1
|
Li W, Wang Z, Chen S, Zuo M, Xiang Y, Yuan Y, He Y, Zhang S, Liu Y. Metabolic checkpoints in glioblastomas: targets for new therapies and non-invasive detection. Front Oncol 2024; 14:1462424. [PMID: 39678512 PMCID: PMC11638224 DOI: 10.3389/fonc.2024.1462424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Glioblastoma (GBM) is a highly malignant tumor of the central nervous system that remains intractable despite advancements in current tumor treatment modalities, including immunotherapy. In recent years, metabolic checkpoints (aberrant metabolic pathways underlying the immunosuppressive tumor microenvironment) have gained attention as promising therapeutic targets and sensitive biomarkers across various cancers. Here, we briefly review the existing understanding of tumor metabolic checkpoints and their implications in the biology and management of GBM. Additionally, we discuss techniques that could evaluate metabolic checkpoints of GBM non-invasively, thereby potentially facilitating neo-adjuvant treatment and dynamic surveillance.
Collapse
Affiliation(s)
- Wenhao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Siliang Chen
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Mingrong Zuo
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Neurosurgery, West China Second University Hospital, Chengdu, China
| | - Yufan Xiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yunbo Yuan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuze He
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shuxin Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Hangel G, Schmitz‐Abecassis B, Sollmann N, Pinto J, Arzanforoosh F, Barkhof F, Booth T, Calvo‐Imirizaldu M, Cassia G, Chmelik M, Clement P, Ercan E, Fernández‐Seara MA, Furtner J, Fuster‐Garcia E, Grech‐Sollars M, Guven NT, Hatay GH, Karami G, Keil VC, Kim M, Koekkoek JAF, Kukran S, Mancini L, Nechifor RE, Özcan A, Ozturk‐Isik E, Piskin S, Schmainda KM, Svensson SF, Tseng C, Unnikrishnan S, Vos F, Warnert E, Zhao MY, Jancalek R, Nunes T, Hirschler L, Smits M, Petr J, Emblem KE. Advanced MR Techniques for Preoperative Glioma Characterization: Part 2. J Magn Reson Imaging 2023; 57:1676-1695. [PMID: 36912262 PMCID: PMC10947037 DOI: 10.1002/jmri.28663] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
Preoperative clinical MRI protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this second part, we review magnetic resonance spectroscopy (MRS), chemical exchange saturation transfer (CEST), susceptibility-weighted imaging (SWI), MRI-PET, MR elastography (MRE), and MR-based radiomics applications. The first part of this review addresses dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) MRI, arterial spin labeling (ASL), diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting (MRF). EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Gilbert Hangel
- Department of NeurosurgeryMedical University of ViennaViennaAustria
- High Field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Christian Doppler Laboratory for MR Imaging BiomarkersViennaAustria
- Medical Imaging ClusterMedical University of ViennaViennaAustria
| | - Bárbara Schmitz‐Abecassis
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
- Medical Delta FoundationDelftthe Netherlands
| | - Nico Sollmann
- Department of Diagnostic and Interventional RadiologyUniversity Hospital UlmUlmGermany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der IsarTechnical University of MunichMunichGermany
- TUM‐Neuroimaging Center, Klinikum rechts der IsarTechnical University of MunichMunichGermany
| | - Joana Pinto
- Institute of Biomedical Engineering, Department of Engineering ScienceUniversity of OxfordOxfordUK
| | | | - Frederik Barkhof
- Department of Radiology & Nuclear MedicineAmsterdam UMC, Vrije UniversiteitAmsterdamNetherlands
- Queen Square Institute of Neurology and Centre for Medical Image ComputingUniversity College LondonLondonUK
| | - Thomas Booth
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Department of NeuroradiologyKing's College Hospital NHS Foundation TrustLondonUK
| | | | | | - Marek Chmelik
- Department of Technical Disciplines in Medicine, Faculty of Health CareUniversity of PrešovPrešovSlovakia
| | - Patricia Clement
- Department of Diagnostic SciencesGhent UniversityGhentBelgium
- Department of Medical ImagingGhent University HospitalGhentBelgium
| | - Ece Ercan
- Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Maria A. Fernández‐Seara
- Department of RadiologyClínica Universidad de NavarraPamplonaSpain
- IdiSNA, Instituto de Investigación Sanitaria de NavarraPamplonaSpain
| | - Julia Furtner
- Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Research Center of Medical Image Analysis and Artificial IntelligenceDanube Private UniversityAustria
| | - Elies Fuster‐Garcia
- Biomedical Data Science Laboratory, Instituto Universitario de Tecnologías de la Información y ComunicacionesUniversitat Politècnica de ValènciaValenciaSpain
| | - Matthew Grech‐Sollars
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - N. Tugay Guven
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Gokce Hale Hatay
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Golestan Karami
- School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Vera C. Keil
- Department of Radiology & Nuclear MedicineAmsterdam UMC, Vrije UniversiteitAmsterdamNetherlands
- Cancer Center AmsterdamAmsterdamNetherlands
| | - Mina Kim
- Centre for Medical Image Computing, Department of Medical Physics & Biomedical Engineering and Department of NeuroinflammationUniversity College LondonLondonUK
| | - Johan A. F. Koekkoek
- Department of NeurologyLeiden University Medical CenterLeidenthe Netherlands
- Department of NeurologyHaaglanden Medical CenterNetherlands
| | - Simran Kukran
- Department of BioengineeringImperial College LondonLondonUK
- Department of Radiotherapy and ImagingInstitute of Cancer ResearchUK
| | - Laura Mancini
- Lysholm Department of Neuroradiology, National Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
- Department of Brain Repair and Rehabilitation, Institute of NeurologyUniversity College LondonLondonUK
| | - Ruben Emanuel Nechifor
- Department of Clinical Psychology and Psychotherapy, International Institute for the Advanced Studies of Psychotherapy and Applied Mental HealthBabes‐Bolyai UniversityRomania
| | - Alpay Özcan
- Electrical and Electronics Engineering DepartmentBogazici University IstanbulIstanbulTurkey
| | - Esin Ozturk‐Isik
- Institute of Biomedical EngineeringBogazici University IstanbulIstanbulTurkey
| | - Senol Piskin
- Department of Mechanical Engineering, Faculty of Natural Sciences and EngineeringIstinye University IstanbulIstanbulTurkey
| | | | - Siri F. Svensson
- Department of Physics and Computational RadiologyOslo University HospitalOsloNorway
- Department of PhysicsUniversity of OsloOsloNorway
| | - Chih‐Hsien Tseng
- Medical Delta FoundationDelftthe Netherlands
- Department of Imaging PhysicsDelft University of TechnologyDelftthe Netherlands
| | - Saritha Unnikrishnan
- Faculty of Engineering and DesignAtlantic Technological University (ATU) SligoSligoIreland
- Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), ATU SligoSligoIreland
| | - Frans Vos
- Medical Delta FoundationDelftthe Netherlands
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamNetherlands
- Department of Imaging PhysicsDelft University of TechnologyDelftthe Netherlands
| | - Esther Warnert
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamNetherlands
| | - Moss Y. Zhao
- Department of RadiologyStanford UniversityStanfordCaliforniaUSA
- Stanford Cardiovascular InstituteStanford UniversityStanfordCaliforniaUSA
| | - Radim Jancalek
- Department of NeurosurgerySt. Anne's University HospitalBrnoCzechia
- Faculty of MedicineMasaryk UniversityBrnoCzechia
| | - Teresa Nunes
- Department of NeuroradiologyHospital Garcia de OrtaAlmadaPortugal
| | - Lydiane Hirschler
- C.J. Gorter MRI Center, Department of RadiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Marion Smits
- Medical Delta FoundationDelftthe Netherlands
- Department of Radiology & Nuclear MedicineErasmus MCRotterdamNetherlands
- Brain Tumour CentreErasmus MC Cancer InstituteRotterdamthe Netherlands
| | - Jan Petr
- Helmholtz‐Zentrum Dresden‐RossendorfInstitute of Radiopharmaceutical Cancer ResearchDresdenGermany
| | - Kyrre E. Emblem
- Department of Physics and Computational RadiologyOslo University HospitalOsloNorway
| |
Collapse
|
3
|
A Multi-Disciplinary Approach to Diagnosis and Treatment of Radionecrosis in Malignant Gliomas and Cerebral Metastases. Cancers (Basel) 2022; 14:cancers14246264. [PMID: 36551750 PMCID: PMC9777318 DOI: 10.3390/cancers14246264] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Radiation necrosis represents a potentially devastating complication after radiation therapy in brain tumors. The establishment of the diagnosis and especially the differentiation from progression and pseudoprogression with its therapeutic implications requires interdisciplinary consent and monitoring. Herein, we want to provide an overview of the diagnostic modalities, therapeutic possibilities and an outlook on future developments to tackle this challenging topic. The aim of this report is to provide an overview of the current morphological, functional, metabolic and evolving imaging tools described in the literature in order to (I) identify the best criteria to distinguish radionecrosis from tumor recurrence after the radio-oncological treatment of malignant gliomas and cerebral metastases, (II) analyze the therapeutic possibilities and (III) give an outlook on future developments to tackle this challenging topic. Additionally, we provide the experience of a tertiary tumor center with this important issue in neuro-oncology and provide an institutional pathway dealing with this problem.
