevanakote Kendaganna Pavan
- 1Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Bhargav Shreevatsa
- 1Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Chandan Dharmashekara
- 1Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | | | - Kollur Shiva Prasad
- 3Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru – 570 026, Karnataka, India
| | - Sharanagouda S Patil
- 4ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India
| | - Chandan Shivamallu
- 1Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| |
Collapse
|
25
|
Wang X, Li Q, Kang J, Yin D, Li X, Wang S, Guo Q, Song Y, Wang J, Duan J. Mortality Risk Factors and Prognostic Analysis of Patients with Multi-Drug Resistant Enterobacterales Infection. Infect Drug Resist 2022; 15:3225-3237. [PMID: 35754786 PMCID: PMC9231684 DOI: 10.2147/idr.s366808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/13/2022] [Indexed: 12/17/2022] Open
Abstract
Background The data from the China Network Antibacterial Surveillance Center (http://www.chinets.com) showed that the prevalence of Escherichia coli (E. coli), Klebsiella pneumoniae (KP), and Enterobacter cloacae (ecl), was 18.96%, 14.12%, and 2.74% in 2022, respectively. The resistance rates of E. coli and KP to 3rd or 4th generation cephalosporins were 51.7% and 22.1%, to carbapenems was 1.7% and 3.9%, to quinolones was 55.9% in Shanxi. The generation of extended-spectrum beta-lactamases (ESBLs) is a major mechanism resulting in drug resistance in Enterobacterales. To determine the mortality risk factors of multi-drug resistant Enterobacterales (MDRE) and multi-drug resistant Klebsiella pneumoniae (MDR-KP) infection. Methods 91 MDR strains from 91 patients were collected from 2015 to 2019 in the second hospital of Shanxi Medical University. The mortality risk factors for the MDRE infections and clinical outcomes were analyzed by univariable and multivariable analysis. The independent predictors of 30-day mortality were analyzed through the Cox regression analysis including the variables with a value <0.2. Results The majority of patients were admitted to ICUs. Pulmonary infection was a major infection (43.96%, 40/91). Thirty-three (36.26%, 33/91) strains of MDR-KP were only detected in 2018. The proportion of multi-drug resistant Escherichia coli (MDR E. coli) and multi-drug resistant Enterobacter cloacae (MDR ecl) were 16.48% (15/91) and 17.58% (16/91), respectively. The presence of cerebrovascular diseases (OR, 4.046; 95%Cl, 1.434–11.418; P=0.008) and central venous catheterization (OR, 4.543; 95%Cl, 1.338–15.425; P=0.015) were associated with mortality in patients with MDRE infections. Endotracheal intubation (OR, 4.654; 95%Cl, 1.5–14.438; P=0.008) was an independent mortality risk factor for patients infected with MDR-KP strains. Patients who received aminoglycoside antibiotics (P=0.057) had a higher 30-day survival rate. The β-lactam antibiotics were the major agent in the clinic. Conclusion This study implies that patients with cerebrovascular diseases, central venous catheterization, and endotracheal intubation are at risk of carrying MDR isolates.
Collapse
Affiliation(s)
- Xinchun Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Qi Li
- Department of Pharmacy, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jianbang Kang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Donghong Yin
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xiaoxia Li
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Shuyun Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Qian Guo
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yan Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jing Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jinju Duan
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
26
|
Wu X, Liu J, Feng J, Shabbir MAB, Feng Y, Guo R, Zhou M, Hou S, Wang G, Hao H, Cheng G, Wang Y. Epidemiology, Environmental Risks, Virulence, and Resistance Determinants of Klebsiella pneumoniae From Dairy Cows in Hubei, China. Front Microbiol 2022; 13:858799. [PMID: 35602033 PMCID: PMC9117759 DOI: 10.3389/fmicb.2022.858799] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/08/2022] [Indexed: 11/21/2022] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is an opportunistic pathogen, which causes serious infections in humans and animals. To investigate the antimicrobial resistance pattern and virulence profile of K. pneumoniae, a total of 887 samples were collected from both the healthy and mastitis cows and the bedding, feed, feces, air, drinking water, spraying water, washing water, and milk cup swabs from five dairy farms in Hubei, China, during 2019 and 2020. K. pneumoniae was isolated and identified using PCR of the khe and 16S rDNA sequencing. A genotypic characterization was performed for K. pneumoniae isolates using wzi typing and multilocus sequence typing (MLST). Antimicrobial resistances were confirmed using broth microdilution against 17 antimicrobial agents and resistance and virulence genes were determined by PCR. The prevalence of K. pneumoniae was 26.94% (239/887) distributed in 101 wzi allele types (199/239, 83.26%) and 100 sequence types (STs) (209/239, 87.45%), including 5 new wzi allele type and 25 new STs. Phylogenetic analysis showed that K. pneumoniae isolated from milk, nipple swab, feed, and feces is classified in the same clone complex. By comparing with the PubMLST database, at least 67 STs have the risk of spreading in different species and regions. Interestingly, 60 STs have been isolated from humans. The isolates were highly sensitive to meropenem and colistin, but resistant to ampicillin (100%), sulfisoxazole (94.56%), cephalothin (47.28%), streptomycin (30.13%), and so on. Noteworthy, multidrug-resistant (MDR) rate was found to be 43.93% in this study. By PCR, 30 of 68 antimicrobial resistance (AMR) genes were identified; the prevalence rate of blaTEM, blaSHV, strA, strB, aadA1, and aac(6′)-Ib-cr was more than 50%. Eleven CTX-M-producing K. pneumoniae were found. The detection rate of fimH, mrkD, uge, wabG, entB, iutA, iroN, and ureA was over 85%. This study reinforces the epidemiological importance of K. pneumoniae in food-producing animals in Hubei. The emergence and spread of environmental MDR K. pneumoniae may pose a potential threat to food safety and public health.
Collapse
Affiliation(s)
- Xiangyun Wu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Jiayi Liu
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Jiawei Feng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | | | - Yali Feng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Rui Guo
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Meifang Zhou
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Sulin Hou
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Guiqiang Wang
- Hubei Livestock and Poultry Breeding Centre, Wuhan, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| | - Yulian Wang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China.,National Reference Laboratory of Veterinary Drug Residues (HZAU) and MOA Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
27
|
Hwang JH, Hwang JH, Lee SY, Lee J. Prostatic Abscess Caused by Klebsiella pneumoniae: A 6-Year Single-Center Study. J Clin Med 2022; 11:jcm11092521. [PMID: 35566647 PMCID: PMC9099488 DOI: 10.3390/jcm11092521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) is an important strain that can cause multiple organ infections. Although hvKp infection cases are increasing, there is limited information on the prostatic abscesses caused by K. pneumoniae. Furthermore, the clinical significance of hvKp associated with K1 or K2 capsular types or virulence genes in prostatic abscesses remains unclear. Therefore, we aimed to elucidate the clinical and microbiological characteristics of prostatic abscesses caused by K. pneumoniae in relation to various virulence genes. A retrospective study was performed at a 1200-bed tertiary hospital between January 2014 and December 2019. Patients diagnosed with prostatic abscesses with K. pneumoniae isolated from blood, urine, pus, or tissue cultures were enrolled in this study. Our results demonstrate that 30.3% (10/33) of the prostatic abscesses were caused by K. pneumoniae. All strains isolated from patients with prostatic abscesses due to K. pneumoniae were the K1 capsular type, and eight patients (80.0%) carried rmpA and iutA genes that identified hvKp. These findings suggest that hvKp is an important pathogen in prostatic abscesses. Therefore, when treating patients with K. pneumoniae prostatic abscesses, attention should be paid to the characteristics of hvKp, such as bacteremia, multiorgan abscess formation, and metastatic spread.
Collapse
Affiliation(s)
- Joo-Hee Hwang
- Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Korea; (J.-H.H.); (J.-H.H.)
- Research Institute of Clinical Medicine of Jeonbuk National University—Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - Jeong-Hwan Hwang
- Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Korea; (J.-H.H.); (J.-H.H.)
