1
|
Di-Bonaventura S, Donado-Bermejo A, Montero-Cuadrado F, Barrero-Santiago L, Pérez-Pérez L, León-Hernández JV, Fernández-Carnero J, Ferrer-Peña R. Pain Neuroscience Education Reduces Pain and Improves Psychological Variables but Does Not Induce Plastic Changes Measured by Brain-Derived Neurotrophic Factor (BDNF): A Randomized Double-Blind Clinical Trial. Healthcare (Basel) 2025; 13:269. [PMID: 39942458 PMCID: PMC11817230 DOI: 10.3390/healthcare13030269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/27/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
INTRODUCTION PNE, focusing on cognitive aspects, aims to change patients' beliefs about pain. However, it is unclear if these cognitive changes are sufficient to influence other components such as neuroplastic changes. OBJECTIVE To assess whether 3-h pain neuroscience education (PNE) can induce changes in brain-derived neurotrophic factor (BDNF) levels and pain intensity in chronic pain patients. METHODS A double-blind randomized clinical trial was conducted with 66 participants aged 18-65 years old (50.86 ± 8.61) with chronic primary musculoskeletal pain divided into two groups: an intervention group receiving 3-h PNE lecture and a control group that received an educational booklet. Primary outcomes included plasma BDNF levels and perceived pain intensity (VAS). Secondary outcomes included anxiety (HADS-A), depression (HADS-D), catastrophizing (PCS), kinesiophobia (TSK), stress (PSS), and knowledge about pain. Measurements were taken in both groups before and after a three-hour intervention. Data were analyzed using paired t-tests and Cohen's d for effect sizes. RESULTS The results showed no significant changes in BDNF levels for the PNE lecture group (p = 0.708) or the educational booklet group (p = 0.298). Both groups showed significant reductions in pain intensity (PNE: p < 0.001, d = 0.70; booklet: p = 0.036, d = 0.39). Secondary variables, such as knowledge (PNE: p < 0.001, d = -0.972; booklet: p < 0.001, d = -0.975) and anxiety (PNE: p < 0.001, d = 0.70; booklet: p = 0.035, d = 0.39), also showed significant improvements. CONCLUSIONS PNE did not significantly change BDNF levels but effectively improved pain intensity, pain-related knowledge, and other clinical variables. These findings suggest that while PNE has cognitive benefits, it may not be sufficient to induce immediate neurobiological changes. Further research is needed to explore long-term effects and incorporate additional therapeutic domains.
Collapse
Affiliation(s)
- Silvia Di-Bonaventura
- Department of Physical Therapy, Occupational Therapy, Rehabilitation, and Physical Medicine, Rey Juan Carlos University (URJC), 28933 Alcorcón, Spain;
- International Doctoral School, Faculty of Health Sciences, URJC, 28933 Alcorcón, Spain;
- Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, URJC, 28933 Madrid, Spain;
| | - Aser Donado-Bermejo
- International Doctoral School, Faculty of Health Sciences, URJC, 28933 Alcorcón, Spain;
- Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, URJC, 28933 Madrid, Spain;
| | - Federico Montero-Cuadrado
- Unit for Active Coping Strategies for Pain in Primary Care, East-Valladolid Primary Care Management, Castilla and Leon Public Health System (SACYL), 47007 Valladolid, Spain;
| | - Laura Barrero-Santiago
- Department of Cell Biology, Genetics, Histology, and Pharmacology, Faculty of Medicine, University of Valladolid (UVa), 47002 Valladolid, Spain;
| | - Lucía Pérez-Pérez
- Nursing Department, Faculty of Nursing, UVa, 47005 Valladolid, Spain;
- Nursing Care Research Group (GICE), Faculty of Nursing, UVa, 47005 Valladolid, Spain
- Primary Care Management Valladolid West (SACYL), 47012 Valladolid, Spain
| | - José Vicente León-Hernández
- Centro Superior de Estudios Universitarios La Salle (CSEU La Salle), Autonomous University of Madrid (UAM), 28049 Madrid, Spain;
| | - Josué Fernández-Carnero
- Department of Physical Therapy, Occupational Therapy, Rehabilitation, and Physical Medicine, Rey Juan Carlos University (URJC), 28933 Alcorcón, Spain;
- Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, URJC, 28933 Madrid, Spain;
- Multidisciplinary Pain Research and Treatment Group, Research Excellence Group URJC-Banco Santander, 28933 Alcorcón, Spain
- La Paz Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain
- Musculoskeletal Pain and Motor Control Research Group, Faculty of Sport Sciences, European University of Madrid, 28670 Villaviciosa de Odón, Spain
| | - Raúl Ferrer-Peña
- Cognitive Neuroscience, Pain, and Rehabilitation Research Group (NECODOR), Faculty of Health Sciences, URJC, 28933 Madrid, Spain;
- Centro Superior de Estudios Universitarios La Salle (CSEU La Salle), Autonomous University of Madrid (UAM), 28049 Madrid, Spain;
- La Paz Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain
- Clinical and Teaching Research Group on Rehabilitation Sciences (INDOCLIN), CSEU La Salle, UAM, 28023 Madrid, Spain
| |
Collapse
|
2
|
Kirby NV, Meade RD, McCormick JJ, King KE, Notley SR, Kenny GP. Brain-derived neurotrophic factor in older adults exposed to simulated indoor overheating. Eur J Appl Physiol 2024:10.1007/s00421-024-05623-y. [PMID: 39417862 DOI: 10.1007/s00421-024-05623-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/14/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) is a neuroprotective growth factor that increases in young adults during short, intense bouts of passive heat stress. However, this may not reflect the response in heat-vulnerable populations exposed to air temperatures more consistent with indoor overheating during hot weather and heatwaves, especially as the BDNF response to acute stressors may diminish with increasing age. We therefore evaluated the ambient and body temperature-dependent responses of BDNF in older adults during daylong passive heating. METHODS Sixteen older adults (6 females; aged 66-78 years) completed 8-h exposure to four randomized ambient conditions simulating those experienced indoors during hot weather and heatwaves in continental climates: 22 °C (air-conditioning; control), 26 °C (health-agency-recommended indoor temperature limit), 31 °C, and 36 °C (non-airconditioned home); all 45% relative humidity. To further investigate upstream mechanisms of BDNF regulation during thermal strain, we also explored associations between BDNF and circulating heat shock protein 70 (HSP70; taken as an indicator of the heat shock response). RESULTS Circulating BDNF was elevated by ~ 28% (1139 [95%CI: 166, 2112] pg/mL) at end-exposure in the 36 °C compared to the 22 °C control condition (P = 0.026; 26 °C-and 31 °C-22 °C differences: P ≥ 0.090), increasing 90 [22, 158] pg/mL per 1 °C rise in ambient temperature (linear trend: P = 0.011). BDNF was also positively correlated with mean body temperatures (P = 0.013), which increased 0.12 [0.10, 0.13]°C per 1 °C rise in ambient temperature (P < 0.001). By contrast, serum HSP70 did not change across conditions (P ≥ 0.156), nor was it associated with BDNF (P = 0.376). CONCLUSION Our findings demonstrate a progressive increase in circulating BDNF during indoor overheating in older adults.
Collapse
Affiliation(s)
- Nathalie V Kirby
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Robert D Meade
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - James J McCormick
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Kelli E King
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Sean R Notley
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, School of Human Kinetics, University of Ottawa, 125 University Private, Montpetit Hall, Room 367, Ottawa, ON, K1N 6N5, Canada.
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Asadzadeh Bayqara S, Aghazadeh Yamchelu M, Abdolahzadeyadegari S, Farhadi M, Nadjafi S, Fahanik Babaei J, Hosseini N. The effects of a chalcone derivative on memory, hippocampal corticosterone and BDNF levels in adult rats. Int J Neurosci 2024; 134:214-223. [PMID: 35796038 DOI: 10.1080/00207454.2022.2098735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
Abstract
Purpose/Aim of the study: Since chalcones belong to the flavonoid family, the effects of a new synthetic chalcone derivative on memory, chronic stress, and expression of hippocampal BDNF gene were studied.Materials and methods: In this experiment, the male wistar rats were placed under restraint stress (6 h/day) for 21 days and then treated with a newly synthesized chalcone, containing methoxy on the aromatic rings or vehicles (20 mg/kg, intraperitoneal, IP). After the behavioral Passive avoidance, Open field, and Morris water maze tests, the levels of serum corticosterone (CORT) and hippocampal brain-derived neurotrophic factor (BDNF) were analyzed.Results: Results of these tests presented significant differences between the Stress (St) and Chalcone (Ch) groups. Chronic stress led to high CORT levels and impaired memory functions. Moreover, a single dose of synthetic chalcone in the St group could postpone memory impairments. Furthermore, a 20 mg/kg IP injection of chalcone markedly attenuated the decrease of hippocampal BDNF.Conclusions: It has been already proposed that flavonoids have beneficial effects on different types of memory. According to these results, further investigations are required to explore other factors besides BDNF that could be acutely modulated by chalcones.
Collapse
Affiliation(s)
| | | | | | - Mona Farhadi
- Department of Microbiology, Islamic Azad University, Karaj, Iran
| | - Shabnam Nadjafi
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik Babaei
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Hosseini
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Huang R, Gong M, Tan X, Shen J, Wu Y, Cai X, Wang S, Min L, Gong L, Liang W. Effects of Chaihu Shugan San on Brain Functional Network Connectivity in the Hippocampus of a Perimenopausal Depression Rat Model. Mol Neurobiol 2024; 61:1655-1672. [PMID: 37751044 DOI: 10.1007/s12035-023-03615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2023] [Accepted: 08/25/2023] [Indexed: 09/27/2023]
Abstract
In this study, we used Chaihu Shugan San (CSS), a traditional Chinese herbal formula, as a probe to investigate the involvement of brain functional network connectivity and hippocampus energy metabolism in perimenopausal depression. A network pharmacology approach was performed to discover the underlying mechanisms of CSS in improving perimenopausal depression, which were verified in perimenopausal depression rat models. Network pharmacology analysis indicated that complex mechanisms of energy metabolism, neurotransmitter metabolism, inflammation, and hormone metabolic processes were closely associated with the anti-depressive effects of CSS. Thus, the serum concentrations of estradiol (E2), glutamate (Glu), and 5-hydroxytryptamine (5-HT) were detected by ELISA. The brain functional network connectivity between the hippocampus and adjacent brain regions was evaluated using resting-state functional magnetic resonance imaging (fMRI). A targeted metabolomic analysis of the hippocampal tricarboxylic acid cycle was also performed to measure the changes in hippocampal energy metabolism using liquid chromatography-tandem mass spectrometry (LC-MS/MS). CSS treatment significantly improved the behavioral performance, decreased the serum Glu levels, and increased the serum 5-HT levels of PMS + CUMS rats. The brain functional connectivity between the hippocampus and other brain regions was significantly changed by PMS + CUMS processes but improved by CSS treatment. Moreover, among the metabolites in the hippocampal tricarboxylic acid cycle, the concentrations of citrate and the upregulation of isocitrate and downregulation of guanosine triphosphate (GTP) in PMS + CUMS rats could be significantly improved by CSS treatment. A brain functional network connectivity mechanism may be involved in perimenopausal depression, wherein the hippocampal tricarboxylic acid cycle plays a vital role.
Collapse
Affiliation(s)
- Ruiting Huang
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, People's Republic of China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, People's Republic of China
| | - Min Gong
- College of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People's Republic of China
| | - Xue Tan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, People's Republic of China
| | - Jianying Shen
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - You Wu
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Xiaoshi Cai
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Suying Wang
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Li Min
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Lin Gong
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China
| | - Wenna Liang
- School of Traditional Chinese Medicine, Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Fuzhou, 350122, People's Republic of China.
| |
Collapse
|
5
|
Vega-Rivera NM, Estrada-Camarena E, Azpilcueta-Morales G, Cervantes-Anaya N, Treviño S, Becerril-Villanueva E, López-Rubalcava C. Chronic Variable Stress and Cafeteria Diet Combination Exacerbate Microglia and c-fos Activation but Not Experimental Anxiety or Depression in a Menopause Model. Int J Mol Sci 2024; 25:1455. [PMID: 38338735 PMCID: PMC10855226 DOI: 10.3390/ijms25031455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/06/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 02/12/2024] Open
Abstract
The menopause transition is a vulnerable period for developing both psychiatric and metabolic disorders, and both can be enhanced by stressful events worsening their effects. The present study aimed to evaluate whether a cafeteria diet (CAF) combined with chronic variable stress (CVS) exacerbates anxious- or depressive-like behavior and neuronal activation, cell proliferation and survival, and microglia activation in middle-aged ovariectomized (OVX) rats. In addition, body weight, lipid profile, insulin resistance, and corticosterone as an index of metabolic changes or hypothalamus-pituitary-adrenal (HPA) axis activation, and the serum pro-inflammatory cytokines IL-6, IL-β, and TNFα were measured. A CAF diet increased body weight, lipid profile, and insulin resistance. CVS increased corticosterone and reduced HDL. A CAF produced anxiety-like behaviors, whereas CVS induced depressive-like behaviors. CVS increased serum TNFα independently of diet. A CAF and CVS separately enhanced the percentage of Iba-positive cells in the hippocampus; the combination of factors further increased Iba-positive cells in the ventral hippocampus. A CAF and CVS increased the c-fos-positive cells in the hippocampus; the combination of factors increased the number of positive cells expressing c-fos in the ventral hippocampus even more. The combination of a CAF and CVS generates a slight neuroinflammation process and neuronal activation in a hippocampal region-specific manner and differentially affects the behavior.