Collapse
|
4
|
Galijasevic M, Steiger R, Mangesius S, Mangesius J, Kerschbaumer J, Freyschlag CF, Gruber N, Janjic T, Gizewski ER, Grams AE. Magnetic Resonance Spectroscopy in Diagnosis and Follow-Up of Gliomas: State-of-the-Art. Cancers (Basel) 2022; 14:3197. [PMID: 35804969 PMCID: PMC9264890 DOI: 10.3390/cancers14133197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Preoperative grade prediction is important in diagnostics of glioma. Even more important can be follow-up after chemotherapy and radiotherapy of high grade gliomas. In this review we provide an overview of MR-spectroscopy (MRS), technical aspects, and different clinical scenarios in the diagnostics and follow-up of gliomas in pediatric and adult populations. Furthermore, we provide a recap of the current research utility and possible future strategies regarding proton- and phosphorous-MRS in glioma research.
Collapse
Affiliation(s)
- Malik Galijasevic
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (R.S.); (T.J.); (E.R.G.); (A.E.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ruth Steiger
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (R.S.); (T.J.); (E.R.G.); (A.E.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stephanie Mangesius
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (R.S.); (T.J.); (E.R.G.); (A.E.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Julian Mangesius
- Department of Radiation Oncology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Johannes Kerschbaumer
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (J.K.); (C.F.F.)
| | | | - Nadja Gruber
- VASCage-Research Centre on Vascular Ageing and Stroke, 6020 Innsbruck, Austria;
- Department of Applied Mathematics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Tanja Janjic
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (R.S.); (T.J.); (E.R.G.); (A.E.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Elke Ruth Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (R.S.); (T.J.); (E.R.G.); (A.E.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Astrid Ellen Grams
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (R.S.); (T.J.); (E.R.G.); (A.E.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Brain pH Measurement Using AACID CEST MRI Incorporating the 2 ppm Amine Resonance. Tomography 2022; 8:730-739. [PMID: 35314637 PMCID: PMC8938777 DOI: 10.3390/tomography8020060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/23/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
Many pathological conditions lead to altered intracellular pH (pHi) disrupting normal cellular functions. The chemical exchange saturation transfer (CEST) method, known as Amine and Amide Concentration Independent Detection (AACID), can produce image contrast that is predominantly dependent on tissue intracellular pHi. The AACID value is linearly related to the ratio of the 3.5 ppm amide CEST effect and the 2.75 ppm amine CEST effect in the physiological range. However, the amine CEST effect at 2 ppm is often more clearly defined in vivo, and may provide greater sensitivity to pH changes. The purpose of the current study was to compare AACID measurement precision utilizing the 2.0 and 2.75 ppm amine CEST effects. We hypothesized that the 2.0 ppm amine CEST resonance would produce measurements with greater sensitivity to pH changes. In the current study, we compare the range of the AACID values obtained in 24 mice with brain tumors and in normal tissue using the 2 ppm and 2.75 ppm amine resonances. All CEST data were acquired on a 9.4T MRI scanner. The AACID measurement range increased by 39% when using the 2 ppm amine resonance compared to the 2.75 ppm resonance, with decreased measurement variability across the brain. These data indicate that in vivo pH measurements made using AACID CEST can be enhanced by incorporating the 2 ppm amine resonance. This approach should be considered for pH measurements made over short intervals when no changes are expected in the concentration of metabolites that contribute to the 2 ppm amine resonance.
Collapse
|
6
|
Peter SB, Nandhan VR. 31-Phosphorus Magnetic Resonance Spectroscopy in Evaluation of Glioma and Metastases in 3T MRI. Indian J Radiol Imaging 2022; 31:873-881. [PMID: 35136499 PMCID: PMC8817830 DOI: 10.1055/s-0041-1741090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background:
31-Phosphorus magnetic resonance spectroscopy (31-P MRS) has excellent potential for clinical neurological practice because of its noninvasive in-vivo assessment of cellular energy metabolism and the indirect evaluation of the phospholipid composition of the cell membrane, intracellular pH, and intracellular Mg2+ concentration.
Purpose:
The aim of this study was to evaluate the metabolic characteristics of glioma and metastases using 31-P MRS and assess utility to differentiate both.
Study Type:
Prospective study.
Population:
Fifteen consecutive patients with brain tumor.
Field Strength/Sequence:
Three-tesla magnetic resonance imaging/three-dimensional MRS imaging sequence.
Statistical Tests:
Unpaired sample
t
-test, and one-way analysis of variance with Tukey's post-hoc test.
Results:
Significantly decreased values of phosphomonoesters/inorganic phosphate (PME/Pi) in the tumor group (1.22 ± 0.72) compared with controls (2.28 ± 1.44) with a
p
-value of 0.041 were observed. There is a significant decrease in phosphocreatine (PCr)/Pi values (energy demand) in the tumor group (2.76 ± 0.73) compared with controls (4.13 ± 1.75) with a
p
-value of 0.050. Significant increase in Pi/adenosine triphosphate (ATP) was noted in tumor group (0.28 ± 0.09) compared with controls (0.22 ± 0.08) with
p
-value 0.049. Among tumor group, PME/PCr values were significantly decreased in gliomas (0.35 ± 0.17) than metastasis (0.58 ± 0.23) compared with controls with a
p
-value of 0.047. A significant decrease in PME/ATP was noted in gliomas (0.25 ± 0.12) than metastasis (0.41 ± 0.14) compared with controls with a
p
-value of 0.034. The tumor group exhibits alkaline pH (7.12 ± 0.10) compared with the normal parenchyma (7.04 ± 0.06) with a significant
p
-value of 0.025. Glioma and metastasis could not be differentiated with pH. However, the perilesional edema of glioma shows alkaline pH (7.09 ± 0.06) and metastasis shows acidic pH (7.02 ± 0.05) with a significant
p
-value of 0.030.
Conclusion:
Our study provides new insight into the cellular constituents and pH of gliomas and metastases and results were significant in differentiation between these two. However, due to the additional high expense, it is available as a research tool in very few institutions in India.
Collapse
Affiliation(s)
- S. Babu Peter
- Department of Radiodiagnosis, Barnard Institute of Radiology, Madras Medical College, Chennai, Tamil Nadu, India
| | - V. Raghu Nandhan
- Department of Radiodiagnosis, Barnard Institute of Radiology, Madras Medical College, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
El-Abtah ME, Talati P, Dietrich J, Gerstner ER, Ratai EM. Magnetic resonance spectroscopic imaging for detecting metabolic changes in glioblastoma after anti-angiogenic therapy—a systematic literature review. Neurooncol Adv 2022; 4:vdac103. [PMID: 35892047 PMCID: PMC9307101 DOI: 10.1093/noajnl/vdac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
The impact of anti-angiogenic therapy (AAT) on patients with glioblastoma (GBM) is unclear due to a disconnect between radiographic findings and overall survivorship. MR spectroscopy (MRS) can provide clinically relevant information regarding tumor metabolism in response to AAT. This review explores the use of MRS to track metabolic changes in patients with GBM treated with AAT.
Methods
We conducted a systematic literature review in accordance with PRISMA guidelines to identify primary research articles that reported metabolic changes in GBMs treated with AAT. Collected variables included single or multi-voxel MRS acquisition parameters, metabolic markers, reported metabolic changes in response to AAT, and survivorship data.
Results
Thirty-five articles were retrieved in the initial query. After applying inclusion and exclusion criteria, 11 studies with 262 patients were included for qualitative synthesis with all studies performed using multi-voxel 1H MRS. Two studies utilized 31P MRS. Post-AAT initiation, shorter-term survivors had increased choline (cellular proliferation marker), increased lactate (a hypoxia marker), and decreased levels of the short echo time (TE) marker, myo-inositol (an osmoregulator and gliosis marker). MRS detected metabolic changes as soon as 1-day after AAT, and throughout the course of AAT, to predict survival. There was substantial heterogeneity in the timing of scans, which ranged from 1-day to 6–9 months after AAT initiation.
Conclusions
Multi-voxel MRS at intermediate and short TE can serve as a robust prognosticator of outcomes of patients with GBM who are treated with AAT.
Collapse
Affiliation(s)
- Mohamed E El-Abtah
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts , USA
| | - Pratik Talati
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts , USA
- Department of Neurological Surgery, Massachusetts General Hospital , Boston, Massachusetts , USA
| | - Jorg Dietrich
- Massachusetts General Hospital, Cancer Center , Boston, Massachusetts , USA
- Harvard Medical School , Boston, Massachusetts , USA
| | - Elizabeth R Gerstner
- Massachusetts General Hospital, Cancer Center , Boston, Massachusetts , USA
- Harvard Medical School , Boston, Massachusetts , USA
| | - Eva-Maria Ratai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts , USA
- Harvard Medical School , Boston, Massachusetts , USA
| |
Collapse
|
8
|
Changes in Brain Energy and Membrane Metabolism in Glioblastoma following Chemoradiation. Curr Oncol 2021; 28:5041-5053. [PMID: 34940063 PMCID: PMC8700426 DOI: 10.3390/curroncol28060424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/17/2022] Open
Abstract
Brain parenchyma infiltration with glioblastoma (GB) cannot be entirely visualized by conventional magnetic resonance imaging (MRI). The aim of this study was to investigate changes in the energy and membrane metabolism measured with phosphorous MR spectroscopy (31P-MRS) in the presumably “normal-appearing” brain following chemoradiation therapy (CRT) in GB patients in comparison to healthy controls. Twenty (seven female, thirteen male) GB patients underwent a 31P-MRS scan prior to surgery (baseline) and after three months of standard CRT (follow-up examination. The regions of interest “contrast-enhancing (CE) tumor” (if present), “adjacent to the (former) tumor”, “ipsilateral distant” hemisphere, and “contralateral” hemisphere were compared, differentiating between patients with stable (SD) and progressive disease (PD). Metabolite ratios PCr/ATP, Pi/ATP, PCr/Pi, PME/PDE, PME/PCr, and PDE/ATP were investigated. In PD, energy and membrane metabolism in CE tumor areas have a tendency to “normalize” under therapy. In different “normal-appearing” brain areas of GB patients, the energy and membrane metabolism either “normalized” or were “disturbed”, in comparison to baseline or controls. Differences were also detected between patients with SD and PD. 31P-MRS might contribute as an additional imaging biomarker for outcome measurement, which remains to be investigated in a larger cohort.