- Research Institute of Clinical Medicine of Jeonbuk National University—Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - Seung Yeob Lee
- Research Institute of Clinical Medicine of Jeonbuk National University—Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Korea
| | - Jaehyeon Lee
- Research Institute of Clinical Medicine of Jeonbuk National University—Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Korea
- Correspondence: ; Tel.: +82-63-250-2693
| |
Collapse
|
28
|
Liu Z, Hang X, Xiao X, Chu W, Li X, Liu Y, Li X, Zhou Q, Li J. Co-occurrence of bla NDM-1 and mcr-9 in a Conjugative IncHI2/HI2A Plasmid From a Bloodstream Infection-Causing Carbapenem-Resistant Klebsiella pneumoniae. Front Microbiol 2021; 12:756201. [PMID: 34956120 PMCID: PMC8701513 DOI: 10.3389/fmicb.2021.756201] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/09/2021] [Indexed: 01/04/2023] Open
Abstract
Spread of the carbapenemase-encoding and mobilized colistin resistance (mcr) genes among Enterobacteriales poses a great threat to global public health, especially when the both genes are transferred by a single plasmid. Here, we identified a bla NDM-1- and mcr-9-co-encoding plasmid harbored by a clinical isolate of Klebsiella pneumoniae (KPN710429). KPN710429 was recovered from a blood sample from an inpatient in a tertiary hospital in China, and antimicrobial susceptibility testing showed that it was multidrug-resistant and only susceptible to aztreonam, colistin, and tigecycline. KPN710429 belongs to sequence type (ST) 1308 and capsular serotype KL144. The string test of KPN710429 was negative, and this strain didn't exhibit a hypervirulent phenotype according to serum-killing and Galleria mellonella lethality assessments. Whole-genome sequencing revealed the KPN710429 genome comprises a single chromosome and three plasmids. All virulence associated genes were harbored by chromosome. Most of its antimicrobial resistance genes, including bla NDM-1 and mcr-9 were carried by plasmid pK701429_2, belonging to the incompatibility (Inc) HI2/HI2A group and ST1. Comparative genomics assays indicates that pK710429_2 could be a hybrid plasmid, formed by a Tn6696-like bla NDM-1 region inserting into a mcr-9-positive-IncHI2/HI2A plasmid. pK710429_2 contained the conjugative transfer gene regions, Tra1 and Tra2, with some structural variations, and conjugation assays revealed that pK710429_2 was transferable. Although pK710429_2 lacked the qseB-qseC regulatory genes, mcr-9 expression was upregulated after pretreatment with colistin for 6 h, leading to colistin resistance in KPN710429. To our knowledge, this is the first report of a bla NDM-1- and mcr-9-co-encoding transferable plasmid harbored by a bloodstream-infection-causing K. pneumoniae strain in China. Effective surveillance should be implemented to assess the prevalence of the plasmid co-harboring carbapenemase-encoding gene and mcr-9.
Collapse
Affiliation(s)
- Zhou Liu
- Department of Laboratory Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xiubing Hang
- Department of Laboratory Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xiao Xiao
- Department of Laboratory Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Wenwen Chu
- Department of Laboratory Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xin Li
- Department of Laboratory Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yangyang Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, China.,Institute of Bacterial Resistance, Anhui Medical University, Hefei, China
| | - Xi Li
- Centre of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qiang Zhou
- Department of Laboratory Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, China.,Institute of Bacterial Resistance, Anhui Medical University, Hefei, China.,Department of Infectious Diseases, The Chaohu Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
29
|
Feng J, Xiang Q, Ma J, Zhang P, Li K, Wu K, Su M, Li R, Hurley D, Bai L, Wang J, Yang Z. Characterization of Carbapenem-Resistant Enterobacteriaceae Cultured From Retail Meat Products, Patients, and Porcine Excrement in China. Front Microbiol 2021; 12:743468. [PMID: 35002997 PMCID: PMC8734966 DOI: 10.3389/fmicb.2021.743468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The emergence and dissemination of carbapenem-resistant Enterobacteriaceae (CRE) is a growing concern to animal and public health. However, little is known about the spread of CRE in food and livestock and its potential transmission to humans. To identify CRE strains from different origins and sources, 53 isolates were cultured from 760 samples including retail meat products, patients, and porcine excrement. Antimicrobial susceptibility testing was carried out, followed by phylogenetic typing, whole-genome sequencing, broth mating assays, and plasmids analyses. Forty-three Escherichia coli, nine Klebsiella pneumoniae, and one Enterobacter cloacae isolates were identified, each exhibiting multidrug-resistant phenotypes. Genetically, the main sequence types (STs) of E. coli were ST156 (n = 7), ST354 (n = 7), and ST48 (n = 7), and the dominant ST of K. pneumoniae is ST11 (n = 5). blaNDM–5 (n = 40) of E. coli and blaKPC–2 (n = 5) were the key genes that conferred carbapenem resistance phenotypes in these CRE strains. Additionally, the mcr-1 gene was identified in 17 blaNDM-producing isolates. The blaNDM–5 gene from eight strains could be transferred to the recipients via conjugation assays. Two mcr-1 genes in the E. coli isolates could be co-transferred along with the blaNDM–5 genes. IncF and IncX3 plasmids have been found to be predominantly associated with blaNDM gene in these strains. Strains isolated in our study from different sources and regions tend to be concordant and overlap. CRE strains from retail meat products are a reservoir for transition of CRE strains between animals and humans. These data also provide evidence of the dissemination of CRE strains and carbapenem-resistant genes between animal and human sources.
Collapse
Affiliation(s)
- Jie Feng
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Qian Xiang
- Department of Healthcare Associated Infection Control, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiangang Ma
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Pei Zhang
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Kun Li
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Ke Wu
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Mengru Su
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
| | - Ruichao Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Daniel Hurley
- UCD-Centre for Food Safety, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Li Bai
- National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, China
- *Correspondence: Li Bai,
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Juan Wang,
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, China
- Zengqi Yang,
| |
Collapse
|
30
|
Su C, Wu T, Meng B, Yue C, Sun Y, He L, Bian T, Liu Y, Huang Y, Lan Y, Li J. High Prevalence of Klebsiella pneumoniae Infections in AnHui Province: Clinical Characteristic and Antimicrobial Resistance. Infect Drug Resist 2021; 14:5069-5078. [PMID: 34880632 PMCID: PMC8645949 DOI: 10.2147/idr.s336451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/29/2021] [Indexed: 01/04/2023] Open
Abstract
Background Klebsiella pneumoniae (K. pneumoniae) causes community-acquired and hospital-acquired pneumonia. The mortality rates of invasive infections caused by hypervirulent K. pneumoniae (HvKP) are extremely high. However, the microbiological characteristics and clinical manifestations of K. pneumoniae in AnHui province still remain unclear. Purpose To show the high prevalence of HvKP infections regarding clinical characteristics and antimicrobial resistance in Anhui province. Patients and Methods A retrospective analysis was conducted to study the clinical data of 115 strains of K. pneumoniae from July 2019 to March 2020 in The First Affiliated Hospital of AnHui Medical University. The virulence genes, capsular types, carbapenemase genes, and molecular subtypes of these hypervirulent isolates were detected. Results Overall, 59.1% (68/115) cases were HvKP infections, mainly from the department of intensive care unit (ICU, n=14, 20.6%) and the department of respiratory and critical care (n=13, 19.1%). K2 was the most prevalent capsular serotype (n=26), followed by K1 (n=21). The results of MLST identification of 68 strains showed that ST23 (n=15, 22.1%) was the most common type of ST, followed by ST11 and ST65 (n=12, 17.6%), ST86 (n=9, 13.2%), and ST412 (n=6, 8.8%). Among 68 hvKP strains, 12 isolates were carbapenem resistant, and all except two harboured KPC. Conclusion The high incidence of carbapenemase producing HvKP in the Anhui province, especially the higher mortality of HvKP, should be paid more attention. Meanwhile, epidemiological surveillance and clinical treatment strategies should be continuously determined and implemented.
