1
|
Brown M, Cush G, Adams SB. Use of 3D-Printed Implants in Complex Foot and Ankle Reconstruction. J Orthop Trauma 2024; 38:S17-S22. [PMID: 38502599 DOI: 10.1097/bot.0000000000002763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 03/21/2024]
Abstract
SUMMARY Treatment of traumatic critical-sized bone defects remains a challenge for orthopaedic surgeons. Autograft remains the gold standard to address bone loss, but for larger defects, different strategies must be used. The use of 3D-printed implants to address lower extremity trauma and bone loss is discussed with current techniques including bone transport, Masquelet, osteomyocutaneous flaps, and massive allografts. Considerations and future directions of implant design, augmentation, and optimization of the peri-implant environment to maximize patient outcome are reviewed.
Collapse
Affiliation(s)
- Matthew Brown
- Department of Orthopaedic Surgery, Duke University, Durham, NC; and
| | - Gerard Cush
- SUN Orthopaedics of Evangelical, Lewisburg, PA
| | - Samuel B Adams
- Department of Orthopaedic Surgery, Duke University, Durham, NC; and
| |
Collapse
|
2
|
Ock J, Choi Y, Lee DG, Chung JW, Kim N. Educational simulator for mastoidectomy considering mechanical properties using 3D printing and its usability evaluation. Sci Rep 2024; 14:7661. [PMID: 38561420 PMCID: PMC10984916 DOI: 10.1038/s41598-024-58359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
Complex temporal bone anatomy complicates operations; thus, surgeons must engage in practice to mitigate risks, improving patient safety and outcomes. However, existing training methods often involve prohibitive costs and ethical problems. Therefore, we developed an educational mastoidectomy simulator, considering mechanical properties using 3D printing. The mastoidectomy simulator was modeled on computed tomography images of a patient undergoing a mastoidectomy. Infill was modeled for each anatomical part to provide a realistic drilling sensation. Bone and other anatomies appear in assorted colors to enhance the simulator's educational utility. The mechanical properties of the simulator were evaluated by measuring the screw insertion torque for infill specimens and cadaveric temporal bones and investigating its usability with a five-point Likert-scale questionnaire completed by five otolaryngologists. The maximum insertion torque values of the sigmoid sinus, tegmen, and semicircular canal were 1.08 ± 0.62, 0.44 ± 0.42, and 1.54 ± 0.43 N mm, displaying similar-strength infill specimens of 40%, 30%, and 50%. Otolaryngologists evaluated the quality and usability at 4.25 ± 0.81 and 4.53 ± 0.62. The mastoidectomy simulator could provide realistic bone drilling feedback for educational mastoidectomy training while reinforcing skills and comprehension of anatomical structures.
Collapse
Affiliation(s)
- Junhyeok Ock
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil Songpa-Gu, Seoul, 05505, South Korea
| | - Yeonjoo Choi
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil Songpa-Gu, Seoul, 05505, South Korea
| | - Dong-Gyu Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil Songpa-Gu, Seoul, 05505, South Korea
| | - Jong Woo Chung
- Department of Otorhinolaryngology-Head & Neck Surgery, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil Songpa-Gu, Seoul, 05505, South Korea.
| | - Namkug Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil Songpa-Gu, Seoul, 05505, South Korea.
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43-Gil Songpa-Gu, Seoul, 05505, South Korea.
| |
Collapse
|
3
|
Ock J, Gwon E, Kim T, On S, Moon S, Kyung YS, Kim N. Patient-specific, deliverable, and self-expandable surgical guide development and evaluation using 4D printing for laparoscopic partial nephrectomy. Sci Rep 2024; 14:5722. [PMID: 38459159 PMCID: PMC10924080 DOI: 10.1038/s41598-024-56075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/01/2024] [Indexed: 03/10/2024] Open
Abstract
Accurate lesion diagnosis through computed tomography (CT) and advances in laparoscopic or robotic surgeries have increased partial nephrectomy survival rates. However, accurately marking the kidney resection area through the laparoscope is a prevalent challenge. Therefore, we fabricated and evaluated a 4D-printed kidney surgical guide (4DP-KSG) for laparoscopic partial nephrectomies based on CT images. The kidney phantom and 4DP-KSG were designed based on CT images from a renal cell carcinoma patient. 4DP-KSG were fabricated using shape-memory polymers. 4DP-KSG was compressed to a 10 mm thickness and restored to simulate laparoscopic port passage. The Bland-Altman evaluation assessed 4DP-KSG shape and marking accuracies before compression and after restoration with three operators. The kidney phantom's shape accuracy was 0.436 ± 0.333 mm, and the 4DP-KSG's shape accuracy was 0.818 ± 0.564 mm before compression and 0.389 ± 0.243 mm after restoration, with no significant differences. The 4DP-KSG marking accuracy was 0.952 ± 0.682 mm before compression and 0.793 ± 0.677 mm after restoration, with no statistical differences between operators (p = 0.899 and 0.992). In conclusion, our 4DP-KSG can be used for laparoscopic partial nephrectomies, providing precise and quantitative kidney tumor marking between operators before compression and after restoration.
Collapse
Affiliation(s)
- Junhyeok Ock
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eunseo Gwon
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Taehun Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sungchul On
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sojin Moon
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yoon Soo Kyung
- Department of Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, Korea
| | - Namkug Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, Korea.
| |
Collapse
|
4
|
Ock J, Kim T, On S, Lee S, Kyung YS, Kim N. Utilizing patient-specific 3D printed kidney surgical guide with realistic phantom for partial nephrectomy. Sci Rep 2023; 13:15531. [PMID: 37726415 PMCID: PMC10509158 DOI: 10.1038/s41598-023-42866-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
Partial nephrectomy has been demonstrated to preserve renal function compared with radical nephrectomy. Computed tomography (CT) is used to reveal localized renal cell carcinoma (RCC). However, marking RCC directly and quantitatively on a patient's kidney during an operation is difficult. We fabricated and evaluated a 3D-printed kidney surgical guide (3DP-KSG) with a realistic kidney phantom. The kidney phantoms including parenchyma and three different RCC locations and 3DP-KSG were designed and fabricated based on a patient's CT image. 3DP-KSG was used to insert 16-gauge intravenous catheters into the kidney phantoms, which was scanned by CT. The catheter insertion points and angle were evaluated. The measurement errors of insertion points were 1.597 ± 0.741 mm, and cosine similarity of trajectories was 0.990 ± 0.010. The measurement errors for X-axis, Y-axis, and Z-axis in the insertion point were 0.611 ± 0.855 mm, 0.028 ± 1.001 mm, and - 0.510 ± 0.923 mm. The 3DP-KSG targeted the RCC accurately, quantitatively, and immediately on the surface of the kidney, and no significant difference was shown between the operators. Partial nephrectomy will accurately remove the RCC using 3DP-KSG in the operating room.
Collapse
Affiliation(s)
- Junhyeok Ock
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Taehun Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Artificial Intelligence and Robotics Institute, Korea Institute of Science and Technology, Seoul, South Korea
| | - Sungchul On
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sangwook Lee
- ANYMEDI Inc., 388-1 Pungnap2-dong, Songpa-gu, Seoul, South Korea
| | - Yoon Soo Kyung
- Department of Health Screening and Promotion Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Namkug Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Szymański P, Popielarski P, Czarnecka-Komorowska D, Sika R, Gawdzińska K. Determination of Saturation Conditions of the Aluminum Metal Matrix Composites Reinforced with Al 2O 3 Sinter. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6106. [PMID: 37763389 PMCID: PMC10532971 DOI: 10.3390/ma16186106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Aluminum metal matrix composites (Al MMCs) are a class of materials characterized by being light in weight and high hardness. Due to these properties, Al MMCs have various applications in the automobile, aeronautical and marine industries. Ceramic-reinforced Al MMCs in the form of sinters are known for having excellent abrasive properties, which makes them an attractive material in certain fields of technology. The biggest problem in their production process is their low ability to infiltrate ceramics with alloys and consequently the difficulty of filling a ceramic preform. The castability of such composites has not yet been researched in detail. The aim of this study was to create aluminum metal matrix composite castings based on aluminum alloys (AlSi11) reinforced with an Al2O3 sinter preform using a Castability Trials spiral mold, and then to determine the degree of saturation with the liquid metal of the produced ceramic shaped body (Castability Trials spiral). For the selected AlSi11 alloy, the liquidus (Tl) and solidus (Ts) temperatures were determined by performing thermal-derivation analysis during cooling, which is Tl-579.3 °C and Ts-573.9 °C. The resultant pressure necessary for the infiltration process was estimated for the reinforcement capillaries with the following dimensions: 10, 15, 20, 25, 30 and 35 microns. The following values were used to determine the capillary pressure (Pk): surface tension of the alloy-σ = 840 mN/m; the extreme wetting angle of the reinforcement by the metal-θ = 136°. It has been experimentally confirmed that for the vacuum saturation process, the estimated resultant pressure enables saturation of reinforcement with capillaries larger than 25 microns, provided that the alloy temperature does not drop lower than the infiltration temperature. After the experiment, the time and route of the liquid metal flow in the spiral were determined. On the basis of the obtained values, a simulation was developed and initial assumptions such as saturation time, alloy temperature, reinforcement and mold temperature were verified. The energy balance showed that the saturation limit temperature was Tk = 580.7 °C for the reinforcement temperature of 575 °C. In contrast to the above, the assumption that the temperature of the metal after equalizing the temperature of the composite components must be higher than the liquidus temperature (Tliq = 579.3 °C) for the aluminum alloy used must be fulfilled. After the experiment, the time and path of the liquid metal flow in the spiral were determined. Then, on the basis of the obtained values, a simulation was developed, and the initial assumptions (saturation time and temperature) were verified.