Collapse
|
9
|
Zaccagna F, Grist JT, Quartuccio N, Riemer F, Fraioli F, Caracò C, Halsey R, Aldalilah Y, Cunningham CH, Massoud TF, Aloj L, Gallagher FA. Imaging and treatment of brain tumors through molecular targeting: Recent clinical advances. Eur J Radiol 2021; 142:109842. [PMID: 34274843 DOI: 10.1016/j.ejrad.2021.109842] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Molecular imaging techniques have rapidly progressed over recent decades providing unprecedented in vivo characterization of metabolic pathways and molecular biomarkers. Many of these new techniques have been successfully applied in the field of neuro-oncological imaging to probe tumor biology. Targeting specific signaling or metabolic pathways could help to address several unmet clinical needs that hamper the management of patients with brain tumors. This review aims to provide an overview of the recent advances in brain tumor imaging using molecular targeting with positron emission tomography and magnetic resonance imaging, as well as the role in patient management and possible therapeutic implications.
Collapse
Affiliation(s)
- Fulvio Zaccagna
- Division of Neuroimaging, Department of Medical Imaging, University of Toronto, Toronto, Canada.
| | - James T Grist
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom; Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, United Kingdom; Department of Radiology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom; Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natale Quartuccio
- Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico Di Cristina Benfratelli, Palermo, Italy
| | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre, University of Bergen, Bergen, Norway; Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Francesco Fraioli
- Institute of Nuclear Medicine, University College London, London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Corradina Caracò
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Richard Halsey
- Institute of Nuclear Medicine, University College London, London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Yazeed Aldalilah
- Institute of Nuclear Medicine, University College London, London, United Kingdom; NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom; Department of Radiology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Charles H Cunningham
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Tarik F Massoud
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, Stanford, USA
| | - Luigi Aloj
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Galijašević M, Steiger R, Radović I, Birkl-Toeglhofer AM, Birkl C, Deeg L, Mangesius S, Rietzler A, Regodić M, Stockhammer G, Freyschlag CF, Kerschbaumer J, Haybaeck J, Grams AE, Gizewski ER. Phosphorous Magnetic Resonance Spectroscopy and Molecular Markers in IDH1 Wild Type Glioblastoma. Cancers (Basel) 2021; 13:cancers13143569. [PMID: 34298788 PMCID: PMC8305039 DOI: 10.3390/cancers13143569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Gliobastoma is one of the deadliest tumors overall, yet the most common malignant brain tumor. The new World Health Organization Classification of Brain Tumors brought changes in how we look at this type of malignancy. Now we know that glioblastoma is rather a spectrum of similar tumors, but with some distinct characteristics that include molecular footprint, response to therapy and with that overall survival, among others. We hypothesised that by employing phosphorous magnetic resonance we will be able to show differences in cellular energy metabolism in these various subtypes of glioblastoma. For example, we found indices of faster cell reproduction and tumor growth in MGMT-methylated and EGFR-amplified tumors. These tumors also could have reduced energetic state or tissue oxygenation due to the increased necrosis. Tumors with EGFR-amplification could have increased apoptotic activity regardless of their MGMT status. Our study indicated various differences in energetic metabolism in tumors with different molecular characteristics, which could potentially be important in future therapeutic strategies. Abstract The World Health Organisation’s (WHO) classification of brain tumors requires consideration of both histological appearance and molecular characteristics. Possible differences in brain energy metabolism could be important in designing future therapeutic strategies. Forty-three patients with primary, isocitrate dehydrogenase 1 (IDH1) wild type glioblastomas (GBMs) were included in this study. Pre-operative standard MRI was obtained with additional phosphorous magnetic resonance spectroscopy (31-P-MRS) imaging. Following microsurgical resection of the tumors, biopsy specimens underwent neuropathological diagnostics including standard molecular diagnosis. The spectroscopy results were correlated with epidermal growth factor (EGFR) and O6-Methylguanine-DNA methyltransferase (MGMT) status. EGFR amplified tumors had significantly lower phosphocreatine (PCr) to adenosine triphosphate (ATP)-PCr/ATP and PCr to inorganic phosphate (Pi)-PCr/Pi ratios, and higher Pi/ATP and phosphomonoesters (PME) to phosphodiesters (PDE)-PME/PDE ratio than those without the amplification. Patients with MGMT-methylated tumors had significantly higher cerebral magnesium (Mg) values and PME/PDE ratio, while their PCr/ATP and PCr/Pi ratios were lower than in patients without the methylation. In survival analysis, not-EGFR-amplified, MGMT-methylated GBMs showed the longest survival. This group had lower PCr/Pi ratio when compared to MGMT-methylated, EGFR-amplified group. PCr/Pi ratio was lower also when compared to the MGMT-unmethylated, EGFR not-amplified group, while PCr/ATP ratio was lower than all other examined groups. Differences in energy metabolism in various molecular subtypes of wild-type-GBMs could be important information in future precision medicine approach.
Collapse
Affiliation(s)
- Malik Galijašević
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ruth Steiger
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Correspondence:
| | - Ivan Radović
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
| | - Anna Maria Birkl-Toeglhofer
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.M.B.-T.); (J.H.)
| | - Christoph Birkl
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lukas Deeg
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
| | - Stephanie Mangesius
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Andreas Rietzler
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Milovan Regodić
- Department of Otorhinolaryngology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
- Department of Radiation Oncology, Medical University of Vienna, 1010 Vienna, Austria
| | - Guenther Stockhammer
- Department of Neurology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | | | - Johannes Kerschbaumer
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck, Austria; (C.F.F.); (J.K.)
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (A.M.B.-T.); (J.H.)
- Diagnostic and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Astrid Ellen Grams
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Elke Ruth Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.G.); (I.R.); (C.B.); (L.D.); (S.M.); (A.R.); (A.E.G.); (E.R.G.)
- Neuroimaging Research Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Phosphorous Magnetic Resonance Spectroscopy to Detect Regional Differences of Energy and Membrane Metabolism in Naïve Glioblastoma Multiforme. Cancers (Basel) 2021; 13:cancers13112598. [PMID: 34073209 PMCID: PMC8199363 DOI: 10.3390/cancers13112598] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Glioblastoma multiforme is a highly aggressive brain tumor, tending to infiltrate even larger zones of brain tissue than visible on conventional magnetic resonance imaging. By application of phosphorus magnetic resonance spectroscopy in patients with naïve glioblastoma multiforme, we tried to demonstrate changes in energy and membrane metabolism not only in affected regions but also in distant brain regions, the opposite brain hemisphere, and in comparison to healthy volunteers. We found reduced energetic states and signs of increased cell membrane turnover in regions of visible tumor and differences to and between the “normal-appearing” brains of glioblastoma patients and the brains of healthy volunteers. Our pilot study confirmed the feasibility of the method, so differences between various genetic mutations or clinical applicability for follow-up monitoring can be assessed in larger cohorts. Abstract Background: Glioblastoma multiforme (GBM) is a highly malignant primary brain tumor with infiltration of, on conventional imaging, normal-appearing brain parenchyma. Phosphorus magnetic resonance spectroscopy (31P-MRS) enables the investigation of different energy and membrane metabolites. The aim of this study is to investigate regional differences of 31P-metabolites in GBM brains. Methods: In this study, we investigated 32 patients (13 female and 19 male; mean age 63 years) with naïve GBM using 31P-MRS and conventional MRI. Contrast-enhancing (CE), T2-hyperintense, adjacent and distant ipsilateral areas of the contralateral brain and the brains of age- and gender-matched healthy volunteers were assessed. Moreover, the 31P-MRS results were correlated with quantitative diffusion parameters. Results: Several metabolite ratios between the energy-dependent metabolites and/or the membrane metabolites differed significantly between the CE areas, the T2-hyperintense areas, the more distant areas, and even the brains of healthy volunteers. pH values and Mg2+ concentrations were highest in visible tumor areas and decreased with distance from them. These results are in accordance with the literature and correlated with quantitative diffusion parameters. Conclusions: This pilot study shows that 31P-MRS is feasible to show regional differences of energy and membrane metabolism in brains with naïve GBM, particularly between the different “normal-appearing” regions and between the contralateral hemisphere and healthy controls. Differences between various genetic mutations or clinical applicability for follow-up monitoring have to be assessed in a larger cohort.
