1
|
Mamedova S, Karanis P. Coccidia (Apicomplexa: Eucoccidiorida) of Freshwater Fish. Microorganisms 2025; 13:347. [PMID: 40005714 PMCID: PMC11858579 DOI: 10.3390/microorganisms13020347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025] Open
Abstract
The phylum Apicomplexa includes endoparasites of fish worldwide, which cause parasitic infections that can adversely affect productivity in aquaculture. They are considered bioindicators of water pollution. Piscine apicomplexan parasites can be divided into two major groups: the intracellular blood parasites (Adeleorina) and the coccidians (Eimeriorina), which can infect the gastrointestinal tract and several organs. This work aims to compile, as completely as possible and for the first time, the available information concerning the species of coccidia (Apicomplexa: Conoidasida), which has been reported from freshwater fish. A comprehensive bibliographic search was performed using all available databases and fields, including Scopus, PubMed, and Google Scholar. In the freshwater fish found, there were 173 described species. This review demonstrates that freshwater fish's eimeriid coccidia are better studied than adeleid coccidia. Studies of coccidian freshwater fish fauna indicate a high infection with Eimeria and Goussia species. The wealthiest coccidia fauna were found in the Cypriniformes, Perciformes, Siluriformes and Cichliformes fishes.
Collapse
Affiliation(s)
- Simuzar Mamedova
- Institute of Zoology, Ministry of Science and Education Republic of Azerbaijan, Baku 1073, Azerbaijan
- Department of Life Sciences, Khazar University, Baku 1001, Azerbaijan
| | - Panagiotis Karanis
- Medical Faculty University of Cologne, 50923 Cologne, Germany;
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia 2408, Cyprus
| |
Collapse
|
2
|
Madsen AM, Thomassen MR, Frederiksen MW, Hollund BE, Nordhammer ABO, Smedbold HT, Bang B. Airborne bacterial and fungal species in workstations of salmon processing plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175471. [PMID: 39137839 DOI: 10.1016/j.scitotenv.2024.175471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
Significant quantities of salmon are processed daily in the industry's indoor facilities. Occupational exposure contributes to an individual's exposome. The aim of this study is to obtain knowledge about potential exposure to viable airborne species of bacteria and fungi as related to workstations in the salmon processing industry. The study was conducted in nine salmon plants along the Norwegian coast over one or two days with a one-year interval. The MAS100 was used for sampling and MALDI-TOF MS for species identification. The geometric mean concentrations of bacteria and fungi were 200 CFU/m3 and 50 CFU/m3, respectively, with the highest concentrations of bacteria found in slaughtering areas and fungi in trimming of fillets. In total 125 gram-negative and 90 gram-positive bacterial and 32 different fungal species were identified. Some genera were represented by several species e.g. Chryseobacterium (15 species), Flavobacterium (13 species), Microbacterium (12 species), Pseudomonas (37 species), and Psychrobacter (13 species). Risk class 2 (RC2, human pathogens) were found in all types of workstations and plants. Seventeen bacterial species belong to RC2, some were fish pathogens, food spoilage bacteria, or species causing foodborne disease. Among fungi, Aspergillus nidulans was frequently detected across different workstations and plants. In conclusion, bacterial and fungal concentrations were low. Fish and sea-related bacteria were found along the salmon processing line. Bacterial concentrations and species compositions differ between workstations. No particular bacterial or fungal species constituted a large fraction of all airborne species. Based on the presence of human pathogens, using protective gloves is important for the workers. The presence of human and fish pathogens and food spoilage bacteria reveals air as a transmission route for bacteria, potentially affecting workers, consumers, fish, and hygiene of processing equipment. To limit the spread of these bacteria an interdisciplinary cooperation with a One Health perspective may be relevant.
Collapse
Affiliation(s)
- Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark.
| | - Marte Renate Thomassen
- Department of Occupational and Environmental Medicine, University Hospital of North Norway, Tromsø, Norway; Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Margit W Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100 Copenhagen Ø, Denmark
| | - Bjørg Eli Hollund
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway; Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anna B O Nordhammer
- Department of Occupational Medicine, St. Olavs Hospital - Trondheim University Hospital, Trondheim, Norway
| | - Hans T Smedbold
- Department of Occupational Medicine, St. Olavs Hospital - Trondheim University Hospital, Trondheim, Norway
| | - Berit Bang
- Department of Occupational and Environmental Medicine, University Hospital of North Norway, Tromsø, Norway; Department of Medical Biology, Faculty of Health Sciences, UiT, The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
Suyapoh W, Keawchana N, Sornying P, Tangkawattana S, Khirilak P, Jantrakajorn S. Mixed Eimeria and Cryptosporidium infection and its effects on pathology and clinical outcomes in juvenile Asian seabass (Lates calcarifer) cultured in Thailand. JOURNAL OF FISH DISEASES 2024; 47:e13914. [PMID: 38185743 DOI: 10.1111/jfd.13914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 01/09/2024]
Abstract
Coccidiosis is an important disease in juvenile fish because of severe intestinal injury during infection. We first reported the mixed infection of intestinal coccidia and its association with health status and pathological findings in juvenile Asian seabass (Lates calcarifer) cultured in Thailand. Two groups of Asian seabass, 60-day fish and 90-day fish, were sampled to investigate prevalence and coccidian infection intensity using morphological characterization and PCR. Phylogenetic analysis of 18S rRNA gene amplified from the intestines revealed Eimeria sp. and Cryptosporidium sp. infection. The prevalence of Eimeria sp. and Cryptosporidium sp. in sampled fish was 100%. Clinical outcomes assessed, using health assessment index (HAI) scoring and semi-quantitative grading of intestinal lesions and inflammation, demonstrated that all fish developed variety of pathology and clinical illness; however, infection intensity in 60-day fish was significantly higher (p < .05) than 90-day fish. The HAI score of 60-day fish was poorer than 90-day fish, which correlated to a high infection intensity (r = .397), analysed by Pearson correlation coefficient. Overproduction of intestinal oxidants contributing to mucosal injury was examined by nitrotyrosine expression. The high production of reactive nitrogen species indicated severe inflammatory response, and intestinal injuries occurred mainly in the 60-day fish.
Collapse
Affiliation(s)
- Watcharapol Suyapoh
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narissara Keawchana
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Peerapon Sornying
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Sirikachorn Tangkawattana
- WHO Collaborating Centre for Research and Control of Opisthorchiasis (Southeast Asian Liver Fluke Disease), Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Pokphon Khirilak
- Forensic Medicine and Toxicology Unit, Pathology Department, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | |
Collapse
|
4
|
Mamedova S, Karanis P. Cryptosporidium spp. and Eimeria spp. (Apicomplexa: Eimeriorina) of freshwater Cyprinid fish species in the Kura River basin in Azerbaijan territory. JOURNAL OF WATER AND HEALTH 2024; 22:773-784. [PMID: 38678429 DOI: 10.2166/wh.2024.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/15/2024] [Indexed: 04/30/2024]
Abstract
This study aims to determine the prevalence of Cryptosporidium and Eimeria spp. oocysts in fish specimens in the river Kura. It was conducted during the 2021-2022 at two sites: Mingachevir reservoir in central Azerbaijan and in Neftchala district where the river finally enters the Caspian Sea through a delta of the Kura River estuary. The diagnosis of oocysts was performed microscopically. Fine smears from the intestine epithelial layers stained by Ziehl-Neelsen for Cryptosporidium oocysts. To identify Eimeria oocysts, each fish's faecal material and intestinal scrapings were examined directly under a light microscope in wet samples on glass slides with a coverslip. Results revealed a prevalence of Cryptosporidium and Eimeria species infections in fish hosts from both territories Rutilus caspicus, Alburnus filippi, Abramis brama orientalis and Carassius gibelio. Of 170 investigated fish specimens, 8.8% (15/170) were infected with Cryptosporidium species oocysts. Eimeria species oocysts were identified in 20.6% (35/170). The presence of Cryptosporidium and Eimeria infections in fish specimens are natural infections. However, their presence in fish species may be attributed to the age of the fish species and water pollution. This is the first report regarding the prevalence of Cryptosporidium oocysts in fish species in Azerbaijan.
Collapse
Affiliation(s)
- Simuzer Mamedova
- Institute of Zoology, Ministry of Science and Education Republic of Azerbaijan, Baku, Azerbaijan; Department of Life Sciences, Khazar University, Baku, Azerbaijan
| | - Panagiotis Karanis
- Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany; Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus E-mail:
| |
Collapse
|
5
|
Golomazou E, Mamedova S, Eslahi AV, Karanis P. Cryptosporidium and agriculture: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170057. [PMID: 38242460 DOI: 10.1016/j.scitotenv.2024.170057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Cryptosporidiosis is a significant contributor to global foodborne and waterborne disease burden. It is a widespread cause of diarrheal diseases that affect humans and animals worldwide. Agricultural environments can become a source of contamination with Cryptosporidium species through faecal material derived from humans and animals. This review aims to report the main findings of scientific research on Cryptosporidium species related to various agricultural sectors, and highlights the risks of cryptosporidiosis in agricultural production, the contamination sources, the importance of animal production in transmission, and the role of farmed animals as hosts of the parasites. Agricultural contamination sources can cause water pollution in groundwater and different surface waters used for drinking, recreational purposes, and irrigation. The application of contaminated manure, faecal sludge management, and irrigation with inadequately treated water are the main concerns associated with foodborne and waterborne cryptosporidiosis related to agricultural activities. The review emphasizes the public health implications of agriculture concerning the transmission risk of Cryptosporidium parasites and the urgent need for a new concept in the agriculture sector. Furthermore, the findings of this review provide valuable information for developing appropriate measures and monitoring strategies to minimize the risk of infection.