Collapse
Affiliation(s)
- Nelly Maritza Vega-Rivera
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente”, Mexico City 14370, Mexico; (N.M.V.-R.); (G.A.-M.); (N.C.-A.)
| | - Erika Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente”, Mexico City 14370, Mexico; (N.M.V.-R.); (G.A.-M.); (N.C.-A.)
| | - Gabriel Azpilcueta-Morales
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente”, Mexico City 14370, Mexico; (N.M.V.-R.); (G.A.-M.); (N.C.-A.)
| | - Nancy Cervantes-Anaya
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente”, Mexico City 14370, Mexico; (N.M.V.-R.); (G.A.-M.); (N.C.-A.)
| | - Samuel Treviño
- Facultad de Química, Benemérita Universidad de Puebla, Puebla 72570, Mexico;
| | - Enrique Becerril-Villanueva
- Laboratorio de Psicoinmunología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente”, Mexico City 14370, Mexico;
| | - Carolina López-Rubalcava
- Departamento de Farmacobiología, Centro de Investigación y Estudios Avanzados del IPN, Mexico City 14330, Mexico;
| |
Collapse
|
6
|
Cardoner N, Andero R, Cano M, Marin-Blasco I, Porta-Casteràs D, Serra-Blasco M, Via E, Vicent-Gil M, Portella MJ. Impact of Stress on Brain Morphology: Insights into Structural Biomarkers of Stress-related Disorders. Curr Neuropharmacol 2024; 22:935-962. [PMID: 37403395 PMCID: PMC10845094 DOI: 10.2174/1570159x21666230703091435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/01/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 07/06/2023] Open
Abstract
Exposure to acute and chronic stress has a broad range of structural effects on the brain. The brain areas commonly targeted in the stress response models include the hippocampus, the amygdala, and the prefrontal cortex. Studies in patients suffering from the so-called stress-related disorders -embracing post-traumatic stress, major depressive and anxiety disorders- have fairly replicated animal models of stress response -particularly the neuroendocrine and the inflammatory models- by finding alterations in different brain areas, even in the early neurodevelopment. Therefore, this narrative review aims to provide an overview of structural neuroimaging findings and to discuss how these studies have contributed to our knowledge of variability in response to stress and the ulterior development of stress-related disorders. There are a gross number of studies available but neuroimaging research of stress-related disorders as a single category is still in its infancy. Although the available studies point at particular brain circuitries involved in stress and emotion regulation, the pathophysiology of these abnormalities -involving genetics, epigenetics and molecular pathways-, their relation to intraindividual stress responses -including personality characteristics, self-perception of stress conditions…-, and their potential involvement as biomarkers in diagnosis, treatment prescription and prognosis are discussed.
Collapse
Affiliation(s)
- Narcís Cardoner
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Raül Andero
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Marta Cano
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignacio Marin-Blasco
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Daniel Porta-Casteràs
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Maria Serra-Blasco
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Programa eHealth ICOnnecta't, Institut Català d'Oncologia, Barcelona, Spain
| | - Esther Via
- Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Muriel Vicent-Gil
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Maria J. Portella
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine Bellaterra, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Tanaka W, Matsuyama H, Shimoi K, Yokoyama D, Sakakibara H. Social confrontation stress decreases hepatic fibroblast growth factor-21 expression in aged mice. Biochem Biophys Rep 2023; 34:101454. [PMID: 37020789 PMCID: PMC10068015 DOI: 10.1016/j.bbrep.2023.101454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 04/07/2023] Open
Abstract
We previously showed that social stress exposure in mature adult mice increased blood corticosterone concentrations at 2 days, disrupted hepatic lipid metabolism-related pathway at 30 days, and increased the risk of overweight with hepatic hypertrophy at 90 days. To further investigate the effects of aging on the physiological responses to social stress, we conducted a study using male BALB/c mice at the ages of 2 months (mature age), 14 months (middle age) and 26 months (old age), and exposed them to confrontation stress for 2 or 7 days. Blood corticosterone concentrations were increased at 2 days of stress, and then returned to baseline concentrations. This change was observed only at 2 months of age. We further examined the effect of aging on hepatic gene expression of fibroblast growth factor-21 (Fgf21) and found that its expression was significantly decreased after 7 days of stress at 14 months of age and after 2 days of stress at 26 months of age, indicating these decreasing effects became more pronounced with age. In conclusion, our study suggests that hepatic Fgf21 expression decrease under exposure to confrontation stress at middle or more age, indicating that stress response on Fgf21 related pathway might be more pronounced with age when exposed to stress.
Collapse
Affiliation(s)
- Wataru Tanaka
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Gakuen Kibana-dai Nishi, Miyazaki, 889-2192, Japan
| | - Hiroki Matsuyama
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Gakuen Kibana-dai Nishi, Miyazaki, 889-2192, Japan
| | - Kayoko Shimoi
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Yada, Shizuoka, 422-8526, Japan
| | - Daigo Yokoyama
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Gakuen Kibana-dai Nishi, Miyazaki, 889-2192, Japan
| | - Hiroyuki Sakakibara
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Gakuen Kibana-dai Nishi, Miyazaki, 889-2192, Japan
- Corresponding author.
| |
Collapse
|
8
|
Serra MP, Sanna F, Boi M, Trucas M, Fernández-Teruel A, Corda MG, Giorgi O, Quartu M. Effects of Tail Pinch on BDNF and trkB Expression in the Hippocampus of Roman Low- (RLA) and High-Avoidance (RHA) Rats. Int J Mol Sci 2023; 24:ijms24119498. [PMID: 37298449 DOI: 10.3390/ijms24119498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
In this article, we describe the effects of tail pinch (TP), a mild acute stressor, on the levels of brain-derived neurotrophic factor (BDNF) and its tyrosine kinase receptor B (trkB) proteins in the hippocampus (HC) of the outbred Roman High- (RHA) and Low-Avoidance (RLA) rats, one of the most validated genetic models for the study of fear/anxiety- and stress-related behaviors. Using Western blot (WB) and immunohistochemistry assays, we show for the first time that TP induces distinct changes in the levels of BDNF and trkB proteins in the dorsal (dHC) and ventral (vHC) HC of RHA and RLA rats. The WB assays showed that TP increases BDNF and trkB levels in the dHC of both lines but induces opposite changes in the vHC, decreasing BDNF levels in RHA rats and trkB levels in RLA rats. These results suggest that TP may enhance plastic events in the dHC and hinder them in the vHC. Immunohistochemical assays, carried out in parallel to assess the location of changes revealed by the WB, showed that, in the dHC, TP increases BDNF-like immunoreactivity (LI) in the CA2 sector of the Ammon's horn of both Roman lines and in the CA3 sector of the Ammon's horn of RLA rats while, in the dentate gyrus (DG), TP increases trkB-LI in RHA rats. In contrast, in the vHC, TP elicits only a few changes, represented by decreases of BDNF- and trkB-LI in the CA1 sector of the Ammon's horn of RHA rats. These results support the view that the genotypic/phenotypic features of the experimental subjects influence the effects of an acute stressor, even as mild as TP, on the basal BDNF/trkB signaling, leading to different changes in the dorsal and ventral subdivisions of the HC.
Collapse
Affiliation(s)
- Maria Pina Serra
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Francesco Sanna
- Department of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy
| | - Marianna Boi
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Marcello Trucas
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Alberto Fernández-Teruel
- Medical Psychology Unit, Department of Psychiatry and Legal Medicine, Institute of Neuroscience, School of Medicine, Autonomous University of Barcelona, 08193 Barcelona, Spain
| | - Maria Giuseppa Corda
- Department of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy
| | - Osvaldo Giorgi
- Department of Life and Environmental Sciences, Section of Pharmaceutical, Pharmacological and Nutraceutical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, CA, Italy
| | - Marina Quartu
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| |
Collapse
|
9
|
Arvin P, Ghafouri S, Bavarsad K, Hajipour S, Khoshnam SE, Sarkaki A, Farbood Y. Administration of growth hormone ameliorates adverse effects of total sleep deprivation. Metab Brain Dis 2023; 38:1671-1681. [PMID: 36862276 DOI: 10.1007/s11011-023-01192-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/21/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
Total sleep deprivation (TSD) causes several harmful changes including anxiety, inflammation, and increased expression of extracellular signal-regulated kinase (ERK) and tropomyosin receptor kinase B (TrkB) genes in the hippocampus. The current study was conducted to explain the possible effects of exogenous GH against the above parameters caused by TSD and the possible mechanisms involved. Male Wistar rats were divided into 1) control, 2) TSD and 3) TSD + GH groups. To induce TSD, the rats received a mild repetitive electric shock (2 mA, 3 s) to their paws every 10 min for 21 days. Rats in the third group received GH (1 ml/kg, sc) for 21 days as treatment for TSD. The motor coordination, locomotion, the level of IL-6, and expression of ERK and TrkB genes in hippocampal tissue were measured after TSD. The motor coordination (p < 0.001) and locomotion indices (p < 0.001) were impaired significantly by TSD. The concentrations of serum corticotropin-releasing hormone (CRH) (p < 0.001) and hippocampal interleukin-6 (IL-6) (p < 0.001) increased. However, there was a significant decrease in the interleukin-4 (IL-4) concentration and expression of ERK (p < 0.001) and TrkB (p < 0.001) genes in the hippocampus of rats with TSD. Treatment of TSD rats with GH improved motor balance (p < 0.001) and locomotion (p < 0.001), decreased serum CRH (p < 0.001), IL-6 (p < 0.01) but increased the IL-4 and expression of ERK (p < 0.001) and TrkB (p < 0.001) genes in the hippocampus. Results show that GH plays a key role in modulating the stress hormone, inflammation, and the expression of ERK and TrkB genes in the hippocampus following stress during TSD.
Collapse
Affiliation(s)
- Parisa Arvin
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samireh Ghafouri
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kowsar Bavarsad
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Somayeh Hajipour
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Sarkaki
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Yaghoub Farbood
- Department of Physiology, Medicine Faculty, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Persian Gulf Physiology Research Center, Basic Medical Sciences Research Institute, Medicinal Plants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
10
|
Dashti S, Nahavandi A. Neuroprotective effects of aripiprazole in stress-induced depressive-like behavior: Possible role of CACNA1C. J Chem Neuroanat 2022; 126:102170. [PMID: 36270562 DOI: 10.1016/j.jchemneu.2022.102170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Depression is the most common psychiatric disorder. Recently, aripiprazole, a novel antipsychotic drug, has been approved as the adjunctive therapy for the Treatment-Resistant Depression (TRD). However, the mechanisms underlying the antidepressant effects of aripiprazole are not fully known. Besides the involvement of calcium signaling dysregulations in the pathophysiology of depression, there is some evidence of overexpressed CACNA1C (the gene encoding the Cav1.2 channels) following chronic stress in the brain regions, which involved in emotional and stress responses. Based on the data indicating the aripiprazole's effects on intracellular calcium levels, this study aimed to investigate the mechanisms of therapeutic effects of aripiprazole, by a focus on the modulation of CACNA1C expression, in the rat stress-induced model of depression. METHODS Using Chronic Unpredictable Mild Stress (CUMS) model of depression, we examined the effects of aripiprazole on depressive and anxiety-like behaviors (by forced swimming test and elevated plus maze), serum IL-6 (Elisa), and cell survival (Nissl staining). In addition, CACNA1C, BDNF, and TrkB expression in the PFC and hippocampus (RT-qPCR), as well as BDNF and GAP-43 protein levels in the hippocampus (Immunohistofluorescence), have been assayed. RESULTS Our data indicated that aripiprazole could improve anxiety and depressive-like behaviors, decrease the serum levels of IL-6 and hippocampal cell death following CUMS. In addition, we showed the significant modulation on overexpressed CACNA1C, as well as downregulated BDNF and GAP-43 expression DISCUSSION: These results demonstrate that aripiprazole may promote synaptic plasticity by improving the expression of BDNF and gap-43. In addition, inflammation reduction and CACNA1C expression downregulation may be some of mechanisms by which aripiprazole alleviates chronic stress-induced hippocampal cell death and play its pivotal antidepressant role.
Collapse
Affiliation(s)
- Somayeh Dashti
- Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Arezo Nahavandi
- Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran; Neuroscience Research Center, Iran University of Medical Science, Tehran, Iran.
| |
Collapse
|
11
|
Yin JB, Liu HX, Shi W, Ding T, Hu HQ, Guo HW, Jin S, Wang XL, Zhang T, Lu YC, Cao BZ. Various BDNF administrations attenuate SPS-induced anxiety-like behaviors. Neurosci Lett 2022; 788:136851. [PMID: 36007708 DOI: 10.1016/j.neulet.2022.136851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/03/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022]
Abstract
Post-traumatic stress disorder (PTSD) has become epidemic following severely stressful incidents. Previous studies have shown that brain-derived neurotrophic factor (BDNF) has anxiolytic effects on various anxiety or depression disorders including PTSD. However, the detailed mechanisms of BDNF for treating PTSD were rarely investigated. In the current study, single-prolonged stress (SPS) was used as an animal model recapitulating specific aspects for a PTSD-like phenotype. The effects of BDNF on SPS-induced anxiety-like behaviors were investigated. We showed that the levels of BDNF in the cerebro-spinal fluid (CSF) were significantly reduced after the rats experienced SPS. The SPS-induced reductions of percentages of time spent in the central area to total time in the open field test, were dose-dependently mitigated after BDNF intracerebroventricular (i.c.v.) injections. BDNF i.c.v. administration also dose-dependently increased the preference of the light box in the light-dark box test. Both expressions of tyrosine kinase receptor B (TrkB) protein and mRNA in the prefrontal cortex (PFC) and amygdala were significantly increased after SPS challenges. BDNF i.c.v. administration attenuated these compensatory increases of TrkB. At last, the anxiolytic effects of BDNF on SPS model were also observed by using other two injection methods. These results inspired us to study that different administrations of BDNF were used in patients with PTSD in the future, in-depthly.