Collapse
Affiliation(s)
- Paweł Szymański
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3 Str., 61-138 Poznan, Poland; (P.S.); (P.P.); (D.C.-K.)
| | - Paweł Popielarski
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3 Str., 61-138 Poznan, Poland; (P.S.); (P.P.); (D.C.-K.)
| | - Dorota Czarnecka-Komorowska
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3 Str., 61-138 Poznan, Poland; (P.S.); (P.P.); (D.C.-K.)
| | - Robert Sika
- Institute of Materials Technology, Poznan University of Technology, Piotrowo 3 Str., 61-138 Poznan, Poland; (P.S.); (P.P.); (D.C.-K.)
| | - Katarzyna Gawdzińska
- Faculty of Marine Engineering, Maritime University of Szczecin, Willowa 2-4, 71-650 Szczecin, Poland;
| |
Collapse
|
6
|
Chen S. The 10 Commandments of Building 3D-Printed Models for Surgical Simulation. INNOVATIONS-TECHNOLOGY AND TECHNIQUES IN CARDIOTHORACIC AND VASCULAR SURGERY 2023; 18:408-413. [PMID: 37804155 DOI: 10.1177/15569845231204233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2023]
Affiliation(s)
- Sarah Chen
- Division of Cardiac and General Thoracic Surgery, Department of Surgery, University of California, Davis, CA, USA
| |
Collapse
|
7
|
León-Muñoz VJ, Moya-Angeler J, López-López M, Lisón-Almagro AJ, Martínez-Martínez F, Santonja-Medina F. Integration of Square Fiducial Markers in Patient-Specific Instrumentation and Their Applicability in Knee Surgery. J Pers Med 2023; 13:jpm13050727. [PMID: 37240897 DOI: 10.3390/jpm13050727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/23/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Computer technologies play a crucial role in orthopaedic surgery and are essential in personalising different treatments. Recent advances allow the usage of augmented reality (AR) for many orthopaedic procedures, which include different types of knee surgery. AR assigns the interaction between virtual environments and the physical world, allowing both to intermingle (AR superimposes information on real objects in real-time) through an optical device and allows personalising different processes for each patient. This article aims to describe the integration of fiducial markers in planning knee surgeries and to perform a narrative description of the latest publications on AR applications in knee surgery. Augmented reality-assisted knee surgery is an emerging set of techniques that can increase accuracy, efficiency, and safety and decrease the radiation exposure (in some surgical procedures, such as osteotomies) of other conventional methods. Initial clinical experience with AR projection based on ArUco-type artificial marker sensors has shown promising results and received positive operator feedback. Once initial clinical safety and efficacy have been demonstrated, the continued experience should be studied to validate this technology and generate further innovation in this rapidly evolving field.
Collapse
Affiliation(s)
- Vicente J León-Muñoz
- Department of Orthopaedic Surgery and Traumatology, Hospital General Universitario Reina Sofía, 30003 Murcia, Spain
- Instituto de Cirugía Avanzada de la Rodilla (ICAR), 30005 Murcia, Spain
| | - Joaquín Moya-Angeler
- Department of Orthopaedic Surgery and Traumatology, Hospital General Universitario Reina Sofía, 30003 Murcia, Spain
- Instituto de Cirugía Avanzada de la Rodilla (ICAR), 30005 Murcia, Spain
| | - Mirian López-López
- Subdirección General de Tecnologías de la Información, Servicio Murciano de Salud, 30100 Murcia, Spain
| | - Alonso J Lisón-Almagro
- Department of Orthopaedic Surgery and Traumatology, Hospital General Universitario Reina Sofía, 30003 Murcia, Spain
| | - Francisco Martínez-Martínez
- Department of Orthopaedic Surgery and Traumatology, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | - Fernando Santonja-Medina
- Department of Orthopaedic Surgery and Traumatology, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Department of Surgery, Pediatrics and Obstetrics & Gynecology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
8
|
Hong D, Moon S, Seo JB, Kim N. Development of a patient-specific chest computed tomography imaging phantom with realistic lung lesions using silicone casting and three-dimensional printing. Sci Rep 2023; 13:3941. [PMID: 36894618 PMCID: PMC9995720 DOI: 10.1038/s41598-023-31142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
The validation of the accuracy of the quantification software in computed tomography (CT) images is very challenging. Therefore, we proposed a CT imaging phantom that accurately represents patient-specific anatomical structures and randomly integrates various lesions including disease-like patterns and lesions of various shapes and sizes using silicone casting and three-dimensional (3D) printing. Six nodules of various shapes and sizes were randomly added to the patient's modeled lungs to evaluate the accuracy of the quantification software. By using silicone materials, CT intensities suitable for the lesions and lung parenchyma were realized, and their Hounsfield unit (HU) values were evaluated on a CT scan of the phantom. As a result, based on the CT scan of the imaging phantom model, the measured HU values for the normal lung parenchyma, each nodule, fibrosis, and emphysematous lesions were within the target value. The measurement error between the stereolithography model and 3D-printing phantoms was 0.2 ± 0.18 mm. In conclusion, the use of 3D printing and silicone casting allowed the application and evaluation of the proposed CT imaging phantom for the validation of the accuracy of the quantification software in CT images, which could be applied to CT-based quantification and development of imaging biomarkers.
Collapse
Affiliation(s)
- Dayeong Hong
- Department of Radiological Science, Dongnam Health University, 50 Cheoncheon-Ro 74 Gil, Jangan-Gu, Suwon-Si, Gyeonggi-Do, 16328, Republic of Korea
- Department of Radiology and Convergence Medicine, AMIST, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Sojin Moon
- Department of Radiology and Convergence Medicine, AMIST, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, South Korea
| | - Joon Beom Seo
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, Republic of Korea
| | - Namkug Kim
- Department of Radiology and Convergence Medicine, AMIST, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro 43 Gil, Songpa-Gu, Seoul, 05505, South Korea.
| |
Collapse
|
9
|
Zhang J, Zhang Y, Fan L, Yu H. Digital technology for fluid resin injection to close anterior diastema after orthodontic treatment. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2023; 41:114-122. [PMID: 38596950 PMCID: PMC9988455 DOI: 10.7518/hxkq.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/02/2022] [Indexed: 04/11/2024]
Abstract
Anterior diastema and tooth defects are common clinical issues in restorative dentistry and are often restored by veneers or crowns based on the results of digital smile design and wax-up. Traditional direct resin restoration for closing a diastema is relatively minimally invasive but is time consuming and laborious, and shape control depends on experience. Digital technology can be used to design and transfer the shape of aesthetic restoration more accurately and quickly; thus, it could close anterior diastema and restore defects easily. According to the workflow, this technical process integrates virtual design and practical wax-up, transfers the designed restoration shape by templates, and injects through the preset channel after the template is in place. This clinical technique simplifies the clinical operation and saves clinical time, which can effectively improve the predictability and accuracy of the restoration and reduce technical sensitivity. This digital workflow provides a new technology for closing diastema quickly and effectively.
Collapse
Affiliation(s)
- Junjing Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics Ⅱ, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yuqiang Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics Ⅱ, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lin Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics Ⅱ, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Haiyang Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics Ⅱ, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Flores-Jiménez MS, Garcia-Gonzalez A, Fuentes-Aguilar RQ. Review on Porous Scaffolds Generation Process: A Tissue Engineering Approach. ACS APPLIED BIO MATERIALS 2023; 6:1-23. [PMID: 36599046 DOI: 10.1021/acsabm.2c00740] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Porous scaffolds have been widely explored for tissue regeneration and engineering in vitro three-dimensional models. In this review, a comprehensive literature analysis is conducted to identify the steps involved in their generation. The advantages and disadvantages of the available techniques are discussed, highlighting the importance of considering pore geometrical parameters such as curvature and size, and summarizing the requirements to generate the porous scaffold according to the desired application. This paper considers the available design tools, mathematical models, materials, fabrication techniques, cell seeding methodologies, assessment methods, and the status of pore scaffolds in clinical applications. This review compiles the relevant research in the field in the past years. The trends, challenges, and future research directions are discussed in the search for the generation of a porous scaffold with improved mechanical and biological properties that can be reproducible, viable for long-term studies, and closer to being used in the clinical field.
Collapse
Affiliation(s)
- Mariana S Flores-Jiménez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Alejandro Garcia-Gonzalez
- Escuela de Medicina, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| | - Rita Q Fuentes-Aguilar
- Institute of Advanced Materials and Sustainable Manufacturing, Tecnologico de Monterrey Campus Guadalajara, Av. Gral. Ramon Corona No 2514, Colonia Nuevo México, 45121Zapopan, Jalisco, México
| |
Collapse
|
11
|
Wu J, Heng M, Bai Y. A novel dice-inspired multifunctional 3D printing guided splint for minimally invasive access cavity preparation and canal orifice identification. Technol Health Care 2023; 31:2381-2387. [PMID: 37302052 DOI: 10.3233/thc-230002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
BACKGROUND The minimally invasive endodontics could retain more peri-cervical dentin (PCD) and other important dental structures, thus realizing the minimal loss of teeth structures and preserving the strength and function of the endodontically treated tooth (ETT). The search for abnormal root canals or calcified root canals could be quite time-consuming and increase the risk of perforation. OBJECTIVE This study introduced a novel multifunctional 3D printing guided splint inspired by the dice, which can achieve the minimally invasive access cavity preparation and canal orifice identification. METHOD Data were collected from an outpatient with dens invaginatus. Cone-beam Computed Tomography (CBCT) revealed a type III invagination. The CBCT data of the patient were imported into a computer-aided design (CAD) software (Exocad 3.0; Exocad GmbH) for the 3D reconstruction of jaw bones and teeth. The dice-inspired 3D printing guided splint consists of the sleeve and guided splint. The sleeve with minimal invasive opening channel and orifice locating channel were designed with a reverse-engineering software (Geomagic Wrap 2021). The reconstructed models in the Standard Template Library (STL) format were imported into a CAD software. The design of the template was aided by the dental CAD software in Splint Design Mode. The sleeve and splint were exported into the STL files separately. A 3D printer (ProJet® 3600 3D Systems) was used to separately generate the sleeve and guided splint, and was made by stereolithography and processed in a medical resin (VisiJet M3 StonePlast). RESULTS The novel multifunctional 3D printing guided splint could be set in position. The opening side in the sleeve was selected and the sleeve was inserted in place. The minimal invasive opening was made in the crown of the tooth to access the pulp. The sleeve was draw out and turned to the orifice location side, and then inserted in place. The target orifice was located rapidly. CONCLUSION This novel dice-inspired multifunctional 3D printing guided splint allow dental practitioners to gain accurate, conservative, and safe cavity access from teeth with anatomical malformations. Complex operations might be carried out with less reliance on the operator's experience than with conventional access preparations. This novel dice-inspired multifunctional 3D printing guided splint would have a broad application in the dental field.
Collapse
Affiliation(s)
- Jiaqi Wu
- First Clinical Division, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Modi Heng
- Dental Laboratory Center, School and Hospital of Stomatology, Peking University, Beijing, China
| | - Yunyang Bai
- Department of Geriatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
- National Center for Stomatology, School and Hospital of Stomatology, Peking University, Beijing, China
- National Clinical Research Center for Oral Diseases, School and Hospital of Stomatology, Peking University, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, School and Hospital of Stomatology, Peking University, Beijing, China
| |
Collapse
|
12
|
Kim T, Hong D, Moon S, Kim N. Evaluation of formaldehyde, particulate matters 2.5 and 10 emitted to a 3D printing workspace based on ventilation. Sci Rep 2022; 12:21638. [PMID: 36517631 PMCID: PMC9750962 DOI: 10.1038/s41598-022-25957-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Recently, the development of 3D printing (3DP) technology and its application in various fields have improved our quality of life. However, hazardous materials that affect the human body, such as formaldehyde and particulate matter (PM), are emitted into the air during 3DP. This study measured the formaldehyde, PM10, and PM2.5 emitted by 3DP with the ventilation operation using six materials in material extrusion (ME) and vat photopolymerization (VP) and compared them between the 3DP workspace and the control setting with test-retest validation by two researchers. The experiments were divided into four stages based on the 3DP and ventilation operation. A linear mixed model was used to analyze the mean differences and tendencies between the 3DP workspace and the control setting. The change as ventilation was switched from off to on was evaluated by calculating the area. The differences and tendencies were shown in the statistically significant differences from a post-hoc test (α = 0.0125) except for some cases. There was a significant difference in formaldehyde depending on the ventilation operation; however, only a minor difference in PM10, and PM2.5 was confirmed. The amount of formaldehyde exceeding the standard was measured in all materials during 3DP without ventilation. Therefore, it is recommended to operate ventilation systems.