Collapse
|
12
|
Cerebral phosphoester signals measured by 31P magnetic resonance spectroscopy at 3 and 7 Tesla. PLoS One 2021; 16:e0248632. [PMID: 33735267 PMCID: PMC7971532 DOI: 10.1371/journal.pone.0248632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/03/2021] [Indexed: 11/19/2022] Open
Abstract
Abnormal cell membrane metabolism is associated with many neuropsychiatric disorders. Free phosphomonoesters and phosphodiesters, which can be detected by in vivo 31P magnetic resonance spectroscopy (MRS), are important cell membrane building blocks. However, the quantification of phosphoesters has been highly controversial even in healthy individuals due to overlapping signals from macromolecule membrane phospholipids (MP). In this study, high signal-to-noise ratio (SNR) cerebral 31P MRS spectra were acquired from healthy volunteers at both 3 and 7 Tesla. Our results indicated that, with minimal spectral interference from MP, the [phosphocreatine (PCr)]/[phosphocholine (PC) + glycerophosphocholine (GPC)] ratio measured at 7 Tesla agreed with its value expected from biochemical constraints. In contrast, the 3 Tesla [PCr]/[PC+GPC] ratio obtained using standard spectral fitting procedures was markedly smaller than the 7 Tesla ratio and than the expected value. The analysis suggests that the commonly used spectral model for MP may fail to capture its complex spectral features at 3 Tesla, and that additional prior knowledge is necessary to reliably quantify the phosphoester signals at low magnetic field strengths when spectral overlapping is significant.
Collapse
|
13
|
Alcicek S, Put P, Kontul V, Pustelny S. Zero-Field NMR J-Spectroscopy of Organophosphorus Compounds. J Phys Chem Lett 2021; 12:787-792. [PMID: 33411543 PMCID: PMC7877728 DOI: 10.1021/acs.jpclett.0c03532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Organophosphorus compounds are a wide and diverse class of chemicals playing a crucial role in living organisms. This aspect has been often investigated using nuclear magnetic resonance (NMR), which provides information about molecular structure and function. In this paper, we report the results of theoretical and experimental studies on basic organophosphorus compounds using zero-field NMR, where spin dynamics are investigated in the absence of a magnetic field with the dominant heteronuclear J-coupling. We demonstrate that the zero-field NMR enables distinguishing the chemicals owing to their unique electronic environment even though their spin systems have the same alphabetic designation. Such information can be obtained just in a single measurement, while amplitudes and widths of observed low-field NMR resonances enable the study of processes affecting spin dynamics. An excellent agreement between simulations and measurements of the spectra, particularly in the largest frequency J-couplings range ever reported in zero-field NMR, is demonstrated.
Collapse
|
14
|
Hnilicová P, Štrbák O, Kolisek M, Kurča E, Zeleňák K, Sivák Š, Kantorová E. Current Methods of Magnetic Resonance for Noninvasive Assessment of Molecular Aspects of Pathoetiology in Multiple Sclerosis. Int J Mol Sci 2020; 21:E6117. [PMID: 32854318 PMCID: PMC7504207 DOI: 10.3390/ijms21176117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/13/2020] [Accepted: 08/21/2020] [Indexed: 12/29/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease with expanding axonal and neuronal degeneration in the central nervous system leading to motoric dysfunctions, psychical disability, and cognitive impairment during MS progression. The exact cascade of pathological processes (inflammation, demyelination, excitotoxicity, diffuse neuro-axonal degeneration, oxidative and metabolic stress, etc.) causing MS onset is still not fully understood, although several accompanying biomarkers are particularly suitable for the detection of early subclinical changes. Magnetic resonance (MR) methods are generally considered to be the most sensitive diagnostic tools. Their advantages include their noninvasive nature and their ability to image tissue in vivo. In particular, MR spectroscopy (proton 1H and phosphorus 31P MRS) is a powerful analytical tool for the detection and analysis of biomedically relevant metabolites, amino acids, and bioelements, and thus for providing information about neuro-axonal degradation, demyelination, reactive gliosis, mitochondrial and neurotransmitter failure, cellular energetic and membrane alternation, and the imbalance of magnesium homeostasis in specific tissues. Furthermore, the MR relaxometry-based detection of accumulated biogenic iron in the brain tissue is useful in disease evaluation. The early description and understanding of the developing pathological process might be critical for establishing clinically effective MS-modifying therapies.
Collapse
Affiliation(s)
- Petra Hnilicová
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Oliver Štrbák
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Martin Kolisek
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (O.Š.); (M.K.)
| | - Egon Kurča
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| | - Kamil Zeleňák
- Clinic of Radiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Štefan Sivák
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| | - Ema Kantorová
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (E.K.); (Š.S.); (E.K.)
| |
Collapse
|
15
|
Choi CH, Stegmayr C, Shymanskaya A, Worthoff WA, da Silva NA, Felder J, Langen KJ, Shah NJ. An in vivo multimodal feasibility study in a rat brain tumour model using flexible multinuclear MR and PET systems. EJNMMI Phys 2020; 7:50. [PMID: 32728773 PMCID: PMC7391464 DOI: 10.1186/s40658-020-00319-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/12/2020] [Indexed: 11/16/2022] Open
Abstract
Background In addition to the structural information afforded by 1H MRI, the use of X-nuclei, such as sodium-23 (23Na) or phosphorus-31 (31P), offers important complementary information concerning physiological and biochemical parameters. By then combining this technique with PET, which provides valuable insight into a wide range of metabolic and molecular processes by using of a variety of radioactive tracers, the scope of medical imaging and diagnostics can be significantly increased. While the use of multimodal imaging is undoubtedly advantageous, identifying the optimal combination of these parameters to diagnose a specific dysfunction is very important and is advanced by the use of sophisticated imaging techniques in specific animal models. Methods In this pilot study, rats with intracerebral 9L gliosarcomas were used to explore a combination of sequential multinuclear MRI using a sophisticated switchable coil set in a small animal 9.4 T MRI scanner and, subsequently, a small animal PET with the tumour tracer O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET). This made it possible for in vivo multinuclear MR-PET experiments to be conducted without compromising the performance of either multinuclear MR or PET. Results High-quality in vivo images and spectra including high-resolution 1H imaging, 23Na-weighted imaging, detection of 31P metabolites and [18F]FET uptake were obtained, allowing the characterisation of tumour tissues in comparison to a healthy brain. It has been reported in the literature that these parameters are useful in the identification of the genetic profile of gliomas, particularly concerning the mutation of the isocitrate hydrogenase gene, which is highly relevant for treatment strategy. Conclusions The combination of multinuclear MR and PET in, for example, brain tumour models with specific genetic mutations will enable the physiological background of signal alterations to be explored and the identification of the optimal combination of imaging parameters for the non-invasive characterisation of the molecular profile of tumours.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | | | - Wieland A Worthoff
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Nuno A da Silva
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany.,Department of Nuclear Medicine, RWTH Aachen University Hospital, Aachen, Germany.,Jülich-Aachen Research Alliance (JARA)-Section JARA-BRAIN, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine-4, INM-4, Forschungszentrum Jülich, Germany. .,Institute of Neuroscience and Medicine-11, INM-11, JARA, Forschungszentrum Jülich, Germany. .,JARA-BRAIN-Translational Medicine, Aachen, Germany. .,Department of Neurology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
16
|
Santos-Díaz A, Noseworthy MD. Phosphorus magnetic resonance spectroscopy and imaging (31P-MRS/MRSI) as a window to brain and muscle metabolism: A review of the methods. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2020.101967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
17
|
Kudulaiti N, Qiu T, Lu J, Zhang H, Zhang Z, Guan Y, Zhuang D, Wu J. Combination of Magnetic Resonance Spectroscopy and ¹¹C-Methionine Positron Emission Tomography for the Accurate Diagnosis of Non-Enhancing Supratentorial Glioma. Korean J Radiol 2020; 20:967-975. [PMID: 31132822 PMCID: PMC6536785 DOI: 10.3348/kjr.2018.0690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/28/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate whether the combination of magnetic resonance spectroscopy (MRS) and ¹¹C-methionine positron emission tomography (¹¹C-MET PET) could increase accurate diagnostic sensitivity for non-enhancing supratentorial gliomas. MATERIALS AND METHODS Between February 2012 and December 2017, 109 patients with non-enhanced supratentorial lesions on contrast-enhanced MRI were enrolled. Each patient underwent MRS and ¹¹C-MET PET before treatment. A lesion was considered to be a glioma when either the MRS or ¹¹C-MET PET results reached the diagnostic threshold. The radiological diagnosis was compared with the pathological diagnosis or medical diagnostic criteria. RESULTS The sensitivity and specificity were 60.0% and 50.0% for MRS and 75.8% and 50.0% for ¹¹C-MET PET, respectively. Upon combining the two modalities, the sensitivity and specificity of the imaging-based diagnosis prior to surgery reached 89.5% and 42.9%, respectively. Statistically significant differences in the sensitivities were observed between the combined and individual approaches (MRS alone, 89.5% vs. 60.0%, p < 0.001; ¹¹C-MET PET alone, 89.5% vs. 75.8%, p = 0.001). However, no significant differences in specificity were observed between the combined and individual modalities. CONCLUSION The combination of MRS and ¹¹C-MET PET findings significantly increases accurate diagnostic sensitivity for non-enhancing supratentorial gliomas without significantly lowering the specificity. This finding suggests the potential of the combined MRS and ¹¹C-MET PET approach in clinical applications.