Collapse
Affiliation(s)
- Jun-Bin Yin
- Department of Neurology, The 960(th) Hospital of Joint Logistics Support, PLA, Jinan 250031, PR China; Department of Human Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Hai-Xia Liu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Jinan 250021, PR China
| | - Wei Shi
- Department of Neurosurgery, The 960th Hospital of Joint Logistics Force, PLA, Jinan 250031, PR China
| | - Tan Ding
- Department of Human Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, PR China; Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Huai-Qiang Hu
- Department of Neurology, The 960(th) Hospital of Joint Logistics Support, PLA, Jinan 250031, PR China
| | - Hong-Wei Guo
- Department of Neurology, The 960(th) Hospital of Joint Logistics Support, PLA, Jinan 250031, PR China
| | - Shan Jin
- Department of Neurology, The 960(th) Hospital of Joint Logistics Support, PLA, Jinan 250031, PR China
| | - Xiao-Ling Wang
- Department of Neurology, The 960(th) Hospital of Joint Logistics Support, PLA, Jinan 250031, PR China
| | - Ting Zhang
- Department of Human Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Ya-Cheng Lu
- Department of Human Anatomy, Histology and Embryology, The Fourth Military Medical University, Xi'an 710032, PR China
| | - Bing-Zhen Cao
- Department of Neurology, The 960(th) Hospital of Joint Logistics Support, PLA, Jinan 250031, PR China.
| |
Collapse
|
12
|
Joshi R, Salton SRJ. Neurotrophin Crosstalk in the Etiology and Treatment of Neuropsychiatric and Neurodegenerative Disease. Front Mol Neurosci 2022; 15:932497. [PMID: 35909451 PMCID: PMC9335126 DOI: 10.3389/fnmol.2022.932497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2022] [Accepted: 06/23/2022] [Indexed: 12/27/2022] Open
Abstract
This article reviews the current progress in our understanding of the mechanisms by which growth factors, including brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF), and select neurotrophin-regulated gene products, such as VGF (non-acronymic) and VGF-derived neuropeptides, function in the central nervous system (CNS) to modulate neuropsychiatric and neurodegenerative disorders, with a discussion of the possible therapeutic applications of these growth factors to major depressive disorder (MDD) and Alzheimer’s disease (AD). BDNF and VEGF levels are generally decreased regionally in the brains of MDD subjects and in preclinical animal models of depression, changes that are associated with neuronal atrophy and reduced neurogenesis, and are reversed by conventional monoaminergic and novel ketamine-like antidepressants. Downstream of neurotrophins and their receptors, VGF was identified as a nerve growth factor (NGF)- and BDNF-inducible secreted protein and neuropeptide precursor that is produced and trafficked throughout the CNS, where its expression is greatly influenced by neuronal activity and exercise, and where several VGF-derived peptides modulate neuronal activity, function, proliferation, differentiation, and survival. Moreover, levels of VGF are reduced in the CSF of AD subjects, where it has been repetitively identified as a disease biomarker, and in the hippocampi of subjects with MDD, suggesting possible shared mechanisms by which reduced levels of VGF and other proteins that are similarly regulated by neurotrophin signaling pathways contribute to and potentially drive the pathogenesis and progression of co-morbid neuropsychiatric and neurodegenerative disorders, particularly MDD and AD, opening possible therapeutic windows.
Collapse
Affiliation(s)
- Rajeev Joshi
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephen R. J. Salton
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
- Brookdale Department of Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Stephen R. J. Salton,
| |
Collapse
|
13
|
Neurobiological Links between Stress, Brain Injury, and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8111022. [PMID: 35663199 PMCID: PMC9159819 DOI: 10.1155/2022/8111022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 12/09/2021] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
Stress, which refers to a combination of physiological, neuroendocrine, behavioral, and emotional responses to novel or threatening stimuli, is essentially a defensive adaptation under physiological conditions. However, strong and long-lasting stress can lead to psychological and pathological damage. Growing evidence suggests that patients suffering from mild and moderate brain injuries and diseases often show severe neurological dysfunction and experience severe and persistent stressful events or environmental stimuli, whether in the acute, subacute, or recovery stage. Previous studies have shown that stress has a remarkable influence on key brain regions and brain diseases. The mechanisms through which stress affects the brain are diverse, including activation of endoplasmic reticulum stress (ERS), apoptosis, oxidative stress, and excitatory/inhibitory neuron imbalance, and may lead to behavioral and cognitive deficits. The impact of stress on brain diseases is complex and involves impediment of recovery, aggravation of cognitive impairment, and neurodegeneration. This review summarizes various stress models and their applications and then discusses the effects and mechanisms of stress on key brain regions—including the hippocampus, hypothalamus, amygdala, and prefrontal cortex—and in brain injuries and diseases—including Alzheimer’s disease, stroke, traumatic brain injury, and epilepsy. Lastly, this review highlights psychological interventions and potential therapeutic targets for patients with brain injuries and diseases who experience severe and persistent stressful events.
Collapse
|
14
|
Alqudah M, Khanfar M, Alfaqih M, Al‑Shboul O, Al‑U'datt D, Al‑Dwairi A, Allouh M. Correlation between vitamin D and serum brain derived neurotropic factor levels in type 2 diabetes mellitus patients. Biomed Rep 2022; 16:54. [PMID: 35620310 PMCID: PMC9112377 DOI: 10.3892/br.2022.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/16/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes Mellitus (DM) currently ranks as the most common endocrine disorder worldwide. Current opinion views DM as a group of heterogeneous metabolic diseases characterized by hyperglycemia triggered by defects in the ability of the body to produce or use insulin in type 1 and 2 DM, respectively. Brain-derived neurotrophic factor (BDNF), one of the neurotrophin family of growth factors, has been linked to the pathogenesis of DM and insulin resistance. Moreover, vitamin D has been associated with insulin resistance and DM. Recently, the interactions between vitamin D and BDNF have been investigated in diabetic rats. However, this correlation has never been investigated in humans. Thus, the aim of the present study was to assess the alterations in serum BDNF and vitamin D levels in T2DM patients in Jordan, prior to and following vitamin D supplementation. A combination of non-experimental case-control and experimental designed studies were utilized to assess the relationship between serum BDNF and vitamin D levels in T2DM patients. The levels of BDNF and vitamin D were measured using commercially available ELISA kits, and fasting blood glucose (FBG) and HbA1c levels were measured in medical labs. The results showed that diabetic patients had lower levels of serum vitamin D and higher levels of BDNF compared with the healthy controls. Moreover, linear regression analysis indicated that BDNF levels were inversely correlated with serum vitamin D levels. Furthermore, vitamin D supplementation significantly increased vitamin D serum levels and decreased BDNF serum levels in diabetic patients. Intriguingly, FBG and HbA1c levels were significantly improved post vitamin D supplementation. These data demonstrate a positive effect of vitamin D supplementation in diabetic patients suggesting the implementation of vitamin D as part of future T2DM treatment plans. However, additional studies are needed to investigate the direct link between vitamin D, BDNF, and T2DM.
Collapse
Affiliation(s)
- Mohammad Alqudah
- Department of Physiology and Biochemistry, School of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mariam Khanfar
- Department of Physiology and Biochemistry, School of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mahmoud Alfaqih
- Department of Physiology and Biochemistry, School of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Othman Al‑Shboul
- Department of Physiology and Biochemistry, School of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Doa'a Al‑U'datt
- Department of Physiology and Biochemistry, School of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmed Al‑Dwairi
- Department of Physiology and Biochemistry, School of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammed Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
15
|
Belity T, Horowitz M, Hoffman JR, Epstein Y, Bruchim Y, Todder D, Cohen H. Heat-Stress Preconditioning Attenuates Behavioral Responses to Psychological Stress: The Role of HSP-70 in Modulating Stress Responses. Int J Mol Sci 2022; 23:ijms23084129. [PMID: 35456946 PMCID: PMC9031159 DOI: 10.3390/ijms23084129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Exposure to high ambient temperature is a stressor that influences both biological and behavioral functions and has been previously shown to have an extensive impact on brain structure and function. Physiological, cellular and behavioral responses to heat-stress (HS) (40-41 °C, 2 h) were evaluated in adult male Sprague-Dawley rats. The effect of HS exposure before predator-scent stress (PSS) exposure (i.e., HS preconditioning) was examined. Finally, a possible mechanism of HS-preconditioning to PSS was investigated. Immunohistochemical analyses of chosen cellular markers were performed in the hippocampus and in the hypothalamic paraventricular nucleus (PVN). Plasma corticosterone levels were evaluated, and the behavioral assessment included the elevated plus-maze (EPM) and the acoustic startle response (ASR) paradigms. Endogenous levels of heat shock protein (HSP)-70 were manipulated using an amino acid (L-glutamine) and a pharmacological agent (Doxazosin). A single exposure to an acute HS resulted in decreased body mass (BM), increased body temperature and increased corticosterone levels. Additionally, extensive cellular, but not behavioral changes were noted. HS-preconditioning provided behavioral resiliency to anxiety-like behavior associated with PSS, possibly through the induction of HSP-70. Targeting of HSP-70 is an attractive strategy for stress-related psychopathology treatment.
Collapse
Affiliation(s)
- Tal Belity
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Michal Horowitz
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem 9112102, Israel; (M.H.); (Y.B.)
| | - Jay R. Hoffman
- Department of Physical Therapy, Ariel University, Ariel 40700, Israel;
| | - Yoram Epstein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv and the Heller Institute of Medical Research, Sheba Medical Center, Ramat Gan 52621, Israel;
| | - Yaron Bruchim
- Laboratory of Environmental Physiology, Faculty of Dental Medicine, The Hebrew University, Jerusalem 9112102, Israel; (M.H.); (Y.B.)
- Intensive Care, Veterinary Emergency and Specialist Center, Youth Village Ben Shemen, Ben-Shemen 7311200, Israel
| | - Doron Todder
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8461144, Israel;
| | - Hagit Cohen
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
- Beer-Sheva Mental Health Center, Ministry of Health, Anxiety and Stress Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8461144, Israel;
- Correspondence: ; Tel.: +972-8-6401743
| |
Collapse
|
16
|
Sobhani V, Manshadi Mokari E, Aghajani J, Hatef B. Islamic praying changes stress-related hormones and genes. J Med Life 2022; 15:483-488. [PMID: 35646186 PMCID: PMC9126458 DOI: 10.25122/jml-2021-0167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/09/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Islamic praying (Namaz) can be considered a mental, spiritual, and physical practice. The study aimed to investigate the early effect of Namaz on stress-related hormones and the expression of stress-induced genes such as IL6 and BDNF. Eighty-three healthy women and men who continually practice Namaz participated in the study. The saliva samples were taken before and after Namaz to measure cortisol and alpha-amylase hormone levels. Also, to evaluate the expression of BDNF and IL6 genes, 11 specimens were selected randomly. Based on baseline sampling, the participants were classified into three groups: cortisol levels lower than 5, between 5-15, and upper than 15 ng/ml. The results indicated that cortisol significantly increased and decreased in the first and third groups after Namaz, respectively. In addition, the increase of alpha-amylase also occurred in subjects with a low baseline level of its concentration. Regarding genetic expression examination, there was a significant decrease in BDNF gene expression after the Namaz. In addition, the change of cortisol and alpha-amylase hormones after Namaz related to the baseline level changed to approach the optimal range after Namaz. These findings were reported for the first time and need more studies.
Collapse
Affiliation(s)
- Vahid Sobhani
- Exercise Physiology Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ehsan Manshadi Mokari
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Aghajani
- Department of Molecular Genetics, Faculty of Marvdasht, Islamic Azad University, Shiraz, Iran
| | - Boshra Hatef
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran,Corresponding Author: Boshra Hatef, Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran. E-mail:
| |
Collapse
|
17
|
Harakawa S, Nedachi T, Shinba T, Suzuki H. Stress-Reducing Effect of a 50 Hz Electric Field in Mice after Repeated Immobilizations, Electric Field Shields, and Polarization of the Electrodes. BIOLOGY 2022; 11:biology11020323. [PMID: 35205189 PMCID: PMC8869550 DOI: 10.3390/biology11020323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/08/2022] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 01/13/2023]
Abstract
Simple Summary With the increasing demand for electricity and electrical equipment, humans are routinely and unintentionally exposed to electric fields (EFs). Although no considerable adverse effects of EF exposure have been observed, slight physiological effects are known to occur. Additionally, there are methods and devices that expose subjects to EF for medical purposes. The mechanism of the biological effects of EF has not been identified, because the effects are not strong and may involve the physical properties of EFs, which are invisible and easily disturbed by obstacles. In a simple and short experiment using mice, we found that EF has an inhibitory effect on glucocorticoid (GC) responses. The experiment’s reproducibility was almost 100%. We tried to improve the understanding of the biological effects of EF by structuring our observations of the stress-reducing effects under different conditions in the system. We found that the inhibitory effect on the GC response was attenuated by EF shielding. We compared the effects of EF shielding between the head and abdomen, and found that the effects of EF were attenuated in both conditions, but might be more attenuated when the head was shielded. Thus, it appears that the area where the EF is distributed and the body part are important for the biological effects of EF. Two experiments with different conditions were performed. These results will help advance the current understanding of the effects of EF on stress systems. Abstract In BALB/c mice, immobilization-increased plasma glucocorticoid (GC) levels are suppressed by extremely low frequency (ELF) electric fields (EF). The aim of this study was to advance our understanding of the biological effects of ELF-EF, using its suppressive effect on the GC response. Mice were exposed to a 50 Hz EF of 10 kV/m via a parallel plate electrode and immobilized as needed. We examined the suppressive effect of ELF-EF on GC level change after repeated immobilizations, electrode polarization, and EF shielding of different portions of the mouse body parts. Additionally, bodyweight changes owing to stress and EF were examined. Immobilization-induced reduction in the plasma GC levels was reproduced in mice with stress and EF exposure, regardless of the stress episode numbers and electrode polarization. Furthermore, when the head of mice was shielded from the EF, the suppressive effect was possibly relatively lower than that when the abdomen was shielded. The bodyweight of the mice decreased for 3 days after immobilization before recovering; ELF-EF did not affect the bodyweight. Thus, to elicit the biological effects of the EF, not only the size of the area where the EF is distributed but also the area where the field is distributed should be important. The results also confirmed the stableness of the present experimental system, at least in terms of the stress-reducing effect. In addition, the restriction in this study caused weight loss, but ELF-EF was not considered to affect it. The results improve the understanding of the biological effect and medical applications of ELF-EF.