Collapse
Affiliation(s)
- Taehun Kim
- grid.267370.70000 0004 0533 4667Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea ,grid.267370.70000 0004 0533 4667Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dayeong Hong
- grid.267370.70000 0004 0533 4667Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea ,grid.267370.70000 0004 0533 4667Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea ,grid.468823.30000 0004 0647 9964Department of Radiological science, Dongnam Health University, Suwon-si, Gyeonggi-do 50 Cheoncheon-ro 74 Gil, Jangan-gu, Republic of Korea
| | - Sojin Moon
- grid.267370.70000 0004 0533 4667Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Namkug Kim
- grid.267370.70000 0004 0533 4667Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea ,grid.267370.70000 0004 0533 4667Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea ,grid.413967.e0000 0001 0842 2126Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
13
|
Dai S, Wang Q, Jiang Z, Liu C, Teng X, Yan S, Xia D, Tuo Z, Bi L. Application of three-dimensional printing technology in renal diseases. Front Med (Lausanne) 2022; 9:1088592. [PMID: 36530907 PMCID: PMC9755183 DOI: 10.3389/fmed.2022.1088592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/21/2022] [Indexed: 10/15/2023] Open
Abstract
Three-dimensional (3D) printing technology involves the application of digital models to create 3D objects. It is used in construction and manufacturing and has gradually spread to medical applications, such as implants, drug development, medical devices, prosthetic limbs, and in vitro models. The application of 3D printing has great prospects for development in orthopedics, maxillofacial plastic surgery, cardiovascular conditions, liver disease, and other fields. With in-depth research on 3D printing technology and the continuous update of printing materials, this technology also shows broad development prospects in renal medicine. In this paper, the author mainly summarizes the basic theory of 3D printing technology, its research progress, application status, and development prospect in renal diseases.
Collapse
Affiliation(s)
- Shuxin Dai
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Qi Wang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhiwei Jiang
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chang Liu
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiangyu Teng
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Songbai Yan
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dian Xia
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhouting Tuo
- Department of Urology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liangkuan Bi
- Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
14
|
You Y, Niu Y, Sun F, Huang S, Ding P, Wang X, Zhang X, Zhang J. Three-dimensional printing and 3D slicer powerful tools in understanding and treating neurosurgical diseases. Front Surg 2022; 9:1030081. [PMCID: PMC9614074 DOI: 10.3389/fsurg.2022.1030081] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
With the development of the 3D printing industry, clinicians can research 3D printing in preoperative planning, individualized implantable materials manufacturing, and biomedical tissue modeling. Although the increased applications of 3D printing in many surgical disciplines, numerous doctors do not have the specialized range of abilities to utilize this exciting and valuable innovation. Additionally, as the applications of 3D printing technology have increased within the medical field, so have the number of printable materials and 3D printers. Therefore, clinicians need to stay up-to-date on this emerging technology for benefit. However, 3D printing technology relies heavily on 3D design. 3D Slicer can transform medical images into digital models to prepare for 3D printing. Due to most doctors lacking the technical skills to use 3D design and modeling software, we introduced the 3D Slicer to solve this problem. Our goal is to review the history of 3D printing and medical applications in this review. In addition, we summarized 3D Slicer technologies in neurosurgery. We hope this article will enable many clinicians to leverage the power of 3D printing and 3D Slicer.
Collapse
Affiliation(s)
- Yijie You
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Yunlian Niu
- Department of Neurology, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Fengbing Sun
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Sheng Huang
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Peiyuan Ding
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China
| | - Xuhui Wang
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China,Department of Neurosurgery, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, The Cranial Nerve Disease Center of Shanghai JiaoTong University, Shanghai, China
| | - Xin Zhang
- Educational Administrative Department, Shanghai Chongming Health School, Shanghai, China,Correspondence: Xin Zhang Jian Zhang
| | - Jian Zhang
- Department of Neurosurgery, Xinhua Hospital Chongming Branch, Shanghai, China,Correspondence: Xin Zhang Jian Zhang
| |
Collapse
|
15
|
Park J, Kim J, Hyun S, Lee J. Hemodynamics in a three-dimensional printed aortic model: a comparison of four-dimensional phase-contrast magnetic resonance and image-based computational fluid dynamics. MAGMA (NEW YORK, N.Y.) 2022; 35:719-732. [PMID: 35133539 DOI: 10.1007/s10334-021-00984-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE This study aims to compare an electrocardiogram (ECG)-gated four-dimensional (4D) phase-contrast (PC) magnetic resonance imaging (MRI) technique and computational fluid dynamics (CFD) using variables controlled in a laboratory environment to minimize bias factors. MATERIALS AND METHODS Data from 4D PC-MRI were compared with computational fluid dynamics using steady and pulsatile flows at various inlet velocities. Anatomically realistic models for a normal aorta, a penetrating atherosclerotic ulcer, and an abdominal aortic aneurysm were constructed using a three-dimensional printer. RESULTS For the normal aorta model, the errors in the peak and the average velocities were within 5%. The peak velocities of the penetrating atherosclerotic ulcer and the abdominal aortic aneurysm models displayed a more extensive range of differences because of the high-speed and vortical fluid flows generated by the shape of the blood vessel. However, the average velocities revealed only relatively minor differences. CONCLUSIONS This study compared the characteristics of PC-MRI and CFD through a phantom study that only included controllable experimental parameters. Based on these results, 4D PC-MRI and CFD are powerful tools for analyzing blood flow patterns in vivo. However, there is room for future developments to improve velocity measurement accuracy.
Collapse
Affiliation(s)
- Jieun Park
- Nonlinear Dynamics Research Center, Kyungpook National University, Daegu, Republic of Korea
| | - Junghun Kim
- Bio-Medical Research Institute, Kyungpook National University and Hospital, Daegu, Korea.
| | - Sinjae Hyun
- Department of Biomedical Engineering, Mercer University, Macon, GA, 31207, USA
| | - Jongmin Lee
- Department of Radiology, Kyungpook National University and Hospital, 50, Sam-Duk 2 Ga, Jung Gu, Daegu, 700-721, Republic of Korea.
| |
Collapse
|
16
|
Implementation of an In-House 3D Manufacturing Unit in a Public Hospital’s Radiology Department. Healthcare (Basel) 2022; 10:healthcare10091791. [PMID: 36141403 PMCID: PMC9498605 DOI: 10.3390/healthcare10091791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Objective: Three-dimensional printing has become a leading manufacturing technique in healthcare in recent years. Doubts in published studies regarding the methodological rigor and cost-effectiveness and stricter regulations have stopped the transfer of this technology in many healthcare organizations. The aim of this study was the evaluation and implementation of a 3D printing technology service in a radiology department. Methods: This work describes a methodology to implement a 3D printing service in a radiology department of a Spanish public hospital, considering leadership, training, workflow, clinical integration, quality processes and usability. Results: The results correspond to a 6-year period, during which we performed up to 352 cases, requested by 85 different clinicians. The training, quality control and processes required for the scaled implementation of an in-house 3D printing service are also reported. Conclusions: Despite the maturity of the technology and its impact on the clinic, it is necessary to establish new workflows to correctly implement them into the strategy of the health organization, adjusting it to the needs of clinicians and to their specific resources. Significance: This work allows hospitals to bridge the gap between research and 3D printing, setting up its transfer to clinical practice and using implementation methodology for decision support.
Collapse
|
17
|
Shin EJ, Park Y, Jung YS, Choi HY, Lee S. Fabrication and characteristics of flexible thermoplastic polyurethane filament for fused deposition modeling three‐dimensional printing. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Eun Joo Shin
- Department of Organic Materials and Polymer Engineering Dong‐A University Busan Republic of Korea
| | - Yuyoung Park
- Department of Organic Materials and Polymer Engineering Dong‐A University Busan Republic of Korea
| | - Yang Sook Jung
- Department of Organic Materials and Polymer Engineering Dong‐A University Busan Republic of Korea
| | - Hyeong Yeol Choi
- Department of Fashion Design Dong‐A University Busan Republic of Korea
| | - Sunhee Lee
- Department of Fashion Design Dong‐A University Busan Republic of Korea
| |
Collapse
|
18
|
Tang Y, Zhang Y, Meng Z, Sun Q, Peng L, Zhang L, Lu W, Liang W, Chen G, Wei Y. Accuracy of additive manufacturing in stomatology. Front Bioeng Biotechnol 2022; 10:964651. [PMID: 36051587 PMCID: PMC9424550 DOI: 10.3389/fbioe.2022.964651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
With the rapid development of the three-dimensional (3D) printing technology in recent decades, precise and personalized manufacturing has been achieved gradually, bringing benefit to biomedical application, especially stomatology clinical practice. So far, 3D printing has been widely applied to prosthodontics, orthodontics, and maxillofacial surgery procedures, realizing accurate, efficient operation processes and promising treatment outcomes. Although the printing accuracy has improved, further exploration is still needed. Herein, we summarized the various additive manufacturing techniques and their applications in dentistry while highlighting the importance of accuracy (precision and trueness).