Collapse
Affiliation(s)
- Cong Su
- Department of Infection Management, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Ting Wu
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Bao Meng
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Chengcheng Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yating Sun
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Lingling He
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Tingting Bian
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yanyan Liu
- Anhui Center for Surveillance of Bacterial Resistance, Hefei, People's Republic of China.,Institute of Bacterial Resistance, Anhui Medical University, Hefei, People's Republic of China
| | - Ying Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Yanhu Lan
- Institute of Bacterial Resistance, Anhui Medical University, Hefei, People's Republic of China
| | - Jiabin Li
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China.,Anhui Center for Surveillance of Bacterial Resistance, Hefei, People's Republic of China.,Institute of Bacterial Resistance, Anhui Medical University, Hefei, People's Republic of China.,Department of Infectious Diseases, The Chaohu Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
31
|
Chen R, Liu Z, Xu P, Qi X, Qin S, Wang Z, Li R. Deciphering the Epidemiological Characteristics and Molecular Features of bla KPC-2- or bla NDM-1-Positive Klebsiella pneumoniae Isolates in a Newly Established Hospital. Front Microbiol 2021; 12:741093. [PMID: 34858362 PMCID: PMC8631570 DOI: 10.3389/fmicb.2021.741093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/27/2021] [Indexed: 01/01/2023] Open
Abstract
The emergence of hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) was regarded as an emerging threat in clinical settings. Here, we investigated the prevalence of CRKP strains among inpatients in a new hospital over 1 year since its inception with various techniques, and carried out a WGS-based phylogenetic study to dissect the genomic background of these isolates. The genomes of three representative blaNDM–1-positive strains and the plasmids of four blaKPC–2-positive strains were selected for Nanopore long-read sequencing to resolve the complicated MDR structures. Thirty-five CRKP strains were identified from 193 K. pneumoniae isolates, among which 30 strains (85.7%) harbored blaKPC–2, whereas the remaining five strains (14.3%) were positive for blaNDM–1. The antimicrobial resistance profiles of blaNDM–1-positive isolates were narrower than that of blaKPC–2-positive isolates. Five isolates including two blaNDM–1-positive isolates and three blaKPC–2-positive strains could successfully transfer the carbapenem resistance phenotype by conjugation. All CRKP strains were categorized into six known multilocus sequence types, with ST11 being the most prevalent type. Phylogenetic analysis demonstrated that the clonal spread of ST11 blaKPC–2-positive isolates and local polyclonal spread of blaNDM–1-positive isolates have existed in the hospital. The blaNDM–1 gene was located on IncX3, IncFIB/IncHI1B, and IncHI5-like plasmids, of which IncFIB/IncHI1B plasmid has a novel structure. By contrast, all ST11 isolates shared the similar blaKPC–2-bearing plasmid backbone, and 11 of them possessed pLVPK-like plasmids. In addition, in silico virulome analysis, Galleria mellonella larvae infection assay, and siderophore secretion revealed the hypervirulence potential of most blaKPC–2-positive strains. Given that these isolates also had remarkable environmental adaptability, targeted measures should be implemented to prevent the grave consequences caused by hv-CRKP strains in nosocomial settings.
Collapse
Affiliation(s)
- Ruifei Chen
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Department of Clinical Laboratory of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziyi Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| | - Poshi Xu
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Department of Clinical Laboratory of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinkun Qi
- Department of Clinical Laboratory, Henan Provincial People's Hospital, Department of Clinical Laboratory of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ruichao Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Institute of Comparative Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
32
|
Davoudabadi S, Goudarzi H, Goudarzi M, Ardebili A, Faghihloo E, Sharahi JY, Hashemi A. Detection of extensively drug-resistant and hypervirulent Klebsiella pneumoniae ST15, ST147, ST377 and ST442 in Iran. Acta Microbiol Immunol Hung 2021; 69:77-86. [PMID: 34546968 DOI: 10.1556/030.2021.01562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/03/2021] [Indexed: 01/12/2023]
Abstract
In this study, we focused on the emergence of extensively drug-resistant (XDR), pandrug-resistant (PDR), and hypervirulent Klebsiella pneumoniae (hvKP) in Iran. During 2018 to 2020 a total of 52 K. pneumoniae isolates were collected from different clinical specimens. The hvKP isolates were identified by PCR amplification of virulence and capsular serotype-specific genes. Hypermucoviscous K. pneumoniae (hmKP) were identified by string test. Carbapenem-resistant hvKP (CR-hvKP), multidrug-resistant hvKP (MDR-hvKP), extensively drug-resistant hvKP (XDR-hvKP), and pandrug-resistant hvKP (PDR-hvKP) were determined by disc diffusion method, Carba-NP test and PCR method. XDR-hvKP isolates were typed by multilocus sequence typing (MLST). Among all K. pneumoniae isolates 14 (26.9%) were identified as hvKP and 78.6% (11/14) of them were hmKP however, none of the classic K. pneumoniae (cKP) isolates were hmKP. The predominant capsular serotype of hvKP was K2 (42.85%) followed by K1 (35.71%). The prevalence of MDR-hvKP, XDR-hvKP and PDR-hvKP isolates were 6 (42.9%), 5 (35.7%) and 1 (7.1%), respectively. ESBL production was found in 85.7% of hvKP isolates and most of them carried bla TEM gene (78.6%) and 6 isolates (42.9%) were CR-hvKP. Among hvKP isolates, 1 (7.1%), 2 (14.3%), 3 (21.4%), 8 (28.6%), and 11 (78.6%) carried bla NDM-6, bla OXA-48, bla CTX-M, bla SHV, and bla TEM genes, respectively. According to MLST analysis, 2, 1, 1, and 1 XDR-hvKP isolates belonged to ST15, ST377, ST442, and ST147, respectively. The occurrence of such isolates is deeply concerning due to the combination of hypervirulence and extensively drug-resistance or pandrug-resistance.
Collapse
Affiliation(s)
- Sara Davoudabadi
- 1 Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Goudarzi
- 1 Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- 1 Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Ardebili
- 2 Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ebrahim Faghihloo
- 1 Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Yasbolaghi Sharahi
- 1 Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- 1 Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Salawati EM. Fatal disseminated pyogenic infection due to hypermucoviscous hypervirulent Klebsiella pneumoniae: A case report and literature review. Clin Case Rep 2021; 9:e04754. [PMID: 34584696 PMCID: PMC8455969 DOI: 10.1002/ccr3.4754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/15/2021] [Indexed: 11/08/2022] Open
Abstract
Hypervirulent Klebsiella pneumonia is becoming recognized globally and has been associated with serious sequelae including death. However, ethnicity and metastatic infections are characteristics for hypermucoviscous hypervirulent Klebsiella pneumoniae (hvKp) and should be rolled in/out by PCR and/or string test.
Collapse
Affiliation(s)
- Emad M. Salawati
- Department of Family MedicineFaculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| |
Collapse
|
34
|
Maki G, Zervos M. Health Care-Acquired Infections in Low- and Middle-Income Countries and the Role of Infection Prevention and Control. Infect Dis Clin North Am 2021; 35:827-839. [PMID: 34362546 PMCID: PMC8331241 DOI: 10.1016/j.idc.2021.04.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Health care-associated infections (HAIs) account for many morbidity and mortality worldwide, with disproportionate adverse effects in low- and middle-income countries (LMIC). Many factors contribute to the impact in LMIC, including lack of infrastructure, inconsistent surveillance, deficiency in trained personnel and infection control programs, and poverty-related factors. Therefore, optimal approaches must be tailored for LMIC and balance effectiveness and cost in the control of HAIs.