Collapse
Affiliation(s)
- Eleni Golomazou
- Department of Ichthyology and Aquatic Environment - Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, Fytokou str., 38446 Volos, Greece
| | - Simuzer Mamedova
- Institute of Zoology, Ministry of Science and Education Republic of Azerbaijan, Baku, Azerbaijan & Department of Life Sciences, Khazar University, Baku, Azerbaijan
| | - Aida Vafae Eslahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Panagiotis Karanis
- University of Cologne, Medical Faculty and University Hospital, 50931 Cologne, Germany; University of Nicosia Medical School, Department of Basic and Clinical Sciences, Anatomy Centre, 2408 Nicosia, Cyprus.
| |
Collapse
|
6
|
Hayes L, Robinson G, Chalmers RM, Ormerod SJ, Paziewska-Harris A, Chadwick EA, Durance I, Cable J. The occurrence and zoonotic potential of Cryptosporidium species in freshwater biota. Parasit Vectors 2023; 16:209. [PMID: 37344906 PMCID: PMC10283333 DOI: 10.1186/s13071-023-05827-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/31/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Protozoan pathogens from the genus Cryptosporidium cause the diarrhoeal disease cryptosporidiosis in humans and animals globally. Freshwater biota could act as potential reservoirs or zoonotic sources of Cryptosporidium infections for livestock and people, but Cryptosporidium occurrence in aquatic biota is largely unexplored. The aim of this study was to investigate the occurrence of Cryptosporidium in a range of freshwater organisms in upland rivers across England and Wales. METHODS Fish were sampled by electrofishing, invertebrate larvae by kick sampling and the otter Lutra lutra and mink Mustela vison through faecal samples collected opportunistically as part of a nation-wide study. PCR targeting the small subunit ribosomal RNA gene was used to detect Cryptosporidium species. RESULTS Cryptosporidium occurred in just 0.8% of all the samples and in none of 73 samples from nine invertebrate genera. Cryptosporidium was detected in two of 2/74 fish samples (2.7%), both salmonids, and in 2/92 otter faecal samples (2.17%), but there were no positive samples in mink (0/24) or the bullhead Cottus gobio (0/16). CONCLUSIONS Low detection rate of human-infective Cryptosporidium species in aquatic fauna indicates they may present a low risk of contamination of some upland freshwaters.
Collapse
Affiliation(s)
- Laura Hayes
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK.
| | - Guy Robinson
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, SA2 8QA, UK
- Swansea Medical School, Swansea University, Swansea, SA2 8QA, UK
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, SA2 8QA, UK
- Swansea Medical School, Swansea University, Swansea, SA2 8QA, UK
| | - Steve J Ormerod
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Anna Paziewska-Harris
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
- Lukasiewicz Research Network, PORT Polish Centre for Technology Development, Stablowicka 147, 54-066, Wroclaw, Poland
| | | | - Isabelle Durance
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| |
Collapse
|
7
|
Abd El Wahab WM, Shaapan RM, El-Naggar EMB, Ahmed MM, Owis AI, Ali MI. Anti-Cryptosporidium efficacy of Citrus sinensis peel extract: Histopathological and ultrastructural experimental study. Exp Parasitol 2022; 243:108412. [DOI: 10.1016/j.exppara.2022.108412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/04/2022] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
|
8
|
First Epidemiological Report on the Prevalence and Associated Risk Factors of Cryptosporidium spp. in Farmed Marine and Wild Freshwater Fish in Central and Eastern of Algeria. Acta Parasitol 2022; 67:1152-1161. [PMID: 35545736 DOI: 10.1007/s11686-022-00560-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/14/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE The present study aimed to estimate the prevalence and molecular characterization of Cryptosporidium spp. in six different fish species both from marine and freshwater environments. METHODS During a period of 2 years (2018-2020), a total of 415 fecal samples and 565 intestinal scrapings were collected in seven provinces from the central and eastern Algeria. From those, 860 fish belonged to six different species, two of which are cultured marine and four are wild freshwater fish. All samples were screened for Cryptosporidium spp. presence using molecular techniques. Nested PCR approach was performed to amplify partial sequences of the small subunit ribosomal RNA (SSU rRNA) and 60-kDa glycoprotein (GP60) genes for Cryptosporidium genotyping and subtyping. Detailed statistical analysis was performed to assess the prevalence variation of Cryptosporidium infection according to different risk factors. RESULTS Nested PCR analysis of SSU gene revealed 173 Cryptosporidium positive fish, giving an overall prevalence of 20.11% (17.5-23.0). Cryptosporidium spp. was detected in 8.93% (42/470) of cultured marine fish and 33.58% (131/390) of wild freshwater fish. Overall, the prevalence was affected by all studied risk factors, except the gender. Molecular characterization and subtyping of Cryptosporidium isolates showed occurrence of IIaA16G2R1 and IIaA17G2R1 subtypes of C. parvum in the fish species Sparus aurata. CONCLUSION The present study provides the first epidemiological data on the prevalence and associated risk factors of Cryptosporidium spp. in farmed marine and wild freshwater fish and the first molecular data on the occurrence of zoonotic C. parvum in fish from North Africa (Algeria).
Collapse
|
9
|
Pane S, Putignani L. Cryptosporidium: Still Open Scenarios. Pathogens 2022; 11:pathogens11050515. [PMID: 35631036 PMCID: PMC9143492 DOI: 10.3390/pathogens11050515] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/20/2022] [Accepted: 04/23/2022] [Indexed: 01/27/2023] Open
Abstract
Cryptosporidiosis is increasingly identified as a leading cause of childhood diarrhea and malnutrition in both low-income and high-income countries. The strong impact on public health in epidemic scenarios makes it increasingly essential to identify the sources of infection and understand the transmission routes in order to apply the right prevention or treatment protocols. The objective of this literature review was to present an overview of the current state of human cryptosporidiosis, reviewing risk factors, discussing advances in the drug treatment and epidemiology, and emphasizing the need to identify a government system for reporting diagnosed cases, hitherto undervalued.
Collapse
Affiliation(s)
- Stefania Pane
- Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics, 00146 Rome, Italy;
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, 00146 Rome, Italy
- Correspondence:
| |
Collapse
|
10
|
Moratal S, Dea-Ayuela MA, Martí-Marco A, Puigcercós S, Marco-Hirs NM, Doménech C, Corcuera E, Cardells J, Lizana V, López-Ramon J. Molecular Characterization of Cryptosporidium spp. in Cultivated and Wild Marine Fishes from Western Mediterranean with the First Detection of Zoonotic Cryptosporidium ubiquitum. Animals (Basel) 2022; 12:1052. [PMID: 35565479 PMCID: PMC9104342 DOI: 10.3390/ani12091052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
Fish not only harbor host-specific species/genotypes of Cryptosporidium, but also species like zoonotic C. parvum or anthroponotic C. hominis, which can pose a risk for fish consumers. This study aims to investigate fish cryptosporidiosis in an important aquaculture and fishery area of the Western Mediterranean (Comunidad Valenciana, Spain). We analyzed 404 specimens belonging to the following three groups: cultivated fish (N = 147), wild synanthropic fish (N = 147) and wild fish from extractive fisheries (N = 110). Nested PCR targeting the 18S rRNA gene, followed by sequencing and phylogenetic analysis, were performed. Positive isolates were also amplified at the actin gene locus. An overall prevalence of 4.2% was detected, with the highest prevalence in the synanthropic group (6.1%). C. molnari was identified in thirteen specimens from seven different host species. Zoonotic C. ubiquitum was detected in two European sea bass (Dicentrarchus labrax). One isolate similar to C. scophthalmi was detected in a cultivated meagre (Argyrosomus regius), and one isolate, highly divergent from all the Cryptosporidium species/genotypes described, was identified from a synanthropic round sardinella (Sardinella aurita). This study contributes to increasing the molecular data on fish cryptosporidiosis, expanding the range of known hosts for C. molnari and identifying, for the first time, zoonotic C. ubiquitum in edible marine fishes, pointing out a potential health risk.
Collapse
Affiliation(s)
- Samantha Moratal
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc Street 7, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (A.M.-M.); (S.P.); (N.M.M.-H.); (C.D.); (E.C.); (J.C.); (V.L.); (J.L.-R.)
| | - María Auxiliadora Dea-Ayuela
- Pharmacy Department, Universidad CEU-Cardenal Herrera, Santiago Ramón y Cajal Street, Alfara del Patriarca, 46115 Valencia, Spain
| | - Alba Martí-Marco
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc Street 7, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (A.M.-M.); (S.P.); (N.M.M.-H.); (C.D.); (E.C.); (J.C.); (V.L.); (J.L.-R.)
| | - Silvia Puigcercós
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc Street 7, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (A.M.-M.); (S.P.); (N.M.M.-H.); (C.D.); (E.C.); (J.C.); (V.L.); (J.L.-R.)
| | - Naima María Marco-Hirs
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc Street 7, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (A.M.-M.); (S.P.); (N.M.M.-H.); (C.D.); (E.C.); (J.C.); (V.L.); (J.L.-R.)
| | - Candela Doménech
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc Street 7, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (A.M.-M.); (S.P.); (N.M.M.-H.); (C.D.); (E.C.); (J.C.); (V.L.); (J.L.-R.)
| | - Elena Corcuera
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc Street 7, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (A.M.-M.); (S.P.); (N.M.M.-H.); (C.D.); (E.C.); (J.C.); (V.L.); (J.L.-R.)
| | - Jesús Cardells
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc Street 7, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (A.M.-M.); (S.P.); (N.M.M.-H.); (C.D.); (E.C.); (J.C.); (V.L.); (J.L.-R.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, Bellaterra, 08193 Barcelona, Spain
| | - Victor Lizana
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc Street 7, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (A.M.-M.); (S.P.); (N.M.M.-H.); (C.D.); (E.C.); (J.C.); (V.L.); (J.L.-R.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, Bellaterra, 08193 Barcelona, Spain
| | - Jordi López-Ramon
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc Street 7, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (A.M.-M.); (S.P.); (N.M.M.-H.); (C.D.); (E.C.); (J.C.); (V.L.); (J.L.-R.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
11
|
Prevalence and Molecular Epidemiology of Cryptosporidium Infection in Clarias gariepinus Fish in Egypt. Acta Parasitol 2022; 67:437-445. [PMID: 34686992 DOI: 10.1007/s11686-021-00483-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE This study investigated the prevalence and molecular detection of Cryptosporidium spp. in catfish (Clarias gariepinus). METHODS A total of 300 Carias gariepinus fish were collected from two freshwater sources: the Nile River (180) and drainage canals (120). The stomach and intestine epithelium of each individual fish sample were screened by modified Ziehl-Neelsen (mZN) staining technique for the detection of Cryptosporidium oocysts followed by the serological survey for detection of Cryptosporidium antibodies using Enzyme-Linked Immunosorbent Assay (ELISA) and molecular characterization using complemented DNA polymerase chain reaction (cPCR). RESULTS ELISA showed higher prevalence of 69.3% than that prevalence obtained by mZN, 64% for the total examined Clarias gariepinus fish. Also, higher prevalence of Cryptosporidium infection 65.5% and 75.8% obtained by ELISA than 61.1% and 68.3% by mZN, in both fish groups from Nile River and Drainage canal, respectively. PCR analysis revealed the expected positive bands at 1056 bp. DNA sequencing and phylogenetic analysis proved that the positive-PCR Cryptosporidium isolate identified in the present study was Cryptosporidium molnari. CONCLUSION Freshwater fishes (Clarias gariepinus) are subjected to a high infection rate with Cryptosporidium spp.; the drainage canals obtained fishes showed higher prevalence than that collected from Nile River which indicates an important public health problem and a potential risk of drainage canals in Egypt. ELISA showed higher prevalence of cryptosporidiosis than mZN, for the total examined Clarias gariepinus fish and phylogenetic analyses confirmed this protozoal organism to be a novel species of Cryptosporidium molnari.