Collapse
Affiliation(s)
- Nijiati Kudulaiti
- Department of Neurologic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianming Qiu
- Department of Neurologic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junfeng Lu
- Department of Neurologic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huiwei Zhang
- PET Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengwei Zhang
- PET Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dongxiao Zhuang
- Department of Neurologic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jinsong Wu
- Department of Neurologic Surgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Pronin IN, Zakharova NE, Podoprigora AE, Batalov AI, Tyurina AN, Mertsalova MP, Fadeeva LM, Golanov AV, Postnov AA, Rodionov PV, Potapov AA. [Phosphorus (P) magnetic resonance spectroscopy for evaluation of brain tissue metabolism and measuring non-invasive pH. A study involving 23 volunteers. Part I]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2019; 83:5-10. [PMID: 31166312 DOI: 10.17116/neiro2019830215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Evaluation of brain metabolism is an important part in examination of brain lesions. Phosphorus magnetic resonance spectroscopy opens up great opportunities for studying the energy metabolism and allows noninvasive examination of metabolic processes occurring both in healthy and in pathologic brain tissue by obtaining a spectrum of phosphorus-containing metabolites involved in the turnover of cell membrane phospholipids. The technique presented in this paper was used to conduct 31P MR spectroscopy and to estimate the ratio between the peaks of the main metabolites and intracellular pH of the healthy brain tissue of 23 volunteers in the age group under 30 years old in clinical settings. Based on the recorded stable phosphorus spectra of metabolites of the healthy brain tissue, the value of intracellular pH (6.963±0.044) and the ratio of the main PME/PDE peaks (1.17±0.20) were calculated. The database was created to subsequently analyze the metabolic changes in brain tissue spectra in norm and in pathology, as well as the intracellular pH variations that have diagnostic and prognostic value.
Collapse
Affiliation(s)
- I N Pronin
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | | | - A I Batalov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A N Tyurina
- Burdenko Neurosurgical Institute, Moscow, Russia
| | | | - L M Fadeeva
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A V Golanov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A A Postnov
- Burdenko Neurosurgical Institute, Moscow, Russia; National Research Nuclear University 'MEPhI', Moscow, Russia
| | - P V Rodionov
- Burdenko Neurosurgical Institute, Moscow, Russia
| | - A A Potapov
- Burdenko Neurosurgical Institute, Moscow, Russia
| |
Collapse
|
19
|
Wardzinski EK, Friedrichsen L, Dannenberger S, Kistenmacher A, Melchert UH, Jauch-Chara K, Oltmanns KM. Double transcranial direct current stimulation of the brain increases cerebral energy levels and systemic glucose tolerance in men. J Neuroendocrinol 2019; 31:e12688. [PMID: 30659676 DOI: 10.1111/jne.12688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 12/14/2018] [Accepted: 01/15/2019] [Indexed: 12/31/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a neuromodulatory method that has been tested experimentally and has already been used as an adjuvant therapeutic option to treat a number of neurological disorders and neuropsychiatric diseases. Beyond its well known local effects within the brain, tDCS also transiently promotes systemic glucose uptake and reduces the activity of the neurohormonal stress axes. We aimed to test whether the effects of a single tDCS application could be replicated upon double stimulation to persistently improve systemic glucose tolerance and stress axes activity in humans. In a single-blinded cross-over study, we examined 15 healthy male volunteers. Anodal tDCS vs sham was applied twice in series. Systemic glucose tolerance was investigated by the standard hyperinsulinaemic-euglycaemic glucose clamp procedure, and parameters of neurohormonal stress axes activity were measured. Because tDCS-induced brain energy consumption has been shown to be part of the mechanism underlying the assumed effects, we monitored the cerebral high-energy phosphates ATP and phosphocreatine by 31 phosphorus magnetic resonance spectroscopy. As hypothesised, analyses revealed that double anodal tDCS persistently increases glucose tolerance compared to sham. Moreover, we observed a significant rise in cerebral high-energy phosphate content upon double tDCS. Accordingly, the activity of the neurohormonal stress axes was reduced upon tDCS compared to sham. Our data demonstrate that double tDCS promotes systemic glucose uptake and reduces stress axes activity in healthy humans. These effects suggest that repetitive tDCS may be a future non-pharmacological option for combating glucose intolerance in type 2 diabetes patients.
Collapse
Affiliation(s)
- Ewelina K Wardzinski
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Lisa Friedrichsen
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Sina Dannenberger
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Alina Kistenmacher
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Uwe H Melchert
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Kamila Jauch-Chara
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| | - Kerstin M Oltmanns
- Section of Psychoneurobiology, Center of Brain, Behavior and Metabolism, University of Luebeck, Luebeck, Germany
| |
Collapse
|
20
|
Hong SM, Choi CH, Magill AW, Jon Shah N, Felder J. Design of a Quadrature 1H/31P Coil Using Bent Dipole Antenna and Four-Channel Loop at 3T MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2018; 37:2613-2618. [PMID: 29994198 DOI: 10.1109/tmi.2018.2844462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
MRI using nuclei other than protons is of clinical interest due to the important role of these nuclei in cellular processes. Phosphorous-31 (31P), for example, plays an important role in energy metabolism. However, measurement of 31P can be challenging, as the receive signal is weak compared with that of proton (1H). Consequently, it is often necessary to integrate 1H elements for localizations and B0 shimming in RF coils intended for 31P measurements. Good decoupling between the 1H and the 31P elements is therefore essential. In this paper, bent dipole antennas tuned to 1H were integrated with a four channel 31P loop coil array, in a manner providing strong geometric decoupling between dipoles and loops. As the physical length of a resonant dipole antenna is too long at 3T, the dipole antennas were bent around the load. The loss of 31P elements due to the presence of the dipole antennas was evaluated by measuring scattering parameters and comparing the SNR of 31P spectra with and without the presence of the dipole antennas. The performance of the bent dipole antenna was evaluated by simulation and sensitivity measurement. The Q-factors and the SNR of the four-loop array were reduced by less than 5% when the bent dipole antennas were introduced. The measured sensitivity of the bent dipole was higher (15%) than that of dual-tuned birdcage. The combined bent dipole and loop array is therefore a promising design for 1H/31P applications at 3T.
Collapse
|
21
|
Abstract
Magnetic resonance spectroscopy (MRS) can be performed in vivo using commercial MRI systems to obtain biochemical information about tissues and cancers. Applications in brain, prostate and breast aid lesion detection and characterisation (differential diagnosis), treatment planning and response assessment. Multi-centre clinical trials have been performed in all these tissues. Single centre studies have been performed in many other tissues including cervix, uterus, musculoskeletal and liver. While generally MRS is used to study endogenous metabolites it has also been used in drug studies, for example those that include 19F as part of their structure. Recently the hyperpolarisation of compounds enriched with 13C such as [1-13C] pyruvate has been demonstrated in animal models and now in preliminary clinical studies, permitting the monitoring of biochemical processes with unprecedented sensitivity. This review briefly introduces the underlying methods and then discusses the current status of these applications.
Collapse
Affiliation(s)
- Geoffrey S Payne
- University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
22
|
Albatany M, Meakin S, Bartha R. The Monocarboxylate transporter inhibitor Quercetin induces intracellular acidification in a mouse model of Glioblastoma Multiforme: in-vivo detection using magnetic resonance imaging. Invest New Drugs 2018; 37:595-601. [PMID: 30101388 DOI: 10.1007/s10637-018-0644-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/13/2018] [Indexed: 01/22/2023]
Abstract
The response of tumor intracellular pH to a pharmacological challenge could help identify aggressive cancer. Chemical exchange saturation transfer (CEST) is an MRI contrast mechanism that is dependent on intracellular pH (pHi). pHi is important in the maintenance of normal cell function and is normally maintained within a narrow range by the activity of transporters located at the plasma membrane. In cancer, changes in pHi have been correlated with both cell proliferation and cell death. Quercetin is a bioflavonoid and monocarboxylate transporter (MCT) inhibitor. Since MCTs plays a significant role in maintaining pH balance in the tumor microenvironment, we hypothesized that systemically administered quercetin could selectively acidify brain tumors. The goals of the current study were to determine whether CEST MRI measurements sensitive to tumor pH could detect acidification after quercetin injection and to measure the magnitude of the pH change (ΔpH). Using a 9.4 T MRI, amine and amide concentration independent detection (AACID) CEST spectra were acquired in six mice approximately 15 ± 1 days after implanting 105 U87 human glioblastoma multiforme cells in the brain, before and after administration of quercetin (dose: 200 mg/kg) by intraperitoneal injection. Three additional mice were studied as controls and received only vehicle dimethyl sulfoxide (DMSO) injection. Repeated measures t-test was used to compare AACID changes in tumor and contralateral tissue regions of interest. Two hours after quercetin injection there was a significant increase in tumor AACID by 0.07 ± 0.03 corresponding to a 0.27 decrease in pHi, and no change in AACID in contralateral tissue. There was also a small average increase in AACID in tumors within the three mice injected with DMSO only. The use of the natural compound quercetin in combination with pH weighted MRI represents a unique approach to cancer detection that does not require injection of an imaging contrast agent.
Collapse
Affiliation(s)
- Mohammed Albatany
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Susan Meakin
- Department of Biochemistry, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Robert Bartha
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada.