Collapse
Affiliation(s)
- Gina Maki
- Division of Infectious Diseases, Henry Ford Hospital, CFP-3, 2799 West Grand Boulevard, Detroit, MI 48202, USA.
| | - Marcus Zervos
- Division of Infectious Diseases, Henry Ford Hospital, Wayne State University, CFP-3, 2799 West Grand Boulevard, Detroit, MI 48202, USA
| |
Collapse
|
35
|
Lee CH, Chae JD, Choe W, Lee HY, Sohn YH, Ihm C, Jeong JH. Osteomyelitis Caused by Hypervirulent Klebsiella pneumoniae: The First Korean Case With Family Spread. Ann Lab Med 2021; 41:250-254. [PMID: 33063690 PMCID: PMC7591291 DOI: 10.3343/alm.2021.41.2.250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/04/2020] [Accepted: 09/19/2020] [Indexed: 11/19/2022] Open
Affiliation(s)
- Chang-Hun Lee
- Department of Orthopaedic Surgery, Hanyang University College of Medicine, Nowon Eulji Medical Center, Eulji University, Seoul, Korea
| | - Jeong Don Chae
- Department of Laboratory Medicine, Nowon Eulji Medical Center, Eulji University, Seoul, Korea
| | - Wonho Choe
- Department of Laboratory Medicine, Nowon Eulji Medical Center, Eulji University, Seoul, Korea
| | - Hyo Young Lee
- Department of Internal Medicine, Nowon Eulji Medical Center, Eulji University, Seoul, Korea
| | - Yong-Hak Sohn
- Department of Laboratory Medicine, Seegene Medical Foundation, Seoul, Korea
| | - Chunhwa Ihm
- Department of Laboratory Medicine, Daejeon Eulji Medical Center, Eulji University, Daejeon, Korea
| | - Ji Hun Jeong
- Department of Laboratory Medicine, Daejeon Eulji Medical Center, Eulji University, Daejeon, Korea
| |
Collapse
|
36
|
Emergence of Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae Coharboring a bla NDM-1-Carrying Virulent Plasmid and a bla KPC-2-Carrying Plasmid in an Egyptian Hospital. mSphere 2021; 6:6/3/e00088-21. [PMID: 34011682 PMCID: PMC8265623 DOI: 10.1128/msphere.00088-21] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates in Egyptian hospitals has been reported. However, the genetic basis and analysis of the plasmids associated with carbapenem-resistant hypervirulent K. pneumoniae (CR-HvKP) in Egypt have not been presented. Therefore, we attempted to decipher the plasmid sequences that are responsible for transferring the determinants of carbapenem resistance, particularly blaNDM-1 and blaKPC-2. Out of 34 K. pneumoniae isolates collected from two tertiary hospitals in Egypt, 31 were CRKP. Whole-genome sequencing revealed that our isolates were related to 13 different sequence types (STs). The most prevalent ST was ST101, followed by ST383 and ST11. Among the CRKP isolates, one isolate named EBSI036 has been reassessed by Nanopore sequencing. Genetic environment analysis showed that EBSI036 carried 20 antibiotic resistance genes and was identified as a CR-HvKP strain: it harbored four plasmids, namely, pEBSI036-1-NDM-VIR, pEBSI036-2-KPC, pEBSI036-3, and pEBSI036-4. The two carbapenemase genes blaNDM-1 and blaKPC-2 were located on plasmids pEBSI036-1-NDM-VIR and pEBSI036-2-KPC, respectively. The IncFIB:IncHI1B hybrid plasmid pEBSI036-1-NDM-VIR also carried some virulence factors, including the regulator of the mucoid phenotype (rmpA), the regulator of mucoid phenotype 2 (rmpA2), and aerobactin (iucABCD and iutA). Thus, we set out in this study to analyze in depth the genetic basis of the pEBSI036-1-NDM-VIR and pEBSI036-2-KPC plasmids. We report a high-risk clone ST11 KL47 serotype of a CR-HvKP strain isolated from the blood of a 60-year-old hospitalized female patient from the intensive care unit (ICU) in a tertiary care hospital in Egypt, which showed the cohabitation of a novel hybrid plasmid coharboring the blaNDM-1 and virulence genes and a blaKPC-2-carrying plasmid. IMPORTANCE CRKP has been registered in the critical priority tier by the World Health Organization and has become a significant menace to public health. The emergence of CR-HvKP is of great concern in terms of both disease and treatment. In-depth analysis of the carbapenemase-encoding and virulence plasmids may provide insight into ongoing recombination and evolution of virulence and multidrug resistance in K. pneumoniae. Thus, this study serves to alert contagious disease clinicians to the presence of hypervirulence in CRKP isolates in Egyptian hospitals.
Collapse
|
37
|
A global perspective on the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniae. J Glob Antimicrob Resist 2021; 25:26-34. [PMID: 33667703 DOI: 10.1016/j.jgar.2021.02.020] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
Hypervirulence and carbapenem resistance have emerged as two distinct evolutionary directions for Klebsiella pneumoniae, which pose a great threat in clinical settings. Multiple virulence factors contribute to hypervirulence, and the mechanisms of carbapenem resistance are complicated. However, more and more K. pneumoniae strains have been identified in recent years integrating both phenotypes, resulting in devastating clinical outcomes. Hypervirulent and carbapenem-resistant K. pneumoniae (CR-hvKP) emerged in the early 2010s and thereafter have become increasingly prevalent. CR-hvKP are primarily prevalent in Asia, especially China, but are reported all over the world. Mechanisms for the emergence of CR-hvKP can be summarised by three patterns: (i) carbapenem-resistant K. pneumoniae (CRKP) acquiring a hypervirulent phenotype; (ii) hypervirulent K. pneumoniae (hvKP) acquiring a carbapenem-resistant phenotype; and (iii) K. pneumoniae acquiring both a carbapenem resistance and hypervirulence hybrid plasmid. With their global dissemination, continued surveillance of the emergence of CR-hvKP should be more highly prioritised.
Collapse
|
38
|
Abd El-gawad El-sayed Ahmed M, Yang Y, Yang Y, Yan B, Chen G, Hassan RM, Zhong L, Chen Y, Roberts AP, Wu Y, He R, Liang X, Qin M, Dai M, Zhang L, Li H, Fan Y, Xu L, Tian G. Emergence of a Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae Co-harbouring a blaNDM-1-carrying Virulent Plasmid and a blaKPC-2-carrying Plasmid in an Egyptian Hospital.. [DOI: 10.1101/2021.02.26.433140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
ABSTRACTThe emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates in Egyptian hospitals has been reported. However, the genetic basis and the analysis of the plasmids associated with CR-hypervirulent-KP (CR-HvKP) in Egypt are not presented. Therefore, we attempt to decipher the plasmids sequences, which are responsible for transferring the determinants of carbapenem-resistance, particularly the blaNDM-1 and blaKPC-2. Out of 34 K. pneumoniae isolates collected from two tertiary hospitals in Egypt, 31 were CRKP. Whole-genome sequencing revealed that our isolates were related to 13 different sequence types (STs). The most prevalent ST was ST101, followed by ST383, and ST11. Among the CRKP isolates, one isolate named EBSI036 has been reassessed using Nanopore sequencing. Genetic environment analysis showed that EBSI036 carried 20 antibiotic resistance genes and was identified as CR-HvKP strain, it harboured four plasmids, namely; pEBSI036-1-NDM-VIR, pEBSI036-2-KPC, pEBSI036-3, and pEBSI036-4. The two carbapenemase genes, blaNDM-1 and blaKPC-2, were located on plasmids pEBSI036-1-NDM-VIR and pEBSI036-2-KPC, respectively. The IncFIB:IncHI1B hybrid plasmid pEBSI036-1-NDM-VIR also carried some virulence factors, including regulator of the mucoid phenotype (rmpA), the regulator of mucoid phenotype 2 (rmpA2), and aerobactin (iucABCD, iutA). Thus, we set out this study to analyse in-depth the genetic basis of pEBSI036-1-NDM-VIR and pEBSI036-2-KPC plasmids. We reported for the first time a high-risk clone ST11 KL47 serotype of CR-HvKP strain isolated from the blood of a 60-year-old hospitalised female patient from the ICU in a tertiary-care hospital in Egypt, which showed the cohabitation of a novel hybrid plasmid coharbouring the blaNDM-1 and virulence genes, besides a blaKPC-2-carrying plasmid.IMPORTANCECRKP had been registered in the critical priority tier by the World Health Organization and became a significant menace to public health. Therefore, we set out this study to analyse in-depth the genetic basis of pEBSI036-1-NDM-VIR and pEBSI036-2-KPC plasmids. Herein, we reported for the first time (to the best of our knowledge) a high-risk clone ST11 KL47 serotype of CR-HvKP strain isolated from the blood of a 60-year-old hospitalised female patient in a tertiary-care hospital from the ICU in Egypt, which showed the cohabitation of a novel hybrid plasmid co-harbouring the blaNDM-1 and virulence genes, besides a blaKPC-2-carrying plasmid. Herein, the high rate of CRKP might be due to the continuous usage of carbapenems as empirical therapy, besides the failure to implement an antibiotic stewardship program in Egyptian hospitals. Thus, this study serves to alert the contagious disease clinicians to the presence of hypervirulence in CRKP isolates in Egyptian hospitals.