Collapse
Affiliation(s)
- Shinji Harakawa
- Bio-Self-Regulating Science Laboratory, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 0808555, Japan;
- Hakuju Institute for Health Science, Tokyo 1510063, Japan;
- Correspondence:
| | - Takaki Nedachi
- Hakuju Institute for Health Science, Tokyo 1510063, Japan;
| | - Toshikazu Shinba
- Department of Psychiatry, Shizuoka Saiseikai General Hospital, Shizuoka 4228527, Japan;
| | - Hiroshi Suzuki
- Bio-Self-Regulating Science Laboratory, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 0808555, Japan;
| |
Collapse
|
18
|
Lai J, Zhang P, Jiang J, Mou T, Li Y, Xi C, Wu L, Gao X, Zhang D, Chen Y, Huang H, Li H, Cai X, Li M, Zheng P, Hu S. New Evidence of Gut Microbiota Involvement in the Neuropathogenesis of Bipolar Depression by TRANK1 Modulation: Joint Clinical and Animal Data. Front Immunol 2022; 12:789647. [PMID: 34992606 PMCID: PMC8724122 DOI: 10.3389/fimmu.2021.789647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/05/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Tetratricopeptide repeat and ankyrin repeat containing 1 (TRANK1) is a robust risk gene of bipolar disorder (BD). However, little is known on the role of TRANK1 in the pathogenesis of BD and whether the gut microbiota is capable of regulating TRANK1 expression. In this study, we first investigated the serum mRNA level of TRANK1 in medication-free patients with a depressive episode of BD, then a mice model was constructed by fecal microbiota transplantation (FMT) to explore the effects of gut microbiota on brain TRANK1 expression and neuroinflammation, which was further verified by in vitro Lipopolysaccharide (LPS) treatment in BV-2 microglial cells and neurons. 22 patients with a depressive episode and 28 healthy individuals were recruited. Serum level of TRANK1 mRNA was higher in depressed patients than that of healthy controls. Mice harboring 'BD microbiota' following FMT presented depression-like phenotype. mRNA levels of inflammatory cytokines and TRANK1 were elevated in mice hippocampus and prefrontal cortex. In vitro, LPS treatment activated the secretion of pro-inflammatory factors in BV-2 cells, which was capable of upregulating the neuronal expression of TRANK1 mRNA. Moreover, primary cortical neurons transfected with plasmid Cytomegalovirus DNA (pcDNA3.1(+)) vector encoding human TRANK1 showed decreased dendritic spine density. Together, these findings add new evidence to the microbiota-gut-brain regulation in BD, indicating that microbiota is possibly involved in the neuropathogenesis of BD by modulating the expression of TRANK1.
Collapse
Affiliation(s)
- Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, China.,Brain Research Institute of Zhejiang University, Hangzhou, China.,MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, China
| | - Peifen Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajun Jiang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingting Mou
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, China.,Brain Research Institute of Zhejiang University, Hangzhou, China
| | - Yifan Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Caixi Xi
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingling Wu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingle Gao
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danhua Zhang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huimin Huang
- Institute of Psychiatry, Wenzhou Medical University, Wenzhou, China
| | - Huijuan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou, China.,Brain Research Institute of Zhejiang University, Hangzhou, China.,MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Basso L, Boecking B, Neff P, Brueggemann P, Peters EMJ, Mazurek B. Hair-cortisol and hair-BDNF as biomarkers of tinnitus loudness and distress in chronic tinnitus. Sci Rep 2022; 12:1934. [PMID: 35121746 PMCID: PMC8817043 DOI: 10.1038/s41598-022-04811-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2021] [Accepted: 12/21/2021] [Indexed: 12/23/2022] Open
Abstract
The role of stress and its neuroendocrine mediators in tinnitus is unclear. In this study, we measure cortisol as an indicator of hypothalamus–pituitary–adrenal (HPA) axis alterations and brain-derived neurotrophic factor (BDNF) as a marker of adaptive neuroplasticity in hair of chronic tinnitus patients to investigate relationships with tinnitus-related and psychological factors. Cross-sectional data from chronic tinnitus inpatients were analyzed. Data collection included hair sampling, pure tone audiometry, tinnitus pitch and loudness matching, and psychometric questionnaires. Elastic net regressions with n-fold cross-validation were performed for cortisol (N = 91) and BDNF (N = 87). For hair-cortisol (R2 = 0.10), the strongest effects were sampling in autumn and body-mass index (BMI) (positive), followed by tinnitus loudness (positive) and smoking (negative). For hair-BDNF (R2 = 0.28), the strongest effects were hearing aid use, shift work (positive), and tinnitus loudness (negative), followed by smoking, tinnitus-related distress (Tinnitus Questionnaire), number of experienced traumatic events (negative), and physical health-related quality of life (Short Form-12 Health Survey) (positive). These findings suggest that in chronic tinnitus patients, higher perceived tinnitus loudness is associated with higher hair-cortisol and lower hair-BDNF, and higher tinnitus-related distress with lower hair-BDNF. Regarding hair-BDNF, traumatic experiences appear to have additional stress-related effects, whereas hearing aid use and high physical health-related quality of life appear beneficial. Implications include the potential use of hair-cortisol and hair-BDNF as biomarkers of tinnitus loudness or distress and the need for intensive future research into chronic stress-related HPA axis and neuroplasticity alterations in chronic tinnitus.
Collapse
Affiliation(s)
- Laura Basso
- Tinnitus Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Benjamin Boecking
- Tinnitus Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Neff
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,University Research Priority Program 'Dynamics of Healthy Aging', University of Zurich, Zurich, Switzerland.,Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Petra Brueggemann
- Tinnitus Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eva M J Peters
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany.,Psychosomatics and Psychotherapy, Charité Center 12 Internal Medicine and Dermatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Mazurek
- Tinnitus Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
20
|
Spero V, Paladini MS, Brivio P, Riva MA, Calabrese F, Molteni R. Altered responsiveness of the antioxidant system in chronically stressed animals: modulation by chronic lurasidone treatment. Psychopharmacology (Berl) 2022; 239:2547-2557. [PMID: 35459959 PMCID: PMC9294027 DOI: 10.1007/s00213-022-06140-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/10/2021] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
RATIONALE Although the occurrence of stressful events is very common during life, their impact may be different depending on the experience severity and duration. Specifically, acute challenges may trigger adaptive responses and even improve the individual's performance. However, such a physiological positive coping can only take place if the underlying molecular mechanisms are properly functioning. Indeed, if these systems are compromised by genetic factors or previous adverse conditions, the response set in motion by an acute challenge may be maladaptive and even cause the insurgence or the relapse of stress-related psychiatric disorders. OBJECTIVES On these bases, we evaluated in the rat brain the role of the antioxidant component of the redox machinery on the acute stress responsiveness and its modulation by potential detrimental or beneficial events. METHODS The expression of several antioxidant enzymes was assessed in different brain areas of adult male rats exposed to acute stress 3 weeks after a chronic immobilization paradigm with or without a concomitant treatment with the antipsychotic lurasidone. RESULTS The acute challenge was able to trigger a marked antioxidant response that, despite the washout period, was impaired by the previous adverse experience and restored by lurasidone in an anatomical-specific manner. CONCLUSIONS We found that a working antioxidant machinery takes part in acute stress response and may be differentially affected by other experiences. Given the essential role of stress responsiveness in almost every life process, the identification of the underlying mechanisms and their potential pharmacological modulation add further translational value to our data.
Collapse
Affiliation(s)
- Vittoria Spero
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Maria Serena Paladini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy ,Present Address: Department of Physical Therapy and Rehabilitation Science; Brain and Spinal Injury Center, University of California at San Francisco, San Francisco, CA USA
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| |
Collapse
|
21
|
Quercetin Alleviates Red Bull Energy Drink-Induced Cerebral Cortex Neurotoxicity via Modulation of Nrf2 and HO-1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9482529. [PMID: 34754366 PMCID: PMC8572608 DOI: 10.1155/2021/9482529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/28/2021] [Revised: 09/23/2021] [Accepted: 10/13/2021] [Indexed: 01/19/2023]
Abstract
The current work was aimed at evaluating the ameliorative role of quercetin (QR) on the possible toxicity of Red Bull energy drink (RB-Ed) in the cerebral cortex of rats. To achieve the goal, the rats were allocated into 4 groups. The first group received distilled water as control. Groups II and III were given Red Bull energy drink alone and in combination with quercetin, respectively. The fourth group served as recovery to group II. The experimental duration was four weeks for all groups whereas the recovery period of group IV was two weeks. QR upregulated the mRNA and protein expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) genes, which can protect against RB-Ed neurotoxicity. Moreover, by reducing the thiobarbituric acid reactive substance and increasing the total antioxidant capacity levels, QR protected rats' cerebral cortex against Red Bull energy drink-induced oxidative damage. Quercetin also inhibited RB-Ed-induced histomorphological degeneration which was confirmed by the increase in the intact neurons and the rise in the neuron-specific enolase immunoreaction. QR increased the reduction of the brain-derived neurotrophic factor that was elicited by RB-Ed and acts as an anti-inflammatory agent by reducing the proinflammatory marker, interleukin 1 beta and DNA damage markers, heat shock protein 70, and 8-hydroxydeoxyguanosine. It could be concluded that the alleviating impacts of QR on RB-Ed neurotoxicity in rats could be related to the modulation of Nrf2 and HO-1 which in turn affects the redox status.
Collapse
|
22
|
Robinson S, Mogul AS, Taylor-Yeremeeva EM, Khan A, Tirabassi AD, Wang HY. Stress Diminishes BDNF-stimulated TrkB Signaling, TrkB-NMDA Receptor Linkage and Neuronal Activity in the Rat Brain. Neuroscience 2021; 473:142-158. [PMID: 34298123 PMCID: PMC8455453 DOI: 10.1016/j.neuroscience.2021.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022]
Abstract
Exposure to intense or repeated stressors can lead to depression or post-traumatic stress disorder (PTSD). Neurological changes induced by stress include impaired neurotrophin signaling, which is known to influence synaptic integrity and plasticity. The present study used an ex vivo approach to examine the impact of acute or repeated stress on BDNF-stimulated TrkB signaling in hippocampus (HIPPO) and prefrontal cortex (PFC). Rats in an acute multiple stressor group experienced five stressors in one day whereas rats in a repeated unpredictable stressor group experienced 20 stressors across 10 days. After stress exposure, slices were incubated with vehicle or BDNF, followed by immunoprecipitation and immunoblot assays to assess protein levels, activation states and protein-protein linkage associated with BDNF-TrkB signaling. Three key findings are (1) exposure to stressors significantly diminished BDNF-stimulated TrkB signaling in HIPPO and PFC such that reductions in TrkB activation, diminished recruitment of adaptor proteins to TrkB, reduced activation of downstream signaling molecules, disruption of TrkB-NMDAr linkage, and changes in basal and BDNF-stimulated Arc expression were observed. (2) After stress, BDNF stimulation enhanced TrkB-NMDAr linkage in PFC, suggestive of compensatory mechanisms in this region. (3) We discovered an uncoupling between TrkB signaling, TrkB-NMDAr linkage and Arc expression in PFC and HIPPO. In addition, a robust surge in pro-inflammatory cytokines was observed in both regions after repeated exposure to stressors. Collectively, these data provide therapeutic targets for future studies that investigate how to reverse stress-induced downregulation of BDNF-TrkB signaling and underscore the need for functional studies that examine stress-related TrkB-NMDAr activities in PFC.