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada.
| |
Collapse
|
23
|
van der Kemp WJ, Klomp DW, Wijnen JP. 31 P T 2 s of phosphomonoesters, phosphodiesters, and inorganic phosphate in the human brain at 7T. Magn Reson Med 2018; 80:29-35. [PMID: 29215148 PMCID: PMC5900879 DOI: 10.1002/mrm.27026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 01/21/2023]
Abstract
PURPOSE To determine the phosphorus-31 T2 s of phosphomonoesters, phosphodiesters, and inorganic phosphate in the healthy human brain at 7T. METHODS A 3D chemical shift imaging multi-echo sequence with composite block pulses for refocusing was used to measure one free induction decay (FID) and seven full echoes with an echo spacing of 45 ms on the brain of nine healthy volunteers (age range 22-45 years; average age 27 ± 8 years). Spectral fitting was used to determine the change in metabolic signal amplitude with echo time. RESULTS The average apparent T2 s with their standard deviation were 202 ± 6 ms, 129 ± 6 ms, 86 ± 2 ms, 214 ± 10 ms, and 213 ± 11 ms for phosphoethanolamine, phosphocholine, inorganic phosphate, glycerophosphoethanolamine, and glycerophosphocholine, respectively. CONCLUSION The determined apparent T2 for phosphoethanolamine, glycerophosphocholine, and glycerophosphoethanolamine is approximately 200 ms. The lower apparent T2 value for phosphocholine is attributed to the overlap of this resonance with the 3-phosphorous resonance of 2,3-diphosphoglycerate from blood, with an apparent shorter T2 . Omitting the FID signal and the first echo of phosphocholine leads to a T2 of 182 ± 7 ms, whereas a biexponential analysis leads to 203 ± 4 ms. These values are more in line with phosphoethanolamine and the phosphodiesters. The short T2 of inorganic phosphate is subscribed to the fast reversible exchange with γ-adenosine triphosphate, which is mediated by glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase within the glycolytic pathway. Magn Reson Med 80:29-35, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Collapse
Affiliation(s)
| | - Dennis W.J. Klomp
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jannie P. Wijnen
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
24
|
Albatany M, Li A, Meakin S, Bartha R. In vivo detection of acute intracellular acidification in glioblastoma multiforme following a single dose of cariporide. Int J Clin Oncol 2018; 23:812-819. [PMID: 29749579 DOI: 10.1007/s10147-018-1289-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022]
Abstract
Glioblastoma is an aggressive brain cancer that is very difficult to treat. Clinically, it is important to be able to distinguish aggressive from non-aggressive brain tumors. Previous studies have shown that some drugs can induce a rapid change in intracellular pH that could help to identify aggressive cancer. The sodium proton exchanger (NHE1) plays a significant role in maintaining pH balance in the tumor microenvironment. Cariporide is a sodium proton exchange inhibitor that is well tolerated by humans in cardiac applications. We hypothesized that cariporide could selectively acidify brain tumors. The purpose of this study was to determine whether amine/amide concentration-independent detection (AACID) chemical exchange saturation transfer (CEST) MRI measurement of tumor pHi could detect acidification after cariporide injection. Using a 9.4T MRI scanner, CEST spectra were acquired in six mice approximately 14 days after implanting 105 U87 human glioblastoma multiforme cells in the brain, before and after administration of cariporide (dose: 6 mg/kg) by intraperitoneal injection. Three additional mice were studied as controls and received only vehicle injection (DMSO + PBS). Repeated measures t test was used to examine changes in tumor and contralateral tissue regions of interest. Two hours after cariporide injection, there was a significant 0.12 ± 0.03 increase in tumor AACID value corresponding to a 0.48 decrease in pHi and no change in AACID value in contralateral tissue. A small but significant increase of 0.04 ± 0.017 in tumor AACID value was also observed following vehicle injection. This study demonstrates that acute CEST MRI contrast changes, indicative of intracellular acidification, after administration of cariporide could help localize glioblastoma.
Collapse
Affiliation(s)
- Mohammed Albatany
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, Western University, 1151 Richmond Street, London, ON, N6A 3K7, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Alex Li
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, Western University, 1151 Richmond Street, London, ON, N6A 3K7, Canada
| | - Susan Meakin
- Department of Biochemistry, Western University, 1151 Richmond Street, London, ON, N6A 3K7, Canada
| | - Robert Bartha
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, Western University, 1151 Richmond Street, London, ON, N6A 3K7, Canada.
- Department of Medical Biophysics, Western University, London, ON, Canada.
| |
Collapse
|
25
|
Dichloroacetate induced intracellular acidification in glioblastoma: in vivo detection using AACID-CEST MRI at 9.4 Tesla. J Neurooncol 2017; 136:255-262. [DOI: 10.1007/s11060-017-2664-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/30/2017] [Indexed: 12/22/2022]
|
26
|
Su C, Liu C, Zhao L, Jiang J, Zhang J, Li S, Zhu W, Wang J. Amide Proton Transfer Imaging Allows Detection of Glioma Grades and Tumor Proliferation: Comparison with Ki-67 Expression and Proton MR Spectroscopy Imaging. AJNR Am J Neuroradiol 2017; 38:1702-1709. [PMID: 28729292 DOI: 10.3174/ajnr.a5301] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 05/07/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Prognosis in glioma depends strongly on tumor grade and proliferation. In this prospective study of patients with untreated primary cerebral gliomas, we investigated whether amide proton transfer-weighted imaging could reveal tumor proliferation and reliably distinguish low-grade from high-grade gliomas compared with Ki-67 expression and proton MR spectroscopy imaging. MATERIALS AND METHODS This study included 42 patients with low-grade (n = 28) or high-grade (n = 14) glioma, all of whom underwent conventional MR imaging, proton MR spectroscopy imaging, and amide proton transfer-weighted imaging on the same 3T scanner within 2 weeks before surgery. We assessed metabolites of choline and N-acetylaspartate from proton MR spectroscopy imaging and the asymmetric magnetization transfer ratio at 3.5 ppm from amide proton transfer-weighted imaging and compared them with histopathologic grade and immunohistochemical expression of the proliferation marker Ki-67 in the resected specimens. RESULTS The asymmetric magnetization transfer ratio at 3.5 ppm values measured by different readers showed good concordance and were significantly higher in high-grade gliomas than in low-grade gliomas (3.61% ± 0.155 versus 2.64% ± 0.185, P = .0016), with sensitivity and specificity values of 92.9% and 71.4%, respectively, at a cutoff value of 2.93%. The asymmetric magnetization transfer ratio at 3.5 ppm values correlated with tumor grade (r = 0.506, P = .0006) and Ki-67 labeling index (r = 0.502, P = .002). For all patients, the asymmetric magnetization transfer ratio at 3.5 ppm correlated positively with choline (r = 0.43, P = .009) and choline/N-acetylaspartate ratio (r = 0.42, P = .01) and negatively with N-acetylaspartate (r = -0.455, P = .005). These correlations held for patients with low-grade gliomas versus those with high-grade gliomas, but the correlation coefficients were higher in high-grade gliomas (choline: r = 0.547, P = .053; N-acetylaspartate: r = -0.644, P = .017; choline/N-acetylaspartate: r = 0.583, P = .036). CONCLUSIONS The asymmetric magnetization transfer ratio at 3.5 ppm may serve as a potential biomarker not only for assessing proliferation, but also for predicting histopathologic grades in gliomas.
Collapse
Affiliation(s)
- C Su
- From the Department of Radiology (C.S., C.L., L.Z., J.J., J.Z., S.L., W.Z.), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, People's Republic of China
| | - C Liu
- From the Department of Radiology (C.S., C.L., L.Z., J.J., J.Z., S.L., W.Z.), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, People's Republic of China
| | - L Zhao
- From the Department of Radiology (C.S., C.L., L.Z., J.J., J.Z., S.L., W.Z.), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, People's Republic of China
| | - J Jiang
- From the Department of Radiology (C.S., C.L., L.Z., J.J., J.Z., S.L., W.Z.), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, People's Republic of China
| | - J Zhang
- From the Department of Radiology (C.S., C.L., L.Z., J.J., J.Z., S.L., W.Z.), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, People's Republic of China
| | - S Li
- From the Department of Radiology (C.S., C.L., L.Z., J.J., J.Z., S.L., W.Z.), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, People's Republic of China
| | - W Zhu
- From the Department of Radiology (C.S., C.L., L.Z., J.J., J.Z., S.L., W.Z.), Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan, People's Republic of China
| | - J Wang
- Department of Radiation Physics (J.W.), The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
27
|
Kim SY, Chen W, Ongur D, Du F. Rapid and simultaneous measurement of phosphorus metabolite pool size ratio and reaction kinetics of enzymes in vivo. J Magn Reson Imaging 2017; 47:210-221. [PMID: 28480619 DOI: 10.1002/jmri.25744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 04/07/2017] [Indexed: 11/12/2022] Open
Abstract
PURPOSE The metabolites phosphocreatine (PCr), adenosine triphosphate (ATP), and in-organic phosphate (Pi) are biochemically coupled. Their pool sizes, assessed by their magnetization ratios, have been extensively studied and reflect bioenergetics status in vivo. However, most such studies have ignored chemical exchange and T1 relaxation effects. In this work, we aimed to extend the T1nom method to simultaneously quantify the reaction rate constants as well as phosphorus metabolite pool size ratios under partially relaxed conditions. MATERIALS AND METHODS Modified Bloch-McConnell equations were used to simulate the effects of chemical exchanges on T1 relaxation times and magnetization ratios among PCr, γ-ATP, and Pi. The T1nom method with iteration approach was used to measure both reaction constants and metabolite pool size ratios. To validate our method, in vivo data from rat brains (N = 8) at 9.4 Tesla were acquired under two conditions, i.e., approximately full relaxation (TR = 9 s) and partial relaxation (TR = 3 s). We compared metabolite pool size ratios and reaction constants before and after correcting the chemical exchange and T1 relaxation effects. RESULTS There were significant errors in underestimation of PCr/γATP by 12 % (P = 0.03) and overestimation of ATP/Pi ratios by 14 % (P = 0.04) when not considering chemical exchange effects. These errors were minimized using our iteration approach, resulting in no significant differences (PCr/γATP, P = 0.47; ATP/Pi, P = 0.81) in metabolite pool size ratios and reaction constants between the two measurements (i.e., short versus long TR conditions). CONCLUSION Our method can facilitate broad biomedical applications of 31 P magnetization saturation transfer spectroscopy, requiring high temporal and/or spatial resolution for assessment of altered bioenergetics. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:210-221.