Collapse
Affiliation(s)
- Yao Tang
- Department of Orthodontics, Cranial Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Beijing, China
- NMPA Key Laboratory for Dental Materials, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China
| | - Yunfan Zhang
- Department of Orthodontics, Cranial Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Beijing, China
- NMPA Key Laboratory for Dental Materials, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China
| | - Zhaoqiang Meng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Qiannan Sun
- Department of Orthodontics, Cranial Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Beijing, China
- NMPA Key Laboratory for Dental Materials, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China
| | - Liying Peng
- Department of Orthodontics, Cranial Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Beijing, China
- NMPA Key Laboratory for Dental Materials, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China
| | - Lingyun Zhang
- Department of Orthodontics, Cranial Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Beijing, China
- NMPA Key Laboratory for Dental Materials, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China
| | - Wenhsuan Lu
- Department of Orthodontics, Cranial Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Beijing, China
- NMPA Key Laboratory for Dental Materials, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China
| | - Wei Liang
- Department of Orthodontics, Cranial Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Beijing, China
- NMPA Key Laboratory for Dental Materials, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China
- *Correspondence: Wei Liang, ; Gui Chen, ; Yan Wei,
| | - Gui Chen
- Department of Orthodontics, Cranial Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Beijing, China
- NMPA Key Laboratory for Dental Materials, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, Beijing, China
- *Correspondence: Wei Liang, ; Gui Chen, ; Yan Wei,
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- *Correspondence: Wei Liang, ; Gui Chen, ; Yan Wei,
| |
Collapse
|
19
|
3D-Printed Teeth in Endodontics: Why, How, Problems and Future-A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137966. [PMID: 35805624 PMCID: PMC9265401 DOI: 10.3390/ijerph19137966] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 02/05/2023]
Abstract
Three-dimensional printing offers possibilities for the development of new models in endodontics. Numerous studies have used 3D-printed teeth; however, protocols for the standardization of studies still need to be developed. Another problem with 3D-printed teeth is the different areas of literature requested to understand the processes. This review aims to gather evidence about 3D-printed teeth on the following aspects: (1) why they are advantageous; (2) how they are manufactured; (3) problems they present; and (4) future research topics. Natural teeth are still the standard practice in ex vivo studies and pre-clinical courses, but they have several drawbacks. Printed teeth may overcome all limitations of natural teeth. Printing technology relies on 3D data and post-processing tools to form a 3D model, ultimately generating a prototype using 3D printers. The major concerns with 3D-printed teeth are the resin hardness and printing accuracy of the canal anatomy. Guidance is presented for future studies to solve the problems of 3D-printed teeth and develop well-established protocols, for the standardization of methods to be achieved. In the future, 3D-printed teeth have the possibility to become the gold standard in ex vivo studies and endodontic training.
Collapse
|
20
|
Park CK. 3D-Printed Disease Models for Neurosurgical Planning, Simulation, and Training. J Korean Neurosurg Soc 2022; 65:489-498. [PMID: 35762226 PMCID: PMC9271812 DOI: 10.3340/jkns.2021.0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/17/2021] [Indexed: 11/27/2022] Open
Abstract
Spatial insight into intracranial pathology and structure is important for neurosurgeons to perform safe and successful surgeries. Three-dimensional (3D) printing technology in the medical field has made it possible to produce intuitive models that can help with spatial perception. Recent advances in 3D-printed disease models have removed barriers to entering the clinical field and medical market, such as precision and texture reality, speed of production, and cost. The 3D-printed disease model is now ready to be actively applied to daily clinical practice in neurosurgical planning, simulation, and training. In this review, the development of 3D-printed neurosurgical disease models and their application are summarized and discussed.
Collapse
Affiliation(s)
- Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Omari S, Ashour EA, Elkanayati R, Alyahya M, Almutairi M, Repka MA. Formulation development of loratadine immediate- release tablets using hot-melt extrusion and 3D printing technology. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Hong D, Moon S, Cho Y, Oh IY, Chun EJ, Kim N. Rehearsal simulation to determine the size of device for left atrial appendage occlusion using patient-specific 3D-printed phantoms. Sci Rep 2022; 12:7746. [PMID: 35546178 PMCID: PMC9095622 DOI: 10.1038/s41598-022-11967-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/27/2022] [Indexed: 11/09/2022] Open
Abstract
Left atrial appendage (LAA) occlusion (LAAO) is used to close the finger-like extension from the left atrium with occlusion devices to block the source of thrombosis. However, selection of the devices size is not easy due to various anatomical changes. The purpose of this study is patient-specific, computed tomography angiography (CTA)-based, three-dimensionally (3D) printed LAAO phantoms were applied pre-procedure to determine the size. Ten patients were enrolled prospectively in March 2019 and December 2020. The cardiac structure appearing in CTA was first segmented, and the left atrium and related structures in the LAAO procedure were modeled. The phantoms were fabricated using two methods of fused deposition modeling (FDM) and stereolithography (SLA) 3D printers with thermoplastic polyurethane (TPU) and flexible resin materials and evaluated by comparing their physical and material properties. The 3D-printed phantoms were directly used to confirm the shape of LAA, and to predict the device size for LAAO. In summary, the shore A hardness of TPU of FDM was about 80-85 shore A, and that of flexible resin of SLA was about 50-70 shore A. The measurement error between the STL model and 3D printing phantoms were 0.45 ± 0.37 mm (Bland-Altman, limits of agreement from - 1.8 to 1.6 mm). At the rehearsal, the estimations of device sizes were the exact same with those in the actual procedures of all 10 patients. In conclusion, simulation with a 3D-printed left atrium phantom could be used to predict the LAAO insertion device size accurately before the procedure.
Collapse
Affiliation(s)
- Dayeong Hong
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Sojin Moon
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Youngjin Cho
- Division of Cardiology, Department of Internal Medicine, Seoul National University, Bundang Hospital 82, Gumi-ro 173beon-gil, Bundang-gu, Gyeonggi-do, Seongnam-si, 13620, South Korea
| | - Il-Young Oh
- Division of Cardiology, Department of Internal Medicine, Seoul National University, Bundang Hospital 82, Gumi-ro 173beon-gil, Bundang-gu, Gyeonggi-do, Seongnam-si, 13620, South Korea.
| | - Eun Ju Chun
- Department of Radiology, Seoul National University Bundang Hospital 82, Gumi-ro 173beon-gil, Bundang-gu, Gyeonggi-do, Seongnam-si, 13620, South Korea.
| | - Namkug Kim
- Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea.
- Department of Radiology and Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, 388-1 Pungnap2-dong, 88 Olympic-ro 43 Gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
23
|
Pouhaër M, Picart G, Baya D, Michelutti P, Dautel A, Pérard M, Le Clerc J. Design of 3D-printed macro-models for undergraduates' preclinical practice of endodontic access cavities. EUROPEAN JOURNAL OF DENTAL EDUCATION : OFFICIAL JOURNAL OF THE ASSOCIATION FOR DENTAL EDUCATION IN EUROPE 2022; 26:347-353. [PMID: 34358393 DOI: 10.1111/eje.12709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 05/28/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Endodontic access cavity is one of the steps most feared by dental students. The objective of the present work was to show the design phases of different realistic macro-models of a lower first molar, showing root canal anatomy and the ideal access cavity. MATERIALS AND METHODS Virtual models were designed with MeshMixer, MeshLab and Blender from the data collected (X-rays, CBCT and optical impression) and then printed. Two types of printers-FDM (fused deposition modelling) and SLA (stereolithography) printers-were used to obtain different prototypes which led to final models. A satisfaction questionnaire was then sent to students, after manipulation, to assess the relevance of these models. RESULTS Two final models of a lower first molar with an extended size (×9) were finally printed with an SLA laser printer with a transparent liquid resin. The first model represented the tooth with its optimal endodontic access cavity. The second one was designed to be divided into two parts according to a mesio-distal axis in order to visualise the root canal system. Most students found these macro-models to be effective tools for endodontic training. DISCUSSION 3D printing is a proven technology which is no exception in dentistry. Some authors have already proposed 3D-printed replicas of teeth for endodontic education. Macro-models have been designed, printed and made available to students during preclinical courses before and during training. CONCLUSION These educational macro-models should strengthen the knowledge and skills of students to improve their clinical and future practice within the dental office.
Collapse
Affiliation(s)
- Matéo Pouhaër
- UFR Odontologie, Université de Rennes 1, Rennes, France
| | | | - David Baya
- Service Universitaire de Pédagogie et des TICE (SUPTICE), Université de Rennes 1, Rennes, France
| | - Pierre Michelutti
- Département Génie Mécanique et Productique, IUT Rennes, Université de Rennes 1, Rennes, France
| | - Anne Dautel
- UFR Odontologie, Université de Rennes 1, Rennes, France
- CHU Rennes (Pôle Odontologie), Rennes, France
| | - Matthieu Pérard
- UFR Odontologie, Université de Rennes 1, Rennes, France
- CHU Rennes (Pôle Odontologie), Rennes, France
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, CNRS, Rennes, France
| | - Justine Le Clerc
- UFR Odontologie, Université de Rennes 1, Rennes, France
- CHU Rennes (Pôle Odontologie), Rennes, France
- ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, CNRS, Rennes, France
| |
Collapse
|
24
|
Alammar A, Kois JC, Revilla-León M, Att W. Additive Manufacturing Technologies: Current Status and Future Perspectives. J Prosthodont 2022; 31:4-12. [PMID: 35313022 DOI: 10.1111/jopr.13477] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
A review of the main additive manufacturing technologies including vat-polymerization, material extrusion, material jetting, binder jetting, powder-based fusion, sheet lamination, and direct energy deposition is provided. Additionally, the dental applications of polymer, metal, and ceramic printing technologies are discussed.
Collapse
Affiliation(s)
| | - John C Kois
- Kois Center, Seattle, WA.,Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA.,Private Practice, Seattle, WA
| | - Marta Revilla-León
- Kois Center, Seattle, WA.,Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA.,Department of Prosthodontics, Tufts University School of Dental Medicine, Boston, MA
| | - Wael Att
- Department of Prosthodontics, Tufts University School of Dental Medicine, Boston, MA
| |
Collapse
|
25
|
Anadioti E, Kane B, Zhang Y, Bergler M, Mante F, Blatz MB. Accuracy of Dental and Industrial 3D Printers. J Prosthodont 2022; 31:30-37. [PMID: 35313026 PMCID: PMC9902032 DOI: 10.1111/jopr.13470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 01/25/2023] Open
Abstract
PURPOSE This in vitro study evaluated the dimensional accuracy of three 3D printers and one milling machine with their respective polymeric materials using a simplified geometrical model. MATERIALS AND METHODS A simplified computer-aided design (CAD) model was created. The test samples were fabricated with three 3D printers: a dental desktop stereolithography (SLA) printer, an industrial SLA printer, and an industrial fused deposition modeling (FDM) printer, as well as a 5-axis milling machine. One polymer material was used per industrial printer and milling machine while two materials were used with the dental printer for a total of five study groups. Test specimens were then digitized using a laboratory scanner. The virtual outer caliper method was used to measure the linear dimensions of the digitized 3D printed and milled specimens in x-, y-, and z-axes, and compare them to the known values of the CAD model. Data were analyzed with Kruskal-Wallis one-way ANOVA on Ranks followed by the Tukey's test. RESULTS Milled specimens were not significantly different from the CAD model in any dimension (p > 0.05). All 3D printed specimens were significantly different from the CAD model in all dimensions (p = 0.01), except the dental SLA 3D printer with one of the polymers tested (Bis-GMA) which was not significantly different in two (x and z) dimensions (p = 0.4 and p = 0.12). CONCLUSIONS The milling technology tested provided greater dimensional accuracy than the selected 3D printing. Printer, printing technology, and material selection affected the accuracy of the printed model.