Collapse
|
39
|
Di Domenico EG, Cavallo I, Sivori F, Marchesi F, Prignano G, Pimpinelli F, Sperduti I, Pelagalli L, Di Salvo F, Celesti I, Paluzzi S, Pronesti C, Koudriavtseva T, Ascenzioni F, Toma L, De Luca A, Mengarelli A, Ensoli F. Biofilm Production by Carbapenem-Resistant Klebsiella pneumoniae Significantly Increases the Risk of Death in Oncological Patients. Front Cell Infect Microbiol 2020; 10:561741. [PMID: 33363047 PMCID: PMC7759150 DOI: 10.3389/fcimb.2020.561741] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a prominent cause of nosocomial infections associated with high rates of morbidity and mortality, particularly in oncological patients. The hypermucoviscous (HMV) phenotype and biofilm production are key factors for CRKP colonization and persistence in the host. This study aims at exploring the impact of CRKP virulence factors on morbidity and mortality in oncological patients. A total of 86 CRKP were collected between January 2015 and December 2019. Carbapenem resistance-associated genes, antibiotic susceptibility, the HMV phenotype, and biofilm production were evaluated. The median age of the patients was 71 years (range 40–96 years). Clinically infected patients were 53 (61.6%), while CRKP colonized individuals were 33 (38.4%). The most common infectious manifestations were sepsis (43.4%) and pneumonia (18.9%), while rectal surveillance swabs were the most common site of CRKP isolation (81.8%) in colonized patients. The leading mechanism of carbapenem resistance was sustained by the KPC gene (96.5%), followed by OXA-48 (2.3%) and VIM (1.2%). Phenotypic CRKP characterization indicated that 55.8% of the isolates were strong biofilm-producers equally distributed between infected (54.2%) and colonized (45.8%) patients. The HMV phenotype was found in 22.1% of the isolates, which showed a significant (P<0.0001) decrease in biofilm production as compared to non-HMV strains. The overall mortality rate calculated on the group of infected patients was 35.8%. In univariate analysis, pneumoniae significantly correlated with death (OR 5.09; CI 95% 1.08–24.02; P=0.04). The non-HMV phenotype (OR 4.67; CI 95% 1.13–19.24; P=0.03) and strong biofilm-producing strains (OR 5.04; CI95% 1.39–18.25; P=0.01) were also associated with increased CRKP infection-related mortality. Notably, the multivariate analysis showed that infection with strong biofilm-producing CRKP was an independent predictor of mortality (OR 6.30; CI 95% 1.392–18.248; P=0.004). CRKP infection presents a high risk of death among oncological patients, particularly when pneumoniae and sepsis are present. In infected patients, the presence of strong biofilm-producing CRKP significantly increases the risk of death. Thus, the assessment of biofilm production may provide a key element in supporting the clinical management of high-risk oncological patients with CRKP infection.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Francesco Marchesi
- Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Grazia Prignano
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Isabella Sperduti
- Biostatistical Unit-Clinical Trials Center, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Lorella Pelagalli
- Anesthesiology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabiola Di Salvo
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Ilaria Celesti
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Silvia Paluzzi
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Carmelina Pronesti
- Hospital Infection Control Committee, Istituti Fisioterapici Ospitalieri-IFO, Rome, Italy
| | - Tatiana Koudriavtseva
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology C. Darwin, Sapienza, University of Rome Sapienza, Rome, Italy
| | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Assunta De Luca
- Quality, Accreditation and Risk Management Unit, Istituti Fisioterapici Ospitalieri-IFO, Rome, Italy
| | - Andrea Mengarelli
- Hematology and Stem Cell Transplant Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabrizio Ensoli
- Microbiology and Virology, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| |
Collapse
|
40
|
Luo K, Tang J, Qu Y, Yang X, Zhang L, Chen Z, Kuang L, Su M, Mu D. Nosocomial infection by Klebsiella pneumoniae among neonates: a molecular epidemiological study. J Hosp Infect 2020; 108:174-180. [PMID: 33290814 DOI: 10.1016/j.jhin.2020.11.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/17/2020] [Accepted: 11/26/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND Nosocomial infection by Klebsiella pneumoniae (Kp) and drug resistance of Kp among neonates is a major concern. Hypervirulent K. pneumoniae (hvKp) infections are gradually increasing worldwide. Carbapenem-resistant hvKp infection has brought challenges to clinical treatment. AIM To evaluate the changes in drug resistance trends of Kp strains in neonatal intensive care unit (NICU) nosocomial infections, to analyse drug resistance genes and virulence genes of carbapenem-resistant K. pneumoniae (CRKP) and to identify whether these CRKP strains are hvKp. METHODS A total of 80 neonates with Kp nosocomial infections from 2013 to 2018 were retrospectively studied. Drug susceptibility testing was performed on 80 Kp strains, among which the 12 CRKP strains were further studied. FINDINGS Kp accounted for 26.9% of nosocomial infections in the NICU. CRKP strains accounted for 15.0%. Among the 80 nosocomial infection Kp strains, CRKP strains accounted for 33.3% and 53.3% in 2017 and 2018 respectively. One of the 12 CRKP strains was positive in the drawing test. The 12 CRKP strains were divided into four complete genome sequence types: cgST1 (N = 2), cgST2 (N = 1), cgST3 (N = 1), and cgST4 (N = 8). Among genes that mediated carbapenem resistance, strains of cgST4 carried NDM-5, strains of cgST2 and cgST3 carried NDM-1, and strains of cgST1 carried IMP-4. None of the 12 CRKP strains carried rmpA/rmpA2 (highly related with hvKp). CONCLUSION Nosocomial infections of CRKP among neonates are becoming common, but no hvKp was found among the CRKP strains in this study.