Collapse
Affiliation(s)
- Siobhan Robinson
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY, USA.
| | - Allison S Mogul
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY, USA
| | | | - Amber Khan
- Department of Molecular, Cellular & Biomedical Sciences, The City University of New York School of Medicine, New York, NY, USA; Department of Biology, Neuroscience Program, Graduate School of the City University of New York, New York, NY, USA
| | - Anthony D Tirabassi
- Department of Psychology and Program in Neuroscience, Hamilton College, Clinton, NY, USA
| | - Hoau-Yan Wang
- Department of Molecular, Cellular & Biomedical Sciences, The City University of New York School of Medicine, New York, NY, USA; Department of Biology, Neuroscience Program, Graduate School of the City University of New York, New York, NY, USA
| |
Collapse
|
23
|
A systematic review and meta-analysis of association between brain-derived neurotrophic factor and type 2 diabetes and glycemic profile. Sci Rep 2021; 11:13773. [PMID: 34215825 PMCID: PMC8253793 DOI: 10.1038/s41598-021-93271-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/05/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Several epidemiologic studies have evaluated the relation between serum/plasma brain-derived neurotrophic factor (BDNF) levels and glycemic parameters, but the findings were conflicting. We performed a systematic review and meta-analysis to compare circulating BDNF levels in individuals with type 2 diabetes (T2D) or other glycemic disorders with healthy controls and to evaluate correlation between BDNF concentrations with glycemic profile. A systematic search up to July 2020 was conducted in reliable electronic databases (MEDLINE (Pubmed), EMBASE, Scopus) and Google scholar. Sixteen observational studies compared serum/plasma BDNF levels in diabetic patients (or individuals with glycemic disorders) vs. healthy controls or reported correlations between serum BDNF levels and glycemic parameters in adults were included in the review. Overall weighted mean difference (WMD) of circulating BDNF levels in 1306 patients with T2D (or other glycemic disorders) was 1.12 ng/mL lower than 1250 healthy subjects (WMD: − 1.12; 95%CI − 1.37, − 0.88, I2 = 98.7%, P < 0.001). Subgroup analysis revealed that both diabetic patients and subjects with other glycemic disorders had lower serum/plasma BDNF levels than healthy controls (WMD: − 1.74; 95%CI − 2.15, − 1.33 and WMD: − 0.49; 95%CI − 0.82, − 0.16, respectively). No significant correlation was found between BDNF levels and glycemic parameters [fasting blood glucose (FBG) (Fisher’s Z = 0.05; 95%CI − 0.21, 0.11; n = 1400), homeostatic model assessment for insulin resistance (HOMA-IR) (Fisher’s Z = 0.12; 95%CI − 0.20, 0.44; n = 732) and glycosylated hemoglobin (HbA1c) (Fisher’s Z = 0.04; 95%CI − 0.05, 0.12; n = 2222)]. We found that diabetic patients and subjects with glycemic disorders had lower circulating BDNF levels than healthy controls. However, there was no significant correlation between BDNF concentrations and glycemic parameters including FBG, HOMA-IR and HbA1c. Further prospective investigations are required to confirm these findings.
Collapse
|
24
|
Ohto A, Mizoguchi Y, Imamura Y, Kojima N, Yamada S, Monji A. No association of both serum pro-brain-derived neurotrophic factor (proBDNF) and BDNF concentrations with depressive state in community-dwelling elderly people. Psychogeriatrics 2021; 21:503-513. [PMID: 33878808 DOI: 10.1111/psyg.12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/25/2021] [Revised: 03/13/2021] [Accepted: 03/29/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is involved in emotional and cognitive function. Low-BDNF levels occur in patients with depression, while proBDNF, a precursor of BDNF with the opposite physiological function, increases in major depression. However, it is unclear whether BDNF and proBDNF are associated with depression in the elderly. The present study aimed to investigate whether serum proBDNF and BDNF are associated with depressive state in community-dwelling elderly people. METHODS This was a cross-sectional study conducted in Kurogawa-cho Imari, Saga Prefecture, Japan, in people aged ≥65 years. Depressive state was assessed using the Geriatric Depression Scale-Short Form (Japanese version) (GDS). Of the 274 patients who undertook the GDS, those with a medical history affecting cognitive function were excluded, as were those with Mini-Mental State Examination score ≥ 24 or a Clinical Dementia Rating < 0.5. Further, we used delayed recall of 'logical memory A' from the Wechsler Memory Scale-Revised (LMII-DR) for memory assessment. RESULTS The final sample consisted of 155 individuals (mean age 75.4 ± 6.8 years; 55 men, mean age 74.8 ± 5.9 years; 100 women, mean age 76.3 ± 7.1 years). In the GDS, 139 participants showed a normal score (0-4) and 16 showed depressive tendencies or depression (score: ≥ 5). After examining confounders of the GDS, logistic regression using categorical covariates showed a negative significant difference between depressive state and serum BDNF in the low-BDNF group only, with a positive correlation in the trend test. None of the analyses showed any association between GDS and proBDNF levels. CONCLUSION ProBDNF and BDNF levels seemed not to be associated with depressive state in community-dwelling elderly people.
Collapse
Affiliation(s)
- Asami Ohto
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | - Yoshito Mizoguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | - Yoshiomi Imamura
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan.,Institute of Comparative Studies of International Cultures and Societies, Kurume University, Fukuoka, Japan
| | | | | | - Akira Monji
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
25
|
Maternal stress programs a demasculinization of glutamatergic transmission in stress-related brain regions of aged rats. GeroScience 2021; 44:1047-1069. [PMID: 33983623 PMCID: PMC8116647 DOI: 10.1007/s11357-021-00375-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2020] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Brain aging may be programmed by early-life stress. Aging affects males and females differently, but how perinatal stress (PRS) affects brain aging between sexes is unknown. We showed behavioral and neurobiological sex differences in non-stressed control rats that were strongly reduced or inverted in PRS rats. In particular, PRS decreased risk-taking behavior, spatial memory, exploratory behavior, and fine motor behavior in male aged rats. In contrast, female aged PRS rats displayed only increased risk-taking behavior and reduced exploratory behavior. PRS induced large reductions in the expression of glutamate receptors in the ventral and dorsal hippocampus and prefrontal cortex only in male rats. PRS also reduced the expression of synaptic vesicle-associated proteins, glucocorticoid receptors (GR), and mineralocorticoid receptors (MR) in the ventral hippocampus of aged male rats. In contrast, in female aged rats, PRS enhanced the expression of MRs and brain-derived neurotrophic factor (BDNF) in the ventral hippocampus and the expression of glial fibrillary acidic protein (GFAP) and BDNF in the prefrontal cortex. A common PRS effect in both sexes was a reduction in exploratory behavior and metabotropic glutamate (mGlu2/3) receptors in the ventral hippocampus and prefrontal cortex. A multidimensional analysis revealed that PRS induced a demasculinization profile in glutamate-related proteins in the ventral and dorsal hippocampus and prefrontal cortex, as well as a demasculinization profile of stress markers only in the dorsal hippocampus. In contrast, defeminization was observed only in the ventral hippocampus. Measurements of testosterone and 17-β-estradiol in the plasma and aromatase in the dorsal hippocampus were consistent with a demasculinizing action of PRS. These findings confirm that the brains of males and females differentially respond to PRS and aging suggesting that females might be more protected against early stress and age-related inflammation and neurodegeneration. Taken together, these results may contribute to understanding how early environmental factors shape vulnerability to brain aging in both sexes and may lay the groundwork for future studies aimed at identifying new treatment strategies to improve the quality of life of older individuals, which is of particular interest given that there is a high growth of aging in populations around the world.
Collapse
|
26
|
Meade GM, Charron LS, Kilburn LW, Pei Z, Wang HY, Robinson S. A model of negative emotional contagion between male-female rat dyads: Effects of voluntary exercise on stress-induced behavior and BDNF-TrkB signaling. Physiol Behav 2021; 234:113286. [DOI: 10.1016/j.physbeh.2020.113286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022]
|
27
|
Feng JH, Sim SM, Park JS, Hong JS, Suh HW. The changes of nociception and the signal molecules expression in the dorsal root ganglia and the spinal cord after cold water swimming stress in mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:207-216. [PMID: 33859061 PMCID: PMC8050611 DOI: 10.4196/kjpp.2021.25.3.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/29/2020] [Revised: 01/25/2021] [Accepted: 02/17/2021] [Indexed: 11/22/2022]
Abstract
Several studies have previously reported that exposure to stress provokes behavioral changes, including antinociception, in rodents. In the present study, we studied the effect of acute cold-water (4°C) swimming stress (CWSS) on nociception and the possible changes in several signal molecules in male ICR mice. Here, we show that 3 min of CWSS was sufficient to produce antinociception in tail-flick, hot-plate, von-Frey, writhing, and formalin-induced pain models. Significantly, CWSS strongly reduced nociceptive behavior in the first phase, but not in the second phase, of the formalin-induced pain model. We further examined some signal molecules' expressions in the dorsal root ganglia (DRG) and spinal cord to delineate the possible molecular mechanism involved in the antinociceptive effect under CWSS. CWSS reduced p-ERK, p-AMPKα1, p-AMPKα2, p-Tyk2, and p-STAT3 expression both in the spinal cord and DRG. However, the phosphorylation of mTOR was activated after CWSS in the spinal cord and DRG. Moreover, p-JNK and p-CREB activation were significantly increased by CWSS in the spinal cord, whereas CWSS alleviated JNK and CREB phosphorylation levels in DRG. Our results suggest that the antinociception induced by CWSS may be mediated by several molecules, such as ERK, JNK, CREB, AMPKα1, AMPKα2, mTOR, Tyk2, and STAT3 located in the spinal cord and DRG.
Collapse
Affiliation(s)
- Jing-Hui Feng
- Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Su-Min Sim
- Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Jung-Seok Park
- Department of Physical Education, Hallym University, Chuncheon 24252, Korea
| | - Jae-Seung Hong
- Department of Physical Education, Hallym University, Chuncheon 24252, Korea
| | - Hong-Won Suh
- Department of Pharmacology and Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
28
|
BDNF Protein and BDNF mRNA Expression of the Medial Prefrontal Cortex, Amygdala, and Hippocampus during Situational Reminder in the PTSD Animal Model. Behav Neurol 2021; 2021:6657716. [PMID: 33763156 PMCID: PMC7964114 DOI: 10.1155/2021/6657716] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/10/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 11/17/2022] Open
Abstract
Whether BDNF protein and BDNF mRNA expression of the medial prefrontal cortex (mPFC; cingulated cortex area 1 (Cg1), prelimbic cortex (PrL), and infralimbic cortex (IL)), amygdala, and hippocampus (CA1, CA2, CA3, and dentate gyrus (DG)) was involved in fear of posttraumatic stress disorder (PTSD) during the situational reminder of traumatic memory remains uncertain. Footshock rats experienced an inescapable footshock (3 mA, 10 s), and later we have measured fear behavior for 2 min in the footshock environment on the situational reminder phase. In the final retrieval of situational reminder, BDNF protein and mRNA levels were measured. The results showed that higher BDNF expression occurred in the Cg1, PrL, and amygdala. Lower BDNF expression occurred in the IL, CA1, CA2, CA3, and DG. BDNF mRNA levels were higher in the mPFC and amygdala but lower in the hippocampus. The neural connection analysis showed that BDNF protein and BDNF mRNA exhibited weak connections among the mPFC, amygdala, and hippocampus during situational reminders. The present data did not support the previous viewpoint in neuroimaging research that the mPFC and hippocampus revealed hypoactivity and the amygdala exhibited hyperactivity for PTSD symptoms. These findings should be discussed with the previous evidence and provide clinical implications for PTSD.
Collapse
|
29
|
RELATIONSHIP BETWEEN STAGES OF DIABETIC RETINOPATHY AND LEVELS OF BRAIN-DERIVED NEUROTROPHIC FACTOR IN AQUEOUS HUMOR AND SERUM. Retina 2021; 40:121-125. [PMID: 30300266 DOI: 10.1097/iae.0000000000002355] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
PURPOSE The aim of the study was to determine aqueous humor and serum levels of brain-derived neurotrophic factor (BDNF) in diabetic patients with and without retinopathy. METHODS The study included diabetic patients with or without retinopathy, who had an indication for cataract surgery. The study groups were diabetic patients without retinopathy (Group 2), with nonproliferative diabetic retinopathy (Group 3), and with proliferative retinopathy (Group 4). To quantitatively determine the amount of BDNF in samples, the RayBio Human BDNF ELISA kit (Norcross, GA), based on an enzyme-labeled immunosorbent assay was used. RESULTS The median serum BDNF levels were significantly lower in all the study groups than in the control group (P values: 0.038 Group 2, 0.02 Group 3, and 0.002 Group 4). Serum BDNF was lower in Group 4 than in Group 3 (P = 0.030), and in Group 3 than in Group 2 (P = 0.04). The median aqueous humor BDNF levels were significantly decreased in all groups (P values: 0.047 Group 2, 0.021 Group 3, and 0.007 Group 4). There was no significant difference between Groups 2, 3, and 4 (P = 0.214). CONCLUSION The serum and aqueous humor BDNF levels decreased in patients with diabetes mellitus (DM) before the emergence of clinical signs of retinopathy.
Collapse
|
30
|
Brattico E, Bonetti L, Ferretti G, Vuust P, Matrone C. Putting Cells in Motion: Advantages of Endogenous Boosting of BDNF Production. Cells 2021; 10:cells10010183. [PMID: 33477654 PMCID: PMC7831493 DOI: 10.3390/cells10010183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Motor exercise, such as sport or musical activities, helps with a plethora of diseases by modulating brain functions in neocortical and subcortical regions, resulting in behavioural changes related to mood regulation, well-being, memory, and even cognitive preservation in aging and neurodegenerative diseases. Although evidence is accumulating on the systemic neural mechanisms mediating these brain effects, the specific mechanisms by which exercise acts upon the cellular level are still under investigation. This is particularly the case for music training, a much less studied instance of motor exercise than sport. With regards to sport, consistent neurobiological research has focused on the brain-derived neurotrophic factor (BDNF), an essential player in the central nervous system. BDNF stimulates the growth and differentiation of neurons and synapses. It thrives in the hippocampus, the cortex, and the basal forebrain, which are the areas vital for memory, learning, and higher cognitive functions. Animal models and neurocognitive experiments on human athletes converge in demonstrating that physical exercise reliably boosts BDNF levels. In this review, we highlight comparable early findings obtained with animal models and elderly humans exposed to musical stimulation, showing how perceptual exposure to music might affect BDNF release, similar to what has been observed for sport. We subsequently propose a novel hypothesis that relates the neuroplastic changes in the human brains after musical training to genetically- and exercise-driven BDNF levels.