Collapse
Affiliation(s)
- Eva Anadioti
- Department of Preventive and Restorative Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA
| | - Brittany Kane
- Advanced Prosthodontics Division, University of California, Los Angeles, Los Angeles, CA
| | - Yu Zhang
- Department of Preventive and Restorative Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA
| | - Michael Bergler
- Department of Preventive and Restorative Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA
| | - Francis Mante
- Department of Preventive and Restorative Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA
| | - Markus B. Blatz
- Department of Preventive and Restorative Sciences, University of Pennsylvania School of Dental Medicine, Philadelphia, PA
| |
Collapse
|
26
|
Kim T, Yang DH, Kim JB, Kim N. Development of an automatic modeling method for patient-specific aortic graft reconstruction guide in thoracoabdominal aortic repair. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 215:106647. [PMID: 35093647 DOI: 10.1016/j.cmpb.2022.106647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVES Because repairing visceral and segmental arteries in open surgical repair for thoracoabdominal aortic aneurysms is essential, two types of patient-specific graft reconstruction guides for reconstruction in the operating room have been developed that are applied clinically. However, designing the patient-specific guides is a time-consuming, laborious task. The aim of this study was to develop an automatic modeling method and to evaluate its accuracy. METHODS In 10 patients with thoracoabdominal aortic aneurysms, computer-aided designing was performed with conventional and automatic modeling methods for aortic reconstruction guides as follows: 1) a visualizing guide that presented the accurate shape of the aortic graft, visualizing the main aortic body and major blood vessels; and 2) a marking guide wherein the vessels in the visualizing guide were replaced by the protruding marking regions detectable by tactile sense. The script-based automatic guide modeling program was developed using an application programming interface presented in the 3-matic software with Python. For accuracy, the absolute mean differences of both modeling methods were assessed using Hausdorff distance. The modeling between conventional and automatic modeling methods was compared and evaluated using the Wilcoxon signed-rank test. RESULTS The absolute mean difference between the conventional and automatic modeling methods were 6.05 ± 4.86 µm for the visualizing guide and 5.51 ± 4.85 µm for the marking guide. For the visualizing guide, the modeling time of the automatic modeling method was reduced by approximately more than thirtyfold than the conventional modeling method (p<0.001). The marking guide was reduced about fortyfold (p<0.001). CONCLUSIONS Compared to the conventional method, the automatic modeling method was demonstrated to reduce the modeling time with reasonable accuracy, which could lead to a more efficient modeling and clinical application.
Collapse
Affiliation(s)
- Taehun Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Biomedical Engineering, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong Hyun Yang
- Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Joon Bum Kim
- Department of Thoracic and Cardiovascular Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Namkug Kim
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Muff JL, Heye T, Thieringer FM, Brantner P. Clinical acceptance of advanced visualization methods: a comparison study of 3D-print, virtual reality glasses, and 3D-display. 3D Print Med 2022; 8:5. [PMID: 35094166 PMCID: PMC8801110 DOI: 10.1186/s41205-022-00133-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/17/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND To compare different methods of three-dimensional representations, namely 3D-Print, Virtual Reality (VR)-Glasses and 3D-Display regarding the understanding of the pathology, accuracy of details, quality of the anatomical representation and technical operability and assessment of possible change in treatment in different disciplines and levels of professional experience. METHODS Interviews were conducted with twenty physicians from the disciplines of cardiology, oral and maxillofacial surgery, orthopedic surgery, and radiology between 2018 and 2020 at the University Hospital of Basel. They were all presented with three different three-dimensional clinical cases derived from CT data from their area of expertise, one case for each method. During this, the physicians were asked for their feedback written down on a pencil and paper questionnaire. RESULTS Concerning the understanding of the pathology and quality of the anatomical representation, VR-Glasses were rated best in three out of four disciplines and two out of three levels of professional experience. Regarding the accuracy of details, 3D-Display was rated best in three out of four disciplines and all levels of professional experience. As to operability, 3D-Display was consistently rated best in all levels of professional experience and all disciplines. Possible change in treatment was reported using 3D-Print in 33%, VR-Glasses in 44%, and 3D-Display in 33% of participants. Physicians with a professional experience of more than ten years reported no change in treatment using any method. CONCLUSIONS 3D-Print, VR-Glasses, and 3D-Displays are very well accepted, and a relevant percentage of participants with less than ten years of professional work experience could imagine a possible change in treatment using any of these three-dimensional methods. Our findings challenge scientists, technicians, and physicians to further develop these methods to improve the three-dimensional understanding of pathologies and to add value to the education of young and inexperienced physicians.
Collapse
Affiliation(s)
- Julian Louis Muff
- Department of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland.
| | - Tobias Heye
- Department of Radiology and Nuclear Medicine, University Hospital Basel, Basel, Switzerland
| | - Florian Markus Thieringer
- Department of Oral and Cranio-Maxillofacial Surgery and 3D Print Lab, University Hospital Basel, Basel, Switzerland
- Department of Biomedical Engineering, University Hospital Basel, Basel, Switzerland
| | - Philipp Brantner
- Department of Radiology, Gesundheitszentrum Fricktal, Rheinfelden, Switzerland
| |
Collapse
|
28
|
Kaufmann R, Zech CJ, Takes M, Brantner P, Thieringer F, Deutschmann M, Hergan K, Scharinger B, Hecht S, Rezar R, Wernly B, Meissnitzer M. Vascular 3D Printing with a Novel Biological Tissue Mimicking Resin for Patient-Specific Procedure Simulations in Interventional Radiology: a Feasibility Study. J Digit Imaging 2022; 35:9-20. [PMID: 34997376 PMCID: PMC8854516 DOI: 10.1007/s10278-021-00553-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional (3D) printing of vascular structures is of special interest for procedure simulations in Interventional Radiology, but remains due to the complexity of the vascular system and the lack of biological tissue mimicking 3D printing materials a technical challenge. In this study, the technical feasibility, accuracy, and usability of a recently introduced silicone-like resin were evaluated for endovascular procedure simulations and technically compared to a commonly used standard clear resin. Fifty-four vascular models based on twenty-seven consecutive embolization cases were fabricated from preinterventional CT scans and each model was checked for printing success and accuracy by CT-scanning and digital comparison to its original CT data. Median deltas (Δ) of luminal diameters were 0.35 mm for clear and 0.32 mm for flexible resin (216 measurements in total) with no significant differences (p > 0.05). Printing success was 85.2% for standard clear and 81.5% for the novel flexible resin. In conclusion, vascular 3D printing with silicone-like flexible resin was technically feasible and highly accurate. This is the first and largest consecutive case series of 3D-printed embolizations with a novel biological tissue mimicking material and is a promising next step in patient-specific procedure simulations in Interventional Radiology.
Collapse
Affiliation(s)
- R. Kaufmann
- Department of Radiology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
- Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - C. J. Zech
- Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - M. Takes
- Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - P. Brantner
- Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - F. Thieringer
- Clinic for Oral and Maxillofacial Surgery, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - M. Deutschmann
- Department of Radiology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - K. Hergan
- Department of Radiology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - B. Scharinger
- Department of Radiology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - S. Hecht
- Department of Radiology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - R. Rezar
- Clinic of Internal Medicine II, Department of Cardiology and Internal Intensive Care Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - B. Wernly
- Clinic of Internal Medicine II, Department of Cardiology and Internal Intensive Care Medicine, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| | - M. Meissnitzer
- Department of Radiology, University Hospital Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria
| |
Collapse
|
29
|
Tsui JK, Bell S, Cruz LD, Dick AD, Sagoo MS. Applications of Three-dimensional Printing in Ophthalmology. Surv Ophthalmol 2022; 67:1287-1310. [DOI: 10.1016/j.survophthal.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 12/15/2022]
|
30
|
Garcia-Cardosa M, Granados-Ortiz FJ, Ortega-Casanova J. A Review on Additive Manufacturing of Micromixing Devices. MICROMACHINES 2021; 13:73. [PMID: 35056237 PMCID: PMC8778246 DOI: 10.3390/mi13010073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 01/31/2023]
Abstract
In recent years, additive manufacturing has gained importance in a wide range of research applications such as medicine, biotechnology, engineering, etc. It has become one of the most innovative and high-performance manufacturing technologies of the moment. This review aims to show and discuss the characteristics of different existing additive manufacturing technologies for the construction of micromixers, which are devices used to mix two or more fluids at microscale. The present manuscript discusses all the choices to be made throughout the printing life cycle of a micromixer in order to achieve a high-quality microdevice. Resolution, precision, materials, and price, amongst other relevant characteristics, are discussed and reviewed in detail for each printing technology. Key information, suggestions, and future prospects are provided for manufacturing of micromixing machines based on the results from this review.
Collapse
|
31
|
Gómez Meda R, Abella Sans F, Esquivel J, Zufía J. Impacted maxillary canine with curved apex: Three-dimensional guided protocol for autotransplantation. J Endod 2021; 48:379-387. [PMID: 34929261 DOI: 10.1016/j.joen.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Maxillary canines play a crucial role in dental and facial aspect, arch expansion, and efficient occlusion. When surgical exposure measures cannot be executed or the patient does not agree to take the treatment, autotransplantation should be considered. The aim of this case report was to describe a novel surgical technique using virtually planned three-dimensional(3D)-printed templates for guided apicoectomy and guided drilling of the recipient site for an autotransplantation of an impacted maxillary canine with a curved apex. METHODS A 42-year-old male complaining of pain and increased mobility in the maxillary left primary canine came to the clinic. Autotransplantation of the impacted canine was completed using altered methods from guided implant surgery to manufacture 3D-printed templates. Following a full-thickness mucoperiosteal flap elevation, the surgical template for the guided osteotomy and apicoectomy was inserted. This 3D-printed guided allowed the clinician to perform a quick and precise removal of the curved apex, providing an atraumatic extraction of the impacted canine throughout the cyst. Three further 3D surgical guides for implant burs and a 3D replica tooth were printed to modify the recipient socket. After the final position, the tooth was semi-rigid splinted to the adjacent teeth. RESULTS Follow-up at 2 years showed complete regeneration of the palatal defect and remodeling of the bone surrounding the maxillary canine. CONCLUSIONS Digitally planned procedures can facilitate the complex execution of an autotransplantation reducing the treatment chair-time and the morbidity for the patient as well as increasing the predictability of the result.