Collapse
Affiliation(s)
- K Luo
- Department of Neonatology, Sichuan University, West China Second Hospital, Chengdu, Sichuan, China
| | - J Tang
- Department of Neonatology, Sichuan University, West China Second Hospital, Chengdu, Sichuan, China.
| | - Y Qu
- Department of Neonatology, Sichuan University, West China Second Hospital, Chengdu, Sichuan, China
| | - X Yang
- Department of Neonatology, Sichuan University, West China Second Hospital, Chengdu, Sichuan, China
| | - L Zhang
- Department of Neonatology, Sichuan University, West China Second Hospital, Chengdu, Sichuan, China
| | - Z Chen
- Department of Neonatology, Sichuan University, West China Second Hospital, Chengdu, Sichuan, China
| | - L Kuang
- Department of Laboratory, Sichuan University, West China Second Hospital, Chengdu, Sichuan, China
| | - M Su
- Department of Laboratory, Sichuan University, West China Second Hospital, Chengdu, Sichuan, China
| | - D Mu
- Department of Neonatology, Sichuan University, West China Second Hospital, Chengdu, Sichuan, China
| |
Collapse
|
41
|
Qamar MU, Lopes BS, Hassan B, Khurshid M, Shafique M, Atif Nisar M, Mohsin M, Nawaz Z, Muzammil S, Aslam B, Ejaz H, Toleman MA. The present danger of New Delhi metallo-β-lactamase: a threat to public health. Future Microbiol 2020; 15:1759-1778. [PMID: 33404261 DOI: 10.2217/fmb-2020-0069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The evolution of antimicrobial-resistant Gram-negative pathogens is a substantial menace to public health sectors, notably in developing countries because of the scarcity of healthcare facilities. New Delhi metallo-β-lactamase (NDM) is a potent β-lactam enzyme able to hydrolyze several available antibiotics. NDM was identified from the clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Swedish patient in New Delhi, India. This enzyme horizontally passed on to various Gram-negative bacteria developing resistance against a variety of antibiotics which cause treatment crucial. These bacteria increase fatality rates and play an integral role in the economic burden. The efficient management of NDM-producing isolates requires the coordination between each healthcare setting in a region. In this review, we present the prevalence of NDM in children, fatality and the economic burden of resistant bacteria, the clonal spread of NDM harboring bacteria and modern techniques for the detection of NDM producing pathogens.
Collapse
Affiliation(s)
- Muhammad Usman Qamar
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Bruno S Lopes
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, AB24 3DR, Scotland, UK
| | - Brekhna Hassan
- Department of Medical Microbiology & Infectious Diseases, Institute of Infection & Immunity, School of Medicine, Cardiff University, CF10 3AT, Cardiff, UK
| | - Mohsin Khurshid
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Muhammad Shafique
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
- College of Science and Engineering, Flinders University, 5042, Australia
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan
| | - Zeeshan Nawaz
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, 72388, Saudi Arabia
| | - Mark A Toleman
- Department of Medical Microbiology & Infectious Diseases, Institute of Infection & Immunity, School of Medicine, Cardiff University, CF10 3AT, Cardiff, UK
| |
Collapse
|
42
|
Tang M, Kong X, Hao J, Liu J. Epidemiological Characteristics and Formation Mechanisms of Multidrug-Resistant Hypervirulent Klebsiella pneumoniae. Front Microbiol 2020; 11:581543. [PMID: 33329444 PMCID: PMC7714786 DOI: 10.3389/fmicb.2020.581543] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Multi-drug resistance (MDR) and hypervirulence (hv) were exhibited by different well-separated Klebsiella pneumoniae lineages in the past, but their convergence clones—MDR-hypervirulent K. pneumoniae (HvKPs)—both highly pathogenic and resistant to most available antibiotics, have increasingly been reported. In light of the clonal lineages and molecular characteristics of the studied MDR-HvKP strains found in the literature since 2014, this review discusses the epidemiology of MDR-HvKPs, in particular summarizing the three general aspects of plasmids-associated mechanisms underlying the formation of MDR-HvKPs clones: MDR-classic K. pneumoniae (cKPs) acquiring hv plasmids, hvKPs obtaining MDR plasmids, and the acquisition of hybrid plasmids harboring virulence and resistance determinants. A deeper understanding of epidemiological characteristics and possible formation mechanisms of MDR-HvKPs is greatly needed for the proper surveillance and management of this potential threat.
Collapse
Affiliation(s)
- Miran Tang
- Clinical Laboratory Department, Santai People's Hospital, Mianyang, China
| | - Xin Kong
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingchen Hao
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinbo Liu
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
43
|
Liao W, Liu Y, Zhang W. Virulence evolution, molecular mechanisms of resistance and prevalence of ST11 carbapenem-resistant Klebsiella pneumoniae in China: A review over the last 10 years. J Glob Antimicrob Resist 2020; 23:174-180. [PMID: 32971292 DOI: 10.1016/j.jgar.2020.09.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 12/24/2022] Open
Abstract
Sequence type 11 (ST11) carbapenem-resistant Klebsiella pneumoniae (CRKP) has become the dominant clone in China. In this review, we trace the prevalence of ST11 CRKP in the China Antimicrobial Surveillance Network (CHINET), the key antimicrobial resistance mechanisms and virulence evolution. The recent emergence of ST11 carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) strains in China due to the acquisition of a pLVPK-like virulence plasmid, which may cause severe infections in relatively healthy individuals that are difficult to treat with current antibiotics, has attracted worldwide attention. There is a very close linkage among IncF plasmids, NTEKPC and ST11 K. pneumoniae in China. Hybrid conjugative virulence plasmids are demonstrated to readily convert a ST11 CRKP strain to a CR-hvKP strain via conjugation. Understanding the molecular evolutionary mechanisms of resistance and virulence-bearing plasmids as well as the prevalence of ST11 CRKP in China allows improved tracking and control of such organisms.
Collapse
Affiliation(s)
- Wenjian Liao
- Department of Respiratory and Critical Care, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, Jiangxi 330006, PR China
| | - Yang Liu
- Department of Clinical Microbiology, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, Jiangxi 330006, PR China.
| | - Wei Zhang
- Department of Respiratory and Critical Care, First Affiliated Hospital of Nanchang University, Nanchang University, Yong wai zheng jie No. 17, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
44
|
Li Q, Zhu J, Kang J, Song Y, Yin D, Guo Q, Song J, Zhang Y, Wang S, Duan J. Emergence of NDM-5-Producing Carbapenem-Resistant Klebsiella pneumoniae and SIM-Producing Hypervirulent Klebsiella pneumoniae Isolated from Aseptic Body Fluid in a Large Tertiary Hospital, 2017-2018: Genetic Traits of blaNDM-Like and blaSIM-Like Genes as Determined by NGS. Infect Drug Resist 2020; 13:3075-3089. [PMID: 32943891 PMCID: PMC7481300 DOI: 10.2147/idr.s261117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/28/2020] [Indexed: 01/10/2023] Open
Abstract
Purpose To characterize the clinical, resistance, and virulence features of carbapenem-resistant Klebsiella pneumonaie (CRKP) and hypervirulent Klebsiella pneumoniae (hvKP) and also provide an effective selection of drug in CRKP and hvKP treatment. Materials and Methods Twelve strains were collected and investigated these isolates for their antimicrobial susceptibility and molecular features. Resistance mechanisms, virulence-associated genes, multilocus sequence typing (MLST), and serotypes were detected by PCR and sequencing. Next general sequencing (NGS) was carried out to determine the features of carbapenem resistance and virulence. The synergistic activity of tigecycline–imipenem (TGC+IPM), tigecycline–meropenem (TGC+MEM), and tigecycline–aztreonam (TGC+ATM) combinations were performed by microdilution checkerboard method. Results Eleven CRKP and one hvKP strains were collected. All strains showed highly sensitive rates to tigecycline (TGC) and amikacin (AMK). NDM (33.3%, 4/12) was the main resistance mechanism and MLST assigned 3 of them to ST11. CTX-M-producing (n = 1) and KPC-2-producing (n = 1) isolates belonged to ST147 and ST11, respectively. The MICs of ATM and quinolones in NDM-1 CRKP and NDM-5 CRKP strains were different. The serotype of the majority strains was KL22KL137 (58.3%, 7/12), hvKP stain belonged to K64. CRKP strains harbored plasmid-mediated quinolone resistance genes (oqxA, oqxB, qnrS, qnrB), β-lactams (blaCTX-M-3), aminoglycosides, type I and type III fimbriae genes, siderophore genes, and transporter and pumps. SIM-producing ST1764 K64 showed typical features of hvKP, showing hypermucoviscosity phenotype. The virulence genes, including rmpA2, alls and aerobactin genes, linked to hvKP, were found in ST1764 hvKP. hvKP was sensitive to quinolone; also, oqxA gene was detected. All TGC combinations showed highly synergistic effects and TGC+IPM was more effective treatment. Conclusion We first identified the NDM-5-producing ST690 CRKP and SIM-producing ST1764 hvKP strains in Shanxi province. Tigecycline-carbapenem combinations were available treatments for CRKP.