Collapse
|
12
|
Couso-Pérez S, Ares-Mazás E, Gómez-Couso H. A review of the current status of Cryptosporidium in fish. Parasitology 2022; 149:1-13. [PMID: 35166202 PMCID: PMC10090634 DOI: 10.1017/s0031182022000099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 11/06/2022]
Abstract
Species of the genus Cryptosporidium (phylum Apicomplexa) infect the epithelium of the gastrointestinal tract of several vertebrate hosts, including humans and domestic and wild animals. In the past 20 years, several studies have focused on Cryptosporidium in fish. To date, a total of four piscine-host-specific species (Cryptosporidium molnari, Cryptosporidium huwi, Cryptosporidium bollandi and Cryptosporidium abrahamseni), nine piscine genotypes and more than 29 unnamed genotypes have been described in fish hosts. In addition, Cryptosporidium species and genotypes typical of other groups of vertebrates have also been identified. This review summarizes the history, biology, pathology and clinical manifestations, as well as the transmission, prevalence and molecular epidemiology of Cryptosporidium in wild, cultured and ornamental fish from both marine and freshwater environments. Finally, the potential role of piscine hosts as a reservoir of zoonotic Cryptosporidium species is also discussed.
Collapse
Affiliation(s)
- Seila Couso-Pérez
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782Santiago de Compostela, A Coruña, Spain
| | - Elvira Ares-Mazás
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782Santiago de Compostela, A Coruña, Spain
| | - Hipólito Gómez-Couso
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782Santiago de Compostela, A Coruña, Spain
- Institute of Research on Chemical and Biological Analysis, University of Santiago de Compostela, 15782Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
13
|
Kolářová I, Valigurová A. Hide-and-Seek: A Game Played between Parasitic Protists and Their Hosts. Microorganisms 2021; 9:2434. [PMID: 34946036 PMCID: PMC8707157 DOI: 10.3390/microorganisms9122434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022] Open
Abstract
After invading the host organism, a battle occurs between the parasitic protists and the host's immune system, the result of which determines not only whether and how well the host survives and recovers, but also the fate of the parasite itself. The exact weaponry of this battle depends, among others, on the parasite localisation. While some parasitic protists do not invade the host cell at all (extracellular parasites), others have developed successful intracellular lifestyles (intracellular parasites) or attack only the surface of the host cell (epicellular parasites). Epicellular and intracellular protist parasites have developed various mechanisms to hijack host cell functions to escape cellular defences and immune responses, and, finally, to gain access to host nutrients. They use various evasion tactics to secure the tight contact with the host cell and the direct nutrient supply. This review focuses on the adaptations and evasion strategies of parasitic protists on the example of two very successful parasites of medical significance, Cryptosporidium and Leishmania, while discussing different localisation (epicellular vs. intracellular) with respect to the host cell.
Collapse
Affiliation(s)
- Iva Kolářová
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Albertov 6, 128 44 Prague, Czech Republic
| | - Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
14
|
Ryan UM, Feng Y, Fayer R, Xiao L. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia - a 50 year perspective (1971-2021). Int J Parasitol 2021; 51:1099-1119. [PMID: 34715087 DOI: 10.1016/j.ijpara.2021.08.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
The protozoan parasites Cryptosporidium and Giardia are significant causes of diarrhoea worldwide and are responsible for numerous waterborne and foodborne outbreaks of diseases. Over the last 50 years, the development of improved detection and typing tools has facilitated the expanding range of named species. Currently at least 44 Cryptosporidium spp. and >120 genotypes, and nine Giardia spp., are recognised. Many of these Cryptosporidium genotypes will likely be described as species in the future. The phylogenetic placement of Cryptosporidium at the genus level is still unclear and further research is required to better understand its evolutionary origins. Zoonotic transmission has long been known to play an important role in the epidemiology of cryptosporidiosis and giardiasis, and the development and application of next generation sequencing tools is providing evidence for this. Comparative whole genome sequencing is also providing key information on the genetic mechanisms for host specificity and human infectivity, and will enable One Health management of these zoonotic parasites in the future.
Collapse
Affiliation(s)
- Una M Ryan
- Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Ronald Fayer
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, BARC-East, Building 173, Beltsville, MD 20705, USA
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Mamedova S, Karanis P. Cryptosporidium spp. infections in livestock and wild animals in Azerbaijan territory. JOURNAL OF WATER AND HEALTH 2021; 19:545-562. [PMID: 34371493 DOI: 10.2166/wh.2021.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cryptosporidium is an intracellular protozoan parasite, globally distributed and capable of infecting various vertebrate species, including humans as well as domestic and wild animals. Cryptosporidium is increasingly gaining attention as a human and an animal pathogen mainly due to its dominant involvement in worldwide waterborne outbreaks. The present paper reviews the current knowledge and understanding of Cryptosporidium spp. in terrestrial and water animals in Azerbaijan.
Collapse
Affiliation(s)
- S Mamedova
- National Academy of Sciences of Azerbaijan, Institute of Zoology, Passage 1128, Block 504, Baku, AZ 1073, Azerbaijan
| | - P Karanis
- Faculty of Medicine and University Hospital, University of Cologne, Cologne, Germany E-mail: ; Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
16
|
Golomazou E, Malandrakis EE, Panagiotaki P, Karanis P. Cryptosporidium in fish: Implications for aquaculture and beyond. WATER RESEARCH 2021; 201:117357. [PMID: 34147739 DOI: 10.1016/j.watres.2021.117357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aquaculture industries are expanding worldwide and control of Cryptosporidium is of great importance. Cryptosporidiosis is a serious waterborne/foodborne disease, responsible for infectious outbreaks globally. Current knowledge on the Cryptosporidium species in the aquatic environment and their occurrence in piscine hosts is steadily increasing since the Cryptosporidium species have been detected in marine, freshwater, cultured, captive and ornamental fish in a wide range of geographical regions. The zoonotic potential of these parasites and their pathological impact on piscine hosts have been increasingly reported and the fishborne zoonotic risk from Cryptosporidium spp. is of major importance from a public health point of view. Zoonotic subtypes in fish have been described in various studies and are probably related to water contamination from animal and human wastes. This review critically evaluated existing scientific data, related to Cryptosporidium species in piscine hosts, emphasizing transmission routes and the potential impact of piscine cryptosporidiosis in aquaculture. This knowledge will facilitate consumers, authorities and water industries such as fisheries and aquaculture, the prevention and control of waterborne and fishborne cryptosporidiosis in fish products.
Collapse
Affiliation(s)
- E Golomazou
- Department of Ichthyology and Aquatic Environment - Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, Fytokou str., 38446, Volos, Greece
| | - E E Malandrakis
- Department of Animal Science - Laboratory of Applied Hydrobiology, School of Animal Biosciences, Agricultural University of Athens, 75 Iera Odos str., 11855, Athens, Greece
| | - P Panagiotaki
- Department of Ichthyology and Aquatic Environment - Aquaculture Laboratory, School of Agricultural Sciences, University of Thessaly, Fytokou str., 38446, Volos, Greece
| | - P Karanis
- University of Cologne, Medical Faculty and University Hospital, 50931 Cologne, Germany; University of Nicosia Medical School, Department of Basic and Clinical Sciences, Anatomy Institute, 2408, Nicosia, Cyprus.
| |
Collapse
|
17
|
Ježková J, Limpouchová Z, Prediger J, Holubová N, Sak B, Konečný R, Květoňová D, Hlásková L, Rost M, McEvoy J, Rajský D, Feng Y, Kváč M. Cryptosporidium myocastoris n. sp. (Apicomplexa: Cryptosporidiidae), the Species Adapted to the Nutria ( Myocastor coypus). Microorganisms 2021; 9:813. [PMID: 33921541 PMCID: PMC8069493 DOI: 10.3390/microorganisms9040813] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
Cryptosporidium spp., common parasites of vertebrates, remain poorly studied in wildlife. This study describes the novel Cryptosporidium species adapted to nutrias (Myocastor coypus). A total of 150 faecal samples of feral nutria were collected from locations in the Czech Republic and Slovakia and examined for Cryptosporidium spp. oocysts and specific DNA at the SSU, actin, HSP70, and gp60 loci. Molecular analyses revealed the presence of C. parvum (n = 1), C. ubiquitum subtype family XIId (n = 5) and Cryptosporidium myocastoris n. sp. XXIIa (n = 2), and XXIIb (n = 3). Only nutrias positive for C. myocastoris shed microscopically detectable oocysts, which measured 4.8-5.2 × 4.7-5.0 µm, and oocysts were infectious for experimentally infected nutrias with a prepatent period of 5-6 days, although not for mice, gerbils, or chickens. The infection was localised in jejunum and ileum without observable macroscopic changes. The microvilli adjacent to attached stages responded by elongating. Clinical signs were not observed in naturally or experimentally infected nutrias. Phylogenetic analyses at SSU, actin, and HSP70 loci demonstrated that C. myocastoris n. sp. is distinct from other valid Cryptosporidium species.