Collapse
Affiliation(s)
| | - Francesc Abella Sans
- Department of Endodontics, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Barcelona, Spain.
| | | | | |
Collapse
|
32
|
Tajik M, Akhlaqi MM, Gholami S. Advances in anthropomorphic thorax phantoms for radiotherapy: a review. Biomed Phys Eng Express 2021; 8. [PMID: 34736235 DOI: 10.1088/2057-1976/ac369c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 11/04/2021] [Indexed: 11/12/2022]
Abstract
A phantom is a highly specialized device, which mimic human body, or a part of it. There are three categories of phantoms: physical phantoms, physiological phantoms, and computational phantoms. The phantoms have been utilized in medical imaging and radiotherapy for numerous applications. In radiotherapy, the phantoms may be used for various applications such as quality assurance (QA), dosimetry, end-to-end testing, etc. In thoracic radiotherapy, unique QA problems including tumor motion, thorax deformation, and heterogeneities in the beam path have complicated the delivery of dose to both tumor and organ at risks (OARs). Also, respiratory motion is a major challenge in radiotherapy of thoracic malignancies, which can be resulted in the discrepancies between the planned and delivered doses to cancerous tissue. Hence, the overall treatment procedure needs to be verified. Anthropomorphic thorax phantoms, which are made of human tissue-mimicking materials, can be utilized to obtain the ground truth to validate these processes. Accordingly, research into new anthropomorphic thorax phantoms has accelerated. Therefore, the review is intended to summarize the current status of the commercially available and in-house-built anthropomorphic physical/physiological thorax phantoms in radiotherapy. The main focus is on anthropomorphic, deformable thorax motion phantoms. This review also discusses the applications of three-dimensional (3D) printing technology for the fabrication of thorax phantoms.
Collapse
Affiliation(s)
- Mahdieh Tajik
- Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences, Iran Tehran district 6 poursina st Tehran University of Medical Sciences, Tehran, 1416753955, Iran (the Islamic Republic of)
| | - Mohammad Mohsen Akhlaqi
- Shahid Beheshti University of Medical Sciences, Iran,Tehran,Shahid Bahonar roundabout, Darabad Avenue,Masih Daneshvari Hospital, Tehran, 19839-63113, Iran (the Islamic Republic of)
| | - Somayeh Gholami
- Radiotherapy, Tehran University of Medical Sciences, Bolvarekeshavarz AVN, Tehran, Iran, Tehran, 1416753955, Iran (the Islamic Republic of)
| |
Collapse
|
33
|
Deshmane S, Kendre P, Mahajan H, Jain S. Stereolithography 3D printing technology in pharmaceuticals: a review. Drug Dev Ind Pharm 2021; 47:1362-1372. [PMID: 34663145 DOI: 10.1080/03639045.2021.1994990] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Three-dimensional printing (3DP) technology is an innovative tool used in manufacturing medical devices, producing alloys, replacing biological tissues, producing customized dosage forms and so on. Stereolithography (SLA), a 3D printing technique, is very rapid and highly accurate and produces finished products of uniform quality. 3D formulations have been optimized with a perfect tool of artificial intelligence learning techniques. Complex designs/shapes can be fabricated through SLA using the photopolymerization principle. Different 3DP technologies are introduced and the most promising of these, SLA, and its commercial applications, are focused on. The high speed and effectiveness of SLA are highlighted. The working principle of SLA, the materials used and applications of the technique in a wide range of different sectors are highlighted in this review. An innovative idea of 3D printing customized pharmaceutical dosage forms is also presented. SLA compromises several advantages over other methods, such as cost effectiveness, controlled integrity of materials and greater speed. The development of SLA has allowed the development of printed pharmaceutical devices. Considering the present trends, it is expected that SLA will be used along with conventional methods of manufacturing of 3D model. This 3D printing technology may be utilized as a novel tool for delivering drugs on demand. This review will be useful for researchers working on 3D printing technologies.
Collapse
Affiliation(s)
- Subhash Deshmane
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, Malvihir, India
| | - Prakash Kendre
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, Malvihir, India
| | - Hitendra Mahajan
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Shirish Jain
- Department of Pharmaceutics, Rajarshi Shahu College of Pharmacy, Malvihir, India
| |
Collapse
|
34
|
Computer Assisted Surgery and 3D Printing in Orthopaedic Oncology: A Lesson Learned by Cranio-Maxillo-Facial Surgery. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Primary bone sarcomas are rare tumors and surgical resection in combination with chemo and radiation therapy is the mainstay of treatment. Some specific anatomical sites still represent a reconstructive challenge due to their complex three-dimensional anatomy. In recent years, patient specific instruments along with 3D printing technology has come to represent innovative techniques in orthopaedic oncology. We retrospectively reviewed 23 patients affected by primary bone sarcoma treated with patient-specific instruments and 3D printing custom made prostheses. At follow up after approximately two years, the infection rate was 26%, mechanical complication rate 13%, and local recurrence rate 13% (with a five-years implant survival rate of 74%). Based on our experience, patient-specific instruments and 3D custom-made prostheses represents a reliable and safe technique for improving the accuracy of resection of primary bone tumour, with a particular use in pelvic surgery ameliorating functional results.
Collapse
|
35
|
Toro M, Cardona A, Restrepo D, Buitrago L. Does vaporized hydrogen peroxide sterilization affect the geometrical properties of anatomic models and guides 3D printed from computed tomography images? 3D Print Med 2021; 7:29. [PMID: 34519898 PMCID: PMC8439001 DOI: 10.1186/s41205-021-00120-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 08/19/2021] [Indexed: 11/18/2022] Open
Abstract
Background Material extrusion is used to 3D print anatomic models and guides. Sterilization is required if a 3D printed part touches the patient during an intervention. Vaporized Hydrogen Peroxide (VHP) is one method of sterilization. There are four factors to consider when sterilizing an anatomic model or guide: sterility, biocompatibility, mechanical properties, and geometric fidelity. This project focuses on geometric fidelity for material extrusion of one polymer acrylonitrile butadiene styrene (ABS) using VHP. Methods De-identified computed tomography (CT) image data from 16 patients was segmented using Mimics Innovation Suite (Materialise NV, Leuven, Belgium). Eight patients had maxillary and mandibular defects depicted with the anatomic models, and eight had mandibular defects for the anatomic guides. Anatomic models and guides designed from the surfaces of CT scan reconstruction and segementation were 3D printed in medical-grade acrylonitrile butadiene styrene (ABS) material extrusion. The 16 parts underwent low-temperature sterilization with VHP. The dimensional error was estimated after sterilization by comparing scanned images of the 3D printed parts. Results The average of the estimated mean differences between the printed pieces before and after sterilization were − 0,011 ± 0,252 mm (95%CI − 0,011; − 0,010) for the models and 0,003 ± 0,057 mm (95%CI 0,002; 0,003) for the guides. Regarding the dimensional error of the sterilized parts compared to the original design, the estimated mean differences were − 0,082 ± 0,626 mm (95%CI − 0,083; − 0,081) for the models and 0,126 ± 0,205 mm (95%CI 0,126, 0,127) for the guides. Conclusion This project tested and verified dimensional stability, one of the four prerequisites for introducing vaporized hydrogen peroxide into 3D printing of anatomic models and guides; the 3D printed parts maintained dimensional stability after sterilization.
Collapse
Affiliation(s)
- Mauricio Toro
- TECHFIT Digital Surgery, Industrias Médicas Sampedro, Carrera 47 N° 100 Sur 40 Centro Industrial Portal del Sur, Bodega 14, variante a Caldas, La Estrella (Medellin), Colombia
| | - Aura Cardona
- R&D Department, TECHFIT Digital Surgery, Industrias Médicas Sampedro, La Estrella, Colombia
| | - Daniel Restrepo
- R&D Department, TECHFIT Digital Surgery, Industrias Médicas Sampedro, La Estrella, Colombia
| | - Laura Buitrago
- TECHFIT Digital Surgery, Industrias Médicas Sampedro, Carrera 47 N° 100 Sur 40 Centro Industrial Portal del Sur, Bodega 14, variante a Caldas, La Estrella (Medellin), Colombia.
| |
Collapse
|
36
|
3D-printed multisampling holder for microcomputed tomography applied to life and materials science research. Micron 2021; 150:103142. [PMID: 34509886 DOI: 10.1016/j.micron.2021.103142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/15/2021] [Accepted: 08/22/2021] [Indexed: 11/21/2022]
Abstract
The aim of this work was to design, fabricate, test and validate a 3D-printed multisampling holder for multi-analysis by microcomputed tomography. Different raw materials were scanned by microcomputed tomography. The raw material chosen was used to fabricate the holder by 3D printing. To validate the multisampling holder, five teeth were filled with a high density-material and scanned in two ways: a single and a multisampling scan mode. For each tooth, the root canal filling volume, porosity volume, closed pore volume, and open pore volume were calculated and compared when the same tooth was scanned in the two sampling scan mode. ABSplus P430™ allowed a high transmission value (84.3 %), and then it was the polymeric material selected to fabricate the holder. In a single sampling scan mode, the scan duration for scanning five teeth was 87.42 min, contrasting with 21.51 min for a multisampling scan mode, which scanned five teeth at the same time. The scan duration time and the cost using a multisampling holder represented a reduction of 75 % and the data volume generated represented a reduction of 60 %. Comparing the two scan modes, the results also showed that the difference of root canal filling volume, porosity volume, closed pore volume, and open pore volume was not statistically significant (p > .05). The multisampling holder was validated to do multi-analysis by microcomputed tomography without significant loss of quantitative accuracy data, allowing a reduction in scan duration time, imaging cost, and data storage.
Collapse
|
37
|
Utilizing patient-specific 3D printed guides for graft reconstruction in thoracoabdominal aortic repair. Sci Rep 2021; 11:18027. [PMID: 34504257 PMCID: PMC8429675 DOI: 10.1038/s41598-021-97541-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/19/2021] [Indexed: 11/08/2022] Open
Abstract
In thoracoabdominal aortic aneurysm repair, repairing the visceral and segmental arteries is challenging. Although there is a pre-hand-sewn and multi-branched graft based on the conventional image-based technique, it has shortcomings in precisely positioning and directing the visceral and segmental arteries. Here, we introduce two new reconstruction techniques using patient-specific 3D-printed graft reconstruction guides: (1) model-based technique that presents the projected aortic graft, visualizing the main aortic body and its major branches and (2) guide-based technique in which the branching vessels in the visualization model are replaced by marking points identifiable by tactile sense. We demonstrate the effectiveness by evaluating conventional and new techniques based on accuracy, marking time requirement, reproducibility, and results of survey to surgeons on the perceived efficiency and efficacy. The graft reconstruction guides cover the segmentation, design, fabrication, post-processing, and clinical application of open surgical repair of thoracoabdominal aneurysm, and proved to be efficient for accurately reconstructing customized grafts.