Collapse
Affiliation(s)
- Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
- Department of Education, Psychology, Communication, University of Bari “Aldo Moro”, 70121 Bari, Italy
- Correspondence: (E.B.); (C.M.)
| | - Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
| | - Gabriella Ferretti
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, 8000 Aarhus, Denmark; (L.B.); (P.V.)
| | - Carmela Matrone
- Unit of Pharmacology, Department of Neuroscience, Faculty of Medicine, University of Naples Federico II, via Pansini 5, 80131 Naples, Italy;
- Correspondence: (E.B.); (C.M.)
| |
Collapse
|
31
|
Tenkumo C, Ohta KI, Suzuki S, Warita K, Irie K, Teradaya S, Kusaka T, Kanenishi K, Hata T, Miki T. Repeated maternal separation causes transient reduction in BDNF expression in the medial prefrontal cortex during early brain development, affecting inhibitory neuron development. Heliyon 2020; 6:e04781. [PMID: 32923721 PMCID: PMC7475105 DOI: 10.1016/j.heliyon.2020.e04781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2020] [Revised: 06/08/2020] [Accepted: 08/14/2020] [Indexed: 01/25/2023] Open
Abstract
It is widely accepted that maternal separation (MS) induces stress in children and disrupts neural circuit formation during early brain development. Even though such disruption occurs transiently early in life, its influence persists after maturation, and could lead to various neurodevelopmental disorders. Our recent study revealed that repeated MS reduces the number of inhibitory neurons and synapses in the medial prefrontal cortex (mPFC) and causes mPFC-related social deficits after maturation. However, how MS impedes mPFC development during early brain development remains poorly understood. Here, we focused on brain-derived neurotrophic factor (BDNF) involved in the development of inhibitory neurons, and examined time-dependent BDNF expression in the mPFC during the pre-weaning period in male rats exposed to MS. Our results show that MS attenuates BDNF expression only around the end of the first postnatal week. Likewise, mRNA expression of activity-regulated cytoskeleton-associated protein (Arc), an immediate-early gene whose expression is partly regulated by BDNF, also decreased in the MS group along with the reduction in BDNF expression. On the contrary, mRNA expression of tropomyosin-related kinase B (TrkB), which is a BDNF receptor, was scarcely altered, while its protein expression decreased in the MS group only during the weaning period. In addition, MS reduced mRNA levels of glutamic acid decarboxylase (GAD) 65, a GABA synthesizing enzyme, only during the weaning period. Our results suggest that repeated MS temporarily attenuates BDNF signaling in the mPFC during early brain development. BDNF plays a crucial role in the development of inhibitory neurons; therefore, transient attenuation of BDNF signaling may cause delays in GABAergic neuron development in the mPFC.
Collapse
Affiliation(s)
- Chiaki Tenkumo
- Department of Perinatology and Gynecology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Ken-ichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Corresponding author.
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Katsuhiko Warita
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Kanako Irie
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Saki Teradaya
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kenji Kanenishi
- Department of Perinatology and Gynecology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Toshiyuki Hata
- Department of Perinatology and Gynecology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
32
|
Brass KE, Herndon N, Gardner SA, Grindstaff JL, Campbell P. Intergenerational effects of paternal predator cue exposure on behavior, stress reactivity, and neural gene expression. Horm Behav 2020; 124:104806. [PMID: 32534838 DOI: 10.1016/j.yhbeh.2020.104806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/02/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/27/2022]
Abstract
Predation threat impacts prey behavior, physiology, and fitness. Stress-mediated alterations to the paternal epigenome can be transmitted to offspring via the germline, conferring a potential advantage to offspring in predator-rich environments. While intergenerational epigenetic transmission of paternal experience has been demonstrated in mammals, how paternal predator exposure might alter offspring phenotypes across development is unstudied. We exposed male mice to a predator odor (2,4,5-trimethylthiazoline, TMT) or a neutral odor (banana extract) prior to mating and measured offspring behavioral phenotypes throughout development, together with adult stress reactivity and candidate gene expression in the prefrontal cortex, hippocampus, amygdala, and hypothalamus. We predicted that offspring of TMT-exposed males would be less active, would display elevated anxiety-like behaviors, and would have a more efficient stress response relative to controls, phenotypes that should enhance predator avoidance in a high predation risk environment. Unexpectedly, we found that offspring of TMT-exposed males are more active, exhibit less anxiety-like behavior, and have decreased baseline plasma corticosterone relative to controls. Effects of paternal treatment on neural gene expression were limited to the prefrontal cortex, with increased mineralocorticoid receptor expression and a trend towards increased Bdnf expression in offspring of TMT-exposed males. These results suggest that fathers exposed to predation threat produce offspring that are buffered against non-acute stressors and, potentially, better adapted to a predator-dense environment because they avoid trade-offs between predator avoidance and foraging and reproduction. This study provides evidence that ecologically relevant paternal experience can be transmitted through the germline, and can impact offspring phenotypes throughout development.
Collapse
Affiliation(s)
- Kelsey E Brass
- Oklahoma State University, Department of Integrative Biology, Stillwater, OK 74078, USA
| | - Nathan Herndon
- Oklahoma State University, Department of Integrative Biology, Stillwater, OK 74078, USA
| | - Sarah A Gardner
- Oklahoma State University, Department of Integrative Biology, Stillwater, OK 74078, USA; University of California Riverside, Department of Evolution, Ecology, and Organismal Biology, Riverside, CA 92521, USA
| | - Jennifer L Grindstaff
- Oklahoma State University, Department of Integrative Biology, Stillwater, OK 74078, USA
| | - Polly Campbell
- Oklahoma State University, Department of Integrative Biology, Stillwater, OK 74078, USA; University of California Riverside, Department of Evolution, Ecology, and Organismal Biology, Riverside, CA 92521, USA.
| |
Collapse
|
33
|
Rojas-Carvajal M, Brenes JC. Acute stress differentially affects grooming subtypes and ultrasonic vocalisations in the open-field and home-cage test in rats. Behav Processes 2020; 176:104140. [PMID: 32413473 DOI: 10.1016/j.beproc.2020.104140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2019] [Revised: 03/28/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022]
Abstract
Grooming behaviour in rodents has been associated with emotional distress, especially in unfamiliar and aversive contexts. However, the biological function of grooming in such situations is still unclear. We hypothesised that particular grooming subtypes are differentially associated with the stress response. Here, we investigated the effects of an acute stress exposure on grooming and ultrasonic vocalisations (USVs) assessed on different testing contexts varying in the level of familiarity. To this aim, footshocked and non-footshocked rats were tested for 20 min on one of the following conditions: an unfamiliar open-field test, a familiar open-field test, and an individual home cage filled with bedding. We found that footshock stress slightly decreased complex grooming sequences while increased cephalic grooming. Stress induced a negative affective state inferred from an increase and decrease of 22-kHz and 50-kHz calls, respectively. The latter USVs correlated positively with the complex grooming subtypes. Altogether, a detailed analysis of grooming seems necessary for elucidating its diverse biological functions. Nevertheless, footshock stress and testing conditions produced weaker-than-expected effects, possibly because the time elapsed between footshocks and behavioural testing was too short for eliciting a full stress response, and because the simple footshock-chamber experience may have impeded detecting stronger effects of familiarity.
Collapse
Affiliation(s)
- Mijail Rojas-Carvajal
- Neuroscience Research Center, University of Costa Rica, Costa Rica; Institute for Psychological Research, University of Costa Rica, Costa Rica.
| | - Juan C Brenes
- Neuroscience Research Center, University of Costa Rica, Costa Rica; Institute for Psychological Research, University of Costa Rica, Costa Rica.
| |
Collapse
|
34
|
Silva J, Yu X, Moradian R, Folk C, Spatz MH, Kim P, Bhatti AA, Davies DL, Liang J. Dihydromyricetin Protects the Liver via Changes in Lipid Metabolism and Enhanced Ethanol Metabolism. Alcohol Clin Exp Res 2020; 44:1046-1060. [PMID: 32267550 PMCID: PMC7211127 DOI: 10.1111/acer.14326] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/22/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Background Excess alcohol (ethanol, EtOH) consumption is a significant cause of chronic liver disease, accounting for nearly half of the cirrhosis‐associated deaths in the United States. EtOH‐induced liver toxicity is linked to EtOH metabolism and its associated increase in proinflammatory cytokines, oxidative stress, and the subsequent activation of Kupffer cells. Dihydromyricetin (DHM), a bioflavonoid isolated from Hovenia dulcis, can reduce EtOH intoxication and potentially protect against chemical‐induced liver injuries. But there remains a paucity of information regarding the effects of DHM on EtOH metabolism and liver protection. As such, the current study tests the hypothesis that DHM supplementation enhances EtOH metabolism and reduces EtOH‐mediated lipid dysregulation, thus promoting hepatocellular health. Methods The hepatoprotective effect of DHM (5 and 10 mg/kg; intraperitoneal injection) was evaluated using male C57BL/6J mice and a forced drinking ad libitum EtOH feeding model and HepG2/VL‐17A hepatoblastoma cell models. EtOH‐mediated lipid accumulation and DHM effects against lipid deposits were determined via H&E stains, triglyceride measurements, and intracellular lipid dyes. Protein expression of phosphorylated/total proteins and serum and hepatic cytokines was determined via Western blot and protein array. Total NAD+/NADH Assay of liver homogenates was used to detect NAD + levels. Results DHM reduced liver steatosis, liver triglycerides, and liver injury markers in mice chronically fed EtOH. DHM treatment resulted in increased activation of AMPK and downstream targets, carnitine palmitoyltransferase (CPT)‐1a, and acetyl CoA carboxylase (ACC)‐1. DHM induced expression of EtOH‐metabolizing enzymes and reduced EtOH and acetaldehyde concentrations, effects that may be partly explained by changes in NAD+. Furthermore, DHM reduced the expression of proinflammatory cytokines and chemokines in sera and cell models. Conclusion In total, these findings support the utility of DHM as a dietary supplement to reduce EtOH‐induced liver injury via changes in lipid metabolism, enhancement of EtOH metabolism, and suppressing inflammation responses to promote liver health.
Collapse
Affiliation(s)
- Joshua Silva
- From the, Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Xin Yu
- From the, Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Renita Moradian
- From the, Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Carson Folk
- From the, Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Maximilian H Spatz
- From the, Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Phoebe Kim
- From the, Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Adil A Bhatti
- From the, Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Daryl L Davies
- From the, Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| | - Jing Liang
- From the, Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California
| |
Collapse
|
35
|
A Systematic Analysis Revealed the Potential Gene Regulatory Processes of ATRA-Triggered Neuroblastoma Differentiation and Identified a Novel RA Response Sequence in the NTRK2 Gene. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6734048. [PMID: 32149119 PMCID: PMC7053487 DOI: 10.1155/2020/6734048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/30/2019] [Revised: 01/03/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022]
Abstract
Retinoic acid- (RA-) triggered neuroblastoma cell lines are widely used cell modules of neuronal differentiation in neurodegenerative disease studies, but the gene regulatory mechanism underlying differentiation is unclear now. In this study, system biological analysis was performed on public microarray data from three neuroblastoma cell lines (SK-N-SH, SH-SY5Y-A, and SH-SY5Y-E) to explore the potential molecular processes of all-trans retinoic acid- (ATRA-) triggered differentiation. RT-qPCR, functional genomics analysis, western blotting, chromatin immunoprecipitation (ChIP), and homologous sequence analysis were further performed to validate the gene regulation processes and identify the RA response element in a specific gene. The potential disturbed biological pathways (111 functional GO terms in 14 interactive functional groups) and gene regulatory network (10 regulators and 71 regulated genes) in neuroblastoma differentiation were obtained. 15 of the 71 regulated genes are neuronal projection-related. Among them, NTRK2 is the only one that was dramatically upregulated in the RT-qPCR test that we performed on ATRA-treated SH-SY5Y-A cells. We further found that the overexpression of the NTRK2 gene can trigger differentiation-like changes in SH-SY5Y-A cells. Functional genomic analysis and western blotting assay suggested that, in neuroblastoma cells, ATRA may directly regulate the NTRK2 gene by activating the RA receptor (RAR) that binds in its promoter region. A novel RA response DNA element in the NTRK2 gene was then identified by bioinformatics analysis and chromatin immunoprecipitation (ChIP) assay. The novel element is sequence conservation and position variation among different species. Our study systematically provided the potential regulatory information of ATRA-triggered neuroblastoma differentiation, and in the NTRK2 gene, we identified a novel RA response DNA element, which may contribute to the differentiation in a human-specific manner.