Collapse
Affiliation(s)
- Sang-Young Kim
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA.,Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Wei Chen
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Dost Ongur
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Fei Du
- McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA.,Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| |
Collapse
|
28
|
Kauv P, Ayache SS, Créange A, Chalah MA, Lefaucheur JP, Hodel J, Brugières P. Adenosine Triphosphate Metabolism Measured by Phosphorus Magnetic Resonance Spectroscopy: A Potential Biomarker for Multiple Sclerosis Severity. Eur Neurol 2017; 77:316-321. [PMID: 28467982 DOI: 10.1159/000475496] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/30/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND/AIMS Phosphorus magnetic resonance spectroscopy (31P-MRS) has previously shown abnormal changes in energy metabolites in the brain of multiple sclerosis (MS) patients. However, the relationship between these energy metabolites - particularly adenosine triphosphate (ATP) - and the disease severity remains unclear. The objective of this study was to determine whether measuring ATP metabolites can help to predict disease severity in MS patients. METHODS 31P-MRS at 3 tesla was performed in 9 relapsing remitting (RRMS), 9 secondary progressive MS patients (SPMS), and 10 age-matched healthy controls. ATP metabolites (expressed as %) in normally appearing white matter of the centrum semiovale were compared between patients and healthy controls. The relationship between Expanded Disability Status Scale (EDSS) and ATP metabolites was evaluated. RESULTS RRMS and SPMS patients had higher phosphocreatine (PCr) and lower phosphodiesters than healthy controls. In addition, RRMS patients had higher β-ATP% than SPMS patients. β-ATP% was negatively correlated with EDSS in all patients. CONCLUSION Our findings suggest a defective PCr metabolism in both patient groups, and a higher state of energy production in RRMS that might reflect a compensatory mechanism in face of the increased needs. The correlation of β-ATP with EDSS makes it a candidate biomarker for assessing MS disease severity.
Collapse
Affiliation(s)
- Paul Kauv
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
| | | | | | | | | | | | | |
Collapse
|
29
|
van der Kemp WJM, Stehouwer BL, Runge JH, Wijnen JP, Nederveen AJ, Luijten PR, Klomp DWJ. Glycerophosphocholine and Glycerophosphoethanolamine Are Not the Main Sources of the In Vivo (31)P MRS Phosphodiester Signals from Healthy Fibroglandular Breast Tissue at 7 T. Front Oncol 2016; 6:29. [PMID: 26913240 PMCID: PMC4753293 DOI: 10.3389/fonc.2016.00029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 01/28/2016] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The identification of the phosphodiester (PDE) (31)P MR signals in the healthy human breast at ultra-high field. METHODS In vivo (31)P MRS measurements at 7 T of the PDE signals in the breast were performed investigating the chemical shifts, the transverse- and the longitudinal relaxation times. Chemical shifts and transverse relaxation times were compared with non-ambiguous PDE signals from the liver. RESULTS The chemical shifts of the PDE signals are shifted -0.5 ppm with respect to glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE), and the transverse and longitudinal relaxation times for these signals are a factor 3 to 4 shorter than expected for aqueous GPC and GPE. CONCLUSION The available experimental evidence suggests that GPC and GPE are not the main source of the PDE signals measured in fibroglandular breast tissue at 7 T. These signals may predominantly originate from mobile phospholipids.
Collapse
Affiliation(s)
| | | | - Jurgen H Runge
- Radiology, Academic Medical Center , Amsterdam , Netherlands
| | - Jannie P Wijnen
- Radiology, University Medical Center Utrecht , Utrecht , Netherlands
| | | | - Peter R Luijten
- Radiology, University Medical Center Utrecht , Utrecht , Netherlands
| | - Dennis W J Klomp
- Radiology, University Medical Center Utrecht , Utrecht , Netherlands
| |
Collapse
|
30
|
Mirkes C, Shajan G, Chadzynski G, Buckenmaier K, Bender B, Scheffler K. (31)P CSI of the human brain in healthy subjects and tumor patients at 9.4 T with a three-layered multi-nuclear coil: initial results. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:579-89. [PMID: 26811174 DOI: 10.1007/s10334-016-0524-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/20/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Investigation of the feasibility and performance of phosphorus ((31)P) magnetic resonance spectroscopic imaging (MRSI) at 9.4 T with a three-layered phosphorus/proton coil in human normal brain tissue and tumor. MATERIALS AND METHODS A multi-channel (31)P coil was designed to enable MRSI of the entire human brain. The performance of the coil was evaluated by means of electromagnetic field simulations and actual measurements. A 3D chemical shift imaging approach with a variable repetition time and flip angle was used to increase the achievable signal-to-noise ratio of the acquired (31)P spectra. The impact of the resulting k-space modulation was investigated by simulations. Three tumor patients and three healthy volunteers were scanned and differences between spectra from healthy and cancerous tissue were evaluated qualitatively. RESULTS The high sensitivity provided by the 27-channel (31)P coil allowed acquiring CSI data in 22 min with a nominal voxel size of 15 × 15 × 15 mm(3). Shimming and anatomical localization could be performed with the integrated four-channel proton dipole array. The amplitudes of the phosphodiesters and phosphoethanolamine appeared reduced in tumorous tissue for all three patients. A neutral or slightly alkaline pH was measured within the brain lesions. CONCLUSION These initial results demonstrate that (31)P 3D CSI is feasible at 9.4 T and could be performed successfully in healthy subjects and tumor patients in under 30 min.
Collapse
Affiliation(s)
- Christian Mirkes
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany. .,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany.
| | - Gunamony Shajan
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| | - Grzegorz Chadzynski
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany.,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| | - Kai Buckenmaier
- High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany.,High-Field MR Center, Max Planck Institute for Biological Cybernetics, Spemannstr. 41, 72076, Tübingen, Germany
| |
Collapse
|
31
|
Cichocka M, Kozub J, Urbanik A. PH Measurements of the Brain Using Phosphorus Magnetic Resonance Spectroscopy ((31)PMRS) in Healthy Men - Comparison of Two Analysis Methods. Pol J Radiol 2015; 80:509-14. [PMID: 26692912 PMCID: PMC4659444 DOI: 10.12659/pjr.895178] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/21/2015] [Indexed: 11/29/2022] Open
Abstract
Background Intracellular pH provides information on homeostatic mechanisms in neurons and glial cells. The aim of this study was to define pH of the brain of male volunteers using phosphorus magnetic resonance spectroscopy (31PMRS) and to compare two methods of calculating this value. Material/Methods In this study, 35 healthy, young, male volunteers (mean age: 25 years) were examined by 31PMRS in 1.5 T MR system (Signa Excite, GE). The FID CSI (Free Induction Decay Chemical Shift Imaging) sequence was used with the following parameters: TR=4000 ms, FA=90°, NEX=2. Volume of interest (VOI) was selected depending on the size of the volunteers’ brain (11–14 cm3, mean 11.53 cm3). Raw data were analyzed using SAGE (GE) software. Results Based on the chemical shift of peaks in the 31PMRS spectrum, intracellular pH was calculated using two equations. In both methods the mean pH was slightly alkaline (7.07 and 7.08). Results were compared with a t-test. Significant difference (p<0.05) was found between these two methods. Conclusions The 31PMRS method enables non-invasive in vivo measurements of pH. The choice of the calculation method is crucial for computing this value. Comparing the results obtained by different teams can be done in a fully credible way only if the calculations were performed using the same formula.