Collapse
|
38
|
Khanlar LN, Salazar Rios A, Tahmaseb A, Zandinejad A. Additive Manufacturing of Zirconia Ceramic and Its Application in Clinical Dentistry: A Review. Dent J (Basel) 2021; 9:dj9090104. [PMID: 34562978 PMCID: PMC8469515 DOI: 10.3390/dj9090104] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/02/2022] Open
Abstract
Additive manufacturing (AM) has many advantages and became a valid manufacturing technique for polymers and metals in dentistry. However, its application for dental ceramics is still in process. Among dental ceramics, zirconia is becoming popular and widely used in dentistry mainly due to its outstanding properties. Although subtractive technology or milling is the state of art for manufacturing zirconia restorations but still has shortcomings. Utilizing AM in fabricating ceramics restorations is a new topic for many researchers and companies across the globe and a good understanding of AM of zirconia is essential for dental professional. Therefore, the aim of this narrative review is to illustrate different AM technologies available for processing zirconia and discus their advantages and future potential. A comprehensive literature review was completed to summarize different AM technologies that are available to fabricate zirconia and their clinical application is reported. The results show a promising outcome for utilizing AM of zirconia in restorative, implant and regenerative dentistry. However further improvements and validation is necessary to approve its clinical application.
Collapse
Affiliation(s)
- Leila Nasiry Khanlar
- Department of Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Correspondence:
| | - Alma Salazar Rios
- College of Dentistry, Texas A&M University, Dallas, TX 75246, USA; (A.S.R.); (A.Z.)
| | - Ali Tahmaseb
- Department of Oral Maxillofacial Surgery Erasmus Medical Centre, 3015 Rotterdam, The Netherlands;
| | - Amirali Zandinejad
- College of Dentistry, Texas A&M University, Dallas, TX 75246, USA; (A.S.R.); (A.Z.)
| |
Collapse
|
39
|
Cernica D, Benedek I, Polexa S, Tolescu C, Benedek T. 3D Printing-A Cutting Edge Technology for Treating Post-Infarction Patients. Life (Basel) 2021; 11:910. [PMID: 34575059 PMCID: PMC8468787 DOI: 10.3390/life11090910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 02/06/2023] Open
Abstract
The increasing complexity of cardiovascular interventions requires advanced peri-procedural imaging and tailored treatment. Three-dimensional printing technology represents one of the most significant advances in the field of cardiac imaging, interventional cardiology or cardiovascular surgery. Patient-specific models may provide substantial information on intervention planning in complex cardiovascular diseases, and volumetric medical imaging from CT or MRI can be translated into patient-specific 3D models using advanced post-processing applications. 3D printing and additive manufacturing have a great variety of clinical applications targeting anatomy, implants and devices, assisting optimal interventional treatment and post-interventional evaluation. Although the 3D printing technology still lacks scientific evidence, its benefits have been shown in structural heart diseases as well as for treatment of complex arrhythmias and corrective surgery interventions. Recent development has enabled transformation of conventional 3D printing into complex 3D functional living tissues contributing to regenerative medicine through engineered bionic materials such hydrogels, cell suspensions or matrix components. This review aims to present the most recent clinical applications of 3D printing in cardiovascular medicine, highlighting also the potential for future development of this revolutionary technology in the medical field.
Collapse
Affiliation(s)
- Daniel Cernica
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| | - Imre Benedek
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| | - Stefania Polexa
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| | - Cosmin Tolescu
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| | - Theodora Benedek
- Center of Advanced Research in Multimodal Cardiovascular Imaging, Cardio Med Medical Center, 540124 Targu Mures, Romania; (D.C.); (I.B.); (C.T.); (T.B.)
- Cardiology Department, University of Medicine, Pharmacy, Sciences and Technologies “George Emil Palade”, 540142 Targu Mures, Romania
| |
Collapse
|
40
|
Accuracy evaluation of a 3D printing surgical guide for breast-conserving surgery using a realistic breast phantom. Comput Biol Med 2021; 137:104784. [PMID: 34438204 DOI: 10.1016/j.compbiomed.2021.104784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/04/2021] [Accepted: 08/17/2021] [Indexed: 11/22/2022]
Abstract
To prevent recurrence after breast-conserving surgery (BCS), it is imperative to secure a clear resection margin, and magnetic resonance imaging (MRI) is useful for predicting this. Although MRI is highly accurate in predicting the extent of a tumor, it is difficult to quantitatively mark the tumor area directly on the patient's breast skin using MRI. Therefore, we developed a 3D-printed breast surgical guide (3DP-BSG). The 3DP-BGS is positioned on the breast using the guideline pointing to the opposite nipple and clavicle notch, centering on the nipple of the breast with the tumor. Then, the tumor was visualized by injecting blue-dye into the breast along the guide's columns using a syringe. For the quantitative evaluation of 3DP-BSG, the experiment must be done in the simulated environment. However, since it is difficult to construct the environment in the clinical field, we have fabricated a realistic breast phantom using an MRI. For modeling the 3DP-BSG, the phantom was scanned using computed tomography (CT), and. Based on these images, the 3DP-BSG was modeled to mark a 5-mm safety margin on a patient's breast skin by inserting a 16-gauge intravenous catheter. Then, the breast phantom was scanned by CT for quantitative evaluation. The insertion point measurement error (mean ± standard deviation) was 2.513 ± 0.914 mm, and the cosine similarity of the trajectories was 0.997 ± 0.005. This 3DP-BSG exhibits high accuracy in tumor targeting and is expected to facilitate precise BCS by providing a quantitative measure of the tumor area to surgeons.
Collapse
|
41
|
Abstract
Owing to COVID-19, the world has advanced faster in the era of the Fourth Industrial Revolution, along with the 3D printing technology that has achieved innovation in personalized manufacturing. Three-dimensional printing technology has been utilized across various fields such as environmental fields, medical systems, and military materials. Recently, the 3D food printer global market has shown a high annual growth rate and is a huge industry of approximately one billion dollars. Three-dimensional food printing technology can be applied to various food ranges based on the advantages of designing existing food to suit one’s taste and purpose. Currently, many countries worldwide produce various 3D food printers, developing special foods such as combat food, space food, restaurants, floating food, and elderly food. Many people are unaware of the utilization of the 3D food printing technology industry as it is in its early stages. There are various cases using 3D food printing technology in various parts of the world. Three-dimensional food printing technology is expected to become a new trend in the new normal era after COVID-19. Compared to other 3D printing industries, food 3D printing technology has a relatively small overall 3D printing utilization and industry size because of problems such as insufficient institutionalization and limitation of standardized food materials for 3D food printing. In this review, the current industrial status of 3D food printing technology was investigated with suggestions for the improvement of the food 3D printing market in the new normal era.
Collapse
|
42
|
Li R, Ting YH, Youssef SH, Song Y, Garg S. Three-Dimensional Printing for Cancer Applications: Research Landscape and Technologies. Pharmaceuticals (Basel) 2021; 14:ph14080787. [PMID: 34451884 PMCID: PMC8401566 DOI: 10.3390/ph14080787] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
As a variety of novel technologies, 3D printing has been considerably applied in the field of health care, including cancer treatment. With its fast prototyping nature, 3D printing could transform basic oncology discoveries to clinical use quickly, speed up and even revolutionise the whole drug discovery and development process. This literature review provides insight into the up-to-date applications of 3D printing on cancer research and treatment, from fundamental research and drug discovery to drug development and clinical applications. These include 3D printing of anticancer pharmaceutics, 3D-bioprinted cancer cell models and customised nonbiological medical devices. Finally, the challenges of 3D printing for cancer applications are elaborated, and the future of 3D-printed medical applications is envisioned.
Collapse
|
43
|
Legnani E, Gallo P, Pezzotta F, Padelli F, Faragò G, Gioppo A, Gentili L, De Martin E, Fumagalli ML, Cavaliere F, Bruzzone MG, Milani P, Santaniello T. Additive Fabrication of a Vascular 3D Phantom for Stereotactic Radiosurgery of Arteriovenous Malformations. 3D PRINTING AND ADDITIVE MANUFACTURING 2021; 8:217-226. [PMID: 36654837 PMCID: PMC9828616 DOI: 10.1089/3dp.2020.0305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this study, an efficient methodology for manufacturing a realistic three-dimensional (3D) cerebrovascular phantom resembling a brain arteriovenous malformation (AVM) for applications in stereotactic radiosurgery is presented. The AVM vascular structure was 3D reconstructed from brain computed tomography (CT) data acquired from a patient. For the phantom fabrication, stereolithography was used to produce the AVM model and combined with silicone casting to mimic the brain parenchyma surrounding the vascular structure. This model was made with tissues-equivalent materials for radiology. The hollow vascular system of the phantom was filled with a contrast agent usually employed on patients for CT scans. The radiological response of the phantom was tested and compared with the one of the clinical case. The constructed model demonstrated to be a very accurate physical representation of the AVM and its vasculature and good morphological consistency was observed between the model and the patient-specific source anatomy. These results suggest that the proposed method has potential to be used to fabricate patient-specific phantoms for neurovascular radiosurgery applications and medical research.
Collapse
Affiliation(s)
- Elisa Legnani
- CIMAINA and Department of Physics, University of Milano, Milan, Italy
- Direct3D, Milan, Italy
| | - Pasqualina Gallo
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federico Pezzotta
- CIMAINA and Department of Physics, University of Milano, Milan, Italy
| | - Francesco Padelli
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Faragò
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Andrea Gioppo
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Lorenzo Gentili
- CIMAINA and Department of Physics, University of Milano, Milan, Italy
| | - Elena De Martin
- Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | | | | | | | - Paolo Milani
- CIMAINA and Department of Physics, University of Milano, Milan, Italy
| | | |
Collapse
|
44
|
Deruyver L, Rigaut C, Lambert P, Haut B, Goole J. The importance of pre-formulation studies and of 3D-printed nasal casts in the success of a pharmaceutical product intended for nose-to-brain delivery. Adv Drug Deliv Rev 2021; 175:113826. [PMID: 34119575 DOI: 10.1016/j.addr.2021.113826] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
This review aims to cement three hot topics in drug delivery: (a) the pre-formulation of new products intended for nose-to-brain delivery; (b) the development of nasal casts for studying the efficacy of potential new nose-to-brain delivery systems at the early of their development (pre-formulation); (c) the use of 3D printing based on a wide variety of materials (transparent, biocompatible, flexible) providing an unprecedented fabrication tool towards personalized medicine by printing nasal cast on-demand based on CT scans of patients. This review intends to show the links between these three subjects. Indeed, the pathway selected to administrate the drug to the brain not only influence the formulation strategies to implement but also the design of the cast, to get the most convincing measures from it. Moreover, the design of the cast himself influences the choice of the 3D-printing technology, which, in its turn, bring more constraints to the nasal replica design. Consequently, the formulation of the drug, the cast preparation and its realisation should be thought of as a whole and not separately.