Collapse
Affiliation(s)
- Jana Ježková
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 37005 České Budějovice, Czech Republic; (J.J.); (J.P.); (N.H.); (R.K.); (M.R.)
| | - Zlata Limpouchová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; (Z.L.); (B.S.); (D.K.); (L.H.)
| | - Jitka Prediger
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 37005 České Budějovice, Czech Republic; (J.J.); (J.P.); (N.H.); (R.K.); (M.R.)
| | - Nikola Holubová
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 37005 České Budějovice, Czech Republic; (J.J.); (J.P.); (N.H.); (R.K.); (M.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; (Z.L.); (B.S.); (D.K.); (L.H.)
| | - Bohumil Sak
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; (Z.L.); (B.S.); (D.K.); (L.H.)
| | - Roman Konečný
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 37005 České Budějovice, Czech Republic; (J.J.); (J.P.); (N.H.); (R.K.); (M.R.)
| | - Dana Květoňová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; (Z.L.); (B.S.); (D.K.); (L.H.)
| | - Lenka Hlásková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; (Z.L.); (B.S.); (D.K.); (L.H.)
| | - Michael Rost
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 37005 České Budějovice, Czech Republic; (J.J.); (J.P.); (N.H.); (R.K.); (M.R.)
| | - John McEvoy
- Microbiological Sciences Department, North Dakota State University, 1523 Centennial Blvd, Van Es Hall, Fargo, ND 58102, USA;
| | - Dušan Rajský
- Faculty of Forestry, Technical University in Zvolen, 960 01 Zvolen, Slovakia;
| | - Yaoyu Feng
- Key Laboratory of Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Martin Kváč
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 37005 České Budějovice, Czech Republic; (J.J.); (J.P.); (N.H.); (R.K.); (M.R.)
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 37005 České Budějovice, Czech Republic; (Z.L.); (B.S.); (D.K.); (L.H.)
| |
Collapse
|
18
|
Cryptosporidium abrahamseni n. sp. (Apicomplexa: Cryptosporidiiae) from red-eye tetra (Moenkhausia sanctaefilomenae). Exp Parasitol 2021; 223:108089. [PMID: 33639135 DOI: 10.1016/j.exppara.2021.108089] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/17/2021] [Accepted: 02/09/2021] [Indexed: 01/28/2023]
Abstract
The morphological, biological, and molecular characterisation of Cryptosporidium piscine genotype 7 from red-eye tetras (Moenkhausia sanctaefilomenae) are described, and the species name Cryptosporidium abrahamseni n. sp. is proposed. Histological analysis of intestinal tissue identified large numbers of Cryptosporidium organisms along the epithelial lining of the intestine. Sequence and phylogenetic analysis at 18S rRNA (18S) and actin loci conducted on intestinal scrapings revealed that C. abrahamseni n. sp. was genetically distinct from other Cryptosporidium species. At the 18S locus, it was most closely related to C. huwi (3.2% genetic distance) and exhibited genetic distances ranging from 5.9 to 6.5% (C. molnari) to 14.9% (C. scolpthalmi) from all other Cryptosporidium species. At the actin locus, the genetic distances were larger and C. abrahamseni n. sp. exhibited 10.3% genetic distance from C. huwi, and 17.6% (C. molnari) to 28% (C. canis) genetic distance from other Cryptosporidium spp. Phylogenetic analysis of concatenated 18S and actin sequences confirmed that C. abrahamseni n. sp. shares the closest genetic relationship with C. huwi (6.7% genetic distance), while the genetic distance between C. abrahamseni n. sp. and other Cryptosporidium spp. ranged from 12.1% (C. molnari) to 20.4% (C. canis). Based on genetic and histological data, C. abrahamseni n. sp. is validated as a separate species.
Collapse
|
19
|
Moratal S, Dea-Ayuela MA, Cardells J, Marco-Hirs NM, Puigcercós S, Lizana V, López-Ramon J. Potential Risk of Three Zoonotic Protozoa ( Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii) Transmission from Fish Consumption. Foods 2020; 9:E1913. [PMID: 33371396 PMCID: PMC7767443 DOI: 10.3390/foods9121913] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
In recent decades, worldwide fish consumption has increased notably worldwide. Despite the health benefits of fish consumption, it also can suppose a risk because of fishborne diseases, including parasitic infections. Global changes are leading to the emergence of parasites in new locations and to the appearance of new sources of transmission. That is the case of the zoonotic protozoa Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii; all of them reach aquatic environments and have been found in shellfish. Similarly, these protozoa can be present in other aquatic animals, such as fish. The present review gives an overview on these three zoonotic protozoa in order to understand their potential presence in fish and to comprehensively revise all the evidences of fish as a new potential source of Cryptosporidium spp., Giardia duodenalis, and Toxoplasma gondii transmission. All of them have been found in both marine and freshwater fishes. Until now, it has not been possible to demonstrate that fish are natural hosts for these protozoa; otherwise, they would merely act as mechanical transporters. Nevertheless, even if fish only accumulate and transport these protozoa, they could be a "new" source of infection for people.
Collapse
Affiliation(s)
- Samantha Moratal
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
| | - M. Auxiliadora Dea-Ayuela
- Farmacy Department, Universidad CEU-Cardenal Herrera, Santiago Ramón y Cajal St, 46115 Alfara del Patriarca, Valencia, Spain
| | - Jesús Cardells
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, 08193 Bellaterra, Barcelona, Spain
| | - Naima M. Marco-Hirs
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
| | - Silvia Puigcercós
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
| | - Víctor Lizana
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
- Wildlife Ecology & Health Group (WE&H), Veterinary Faculty, Universitat Autònoma de Barcelona (UAB), Travessera dels Turons, 08193 Bellaterra, Barcelona, Spain
| | - Jordi López-Ramon
- Servicio de Análisis, Investigación y Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad CEU-Cardenal Herrera, Tirant lo Blanc St 7, 46115 Alfara del Patriarca, Valencia, Spain; (S.M.); (J.C.); (N.M.M.-H.); (S.P.); (V.L.); (J.L.-R.)
| |
Collapse
|
20
|
Certad G, Zahedi A, Gantois N, Sawant M, Creusy C, Duval E, Benamrouz-Vanneste S, Ryan U, Viscogliosi E. Molecular Characterization of Novel Cryptosporidium Fish Genotypes in Edible Marine Fish. Microorganisms 2020; 8:microorganisms8122014. [PMID: 33339341 PMCID: PMC7767022 DOI: 10.3390/microorganisms8122014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Current knowledge of Cryptosporidium species/genotypes in marine fish is limited. Following phylogenetic analysis at the 18S rDNA locus, a recent study identified six new genotypes of Cryptosporidium colonizing edible fish found in European seas. Of these, five grouped in a clade together (#Cryptofish 1-5) and one grouped separately (#Cryptofish 7). In the present study, after phylogenetic analyses of #Cryptofish1, #Cryptofish2, #Cryptofish4, #Cryptofish5 and #Cryptofish7 at the actin locus, the presence of two major clades was confirmed. In addition, when possible, longer 18S amplicons were generated. In conclusion, the small genetic distances between these genotypes designated as a novel marine genotype I (#Cryptofish 1-5) suggest that they may be genetic variants of the same species, while the designated novel marine genotype 2 (#Cryptofish 7) is clearly representative of a separate species.
Collapse
Affiliation(s)
- Gabriela Certad
- Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, Université de Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (N.G.); (M.S.); (S.B.-V.); (E.V.)
- Délégation à la Recherche Clinique et à l’Innovation, Groupement des Hôpitaux de l’Institut Catholique de Lille, F-59462 Lomme, France
- Correspondence:
| | - Alireza Zahedi
- Harry Butler Institute, Murdoch University, Perth 6150, Australia; (A.Z.); (U.R.)
| | - Nausicaa Gantois
- Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, Université de Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (N.G.); (M.S.); (S.B.-V.); (E.V.)
| | - Manasi Sawant
- Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, Université de Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (N.G.); (M.S.); (S.B.-V.); (E.V.)
| | - Colette Creusy
- Service d’Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l’Institut Catholique de Lille (GHICL), F-59000 Lille, France; (C.C.); (E.D.)
| | - Erika Duval
- Service d’Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l’Institut Catholique de Lille (GHICL), F-59000 Lille, France; (C.C.); (E.D.)
| | - Sadia Benamrouz-Vanneste
- Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, Université de Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (N.G.); (M.S.); (S.B.-V.); (E.V.)
- Laboratoire Ecologie et Biodiversité, Institut Catholique de Lille, Faculté de Gestion Economie et Sciences, F-59000 Lille, France
| | - Una Ryan
- Harry Butler Institute, Murdoch University, Perth 6150, Australia; (A.Z.); (U.R.)
| | - Eric Viscogliosi
- Institut Pasteur de Lille, U1019–UMR 9017–CIIL–Centre d’Infection et d’Immunité de Lille, Université de Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (N.G.); (M.S.); (S.B.-V.); (E.V.)
| |
Collapse
|
21
|
Zahedi A, Ryan U. Cryptosporidium – An update with an emphasis on foodborne and waterborne transmission. Res Vet Sci 2020; 132:500-512. [DOI: 10.1016/j.rvsc.2020.08.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
|
22
|
Bolland SJ, Zahedi A, Oskam C, Murphy B, Ryan U. Cryptosporidium bollandi n. sp. (Apicomplexa: Cryptosporidiiae) from angelfish (Pterophyllum scalare) and Oscar fish (Astronotus ocellatus). Exp Parasitol 2020; 217:107956. [PMID: 32659234 DOI: 10.1016/j.exppara.2020.107956] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/28/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
The species name Cryptosporidium bollandi n. sp. is proposed for Cryptosporidium piscine genotype 2 based on morphological, biological and molecular characterisation. Phylogenetic analyses of 18S rRNA (18S) sequences revealed that C. bollandi n. sp. was most closely related to piscine genotype 4 (5.1% genetic distance) and exhibited genetic distances of 10.0%, 12.2% and 25.2% from Cryptosporidium molnari, Cryptosporidium huwi and Cryptosporidium scophthtalmi, respectively. At the actin locus, C. bollandi n. sp. was again most closely related to piscine genotype 4 (6.8% genetic distance) and exhibited 15.5% (C. molnari), 18.4% (C. huwi), 22.9% (C. scophthalmi) and up to 27.5% genetic distance from other Cryptosporidium spp. (Cryptosporidium felis). Phylogenetic analysis of concatenated 18S and actin sequences showed that C. bollandi n. sp. exhibited 12.9% (C. molnari) to 21.1% (C. canis) genetic distance from all other Cryptosporidium spp. Genetic data as well as previous histological analysis clearly supports the validity of C. bollandi n. sp. as a separate species.