Collapse
|
36
|
Khazaee M, Guardian MGE, Aga DS, Ng CA. Impacts of Sex and Exposure Duration on Gene Expression in Zebrafish Following Perfluorooctane Sulfonate Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:437-449. [PMID: 31652359 DOI: 10.1002/etc.4628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/01/2019] [Revised: 07/19/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is a member of the anthropogenic class of perfluorinated alkyl acids (PFAAs) and one of the most frequently detected PFAAs in water, humans, mammals, and fish around the world. The zebrafish (Danio rerio) is a small freshwater fish considered an appropriate vertebrate model for investigating the toxicity of compounds. Previous investigations showed tissue-specific bioaccumulation and alterations in the expression of fatty acid-binding proteins (fabps) in male and female zebrafish, potentially due to interactions between PFAA and fatty acid transporters. In addition, a number of neurological impacts have been reported as a result of human and animal exposure to PFAAs. Therefore, the present comprehensive study was designed to investigate whether PFOS exposure affects the expression of genes associated with fatty acid metabolism (fabp1a, fabp2, and fabp10a) in zebrafish liver, intestine, heart, and ovary and genes involved in the nervous system (acetylcholinesterase, brain-derived neurotrophic factor, choline acetyltransferase, histone deacetylase 6, and nerve growth factor) in brain and muscle. The results indicate alterations in expression of genes associated with fatty acid metabolism and neural function that vary with both exposure concentration and sex. In addition, our findings highlight that expression of these genes differs according to exposure duration. The present results extend the knowledge base on PFOS effects to other tissues less often studied than the liver. The findings of the present investigation provide a basis for future studies on the potential risks of PFOS as one of the most abundant PFAAs in the environment. Environ Toxicol Chem 2020;39:437-449. © 2019 SETAC.
Collapse
Affiliation(s)
- Manoochehr Khazaee
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary Grace E Guardian
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, New York, USA
| | - Carla A Ng
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
37
|
The Effect of Combined Aerobic Exercise and Calorie Restriction on Mood, Cognition, and Motor Behavior in Overweight and Obese Women. J Phys Act Health 2020; 17:204-210. [PMID: 31899888 DOI: 10.1123/jpah.2019-0373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2019] [Revised: 10/06/2019] [Accepted: 11/07/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND The benefits of weight loss programs on mood, cognitive, and motor behavior are largely limited to those of calorie restriction or exercise alone. Our aim was to investigate the effect of combined calorie restriction and aerobic exercise intervention on mood, brain activity, and cognitive and motor behavior in overweight and obese women. METHODS Participants aged 36-56 years were randomized to either a control or an experimental group (aerobic exercise + 12.5% energy intake reduction) for a 6-month period. Changes in brain-derived neurotrophic factor levels, mood, prefrontal cortex activity, cognitive and motor performance were assessed. RESULTS Confusion and depression increased in the control group (P < .05), whereas tension decreased in the experimental group (P < .05). Brain-derived neurotrophic factor level and learning of a speed-accuracy task remained unchanged. Although prefrontal cortex activity and executive functions were not affected, the reaction time of visual scanning and associative learning were improved in the experimental group (P < .05). An improvement in reaction time during the speed-accuracy task was observed (P < .05). CONCLUSION Combined calorie restriction and aerobic exercise intervention improved the psychosocial state, had little impact on cognition, and no effect on brain activity and learning of the speed-accuracy task.
Collapse
|
38
|
Brivio P, Sbrini G, Riva MA, Calabrese F. Acute Stress Induces Cognitive Improvement in the Novel Object Recognition Task by Transiently Modulating Bdnf in the Prefrontal Cortex of Male Rats. Cell Mol Neurobiol 2020; 40:1037-1047. [PMID: 31960229 DOI: 10.1007/s10571-020-00793-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022]
Abstract
Stress response involves several mechanisms and mediators that allow individuals to adapt to a changing environment. The effects of stress may be adaptive or maladaptive, based on the timing and intensity of exposure as well as on the individual vulnerability. In particular, exposure to mild and brief stressors provides beneficial advantages in a short-term period, by activating protective functions to react with the external demands. On these bases, the purpose of our study was to establish the time-dependent effects of acute stress exposure on neuroplastic mechanisms in adult male rats. Moreover, we aim at establishing the consequences of the acute challenge on memory processes by testing rats in the Novel Object Recognition (NOR) test. We found that acute restraint stress up-regulated total Bdnf expression 1 h post stress specifically in rat prefrontal cortex, an effect that was sustained by the increase of Bdnf isoform IV as well as by the pool of Bdnf transcripts with long 3'UTR. Furthermore, in the same brain region, the acute stress modulated in a time-specific manner the expression of different activity-dependent genes, namely Arc, Gadd45β and Nr4a1. At behavioral level, the challenge was able to improve the performance in the NOR test specifically 1 h post stress, an effect that positively correlated with the expression of the neurotrophic factors. Taken together, our results suggest that a single session of acute stress enhances memory and learning functions with a specific temporal profile, by improving neuroplastic mechanisms within the prefrontal cortex.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Giulia Sbrini
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| |
Collapse
|
39
|
Chen C, Dong Y, Liu F, Gao C, Ji C, Dang Y, Ma X, Liu Y. A Study of Antidepressant Effect and Mechanism on Intranasal Delivery of BDNF-HA2TAT/AAV to Rats with Post-Stroke Depression. Neuropsychiatr Dis Treat 2020; 16:637-649. [PMID: 32184603 PMCID: PMC7061423 DOI: 10.2147/ndt.s227598] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/16/2019] [Accepted: 01/21/2020] [Indexed: 11/23/2022] Open
Abstract
AIM Post-stroke depression (PSD) is one of the most frequent neuropsychiatric disorders associated with stroke characterized by depression. The neuroplasticity hypothesis postulates that loss of brain-derived neurotrophic factor (BDNF) plays a major role in pathophysiology of PSD, and restoration of it may represent a critical mechanism underlying antidepressant efficacy. METHODS In previous studies, we designed a new fusion gene, HA2TAT-BDNF, and cloned it into adenovirus associated virus (AAV) to construct the BDNF-HA2TAT/AAV for the delivery of BDNF to central nervous system (CNS) via nose-brain pathway. In this study, we used it to explore the antidepressant effects on PSD rats through behavioral and various histological methods, and try to find out its specific mechanism. RESULTS Compared with the control group, the PSD+AAV group showed decreased sucrose consumption percentage in the sucrose preference test (SPT) (P < 0.001) and prolonged immobility in the forced swimming test (FST) (P=0.000). However, the nasal administration of BDNF-HA2TAT/AAV reversed results of these two behavioral tests (P>0.05, P >0.05), showing an adequate antidepressant effect. Compared with the control group, the concentrations of BDNF mRNA and protein in the hippocampus (P< 0.05, P < 0.01) and prefrontal cortex (P < 0.01, P < 0.01) of PSD rats both decreased. Increased BDNF mRNA and protein expression was observed in the prefrontal cortex (P > 0.05, P < 0.05), without notable change in the hippocampus (P < 0.05, P < 0.001) of PSD+BDNF rats. CONCLUSION These results suggest that BDNF reductions in the prefrontal cortex and hippocampus are associated with the development of post-stroke depression, and that increased levels of BDNF in the prefrontal cortex could be used as a therapeutic target to treat PSD. However, the exact mechanism of BDNF action remains unclear in this regard, hindering the wider application of our method. We expect that our research could facilitate the exploration of pathogenesis and the new treatment method of PSD.
Collapse
Affiliation(s)
- Ce Chen
- Department of Psychiatry, First Affiliated Hospital of Medical College Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Yingying Dong
- Department of Psychiatry, First Affiliated Hospital of Medical College Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Fei Liu
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, People's Republic of China
| | - Chengge Gao
- Department of Psychiatry, First Affiliated Hospital of Medical College Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Cui Ji
- The Hospital of Xidian University, Xi'an 710071, Shaanxi, People's Republic of China
| | - Yonghui Dang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, People's Republic of China
| | - Xiancang Ma
- Department of Psychiatry, First Affiliated Hospital of Medical College Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| | - Yong Liu
- The Institute of Neurobiology, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, People's Republic of China
| |
Collapse
|
40
|
Puryear CB, Brooks J, Tan L, Smith K, Li Y, Cunningham J, Todtenkopf MS, Dean RL, Sanchez C. Opioid receptor modulation of neural circuits in depression: What can be learned from preclinical data? Neurosci Biobehav Rev 2020; 108:658-678. [DOI: 10.1016/j.neubiorev.2019.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
|
41
|
Kumar A, Kumar P, Pareek V, Faiq MA, Narayan RK, Raza K, Prasoon P, Sharma VK. Neurotrophin mediated HPA axis dysregulation in stress induced genesis of psychiatric disorders: Orchestration by epigenetic modifications. J Chem Neuroanat 2019; 102:101688. [PMID: 31568825 DOI: 10.1016/j.jchemneu.2019.101688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022]
Abstract
Apart from their established role in embryonic development, neurotrophins (NTs) have diverse functions in the nervous system. Their role in the integration of physiological and biochemical aspects of the nervous system is currently attracting much attention. Based on a systematic analysis of the literature, we here propose a new paradigm that, by exploiting a novel role of NTs, may help explain the genesis of stress-related psychiatric disorders, opening new avenues for better management of the same. We hypothesize that NTs as an integrated network play a crucial role in maintaining an indivdual's psychological wellbeing. Given the evidence that stress can induce chronic disruption of the hypothalamic-pituitary-adrenal (HPA) axis which, in turn, is causally linked to several psychiatric disorders, this function may be mediated through the homeostatic mechanisms governing regulation of this axis. In fact, NTs, such as nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) are known to participate in neuroendocrine regulation. Recent studies suggest epigenetic modification of NT-HPA axis interplay in the precipitation of psychiatric disorders. Our article highlights why this new knowledge regarding NTs should be considered in the etiogenesis and treatment of stress-induced psychopathology.
Collapse
|
42
|
Géa LP, Colombo R, Rosa EDD, Antqueviezc B, Aguiar ÉZD, Hizo GH, Schmidt GB, Oliveira LFD, Stein DJ, Rosa AR. Anhedonic-like behavior correlates with IFNγ serum levels in a two-hit model of depression. Behav Brain Res 2019; 373:112076. [DOI: 10.1016/j.bbr.2019.112076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/05/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
|
43
|
An alternative theory for hormone effects on sex differences in PTSD: The role of heightened sex hormones during trauma. Psychoneuroendocrinology 2019; 109:104416. [PMID: 31472433 DOI: 10.1016/j.psyneuen.2019.104416] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023]
Abstract
Women are at least twice as susceptible to developing post-traumatic stress disorder (PTSD) compared to men. Although most research seeking to explain this discrepancy has focussed on the role of oestradiol during fear extinction learning, the role of progesterone has been overlooked, despite relatively consistent findings being reported concerning the role of progesterone during consolidation of emotional and intrusive memories. In this review article, we outline literature supporting the role of progesterone on memory formation, with particular emphasis on potential memory-enhancing properties of progesterone when subjects are placed under stress. It is possible that progesterone directly and indirectly exerts memory-enhancing effects at the time of trauma, which is an effect that may not be necessarily captured during non-stressful paradigms. We propose a model whereby progesterone's steroidogenic relationship to cortisol and brain-derived neurotrophic factor in combination with elevated oestradiol may enhance emotional memory consolidation during trauma and therefore present a specific vulnerability to PTSD formation in women, particularly during the mid-luteal phase of the menstrual cycle.
Collapse
|
44
|
Sari DCR, Arfian N, Tranggono U, Setyaningsih WAW, Romi MM, Emoto N. Centella asiatica (Gotu kola) ethanol extract up-regulates hippocampal brain-derived neurotrophic factor (BDNF), tyrosine kinase B (TrkB) and extracellular signal-regulated protein kinase 1/2 (ERK1/2) signaling in chronic electrical stress model in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:1218-1224. [PMID: 31998466 PMCID: PMC6885393 DOI: 10.22038/ijbms.2019.29012.7002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/01/2018] [Accepted: 07/03/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Impairment of hippocampus function as a center for memory processing occurs due to stress. Centella asiatica L. (Gotu kola) is known to improve memory, intelligence, and neural protection although the precise mechanism is not well understood. This study aimed to investigate the effects of ethanol extracts of C. asiatica toward MAPK expression as down-stream signaling of brain-derived neurotrophic factor (BDNF). MATERIALS AND METHODS We performed a chronic electrical stress model on 20 male Sprague Dawley rats (2 months-old, 180-200 g). Rats were divided into four groups: normal control group (Control) which received distilled water, and three treatment groups receiving oral Gotu kola ethanol extracts in oral doses of 150 mg/kg BW (CeA150), 300 mg/kg BW (CeA300), and 600 mg/kg BW (CeA600) over four weeks. Memory acquisition was assessed with Morris water maze. Hippocampus was harvested, then extracted for protein and RNA analysis. MAPK proteins (p38, ERK1/2, JNK) were measured using Western blot, meanwhile, BDNF and TrkB receptor were analyzed with real-time PCR (RT-PCR). RESULTS CeA600 group revealed improvement of memory performance as shown by reduction in time and distance parameters compared to control during escape latency test. This finding associated with significant elevation of hippocampal BDNF protein and mRNA level with up-regulation of TrkB mRNA expression in CeA600 group compared to control. Western-blot analysis showed significant up-regulation of ERK1/2 protein level in CeA600 group (P<0.05) compare to control. CONCLUSION BDNF signaling through TrkB and ERK1/2 pathway contributes significantly to amelioration of memory performance after C. asiatica treatment in electrical stress model.