Collapse
Affiliation(s)
- Laura Deruyver
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Clément Rigaut
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Pierre Lambert
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Benoît Haut
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
45
|
Daoud GE, Pezzutti DL, Dolatowski CJ, Carrau RL, Pancake M, Herderick E, VanKoevering KK. Establishing a point-of-care additive manufacturing workflow for clinical use. JOURNAL OF MATERIALS RESEARCH 2021; 36:3761-3780. [PMID: 34248272 PMCID: PMC8259775 DOI: 10.1557/s43578-021-00270-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Additive manufacturing, or 3-Dimensional (3-D) Printing, is built with technology that utilizes layering techniques to build 3-D structures. Today, its use in medicine includes tissue and organ engineering, creation of prosthetics, the manufacturing of anatomical models for preoperative planning, education with high-fidelity simulations, and the production of surgical guides. Traditionally, these 3-D prints have been manufactured by commercial vendors. However, there are various limitations in the adaptability of these vendors to program-specific needs. Therefore, the implementation of a point-of-care in-house 3-D modeling and printing workflow that allows for customization of 3-D model production is desired. In this manuscript, we detail the process of additive manufacturing within the scope of medicine, focusing on the individual components to create a centralized in-house point-of-care manufacturing workflow. Finally, we highlight a myriad of clinical examples to demonstrate the impact that additive manufacturing brings to the field of medicine.
Collapse
Affiliation(s)
| | | | | | - Ricardo L. Carrau
- The Ohio State University College of Medicine, Columbus, OH USA
- The Ohio State University James Comprehensive Cancer Center, Columbus, OH 43210 USA
- Department of Otolaryngology, The Ohio State University, Columbus, OH USA
| | - Mary Pancake
- Department of Engineering, The Ohio State University, Columbus, OH USA
| | - Edward Herderick
- Department of Engineering, The Ohio State University, Columbus, OH USA
| | - Kyle K. VanKoevering
- The Ohio State University College of Medicine, Columbus, OH USA
- The Ohio State University James Comprehensive Cancer Center, Columbus, OH 43210 USA
- Department of Otolaryngology, The Ohio State University, Columbus, OH USA
| |
Collapse
|
46
|
Pugalendhi A, Ranganathan R. A review of additive manufacturing applications in ophthalmology. Proc Inst Mech Eng H 2021; 235:1146-1162. [PMID: 34176362 DOI: 10.1177/09544119211028069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Additive Manufacturing (AM) capabilities in terms of product customization, manufacture of complex shape, minimal time, and low volume production those are very well suited for medical implants and biological models. AM technology permits the fabrication of physical object based on the 3D CAD model through layer by layer manufacturing method. AM use Magnetic Resonance Image (MRI), Computed Tomography (CT), and 3D scanning images and these data are converted into surface tessellation language (STL) file for fabrication. The applications of AM in ophthalmology includes diagnosis and treatment planning, customized prosthesis, implants, surgical practice/simulation, pre-operative surgical planning, fabrication of assistive tools, surgical tools, and instruments. In this article, development of AM technology in ophthalmology and its potential applications is reviewed. The aim of this study is nurturing an awareness of the engineers and ophthalmologists to enhance the ophthalmic devices and instruments. Here some of the 3D printed case examples of functional prototype and concept prototypes are carried out to understand the capabilities of this technology. This research paper explores the possibility of AM technology that can be successfully executed in the ophthalmology field for developing innovative products. This novel technique is used toward improving the quality of treatment and surgical skills by customization and pre-operative treatment planning which are more promising factors.
Collapse
Affiliation(s)
- Arivazhagan Pugalendhi
- Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India
| | - Rajesh Ranganathan
- Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, Tamil Nadu, India
| |
Collapse
|
47
|
Haleem A, Javaid M, Suman R, Singh RP. 3D Printing Applications for Radiology: An Overview. Indian J Radiol Imaging 2021; 31:10-17. [PMID: 34316106 PMCID: PMC8299499 DOI: 10.1055/s-0041-1729129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Three-dimensional (3D) printing technologies are part of additive manufacturing processes and are used to manufacture a 3D physical model from a digital computer-aided design model as per the required shape and size. These technologies are now used for advanced radiology applications by providing all information through 3D physical model. It provides innovation in radiology for clinical applications, treatment planning, procedural simulation, medical and patient education. Radiological advancements have been made in diagnosis and communication through medical digital imaging techniques like computed tomography, magnetic resonance imaging. These images are converted into Digital Imaging and Communications in Medicine in Standard Triangulate Language file format, easily printable in 3D printing technologies. This 3D model provides in-depth information about pathologic and anatomic states. It is useful to create new opportunities related to patient care. This article discusses the potential of 3D printing technology in radiology. The steps involved in 3D printing for radiology are discussed diagrammatically, and finally identified 12 significant applications of 3D printing technology for radiology with a brief description. A radiologist can incorporate this technology to fulfil different challenges such as training, planning, guidelines, and better communications.
Collapse
Affiliation(s)
- Abid Haleem
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Mohd Javaid
- Department of Mechanical Engineering, Jamia Millia Islamia, New Delhi, India
| | - Rajiv Suman
- Department of Industrial and Production Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Ravi Pratap Singh
- Department of Industrial and Production Engineering, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| |
Collapse
|
48
|
Kustra P, Dobroś K, Zarzecka J. Making use of three-dimensional models of teeth, manufactured by stereolithographic technology, in practical teaching of endodontics. EUROPEAN JOURNAL OF DENTAL EDUCATION : OFFICIAL JOURNAL OF THE ASSOCIATION FOR DENTAL EDUCATION IN EUROPE 2021; 25:299-304. [PMID: 32956528 DOI: 10.1111/eje.12604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/20/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
INTRODUCTION Making use of 3D printed teeth models in teaching students offers an innovative approach. The mistakes made by the students at the access cavity stage were assessed with the aid of 3D models, and their overall, hands-on learning progress was evaluated. MATERIAL AND METHODS Ninety 3D models of teeth were constructed using stereolithographic technology and then randomly divided into 9 groups. One dentistry student was randomly assigned to each group and then performed primary access cavity in 10 identical 3D models. Then the teeth were evaluated in the order of their preparation, relative to the model tooth. RESULTS The material of 14 (15.5%) out of 90 teeth models sustained significant damage during the preparation. As regards the remaining 76 (84.5%) 3D models, the students committed the greatest number of mistakes on the incisors, and fewer on the molars and the least in the premolars. The difference in the number of errors between particular groups of teeth was statistically significant (P = .0001). The number of errors committed in subsequent repetitions amongst all students was significantly different for the incisors (P = .00215) and premolars (P = .00383), whereas insignificant in the case of molars (P = .77116). CONCLUSIONS Thanks to perfect representation of teeth anatomy; making use of 3D models in the teaching of endodontics may well be recommended as holding substantial potential in improving overall quality of training at the pre-clinical stage, with a view to appreciably reducing overall risk of encountering complications during the actual clinical work.
Collapse
Affiliation(s)
- Przemysław Kustra
- Department of Conservative Dentistry with Endodontics, Faculty of Medicine, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Dobroś
- Department of Conservative Dentistry with Endodontics, Faculty of Medicine, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Zarzecka
- Department of Conservative Dentistry with Endodontics, Faculty of Medicine, Institute of Dentistry, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
49
|
Pantermehl S, Emmert S, Foth A, Grabow N, Alkildani S, Bader R, Barbeck M, Jung O. 3D Printing for Soft Tissue Regeneration and Applications in Medicine. Biomedicines 2021; 9:biomedicines9040336. [PMID: 33810541 PMCID: PMC8066192 DOI: 10.3390/biomedicines9040336] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The use of additive manufacturing (AM) technologies is a relatively young research area in modern medicine. This technology offers a fast and effective way of producing implants, tissues, or entire organs individually adapted to the needs of a patient. Today, a large number of different 3D printing technologies with individual application areas are available. This review is intended to provide a general overview of these various printing technologies and their function for medical use. For this purpose, the design and functionality of the different applications are presented and their individual strengths and weaknesses are explained. Where possible, previous studies using the respective technologies in the field of tissue engineering are briefly summarized.
Collapse
Affiliation(s)
- Sven Pantermehl
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (S.P.); (S.E.); (A.F.); (O.J.)
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (S.P.); (S.E.); (A.F.); (O.J.)
| | - Aenne Foth
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (S.P.); (S.E.); (A.F.); (O.J.)
| | - Niels Grabow
- Institute for Biomedical Engineering, University Medical Center Rostock, 18119 Rostock, Germany;
| | | | - Rainer Bader
- Clinic and Policlinic for Orthopedics, University Medical Center Rostock, 18057 Rostock, Germany;
| | - Mike Barbeck
- BerlinAnalytix GmbH, 12109 Berlin, Germany;
- Department of Ceramic Materials, Chair of Advanced Ceramic Materials, Institute for Materials Science and Technologies, Technical University Berlin, 10623 Berlin, Germany
- Correspondence: ; Tel.: +49-(0)-17681022467
| | - Ole Jung
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany; (S.P.); (S.E.); (A.F.); (O.J.)
| |
Collapse
|
50
|
Agung NP, Nadhif MH, Irdam GA, Mochtar CA. The Role of 3D-Printed Phantoms and Devices for Organ-specified Appliances in Urology. Int J Bioprint 2021; 7:333. [PMID: 33997433 PMCID: PMC8114094 DOI: 10.18063/ijb.v7i2.333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/15/2021] [Indexed: 02/08/2023] Open
Abstract
Urology is one of the fields that are always at the frontline of bringing scientific advancements into clinical practice, including 3D printing (3DP). This study aims to discuss and presents the current role of 3D-printed phantoms and devices for organ-specified applications in urology. The discussion started with a literature search regarding the two mentioned topics within PubMed, Embase, Scopus, and EBSCOhost databases. 3D-printed urological organ phantoms are reported for providing residents new insight regarding anatomical characteristics of organs, either normal or diseased, in a tangible manner. Furthermore, 3D-printed organ phantoms also helped urologists to prepare a pre-surgical planning strategy with detailed anatomical models of the diseased organs. In some centers, 3DP technology also contributed to developing specified devices for disease management. To date, urologists have been benefitted by 3D-printed phantoms and devices in the education and disease management of organs of in the genitourinary system, including kidney, bladder, prostate, ureter, urethra, penis, and adrenal. It is safe to say that 3DP technology can bring remarkable changes to daily urological practices.
Collapse
Affiliation(s)
- Natanael Parningotan Agung
- Department of Urology, Faculty of Medicine/Ciptomangunkusumo Central Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Muhammad Hanif Nadhif
- Department of Medical Physics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Medical Technology Cluster, Indonesian Medical Education and Research Institute, Jakarta, Indonesia
| | - Gampo Alam Irdam
- Department of Urology, Faculty of Medicine/Ciptomangunkusumo Central Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Chaidir Arif Mochtar
- Department of Urology, Faculty of Medicine/Ciptomangunkusumo Central Hospital, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|