Collapse
Affiliation(s)
- S J Bolland
- Vector and Waterborne Pathogens Research Group, College of Science, Health Education and Engineering, Murdoch University, Perth, Australia
| | - Alireza Zahedi
- Vector and Waterborne Pathogens Research Group, College of Science, Health Education and Engineering, Murdoch University, Perth, Australia
| | - Charlotte Oskam
- Vector and Waterborne Pathogens Research Group, College of Science, Health Education and Engineering, Murdoch University, Perth, Australia
| | - Brian Murphy
- Department of Pathology Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, USA
| | - Una Ryan
- Vector and Waterborne Pathogens Research Group, College of Science, Health Education and Engineering, Murdoch University, Perth, Australia.
| |
Collapse
|
23
|
Robertson LJ, Clark CG, Debenham JJ, Dubey J, Kváč M, Li J, Ponce-Gordo F, Ryan U, Schares G, Su C, Tsaousis AD. Are molecular tools clarifying or confusing our understanding of the public health threat from zoonotic enteric protozoa in wildlife? Int J Parasitol Parasites Wildl 2019; 9:323-341. [PMID: 31338293 PMCID: PMC6626983 DOI: 10.1016/j.ijppaw.2019.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/13/2022]
Abstract
Emerging infectious diseases are frequently zoonotic, often originating in wildlife, but enteric protozoa are considered relatively minor contributors. Opinions regarding whether pathogenic enteric protozoa may be transmitted between wildlife and humans have been shaped by our investigation tools, and have led to oscillations regarding whether particular species are zoonotic or have host-adapted life cycles. When the only approach for identifying enteric protozoa was morphology, it was assumed that many enteric protozoa colonized multiple hosts and were probably zoonotic. When molecular tools revealed genetic differences in morphologically identical species colonizing humans and other animals, host specificity seemed more likely. Parasites from animals found to be genetically identical - at the few genes investigated - to morphologically indistinguishable parasites from human hosts, were described as having zoonotic potential. More discriminatory molecular tools have now sub-divided some protozoa again. Meanwhile, some infection events indicate that, circumstances permitting, some "host-specific" protozoa, can actually infect various hosts. These repeated changes in our understanding are linked intrinsically to the investigative tools available. Here we review how molecular tools have assisted, or sometimes confused, our understanding of the public health threat from nine enteric protozoa and example wildlife hosts (Balantoides coli - wild boar; Blastocystis sp. - wild rodents; Cryptosporidium spp. - wild fish; Encephalitozoon spp. - wild birds; Entamoeba spp. - non-human primates; Enterocytozoon bieneusi - wild cervids; Giardia duodenalis - red foxes; Sarcocystis nesbitti - snakes; Toxoplasma gondii - bobcats). Molecular tools have provided evidence that some enteric protozoa in wildlife may infect humans, but due to limited discriminatory power, often only the zoonotic potential of the parasite is indicated. Molecular analyses, which should be as discriminatory as possible, are one, but not the only, component of the toolbox for investigating potential public health impacts from pathogenic enteric protozoa in wildlife.
Collapse
Affiliation(s)
- Lucy J. Robertson
- Parasitology Laboratory, Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 369 Sentrum, 0102, Oslo, Norway
| | - C. Graham Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - John J. Debenham
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 369 Sentrum, 0102, Oslo, Norway
| | - J.P. Dubey
- United States Department of Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Building 1001, Beltsville, MD, 20705-2350, USA
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05, České Budějovice, Czech Republic
- Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05, Czech Republic
| | - Junqiang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Francisco Ponce-Gordo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Una Ryan
- Centre for Sustainable Aquatic Ecosystems, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, 6150, Australia
| | - Gereon Schares
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493, Greifswald, Insel Riems, Germany
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, TN, 37996-1937, USA
| | - Anastasios D. Tsaousis
- Laboratory of Molecular & Evolutionary Parasitology, RAPID Group, School of Biosciences, University of Kent, Canterbury, UK
| |
Collapse
|
24
|
Certad G, Follet J, Gantois N, Hammouma-Ghelboun O, Guyot K, Benamrouz-Vanneste S, Fréalle E, Seesao Y, Delaire B, Creusy C, Even G, Verrez-Bagnis V, Ryan U, Gay M, Aliouat-Denis C, Viscogliosi E. Prevalence, Molecular Identification, and Risk Factors for Cryptosporidium Infection in Edible Marine Fish: A Survey Across Sea Areas Surrounding France. Front Microbiol 2019; 10:1037. [PMID: 31156581 PMCID: PMC6530514 DOI: 10.3389/fmicb.2019.01037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
Cryptosporidium, a zoonotic pathogen, is able to infect a wide range of hosts including wild and domestic animals, and humans. Although it is well known that some parasites are both fish pathogens and recognized agents of zoonosis with a public health impact, little information is available concerning the prevalence of Cryptosporidium in wild aquatic environments. To evaluate the prevalence of Cryptosporidium spp. in commercially important edible marine fish in different European seas (English channel, North sea, Bay of Biscay, Celtic sea and Mediterranean sea), 1,853 specimens were collected as part of two surveys. Nested PCR followed by sequence analysis at the 18S rRNA gene locus was used to identify Cryptosporidium spp. The overall prevalence of Cryptosporidium spp. in sampled fish reached 2.3% (35 out of 1,508) in a first campaign and 3.2% (11 out of 345) in a second campaign. Sequence and phylogenetic analysis of positive samples identified Cryptosporidium parvum (n = 10) and seven genotypes which exhibited between 7.3 and 10.1% genetic distance from C. molnari, with the exception of one genotype which exhibited only 0.5–0.7% genetic distance from C. molnari. Among 31 analyzed fish species, 11 (35.5%) were identified as potential hosts for Cryptosporidium. A higher prevalence of Cryptosporidium spp. was observed in larger fish, in fish collected during the spring-summer period, and in those caught in the North East Atlantic. Pollachius virens (saithe) was the most frequently Cryptosporidium positive species. In fish infected by other parasites, the risk of being Cryptosporidium positive increased 10-fold (OR: 9.95, CI: 2.32–40.01.04, P = 0.0002). Four gp60 subtypes were detected among the C. parvum positive samples: IIaA13G1R1, IIaA15G2R1, IIaA17G2R1, and IIaA18G3R1. These C. parvum subtypes have been previously detected in terrestrial mammals and may constitute an additional source of infection for other animals and in particular for humans. Microscopical examination of histological sections confirmed the presence of round bodies suggestive of the development of C. parvum within digestive glands. We report herein the first epidemiological and molecular data concerning the detection of Cryptosporidium in edible marine fish in European seas surrounding France broadening its host range and uncovering potential novel infection routes.
Collapse
Affiliation(s)
- Gabriela Certad
- CNRS, Inserm, CHU Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France.,Délégation à la Recherche Clinique et à l'innovation, Groupement des Hôpitaux de l'Institut Catholique de Lille, Lille, France
| | - Jérôme Follet
- ISA-YNCREA Hauts-de-France, Lille, France.,CNRS, ISEN, UMR 8520 - IEMN, Université de Lille, Lille, France
| | - Nausicaa Gantois
- CNRS, Inserm, CHU Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | | | - Karine Guyot
- CNRS, Inserm, CHU Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Sadia Benamrouz-Vanneste
- CNRS, Inserm, CHU Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France.,Laboratoire Ecologie et Biodiversité, Faculté de Gestion Economie et Sciences, Institut Catholique de Lille, Lille, France
| | - Emilie Fréalle
- CNRS, Inserm, CHU Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Yuwalee Seesao
- CNRS, Inserm, CHU Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Baptiste Delaire
- Service d'Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l'Institut Catholique de Lille, Lille, France
| | - Colette Creusy
- Service d'Anatomie et de Cytologie Pathologiques, Groupement des Hôpitaux de l'Institut Catholique de Lille, Lille, France
| | - Gaël Even
- Gènes Diffusion, Douai, France.,PEGASE-Biosciences, Institut Pasteur de Lille, Lille, France
| | - Véronique Verrez-Bagnis
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies, Nantes, France
| | - Una Ryan
- Centre for Sustainable Aquatic Ecosystems, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Mélanie Gay
- Laboratory for Food Safety, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Boulogne-sur-mer, France
| | - Cécile Aliouat-Denis
- CNRS, Inserm, CHU Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| | - Eric Viscogliosi
- CNRS, Inserm, CHU Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Institut Pasteur de Lille, Université de Lille, Lille, France
| |
Collapse
|
25
|
Couso-Pérez S, Ares-Mazás E, Gómez-Couso H. First Report of Cryptosporidium Molnari-Like Genotype and Cryptosporidium parvum Zoonotic Subtypes (IIaA15G2R1 And IIaA18G3R1) in Brown Trout (Salmo trutta). J Parasitol 2019. [DOI: 10.1645/18-83] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Seila Couso-Pérez
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain
| | - Elvira Ares-Mazás
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain
| | - Hipólito Gómez-Couso
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
26
|
Khan A, Shaik JS, Grigg ME. Genomics and molecular epidemiology of Cryptosporidium species. Acta Trop 2018; 184:1-14. [PMID: 29111140 DOI: 10.1016/j.actatropica.2017.10.023] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 11/16/2022]
Abstract
Cryptosporidium is one of the most widespread protozoan parasites that infects domestic and wild animals and is considered the second major cause of diarrhea and death in children after rotavirus. So far, around 20 distinct species are known to cause severe to moderate infections in humans, of which Cryptosporidium hominis and Cryptosporidium parvum are the major causative agents. Currently, ssurRNA and gp60 are used as the optimal markers for differentiating species and subtypes respectively. Over the last decade, diagnostic tools to detect and differentiate Cryptosporidium species at the genotype and subtype level have improved, but our understanding of the zoonotic and anthroponotic transmission potential of each species is less clear, largely because of the paucity of high resolution whole genome sequencing data for the different species. Defining which species possess an anthroponotic vs. zoonotic transmission cycle is critical if we are to limit the spread of disease between animals and humans. Likewise, it is unclear to what extent genetic hybridization impacts disease potential or the emergence of outbreak strains. The development of high resolution genetic markers and whole genome sequencing of different species should provide new insights into these knowledge gaps. The aim of this review is to outline currently available molecular epidemiology and genomics data for different species of Cryptosporidium.