Collapse
Affiliation(s)
- Dwi Cahyani Ratna Sari
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Nur Arfian
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Untung Tranggono
- Department of Surgery, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Muhammad Mansyur Romi
- Department of Anatomy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Noriaki Emoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
45
|
Eivani M, Alijanpour S, Arefian E, Rezayof A. Corticolimbic analysis of microRNAs and protein expressions in scopolamine-induced memory loss under stress. Neurobiol Learn Mem 2019; 164:107065. [PMID: 31400468 DOI: 10.1016/j.nlm.2019.107065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2019] [Revised: 07/18/2019] [Accepted: 08/06/2019] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to assess thealterations of corticolimbic microRNAs and protein expressions in the effect of scopolamine with or without stress on passive-avoidance memory in male Wistar rats. The expressions of miR-1, miR-10 and miR-26 and also the levels of p-CREB, CREB, C-FOS and BDNF in the prefrontal cortex (PFC), the hippocampus and the amygdala were evaluated using RT-qPCR and Western blotting techniques. The data showed that the administration of a muscarinic receptor antagonist, scopolamine or the exposure to 30 min stress significantly induced memory loss. Interestingly, the injection of an ineffective dose of scopolamine (0.5 mg/kg) alongside with exposure to an ineffective time of stress (10 min) impaired memory formation, suggesting a potentiative effect of stress on scopolamine response. Our results showed that memory formation was associated with the down-regulated expression of miR-1, miR-10 and miR-26 in the PFC and the hippocampus, but not the amygdala. The relative expression increase of miR-1 and miR-10 in the PFC and the hippocampus was shown in memory loss induced by scopolamine administration or 30-min stress. The PFC level of miR-10 and also hippocampal level of miR-1 and miR-10 were significantly up-regulated, while amygdala miR-1 and miR-26 were down-regulated in scopolamine-induced memory loss under stress. Memory formation increased BDNF, C-FOS and p-CREB/CREB in the PFC, the hippocampus and the amygdala. In contrast, the PFC, hippocampal and amygdala protein expressions were significantly decreased in memory loss induced by scopolamine administration (2 mg/kg), stress exposure (for 30 min) or scopolamine (0.5 mg/kg) plus stress (10 min). One of the most significant findings to emerge from this study is that the stress exposure potentiated the amnesic effect of scopolamine may via affecting the expressions of miRs and proteins in the PFC, the hippocampus and the amygdala. It is possible to hypothesis that corticolimbic signaling pathways play a critical role in relationship between stress and Alzheimer's disease.
Collapse
Affiliation(s)
- Mehdi Eivani
- Neuroscience Lab, Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ehsan Arefian
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ameneh Rezayof
- Neuroscience Lab, Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
46
|
Scotton E, Colombo R, Reis JC, Possebon GMP, Hizo GH, Valiati FE, Géa LP, Bristot G, Salvador M, Silva TM, Guerra AE, Lopes TF, Rosa AR, Kunz M. BDNF prevents central oxidative damage in a chronic unpredictable mild stress model: The possible role of PRDX-1 in anhedonic behavior. Behav Brain Res 2019; 378:112245. [PMID: 31539575 DOI: 10.1016/j.bbr.2019.112245] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/14/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022]
Abstract
Prolonged activation of the hypothalamic-pituitary-adrenal (HPA) axis and sustained increase of glucocorticoids have been evidenced in major depression and are related to changes involving neurotrophins and markers of oxidative stress in response to inflammation. This study aimed to evaluate central measures of brain-derived neurotrophic factor (BDNF), oxidative damage and total antioxidant capacity in rats submitted to chronic unpredictable mild stress (CUMS), as well as to investigate the relationship between BDNF levels and differentially processes. For this purpose, male Wistar rats were submitted to CUMS for six weeks. Based on a sucrose preference test (SPT), the animals were divided into anhedonic or non-anhedonic clusters. Afterwards, forced swim test (FST) and open field test (OFT) were performed, and the animals were euthanized. Brain tissue was collected, followed by quantification of oxidative damage, total antioxidant capacity and BDNF levels. Anhedonic behavior was evidenced in stress-susceptible animals through decreased sucrose preference. No differences were found in FST or OFT results. We observed increased BDNF levels in the hippocampus (HPC) of animals exposed to the CUMS protocol, accompanied by decreased total antioxidant capacity, despite the absence of oxidative damage to lipids and proteins. Moreover, we used a bioinformatics approach to identify proteins involved in oxidative stress and inflammation pathways, which were differentially expressed in anhedonic animals from other studies with similar experimental protocol. expressed proteins (DEP) involved in oxidative stress and inflammatory biological Anhedonic behavior was associated with peroxiredoxin-1 (PRDX-1) up-regulation and down-regulation of proteins involved with apoptotic and inflammation signaling (RELA, ASK-1 and TAK-1) in the HPC. Taken together, these data suggest that BDNF and PRDX-1 might be involved in initial stress response, playing a compensatory role by preventing oxidative damage to lipids and proteins through the modulation of antioxidant defense after CUMS in anhedonic animals.
Collapse
Affiliation(s)
- Ellen Scotton
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafael Colombo
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.
| | - Jéssica C Reis
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Gabriela M P Possebon
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Gabriel H Hizo
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Fernanda E Valiati
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Bioquímica, UFRGS, Porto Alegre, RS, Brazil.
| | - Luiza P Géa
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Farmacologia e Terapêutica, UFRGS, Porto Alegre, RS, Brazil.
| | - Giovana Bristot
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Bioquímica, UFRGS, Porto Alegre, RS, Brazil.
| | - Mirian Salvador
- Laboratório de estresse oxidativo e antioxidantes, Instituto de Biotecnologia, UCS, Caxias do Sul, RS, Brazil.
| | - Tuani M Silva
- Laboratório de estresse oxidativo e antioxidantes, Instituto de Biotecnologia, UCS, Caxias do Sul, RS, Brazil.
| | - Alessandra E Guerra
- Easy Search Assessoria em Pesquisa, Grupo Diagnose, Caxias do Sul, RS, Brazil.
| | - Tiago F Lopes
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Adriane R Rosa
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Farmacologia e Terapêutica, UFRGS, Porto Alegre, RS, Brazil.
| | - Maurício Kunz
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
47
|
Protective Role of Epigallocatechin Gallate in a Rat Model of Cisplatin-Induced Cerebral Inflammation and Oxidative Damage: Impact of Modulating NF-κB and Nrf2. Neurotox Res 2019; 37:380-396. [PMID: 31410684 DOI: 10.1007/s12640-019-00095-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 12/11/2022]
Abstract
Cisplatin is a widely used chemotherapeutic agent in treating various types of cancers. However, it can induce neurotoxicity and nephrotoxicity, limiting its dose and clinical use. Although previous studies indicated the direct link between cisplatin-induced central neurotoxicity and oxidative stress, the exact mechanism is not completely understood. Therefore, herein we investigated the effects of prophylactic and concurrent treatment with (-)-epigallocatechin-3-gallate (EGCG), a natural polyphenolic neuroprotective antioxidant, on cisplatin-induced brain toxicity in rats to delineate its molecular mechanism of action. We found that cisplatin initiated a cascade of genetic, biological, and histopathological changes in the brain cortex, inducing inflammatory cytokines, appearance of scattered inflammatory cells, nitro-oxidative stress, and apoptotic proteins in the cerebral cortex. However, EGCG not only protected against cisplatin-induced inflammatory burden but also ameliorated the induction of nitro-oxidative stress and apoptotic proteins triggered by cisplatin in the cerebral cortex of pre- and co-treated rats with respect to their unprotected counterparts. EGCG anti-inflammatory effect here may be attributed to the downregulation of nuclear factor kappa B (NF-κB). Additionally, this natural polyphenol significantly ameliorated cisplatin-elicited reduction in cerebral cortex brain-derived neurotrophic factor and acetylcholine esterase. Upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream heme oxygenase-1 (HO-1) by EGCG prophylactic and concurrent administration here seems also to play a key role in the protective impact of EGCG against cisplatin toxicity through enhancing total antioxidant capacity. Thus, EGCG can be used as a promising prophylactic adjuvant for preventing the development of brain inflammation and oxidative damage associated with cisplatin chemotherapy.
Collapse
|
48
|
Kang X, Hong W, Xie K, Tang H, Tang J, Luo S, Geng W, Jia D. Ginsenoside Rb1 pretreatment reverses hippocampal changes in BDNF/TrkB mRNA and protein in rats subjected to acute immobilization stress. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2127-2134. [PMID: 31308626 PMCID: PMC6612975 DOI: 10.2147/dddt.s201135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/12/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023]
Abstract
Purpose Episodes of acute emotional or physical stress can have significant adverse effects on the hippocampus. Ginsenoside Rb1, the most predominant ginsenoside present in Panax species, has been reported to show a neuroprotective effect. The purpose of this study was to investigate the influence of ginsenoside Rb1 on plasma corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels and hippocampal brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) levels in rats subjected to acute immobilization stress. Methods Wistar rats were divided into controls treated with saline only (N), rats exposed to stress only (M), and rats pretreated with Rb1 (40 mg.kg (−1)) thirty minutes prior to stress exposure (R). In the model, animals were restrained in a plastic immobilizer for 2 h of acute immobilization stress at room temperature. ELISA was used to determine plasma levels of CORT and ACTH. The effect of Rb1 pretreatment on the expression of BDNF and TrkB was determined by immunofluorescence, real-time PCR, and Western blotting analysis. Results The R group showed significantly increased plasma CORT and ACTH levels compared to the N and M groups. Acute stress stimulation suppressed BDNF and TrkB protein and mRNA expression in the hippocampus; otherwise, Rb1 pretreatment reversed the decreases. Conclusion The results from this study demonstrate that Rb1 pretreatment reverses the decreases in hippocampal BDNF/TrkB and increases the plasma levels of CORT and ACTH, indicating a potential neuroprotective effect of Rb1 against acute stress.
Collapse
Affiliation(s)
- Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China.,Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Wandong Hong
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Kangjie Xie
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, People's Republic of China
| | - Hongli Tang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Jingjing Tang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Shan Luo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Wujun Geng
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| | - Danyun Jia
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, People's Republic of China
| |
Collapse
|
49
|
Mondal AC, Fatima M. Direct and indirect evidences of BDNF and NGF as key modulators in depression: role of antidepressants treatment. Int J Neurosci 2018; 129:283-296. [PMID: 30235967 DOI: 10.1080/00207454.2018.1527328] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Abstract
PURPOSE Depression is one of the most prevalent, recurrent and life-threatening mental illnesses. However, the precise mechanism underlying the disorder is not yet clearly understood. It is therefore, essential to identify the novel biomarkers which may help in the development of effective treatment. METHODS In this milieu, the profile of the brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) were considered as biomarkers in the light of pathophysiology of depression and its treatment. RESULTS Previously, we have reported that BDNF level in the postmortem brain of suicide victims was significantly lower than those of normal controls. We also found decreased BDNF levels in the specific brain regions of the learned helplessness model of depression in rat, and was found to increase normal level following chronic fluoxetine hydrochloride treatment. NGF is another important member of neurotrophin, which is dysregulated in the pathophysiology of depression in some models of peripheral nerve damage and stress. The results shown evidences of the effect of antidepressants on modulating depression via the NGF in preclinical and clinical models of depression, but conflicted, therefore make it currently difficult to affirm the therapeutic role of antidepressants. CONCLUSIONS Here, we review some of the preclinical and clinical studies aimed at disclosing the role of BDNF and NGF mediated pathophysiological mechanisms of depression and the new therapeutic approaches targeting those key molecules. In addition, an important link between BDNF, NGF and depression has been discussed in the light of current existing knowledge.
Collapse
Affiliation(s)
- Amal Chandra Mondal
- a Laboratory of Cellular and Molecular Neurobiology , School of Life Sciences, Jawaharlal Nehru University , New Delhi , India
| | - Mahino Fatima
- a Laboratory of Cellular and Molecular Neurobiology , School of Life Sciences, Jawaharlal Nehru University , New Delhi , India
| |
Collapse
|
50
|
Effect of Acute Stress on the Expression of BDNF, trkB, and PSA-NCAM in the Hippocampus of the Roman Rats: A Genetic Model of Vulnerability/Resistance to Stress-Induced Depression. Int J Mol Sci 2018; 19:ijms19123745. [PMID: 30477252 PMCID: PMC6320970 DOI: 10.3390/ijms19123745] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/10/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/22/2022] Open
Abstract
The Roman High-Avoidance (RHA) and the Roman Low-Avoidance (RLA) rats, represent two psychogenetically-selected lines that are, respectively, resistant and prone to displaying depression-like behavior, induced by stressors. In the view of the key role played by the neurotrophic factors and neuronal plasticity, in the pathophysiology of depression, we aimed at assessing the effects of acute stress, i.e., forced swimming (FS), on the expression of brain-derived neurotrophic factor (BDNF), its trkB receptor, and the Polysialilated-Neural Cell Adhesion Molecule (PSA-NCAM), in the dorsal (dHC) and ventral (vHC) hippocampus of the RHA and the RLA rats, by means of western blot and immunohistochemical assays. A 15 min session of FS elicited different changes in the expression of BDNF in the dHC and the vHC. In RLA rats, an increment in the CA2 and CA3 subfields of the dHC, and a decrease in the CA1 and CA3 subfields and the dentate gyrus (DG) of the vHC, was observed. On the other hand, in the RHA rats, no significant changes in the BDNF levels was seen in the dHC and there was a decrease in the CA1, CA3, and DG of the vHC. Line-related changes were also observed in the expression of trkB and PSA-NCAM. The results are consistent with the hypothesis that the differences in the BDNF/trkB signaling and neuroplastic mechanisms are involved in the susceptibility of RLA rats and resistance of RHA rats to stress-induced depression.
Collapse
|