Collapse
Affiliation(s)
- Monika Cichocka
- Department of Radiology, Collegium Medicum, Jagiellonian University, Cracow, Poland
| | - Justyna Kozub
- Department of Radiology, Collegium Medicum, Jagiellonian University, Cracow, Poland
| | - Andrzej Urbanik
- Department of Radiology, Collegium Medicum, Jagiellonian University, Cracow, Poland
| |
Collapse
|
32
|
Rooney WD, Li X, Sammi MK, Bourdette DN, Neuwelt EA, Springer CS. Mapping human brain capillary water lifetime: high-resolution metabolic neuroimaging. NMR IN BIOMEDICINE 2015; 28:607-23. [PMID: 25914365 PMCID: PMC4920360 DOI: 10.1002/nbm.3294] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/28/2015] [Accepted: 03/02/2015] [Indexed: 05/25/2023]
Abstract
Shutter-speed analysis of dynamic-contrast-agent (CA)-enhanced normal, multiple sclerosis (MS), and glioblastoma (GBM) human brain data gives the mean capillary water molecule lifetime (τ(b)) and blood volume fraction (v(b); capillary density-volume product (ρ(†)V)) in a high-resolution (1)H2O MRI voxel (40 μL) or ROI. The equilibrium water extravasation rate constant, k(po) (τ(b)(-1)), averages 3.2 and 2.9 s(-1) in resting-state normal white matter (NWM) and gray matter (NGM), respectively (n = 6). The results (italicized) lead to three major conclusions. (A) k(po) differences are dominated by capillary water permeability (P(W)(†)), not size, differences. NWM and NGM voxel k(po) and v(b) values are independent. Quantitative analyses of concomitant population-averaged k(po), v(b) variations in normal and normal-appearing MS brain ROIs confirm P(W)(†) dominance. (B) P(W)(†) is dominated (>95%) by a trans(endothelial)cellular pathway, not the P(CA)(†) paracellular route. In MS lesions and GBM tumors, P(CA)(†) increases but P(W)(†) decreases. (C) k(po) tracks steady-state ATP production/consumption flux per capillary. In normal, MS, and GBM brain, regional k(po) correlates with literature MRSI ATP (positively) and Na(+) (negatively) tissue concentrations. This suggests that the P(W)(†) pathway is metabolically active. Excellent agreement of the relative NGM/NWM k(po)v(b) product ratio with the literature (31)PMRSI-MT CMR(oxphos) ratio confirms the flux property. We have previously shown that the cellular water molecule efflux rate constant (k(io)) is proportional to plasma membrane P-type ATPase turnover, likely due to active trans-membrane water cycling. With synaptic proximities and synergistic metabolic cooperativities, polar brain endothelial, neuroglial, and neuronal cells form "gliovascular units." We hypothesize that a chain of water cycling processes transmits brain metabolic activity to k(po), letting it report neurogliovascular unit Na(+),K(+)-ATPase activity. Cerebral k(po) maps represent metabolic (functional) neuroimages. The NGM 2.9 s(-1) k(po) means an equilibrium unidirectional water efflux of ~10(15) H2O molecules s(-1) per capillary (in 1 μL tissue): consistent with the known ATP consumption rate and water co-transporting membrane symporter stoichiometries.
Collapse
Affiliation(s)
- William D. Rooney
- Advanced Imaging Research CenterOregon Health and Science UniversityPortlandORUSA
- W. M. Keck Foundation High‐Field MRI LaboratoryOregon Health and Science UniversityPortlandORUSA
- Knight Cardiovascular InstituteOregon Health and Science UniversityPortlandORUSA
- Department of NeurologyOregon Health and Science UniversityPortlandORUSA
| | - Xin Li
- Advanced Imaging Research CenterOregon Health and Science UniversityPortlandORUSA
- W. M. Keck Foundation High‐Field MRI LaboratoryOregon Health and Science UniversityPortlandORUSA
| | - Manoj K. Sammi
- Advanced Imaging Research CenterOregon Health and Science UniversityPortlandORUSA
- W. M. Keck Foundation High‐Field MRI LaboratoryOregon Health and Science UniversityPortlandORUSA
| | | | - Edward A. Neuwelt
- Blood‐Brain Barrier ProgramOregon Health and Science UniversityPortlandORUSA
| | - Charles S. Springer
- Advanced Imaging Research CenterOregon Health and Science UniversityPortlandORUSA
- W. M. Keck Foundation High‐Field MRI LaboratoryOregon Health and Science UniversityPortlandORUSA
- Knight Cardiovascular InstituteOregon Health and Science UniversityPortlandORUSA
| |
Collapse
|
33
|
Kamble RB, Peruvumba N J, Shivashankar R. Energy status and metabolism in intracranial space occupying lesions: a prospective 31p spectroscopic study. J Clin Diagn Res 2014; 8:RC05-8. [PMID: 25584283 DOI: 10.7860/jcdr/2014/10176.5139] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 09/13/2014] [Indexed: 11/24/2022]
Abstract
AIM Intracranial space occupying lesions can be infective or tumour. There are various advanced Magnetic resonance imaging techniques like perfusion, diffusion and proton spectroscopy which can differentiate between them. However, (31) Phosphorus spectroscopy studies the energy status and the metabolism pattern of various tissues and can be used potentially to differentiate between them depending on their Metabolism pattern. Thus, we aimed to study energy status of various intracranial lesions and try to differentiate between them including grades of gliomas. MATERIALS AND METHODS (31)PMRS was done in 1.5T MRI in 43 patients prior to surgery or through/via stereo-tactic biopsy, of which 25 were men and 18 women with mean age 41.34 y ranging from 7-71 y. Single voxel phosphorus spectroscopy was done from the solid portion of the lesions and data was analysed and post processed. RESULTS Study includes Lymphoma (n=6), Grade 1 and 2 glioma (n=5), grade 3 glioma (n=9), grade 4 glioma(n=6), metastases (n=5), tuberculoma (n=7) and pyogenic abscesses (n=5). The integral values of PME, Pi, PDE, γ-ATP, α-ATP, β-ATP with reference to the position of PCr were calculated along with various ratios. Integral values of Pi and PDE were significantly increased in metastases but decreased in gliomas grade 1-2 compared to other pathologic conditions. Mean integral values of LEP (low energy phosphates) and total phosphates were significantly decreased in gliomas grades 1 and 2 and increased in metastases when compared with other pathologic conditions. PCr /Pi was increased in glioma grades 1, 2 and 3 but decreased in metastases; the significance was observed only in gliomas grade 3 and metastases. Metabolic ratios of PDE/β ATP and Pi/βATP were decreased in glioma grades 1 and 2 and increased in metastases with statistical significance. CONCLUSION (31)PMRS may help in differentiating primary from secondary lesions and assess grades of gliomas.
Collapse
|
34
|
Zakaria R, Das K, Bhojak M, Radon M, Walker C, Jenkinson MD. The role of magnetic resonance imaging in the management of brain metastases: diagnosis to prognosis. Cancer Imaging 2014; 14:8. [PMID: 25608557 PMCID: PMC4331840 DOI: 10.1186/1470-7330-14-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/11/2014] [Indexed: 11/20/2022] Open
Abstract
This article reviews the different MRI techniques available for the diagnosis, treatment and monitoring of brain metastases with a focus on applying advanced MR techniques to practical clinical problems. Topics include conventional MRI sequences and contrast agents, functional MR imaging, diffusion weighted MR, MR spectroscopy and perfusion MR. The role of radiographic biomarkers is discussed as well as future directions such as molecular imaging and MR guided high frequency ultrasound.
Collapse
|
35
|
Togao O, Yoshiura T, Keupp J, Hiwatashi A, Yamashita K, Kikuchi K, Suzuki Y, Suzuki SO, Iwaki T, Hata N, Mizoguchi M, Yoshimoto K, Sagiyama K, Takahashi M, Honda H. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol 2013; 16:441-8. [PMID: 24305718 DOI: 10.1093/neuonc/not158] [Citation(s) in RCA: 291] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Amide proton transfer (APT) imaging is a novel molecular MRI technique to detect endogenous mobile proteins and peptides through chemical exchange saturation transfer. We prospectively assessed the usefulness of APT imaging in predicting the histological grade of adult diffuse gliomas. METHODS Thirty-six consecutive patients with histopathologically proven diffuse glioma (48.1 ± 14.7 y old, 16 males and 20 females) were included in the study. APT MRI was conducted on a 3T clinical scanner and was obtained with 2 s saturation at 25 saturation frequency offsets ω = -6 to +6 ppm (step 0.5 ppm). δB0 maps were acquired separately for a point-by-point δB0 correction. APT signal intensity (SI) was defined as magnetization transfer asymmetry at 3.5 ppm: magnetization transfer ratio (MTR)asym = (S[-3.5 ppm] - S[+3.5 ppm])/S0. Regions of interest were carefully placed by 2 neuroradiologists in solid parts within brain tumors. The APT SI was compared with World Health Organization grade, Ki-67 labeling index (LI), and cell density. RESULTS The mean APT SI values were 2.1 ± 0.4% in grade II gliomas (n = 8), 3.2 ± 0.9% in grade III gliomas (n = 10), and 4.1 ± 1.0% in grade IV gliomas (n = 18). Significant differences in APT intensity were observed between grades II and III (P < .05) and grades III and IV (P < .05), as well as between grades II and IV (P < .001). There were positive correlations between APT SI and Ki-67 LI (P = .01, R = 0.43) and between APT SI and cell density (P < .05, R = 0.38). The gliomas with microscopic necrosis showed higher APT SI than those without necrosis (P < .001). CONCLUSIONS APT imaging can predict the histopathological grades of adult diffuse gliomas.
Collapse
Affiliation(s)
- Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan (O.T.); Department of Clinical Radiology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan (O.T., T.Y., A.H., K.Y., K.K., H.H.); Philips Research, Hamburg, Germany (J.K.); Philips Electronics Japan, Tokyo, Japan (Y.S.); Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (S.O.S., T.I.); Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan (N.H., M.M., K.Y.); Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas (K.S., M.T.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|