Collapse
Affiliation(s)
- Asis Khan
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Jahangheer S Shaik
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael E Grigg
- Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
27
|
Couso-Pérez S, Ares-Mazás E, Gómez-Couso H. Identification of a novel piscine Cryptosporidium genotype and Cryptosporidium parvum in cultured rainbow trout (Oncorhynchus mykiss). Parasitol Res 2018; 117:2987-2996. [PMID: 29987411 DOI: 10.1007/s00436-018-5995-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/28/2018] [Indexed: 11/28/2022]
Abstract
This study reports for the first time the presence and molecular characterization of Cryptosporidium in farmed rainbow trout (Oncorhynchus mykiss Walbaum, 1792). A total of 360 fish, with no apparent clinical signs of disease, were collected and classified into groups according to their size. Cryptosporidium oocysts were detected by immunofluorescence microscopy in 33 specimens (9.2%), which were located in pyloric caeca samples (42.4%), intestinal scrapings (39.4%), or at both locations (18.2%). In the smallest (youngest) fish group, a higher percentage of positive samples were detected in the pyloric caeca relative to the intestinal location (58.8 vs. 17.6%; P = 0.01), including a cluster with more than 10 oocysts observed in the pyloric caeca of one specimen. PCR amplification and sequencing of fragments of SSU-rDNA and hsp70 genes identified a novel Cryptosporidium piscine genotype (genotype 9) in two specimens and Cryptosporidium parvum in seven fish, including the specimen in which the oocyst cluster was observed. Moreover, Cryptosporidium oocysts were detected in farm water samples (41.7 and 16.7% from influent and effluent, respectively). Although Giardia was not found in gastrointestinal samples, Giardia cysts were observed in 50.0 and 33.3% of the influent and effluent water samples, respectively. The results support the existence of natural infections by C. parvum in freshwater cultured fish, suggesting that the rainbow trout could shed infectious oocysts in aquatic environments and it may be a potential source of human infection when this edible fish is handled.
Collapse
Affiliation(s)
- Seila Couso-Pérez
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain
| | - Elvira Ares-Mazás
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain
| | - Hipólito Gómez-Couso
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain. .,Institute of Food Research and Analysis, University of Santiago de Compostela, 15782 Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
28
|
Cryptosporidium in fish: alternative sequencing approaches and analyses at multiple loci to resolve mixed infections. Parasitology 2017; 144:1811-1820. [DOI: 10.1017/s0031182017001214] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
SUMMARYCurrently, the systematics, biology and epidemiology of piscine Cryptosporidium species are poorly understood. Here, we compared Sanger ‒ and next-generation ‒ sequencing (NGS), of piscine Cryptosporidium, at the 18S rRNA and actin genes. The hosts comprised 11 ornamental fish species, spanning four orders and eight families. The objectives were: to (i) confirm the rich genetic diversity of the parasite and the high frequency of mixed infections; and (ii) explore the potential of NGS in the presence of complex genetic mixtures. By Sanger sequencing, four main genotypes were obtained at the actin locus, while for the 18S locus, seven genotypes were identified. At both loci, NGS revealed frequent mixed infections, consisting of one highly dominant variant plus substantially rarer genotypes. Both sequencing methods detected novel Cryptosporidium genotypes at both loci, including a novel and highly abundant actin genotype that was identified by both Sanger sequencing and NGS. Importantly, this genotype accounted for 68·9% of all NGS reads from all samples (249 585/362 372). The present study confirms that aquarium fish can harbour a large and unexplored Cryptosporidium genetic diversity. Although commonly used in molecular parasitology studies, nested PCR prevents quantitative comparisons and thwarts the advantages of NGS, when this latter approach is used to investigate multiple infections.
Collapse
|
29
|
Origin of a major infectious disease in vertebrates: The timing of Cryptosporidium evolution and its hosts. Parasitology 2016; 143:1683-1690. [DOI: 10.1017/s0031182016001323] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYProtozoan parasites of the genus Cryptosporidium infect all vertebrate groups and display some host specificity in their infections. It is therefore possible to assume that Cryptosporidium parasites evolved intimately aside with vertebrate lineages. Here we propose a scenario of Cryptosporidium–Vertebrata coevolution testing the hypothesis that the origin of Cryptosporidium parasites follows that of the origin of modern vertebrates. We use calibrated molecular clocks and cophylogeny analyses to provide and compare age estimates and patterns of association between these clades. Our study provides strong support for the evolution of parasitism of Cryptosporidium with the rise of the vertebrates about 600 million years ago (Mya). Interestingly, periods of increased diversification in Cryptosporidium coincides with diversification of crown mammalian and avian orders after the Cretaceous-Palaeogene (K-Pg) boundary, suggesting that adaptive radiation to new mammalian and avian hosts triggered the diversification of this parasite lineage. Despite evidence for ongoing host shifts we also found significant correlation between protozoan parasites and vertebrate hosts trees in the cophylogenetic analysis. These results help us to understand the underlying macroevolutionary mechanisms driving evolution in Cryptosporidium and may have important implications for the ecology, dynamics and epidemiology of cryptosporidiosis disease in humans and other animals.
Collapse
|
30
|
Yang R, Dorrestein GM, Ryan U. Molecular characterisation of a disseminated Cryptosporidium infection in a Koi carp (Cyprinus carpio). Vet Parasitol 2016; 226:53-6. [PMID: 27514884 DOI: 10.1016/j.vetpar.2016.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 11/29/2022]
Abstract
Cryptosporidium is a protozoan parasite that infects a wide range of hosts, yet relatively little is known about the epidemiology of cryptosporidiosis in fish. Here we report a disseminated Cryptosporidium infection in a male Koi carp (Cyprinus carpio), with parasite stages identified deep within the epithelium of the intestine, kidneys, spleen, liver and gills causing severe granulomatous inflammatory lesions. Molecular characterization at two loci; 18S ribosomal RNA (rRNA) and actin, revealed this to be a novel Cryptosporidium genotype, most closely related to Cryptosporidium molnari.
Collapse
Affiliation(s)
- Rongchang Yang
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, 6150, Western Australia, Australia
| | - Gerry M Dorrestein
- Diagnostisch Pathologie Laboratorium, Nederlands Onderzoek Instituut Voor Bijzondere Dieren (NOIVBD), Wintelresedijk 51, NL-5507 PP, Veldhoven, The Netherlands
| | - Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, 6150, Western Australia, Australia.
| |
Collapse
|
31
|
Public health significance of zoonotic Cryptosporidium species in wildlife: Critical insights into better drinking water management. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2015; 5:88-109. [PMID: 28560163 PMCID: PMC5439462 DOI: 10.1016/j.ijppaw.2015.12.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 11/22/2022]
Abstract
Cryptosporidium is an enteric parasite that is transmitted via the faecal-oral route, water and food. Humans, wildlife and domestic livestock all potentially contribute Cryptosporidium to surface waters. Human encroachment into natural ecosystems has led to an increase in interactions between humans, domestic animals and wildlife populations. Increasing numbers of zoonotic diseases and spill over/back of zoonotic pathogens is a consequence of this anthropogenic disturbance. Drinking water catchments and water reservoir areas have been at the front line of this conflict as they can be easily contaminated by zoonotic waterborne pathogens. Therefore, the epidemiology of zoonotic species of Cryptosporidium in free-ranging and captive wildlife is of increasing importance. This review focuses on zoonotic Cryptosporidium species reported in global wildlife populations to date, and highlights their significance for public health and the water industry.
Collapse
|
32
|
Yang R, Palermo C, Chen L, Edwards A, Paparini A, Tong K, Gibson-Kueh S, Lymbery A, Ryan U. Genetic diversity of Cryptosporidium in fish at the 18S and actin loci and high levels of mixed infections. Vet Parasitol 2015; 214:255-63. [PMID: 26527238 DOI: 10.1016/j.vetpar.2015.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/28/2015] [Accepted: 10/09/2015] [Indexed: 11/26/2022]
Abstract
Cryptosporidium is an enteric parasite that infects humans and a wide range of animals. Relatively little is known about the epidemiology and taxonomy of Cryptosporidium in fish. In the present study, a total of 775 fish, belonging to 46 species and comprising ornamental fish, marine fish and freshwater fish were screened for the prevalence of Cryptosporidium by PCR. The overall prevalence of Cryptosporidium in fish was 5.3% (41/775), with prevalences ranging from 1.5 to 100% within individual host species. Phylogenetic analysis of these Cryptosporidium isolates as well as 14 isolates from previous studies indicated extensive genetic diversity as well as evidence for mixed infections. At the 18S locus the following species were identified; Cryptosporidium molnari-like genotype (n=14), Cryptosporidium huwi (n=8), piscine genotype 2 (n=4), piscine genotype 3-like (n=1), piscine genotype 4 (n=2), piscine genotype 5 (n=13), piscine genotype 5-like (n=1) and five novel genotypes (n=5). At the actin locus, species identification agreed with the 18S locus for only 52.3% of isolates sequenced, indicating high levels of mixed infections. Future studies will need to employ both morphological characterization and deep sequencing amplicon-based technologies to better understand the epidemiological and phylogenetic relationships of piscine-derived Cryptosporidium species and genotypes, particularly when mixed infections are detected.