Collapse
Affiliation(s)
- Qi Li
- Department of Pharmacy, School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jiaying Zhu
- Department of Pharmacy, School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jianbang Kang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Yan Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Donghong Yin
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Qian Guo
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Junli Song
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Yan Zhang
- Department of Chief Executive, Willingmed Technology (Beijing) Co., Ltd, Beijing, Beijing, People's Republic of China
| | - Shuyun Wang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Jinju Duan
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
45
|
Liu Z, Chu W, Li X, Tang W, Ye J, Zhou Q, Guan S. Genomic Features and Virulence Characteristics of a Community-Acquired Bloodstream Infection-Causing Hypervirulent Klebsiella pneumoniae ST86 Strain Harboring KPC-2-Encoding IncX6 Plasmid. Microb Drug Resist 2020; 27:360-368. [PMID: 32716252 DOI: 10.1089/mdr.2019.0394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The emergence and spread of carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) is causing worldwide concern. Sequence type (ST) 86 K. pneumoniae, a major hvKP clone, is rarely resistant to carbapenem. In this study, we report the genomic features and virulence characteristics of a community-acquired bloodstream infection (CA-BSI)-causing CR-hvKP ST86 strain (KPN55602). This strain is resistant to carbapenem but sensitive to amikacin, gentamicin, tigecycline, and colistin. According to in vitro and in vivo virulence assessments, it was classified as hypervirulent. Whole-genome sequencing revealed that KPN55602 has a single 5.13 Mb chromosome and two plasmids. The chromosome of KPN55602 is phylogenetically similar to those of other sequenced ST86 strains. The incompatibility (Inc) group HI1B plasmid pK55602_1, harboring a set of virulence genes, was classified as a virulence plasmid. The IncX6 plasmid pK55602_2, carrying blaKPC-2, was transferable through conjugation and is highly homologous to all five sequenced blaKPC-bearing IncX6 plasmids. In conclusion, to our knowledge, this is the first report of a CA-BSI-causing CR-hvKP ST86 strain harboring an exogenous blaKPC-2-bearing IncX6 plasmid, supplementing existing knowledge on the CR-hvKP evolutionary scenario. The IncX6 plasmid may be an important vehicle for blaKPC, and its horizontal transfer may have led to CR-hvKP evolution in the community setting.
Collapse
Affiliation(s)
- Zhou Liu
- Department of Laboratory Medicine and The Second Hospital of Anhui Medical University, Hefei, China
| | - Wenwen Chu
- Department of Laboratory Medicine and The Second Hospital of Anhui Medical University, Hefei, China
| | - Xin Li
- Department of Laboratory Medicine and The Second Hospital of Anhui Medical University, Hefei, China
| | - Wei Tang
- Department of Laboratory Medicine and The Second Hospital of Anhui Medical University, Hefei, China
| | - Jun Ye
- Department of Infectious Disease, The Second Hospital of Anhui Medical University, Hefei, China
| | - Qiang Zhou
- Department of Laboratory Medicine and The Second Hospital of Anhui Medical University, Hefei, China
| | - Shihe Guan
- Department of Laboratory Medicine and The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
46
|
Zhou M, Lan Y, Wang S, Liu Q, Jian Z, Li Y, Chen X, Yan Q, Liu W. Epidemiology and molecular characteristics of the type VI secretion system in Klebsiella pneumoniae isolated from bloodstream infections. J Clin Lab Anal 2020; 34:e23459. [PMID: 32656871 PMCID: PMC7676210 DOI: 10.1002/jcla.23459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/30/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022] Open
Abstract
Background The type VI secretion system (T6SS) has been identified as a novel virulence factor. This study aimed to investigate the prevalence of the T6SS genes in Klebsiella pneumoniae‐induced bloodstream infections (BSIs). We also evaluated clinical and molecular characteristics of T6SS‐positive K pneumoniae. Methods A total of 344 non‐repetitive K. pneumoniae bloodstream isolates and relevant clinical data were collected from January 2016 to January 2019. For all isolates, T6SS genes, capsular serotypes, and virulence genes were detected by polymerase chain reaction, and antimicrobial susceptibility was tested by VITEK® 2 Compact. MLST was being conducted for hypervirulent K. pneumoniae (HVKP). Results 69 (20.1%) were identified as T6SS‐positive K. pneumoniae among 344 isolates recovered from patients with BSIs. The rate of K1 capsular serotypes and ten virulence genes in T6SS‐positive strains was higher than T6SS‐negative strains (P = .000). The T6SS‐positive rate was significantly higher than T6SS‐negative rate among HVKP isolates. (P = .000). The T6SS‐positive K. pneumoniae isolates were significantly more susceptible to cefoperazone‐sulbactam, ampicillin‐sulbactam, cefazolin, ceftriaxone, cefotan, aztreonam, ertapenem, amikacin, gentamicin, levofloxacin, and ciprofloxacin (P < 0.05). More strains isolated from the community and liver abscess were T6SS‐positive K. pneumoniae (P < .05). Multivariate regression analysis indicated that community‐acquired BSIs (OR 2.986), the carriage of wcaG (OR 10.579), iucA (OR 2.441), and p‐rmpA (OR 7.438) virulence genes, and biliary diseases (OR 5.361) were independent risk factors for T6SS‐positive K. pneumoniae‐induced BSIs. Conclusion The T6SS‐positive K. pneumoniae was prevalent in individuals with BSIs. T6SS‐positive K. pneumoniae strains seemed to be hypervirulent which revealed the potential pathogenicity of this emerging gene cluster.
Collapse
Affiliation(s)
- Mao Zhou
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - You Lan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Siyi Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Qingxia Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Zijuan Jian
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Yanming Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Xia Chen
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
47
|
Hwang JH, Handigund M, Hwang JH, Cho YG, Kim DS, Lee J. Clinical Features and Risk Factors Associated With 30-Day Mortality in Patients With Pneumonia Caused by Hypervirulent Klebsiella pneumoniae (hvKP). Ann Lab Med 2020; 40:481-487. [PMID: 32539304 PMCID: PMC7295963 DOI: 10.3343/alm.2020.40.6.481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/18/2020] [Accepted: 06/01/2020] [Indexed: 12/02/2022] Open
Abstract
Background Reports on metastatic or invasive infections by hypervirulent Klebsiella pneumoniae (hvKP) have increased recently. However, the effects of its virulence on clinical course and outcomes in pneumonia patients have rarely been addressed. We assessed and compared the clinical features of hvKp and classic K. pneumoniae (cKP) strains isolated from patients with pneumonia caused by K. pneumoniae. We also investigated the effects of virulence factors and the K. pneumoniae capsular serotypes K1 and K2 on mortality. Methods In this retrospective study, we enrolled 91 patients diagnosed as having pneumonia caused by K. pneumoniae and obtained their demographic and clinical data from medical records. We evaluated genes for K1 and K2, antimicrobial susceptibility, and the virulence genes rmpA, iutA, entB, ybtS, kfu, mrkD, and allS. Strains that possessed rmpA and iutA were defined as hvKP (N=39), while the remaining were classified as cKP (N=52). Odds ratio (OR) for the risk factors associated with 30-day mortality was calculated using the binary logistic regression model. Results The 30-day mortality in all patients was 23.1%; it was 17.9% (7/39) in the hvKP group and 26.9% (14/52) in the cKP group (P=0.315). Bacteremia (OR=38.1; 95% confidence interval [CI], 2.5–570.2), altered mental status (OR=8.8; 95% CI, 1.7–45.0), and respiratory rate >30 breaths/min (OR=4.8; 95% CI, 1.2–20.0) were independent risk factors for 30-day mortality in all patients. Conclusions Our results suggest that hypervirulence determinants do not have a significant effect on 30-day mortality in patients with pneumonia caused by K. pneumoniae.