Collapse
Affiliation(s)
- Rongchang Yang
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Cindy Palermo
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Linda Chen
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Amanda Edwards
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Andrea Paparini
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Kaising Tong
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Susan Gibson-Kueh
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Alan Lymbery
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia.
| |
Collapse
|
33
|
Certad G, Dupouy-Camet J, Gantois N, Hammouma-Ghelboun O, Pottier M, Guyot K, Benamrouz S, Osman M, Delaire B, Creusy C, Viscogliosi E, Dei-Cas E, Aliouat-Denis CM, Follet J. Identification of Cryptosporidium Species in Fish from Lake Geneva (Lac Léman) in France. PLoS One 2015. [PMID: 26213992 PMCID: PMC4516323 DOI: 10.1371/journal.pone.0133047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cryptosporidium, a protozoan parasite that can cause severe diarrhea in a wide range of vertebrates including humans, is increasingly recognized as a parasite of a diverse range of wildlife species. However, little data are available regarding the identification of Cryptosporidium species and genotypes in wild aquatic environments, and more particularly in edible freshwater fish. To evaluate the prevalence of Cryptosporidiumspp. in fish from Lake Geneva (Lac Léman) in France, 41 entire fish and 100 fillets (cuts of fish flesh) were collected from fishery suppliers around the lake. Nested PCR using degenerate primers followed by sequence analysis was used. Five fish species were identified as potential hosts of Cryptosporidium: Salvelinus alpinus, Esox lucius, Coregonus lavaretus, Perca fluviatilis, and Rutilus rutilus. The presence of Cryptosporidium spp. was found in 15 out of 41 fish (37%), distributed as follows: 13 (87%) C. parvum, 1 (7%) C. molnari, and 1 (7%) mixed infection (C. parvum and C. molnari). C. molnari was identified in the stomach, while C. parvum was found in the stomach and intestine. C. molnari was also detected in 1 out of 100 analyzed fillets. In order to identify Cryptosporidium subtypes, sequencing of the highly polymorphic 60-kDa glycoprotein (gp60) was performed. Among the C. parvum positive samples, three gp60 subtypes were identified: IIaA15G2R1, IIaA16G2R1, and IIaA17G2R1. Histological examination confirmed the presence of potential developmental stages of C. parvum within digestive epithelial cells. These observations suggest that C. parvum is infecting fish, rather than being passively carried. Since C. parvum is a zoonotic species, fish potentially contaminated by the same subtypes found in terrestrial mammals would be an additional source of infection for humans and animals, and may also contribute to the contamination of the environment with this parasite. Moreover, the risk of human transmission is strengthened by the observation of edible fillet contamination.
Collapse
Affiliation(s)
- Gabriela Certad
- Biologie et Diversité des Pathogènes Eucaryotes Emergents (BDEEP), Centre d'Infection et d'Immunité de Lille (CIIL), Institut Pasteur de Lille, INSERM U1019, CNRS UMR 8402, Université de Lille, Lille, France
| | - Jean Dupouy-Camet
- Université Paris Descartes, Assistance Publique Hôpitaux de Paris, Parasitologie-Mycologie, Hôpital Cochin, Paris, France
| | - Nausicaa Gantois
- Biologie et Diversité des Pathogènes Eucaryotes Emergents (BDEEP), Centre d'Infection et d'Immunité de Lille (CIIL), Institut Pasteur de Lille, INSERM U1019, CNRS UMR 8402, Université de Lille, Lille, France
| | - Ourida Hammouma-Ghelboun
- Laboratoire de Biotechnologie et Gestion des Agents Pathogènes en Agriculture, Institut Supérieur d'Agriculture de Lille, Lille, France
| | - Muriel Pottier
- Faculté de Pharmacie, Université de Lille, Lille, France
| | - Karine Guyot
- Biologie et Diversité des Pathogènes Eucaryotes Emergents (BDEEP), Centre d'Infection et d'Immunité de Lille (CIIL), Institut Pasteur de Lille, INSERM U1019, CNRS UMR 8402, Université de Lille, Lille, France
| | - Sadia Benamrouz
- Biologie et Diversité des Pathogènes Eucaryotes Emergents (BDEEP), Centre d'Infection et d'Immunité de Lille (CIIL), Institut Pasteur de Lille, INSERM U1019, CNRS UMR 8402, Université de Lille, Lille, France; Ecologie et Biodiversité, Faculté Libre des Sciences et Technologies de Lille, Université Catholique de Lille, Lille, France
| | - Marwan Osman
- Biologie et Diversité des Pathogènes Eucaryotes Emergents (BDEEP), Centre d'Infection et d'Immunité de Lille (CIIL), Institut Pasteur de Lille, INSERM U1019, CNRS UMR 8402, Université de Lille, Lille, France; Laboratoire Microbiologie, Santé et Environnement, Centre AZM pour la Recherche en Biotechnologie et ses Applications, Université Libanaise, Tripoli, Lebanon
| | - Baptiste Delaire
- Service d'Anatomie et de Cytologie Pathologiques, Groupe Hospitalier de l'Université Catholique de Lille, Lille, France
| | - Colette Creusy
- Service d'Anatomie et de Cytologie Pathologiques, Groupe Hospitalier de l'Université Catholique de Lille, Lille, France
| | - Eric Viscogliosi
- Biologie et Diversité des Pathogènes Eucaryotes Emergents (BDEEP), Centre d'Infection et d'Immunité de Lille (CIIL), Institut Pasteur de Lille, INSERM U1019, CNRS UMR 8402, Université de Lille, Lille, France
| | - Eduardo Dei-Cas
- Biologie et Diversité des Pathogènes Eucaryotes Emergents (BDEEP), Centre d'Infection et d'Immunité de Lille (CIIL), Institut Pasteur de Lille, INSERM U1019, CNRS UMR 8402, Université de Lille, Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Université Lille Nord de France, Lille, France
| | - Cecile Marie Aliouat-Denis
- Biologie et Diversité des Pathogènes Eucaryotes Emergents (BDEEP), Centre d'Infection et d'Immunité de Lille (CIIL), Institut Pasteur de Lille, INSERM U1019, CNRS UMR 8402, Université de Lille, Lille, France; Faculté de Pharmacie, Université de Lille, Lille, France
| | - Jérôme Follet
- Laboratoire de Biotechnologie et Gestion des Agents Pathogènes en Agriculture, Institut Supérieur d'Agriculture de Lille, Lille, France; Laboratoire BioMEMS, Univ.Lille, CNRS, ISEN, Univ.Valenciennes, UMR 8520, IEMN, Institut d'Electronique de Microélectronique et de Nanotechnologie, F 59 000, Lille, France
| |
Collapse
|
34
|
Abeywardena H, Jex AR, Gasser RB. A perspective on Cryptosporidium and Giardia, with an emphasis on bovines and recent epidemiological findings. ADVANCES IN PARASITOLOGY 2015; 88:243-301. [PMID: 25911369 PMCID: PMC7103119 DOI: 10.1016/bs.apar.2015.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cryptosporidium and Giardia are two common aetiological agents of infectious enteritis in humans and animals worldwide. These parasitic protists are usually transmitted by the faecal-oral route, following the ingestion of infective stages (oocysts or cysts). An essential component of the control of these parasitic infections, from a public health perspective, is an understanding of the sources and routes of transmission in different geographical regions. Bovines are considered potential sources of infection for humans, because species and genotypes of Cryptosporidium and Giardia infecting humans have also been isolated from cattle in molecular parasitological studies. However, species and genotypes of Cryptosporidium and Giardia of bovids, and the extent of zoonotic transmission in different geographical regions in the world, are still relatively poorly understood. The purpose of this article is to (1) provide a brief background on Cryptosporidium and Giardia, (2) review some key aspects of the molecular epidemiology of cryptosporidiosis and giardiasis in animals, with an emphasis on bovines, (3) summarize research of Cryptosporidium and Giardia from cattle and water buffaloes in parts of Australasia and Sri Lanka, considering public health aspects and (4) provide a perspective on future avenues of study. Recent studies reinforce that bovines harbour Cryptosporidium and Giardia that likely pose a human health risk and highlight the need for future investigations of the biology, population genetics and transmission dynamics of Cryptosporidium and Giardia in cattle, water buffaloes and other ruminants in different geographical regions, the fate and transport of infective stages following their release into the environment, as well as for improved strategies for the control and prevention of cryptosporidiosis and giardiasis, guided by molecular epidemiological studies.
Collapse
Affiliation(s)
- Harshanie Abeywardena
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Aaron R. Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
35
|
Ryan U, Paparini A, Tong K, Yang R, Gibson-Kueh S, O'Hara A, Lymbery A, Xiao L. Cryptosporidium huwi n. sp. (Apicomplexa: Eimeriidae) from the guppy (Poecilia reticulata). Exp Parasitol 2015; 150:31-5. [PMID: 25637783 DOI: 10.1016/j.exppara.2015.01.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/08/2014] [Accepted: 01/22/2015] [Indexed: 11/29/2022]
Abstract
The morphological, biological, and molecular characteristics of Cryptosporidium piscine genotype 1 from the guppy (Poecilia reticulata) are described, and the species name Cryptosporidium huwi n. sp. is proposed to reflect its genetic and biological differences from gastric and intestinal Cryptosporidium species. Oocysts of C.huwi n. sp. over-lap in size with Cryptosporidium molnari, measuring approximately 4.4-4.9 µm (mean 4.6) by 4.0-4.8 µm (mean 4.4 µm) with a length to width ratio of 1.04 (0.92-1.35) (n = 50). Similar to C.molnari, C.huwi n. sp. was identified in the stomach only and clusters of oogonial and sporogonial stages were identified deep within the epithelium. However, phylogenetic analysis of 18S rRNA sequences indicated that C. huwi n. sp. exhibited 8.5-9.2% and 3.5% genetic distance from C.molnari isolates and piscine genotype 7 respectively. At the actin locus, the genetic distance between C.huwi n. sp. and C.molnari was 16.6%. The genetic distance between C.huwi n. sp. and other Cryptosporidium species at the 18S locus was 13.2%-17% and at the actin locus was 18.9%-26.3%. Therefore C. huwi n. sp. is genetically distinct from previously described Cryptosporidium species.
Collapse
Affiliation(s)
- Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Perth, Western Australia 6150, Australia.
| | - Andrea Paparini
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Perth, Western Australia 6150, Australia
| | - Kaising Tong
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Perth, Western Australia 6150, Australia
| | - Rongchang Yang
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Perth, Western Australia 6150, Australia
| | - Susan Gibson-Kueh
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Perth, Western Australia 6150, Australia
| | - Amanda O'Hara
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Perth, Western Australia 6150, Australia
| | - Alan Lymbery
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Perth, Western Australia 6150, Australia
| | - Lihua Xiao
- Public Health Services, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
36
|
Cryptosporidiumspecies in humans and animals: current understanding and research needs. Parasitology 2014; 141:1667-85. [DOI: 10.1017/s0031182014001085] [Citation(s) in RCA: 402] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYCryptosporidiumis increasingly recognized as one of the major causes of moderate to severe diarrhoea in developing countries. With treatment options limited, control relies on knowledge of the biology and transmission of the members of the genus responsible for disease. Currently, 26 species are recognized as valid on the basis of morphological, biological and molecular data. Of the nearly 20Cryptosporidiumspecies and genotypes that have been reported in humans,Cryptosporidium hominisandCryptosporidium parvumare responsible for the majority of infections. Livestock, particularly cattle, are one of the most important reservoirs of zoonotic infections. Domesticated and wild animals can each be infected with severalCryptosporidiumspecies or genotypes that have only a narrow host range and therefore have no major public health significance. Recent advances in next-generation sequencing techniques will significantly improve our understanding of the taxonomy and transmission ofCryptosporidiumspecies, and the investigation of outbreaks and monitoring of emerging and virulent subtypes. Important research gaps remain including a lack of subtyping tools for manyCryptosporidiumspecies of public and veterinary health importance, and poor understanding of the genetic determinants of host specificity ofCryptosporidiumspecies and impact of climate change on the transmission ofCryptosporidium.