Collapse
Affiliation(s)
- Jeong-Hwan Hwang
- Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Mallikarjun Handigund
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Joo-Hee Hwang
- Department of Internal Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea
| | - Yong Gon Cho
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea.,Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Dal Sik Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea.,Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Jaehyeon Lee
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Korea.,Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| |
Collapse
|
48
|
Yang X, Dong N, Chan EWC, Zhang R, Chen S. Carbapenem Resistance-Encoding and Virulence-Encoding Conjugative Plasmids in Klebsiella pneumoniae. Trends Microbiol 2020; 29:65-83. [PMID: 32448764 DOI: 10.1016/j.tim.2020.04.012] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 12/23/2022]
Abstract
Klebsiella pneumoniae has an exceptional ability to acquire exogenous resistance-encoding and hypervirulence-encoding genetic elements. In this review we trace the key evolutionary routes of plasmids involved in the dissemination of such elements; we observed diverse, but convergent, evolutionary paths that eventually led to the emergence of conjugative plasmids which simultaneously encode carbapenem resistance and hypervirulence. One important evolutionary feature of these plasmids is that they contain a wide range of transposable elements that enable them to undergo frequent genetic transposition, resulting in plasmid fusion and presumably better adaptation of the plasmid to the bacterial host. Identifying the key molecular markers of resistance and virulence-bearing conjugative plasmids allows improved tracking and control of the life-threatening carbapenem-resistant and hypervirulent strains of K. pneumoniae.
Collapse
Affiliation(s)
- Xuemei Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Ning Dong
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Edward Wai-Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Zhejiang, Hangzhou, China
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
49
|
Zhao Q, Guo L, Wang LF, Zhao Q, Shen DX. Prevalence and characteristics of surgical site hypervirulent Klebsiella pneumoniae isolates. J Clin Lab Anal 2020; 34:e23364. [PMID: 32424981 PMCID: PMC7521332 DOI: 10.1002/jcla.23364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We aim to determine the prevalence of hypervirulent Klebsiella pneumoniae (hvKp), which causes surgical site infections (SSIs), and describe the microbiological and molecular characteristics of hvKp isolates. METHODS Non-duplicate K. pneumoniae strains were isolated from wound drainage specimens of postoperative patients at the Chinese PLA General Hospital between September 2008 and July 2017. Antimicrobial susceptibility, string test, pulsed-field gel electrophoresis (PFGE), and genome sequencing analyses were performed. RESULTS Fifty-one K. pneumoniae strains were isolated from wound drainage specimens collected from postoperative patients. Twenty-six hvKp strains, including 17 (17/37, 46.0%) and 9 (9/14, 64.3%) hvKp strains, were isolated from 37 and 14 patients with SSIs and community-acquired infections (CAIs), respectively. Notably, 4 extended-spectrum beta-lactamase (ESBL)-producing hvKp strains (4/26, 15.4%) and 2 carbapenem-resistant hvKp strains (2/26, 7.7%) were found. Thirteen K1 serotype (13/26, 50.0%) and 7 K2 serotype (7/26, 26.9%) strains were identified. Phylogenetic analysis results showed that 13 K1 serotype isolates exhibited a high degree of clonality, while 7 K2 serotype strains were genetically unrelated. MLST analysis indicated that there was a strong correlation between ST23 and the K1 serotype. ST65, ST86, and ST375 were prevalent in K2 serotype strains. Almost all hvKp strains (24/26, 92.3%) harbored large virulence plasmids with a high degree of homology to pNTUH-K2044 and sizes ranging from 140 to 220 kbp. CONCLUSIONS HvKp strains were prevalent in SSIs. Effective surveillance and control measures should be implemented to prevent the dissemination of such organisms, including the ESBL-producing and carbapenem-resistant hvKp strains.
Collapse
Affiliation(s)
- Qiang Zhao
- Chinese PLA General Hospital, Beijing, China
| | - Ling Guo
- Chinese PLA General Hospital, Beijing, China
| | | | - Qian Zhao
- Chinese PLA General Hospital, Beijing, China
| | | |
Collapse
|
50
|
The determination of gyrA and parC mutations and the prevalence of plasmid-mediated quinolone resistance genes in carbapenem resistant Klebsiella pneumonia ST11 and ST76 strains isolated from patients in Heilongjiang Province, China. INFECTION GENETICS AND EVOLUTION 2020; 82:104319. [PMID: 32278145 DOI: 10.1016/j.meegid.2020.104319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/17/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND There is increasing resistance to carbapenems among Klebsiella pneumoniae,and fluoroquinolones (FQ) are increasingly used to treat infections from extended-spectrum β- lactamase(ESBLs) and carbapenemase-producing Klebsiella pneumoniae. However, the acquisition of plasmid-mediated quinolone resistance (PMQR) or the spontaneous mutation of the quinolone resistance-determining regions (QRDR) of the gyrA and parC genes can severely affect the therapeutic effect of quinolones. The goal of this study was to investigate the molecular determinants of FQ resistance(FQ-R) in carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates from Heilongjiang Province,China. MATERIALS AND METHODS We isolated 40 strains of CRKP from a treatment center in the eastern part of Heilongjiang Province from January 2016 to December 2018. The VITEK2 Compact analyzer was used to identify and detect drug sensitivity. Different types of drug resistance genes were detected by polymerase chain reaction (PCR). PCR and DNA sequencing were used to assess the presence of qnrA, qnrB, qnrS,qepA and acc(6') Ib-cr genes,which are plasmid-encode genes that can contribute to resistance. The sequences of gyrA and parC genes were sequenced and compared with the sequences of standard strains to determine if mutations were present.Multi-site sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were performed on the strains to assess homology. RESULTS The isolated CRKP strains showed rates of resistance to fluoroquinolones of 22.5% to 42.5%. The resistance rate of ciprofloxacin was significantly higher than that of levofloxacin.Nine CRKP strains (22.5%) showed co-resistance to ciprofloxacin and levofloxacin.The quinolone resistant strains were screened for plasmid-encoded genes that can contribute to resistance (PMQR genes).Among the 17 quinolone resistant strains,one strain contained no PMQR genes,twelve strains contained two PMQR genes,and four strains contained four PMQR genes.Acc (6') Ib-cr was the most frequently detected PMQR gene, detected in 95% of strains tested (38 of 40) and in 94.1% of the quinolone-resistant strains (16 of 17). The qepA gene encoding an efflux pump was not detected in any strains.No isolate carried five different PMQRs simultaneously.Changes of S83I and D87G changes in gyrA, and the S80I change in parC,which were mediated by QRDR,were identified in two isolates,which showed resistance to both ciprofloxacin and levofloxacin.Most of the FQ-R strains(58.8%,10/17) belong to ST(sequence type) 76, which is dominant in the local area, while all the mutant strains (100%,2/2),that differ in at least one site from standard bacteria, belong to the ST11 group. The strains were isolated from a hospital where there had been a recent outbreak of ST76 type CRKP in the neurosurgery ward and intensive care unit. CONCLUSION CRKP strains were identified that were insensitive or even resistant to quinolones,and this resistance is common in Heilongjiang Province of eastern China;fluoroquinolone-resistance in these clinical CRKP strains is a complex interplay between PMQR determinants and mutations in gyrA and parC.The resistance level caused by QRDR mutation is higher than that caused by PMQR, however, the high frequency of PMQR genes in the isolated CRKP strains suggests the potential for impact of these genes.PMQR determinants are often found in carbapenemase-producing or ESBLs-producing Klebsiella pneumoniae,and some resistance genes,such as:SHV,TEM, CTX-M-15,and OXA-1 are closely associated with FQ-R. Finally, geographical factors can affect the emergence and spread of PMQR and QRDR.Some genetic lineages have higher potential risks, and continuous close monitoring is required.
Collapse
|