Collapse
|
37
|
Koinari M, Karl S, Ng-Hublin J, Lymbery A, Ryan U. Identification of novel and zoonotic Cryptosporidium species in fish from Papua New Guinea. Vet Parasitol 2013; 198:1-9. [DOI: 10.1016/j.vetpar.2013.08.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
|
38
|
|
39
|
Šlapeta J. Cryptosporidiosis and Cryptosporidium species in animals and humans: a thirty colour rainbow? Int J Parasitol 2013; 43:957-70. [PMID: 23973380 DOI: 10.1016/j.ijpara.2013.07.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
Abstract
Parasites of the genus Cryptosporidium (Apicomplexa) cause cryptosporidiosis in humans and animals worldwide. The species names used for Cryptosporidium spp. are confusing for parasitologists and even more so for non-specialists. Here, 30 named species of the genus Cryptosporidium are reviewed and proposed as valid. Molecular and experimental evidence suggests that humans and cattle are the hosts for 14 and 13 out of 30 named species, respectively. Two, four and eight named species are considered of major, moderate and minor public health significance, respectively. There are at least nine named species that are shared between humans and cattle. The aim of this review is to outline available species information together with the most commonly used genetic markers enabling the identification of named Cryptosporidium spp. Currently, 28 of 30 named species can be identified using the complete or partial ssrRNA, serving as a retrospective 'barcode'. Currently, the ssrRNA satisfies the implicit assumption that the reference databases used for comparison are sufficiently complete and applicable across the whole genus. However, due to unreliable annotation in public DNA repositories, the reference nucleotide entries and alignment of named Cryptosporidium spp. has been compiled. Despite its known limitations, ssrRNA remains the optimal marker for species identification.
Collapse
Affiliation(s)
- Jan Šlapeta
- Faculty of Veterinary Science, McMaster Building B14, University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
40
|
Abstract
SUMMARYAquaculture, including both freshwater and marine production, has on a world scale exhibited one of the highest growth rates within animal protein production during recent decades and is expected to expand further at the same rate within the next 10 years. Control of diseases is one of the most prominent challenges if this production goal is to be reached. Apart from viral, bacterial, fungal and metazoan infections it has been documented that protozoan parasites affect health and welfare and thereby production of fish in marine aquaculture. Representatives within the main protozoan groups such as amoebae, dinoflagellates, kinetoplastid flagellates, diplomonadid flagellates, apicomplexans, microsporidians and ciliates have been shown to cause severe morbidity and mortality among farmed fish. Well studied examples are Neoparamoeba perurans, Amyloodinium ocellatum, Spironucleus salmonicida, Ichthyobodo necator, Cryptobia salmositica, Loma salmonae, Cryptocaryon irritans, Miamiensis avidus and Trichodina jadranica. The present report provides details on the parasites’ biology and impact on productivity and evaluates tools for diagnosis, control and management. Special emphasis is placed on antiprotozoan immune responses in fish and a strategy for development of vaccines is presented.
Collapse
|
41
|
Abstract
Global aquaculture production of turbot has rapidly increased worldwide in the last decade and it is expected to have even bigger growth in the next years due to new farms operating. The losses caused by pathogen infections have grown at the same time as the production of this species. Parasitological infections are among the main relevant pathologies associated with its culture and produce serious losses in aquaculture, reduce the growth rate in fish and may lead to unmarketable fish due to skeletal muscle abnormalities in cases with high intensity of infection. The microsporidian parasite Tetramicra brevifilum causes severe infections and generates major losses in farmed turbot. Infections are difficult to control due to spore longevity and its direct transmission. To facilitate the infection management, an effective tool for fast detection and identification of T. brevifilum is needed. This study provides a molecular methodology of fast Real-Time PCR for T. brevifilum detection to the aquaculture industry, useful for routine control of T. brevifilum at turbot farms. The method is characterized by its high specificity and sensitivity, and it can be applied to cultured turbot for parasite detection regardless of the life-cycle stage of the pathogen or the infection intensity.
Collapse
|
42
|
Morine M, Yang R, Ng J, Kueh S, Lymbery AJ, Ryan UM. Additional novel Cryptosporidium genotypes in ornamental fishes. Vet Parasitol 2012; 190:578-82. [PMID: 22819587 DOI: 10.1016/j.vetpar.2012.06.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/26/2012] [Accepted: 06/27/2012] [Indexed: 11/15/2022]
Abstract
Current knowledge on the prevalence and genotypes of Cryptosporidium in fishes is still limited. This study investigated the prevalence of Cryptosporidium species in 171 ornamental fishes, belonging to 33 species, collected from 8 commercial aquariums around Perth, Western Australia. All samples were screened by nested PCR targeting the 18S rRNA locus. A total of 6 positives were identified by PCR at the 18S locus from 4 different species of fishes (red eye tetra, Moenkhausia sanctaefilomenae; gold gourami, Trichogaster trichopterus; neon tetra, Paracheirodon innesi; goldfish, Carassius auratus auratus), giving an overall prevalence of 3.5% (6/171). Four different genotypes were identified, only one of which has been previously reported in fish; piscine genotype 4 in a neon tetra isolate, a rat genotype III-like isolate in a goldfish, a novel genotype in three isolates from red eye (piscine genotype 7) which exhibited a 3.5% genetic distance from piscine genotype 1 and a piscine genotype 6-like from a gold gourami (1% genetic distance). Further biological and genetic characterisation is required to determine the relationship of these genotypes to established species and strains of Cryptosporidium.
Collapse
Affiliation(s)
- M Morine
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150, Australia
| | | | | | | | | | | |
Collapse
|
43
|
Vigliano FA, Losada AP, Castello M, Bermúdez R, Quiroga MI. Morphological and immunohistochemical characterisation of the thymus in juvenile turbot (Psetta maxima, L.). Cell Tissue Res 2011; 346:407-16. [DOI: 10.1007/s00441-011-1282-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/24/2011] [Indexed: 11/30/2022]
|
44
|
An intestinal Eimeria infection in juvenile Asian seabass (Lates calcarifer) cultured in Vietnam – A first report. Vet Parasitol 2011; 181:106-12. [DOI: 10.1016/j.vetpar.2011.04.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 11/23/2022]
|
45
|
The molecular characterization of an Eimeria and Cryptosporidium detected in Asian seabass (Lates calcarifer) cultured in Vietnam. Vet Parasitol 2011; 181:91-6. [DOI: 10.1016/j.vetpar.2011.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 05/02/2011] [Accepted: 05/03/2011] [Indexed: 11/20/2022]
|
46
|
Gabor LJ, Srivastava M, Titmarsh J, Dennis M, Gabor M, Landos M. Cryptosporidiosis in intensively reared Barramundi (Lates calcarifer). J Vet Diagn Invest 2011; 23:383-6. [PMID: 21398470 DOI: 10.1177/104063871102300235] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two outbreaks of mortality in juvenile barramundi (Lates calcarifer) with a high prevalence of gastrointestinal cryptosporidiosis are described. Juvenile barramundi at a separate hatchery and grow-out facility were demonstrating markedly increased mortality rates. Histological examination in all cases indicated a heavy infection of Cryptosporidium-like organisms within the distal stomach and proximal small intestine. Electron microscopy confirmed a diagnosis of cryptosporidiosis; however, speciation was not possible.
Collapse
Affiliation(s)
- Les J Gabor
- Novartis Animal Health, 245 Western Road, Kemps Creek, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
47
|
Zanguee N, Lymbery J, Lau J, Suzuki A, Yang R, Ng J, Ryan U. Identification of novel Cryptosporidium species in aquarium fish. Vet Parasitol 2010; 174:43-8. [DOI: 10.1016/j.vetpar.2010.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/29/2010] [Accepted: 08/10/2010] [Indexed: 11/27/2022]
|
48
|
Molecular characterization of Cryptosporidium molnari reveals a distinct piscine clade. Appl Environ Microbiol 2010; 76:7646-9. [PMID: 20870791 DOI: 10.1128/aem.01335-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multilocus phylogenetic analysis of small-subunit (SSU) rRNA and actin from Cryptosporidium molnari clustered this species with the C. molnari-like genotype of an isolate from the guppy, although the two fish isolates seem to be distinct species. The analysis of available piscine genotypes provides some support for cladistic congruence of the genus Piscicryptosporidium, but additional piscine genotypes are needed.
Collapse
|
49
|
Identification of novel and zoonotic Cryptosporidium species in marine fish. Vet Parasitol 2010; 168:190-5. [DOI: 10.1016/j.vetpar.2009.11.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 11/18/2009] [Accepted: 11/20/2009] [Indexed: 11/20/2022]
|
50
|
Murphy BG, Bradway D, Walsh T, Sanders GE, Snekvik K. Gastric cryptosporidiosis in freshwater angelfish (Pterophyllum scalare). J Vet Diagn Invest 2009; 21:722-7. [PMID: 19737774 DOI: 10.1177/104063870902100523] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A freshwater angelfish (Pterophyllum scalare) hatchery experienced variable levels of emaciation, poor growth rates, swollen coelomic cavities, anorexia, listlessness, and increased mortality within their fish. Multiple chemotherapeutic trials had been attempted without success. In affected fish, large numbers of protozoa were identified both histologically and ultrastructurally associated with the gastric mucosa. The youngest cohort of parasitized fish was the most severely affected and demonstrated the greatest morbidity and mortality. The protozoa were morphologically most consistent with Cryptosporidium. All of the protozoan life stages were identified ultrastructurally and protozoal genomic DNA was isolated from parasitized tissue viscera and sequenced. Histological, ultrastructural, genetic, and phylogenetic analyses confirmed this protozoal organism to be a novel species of Cryptosporidium.
Collapse
Affiliation(s)
- Brian G Murphy
- Department of Veterinary Microbiology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.
| | | | | | | | | |
Collapse
|