1
|
Boisseau O, Nowacek D, Pabst DA, Roberts J, Blawas A, Clabaugh A, McLanaghan R, Moscrop A, Levenson JJ. Passive acoustic surveys demonstrate high densities of sperm whales off the mid-Atlantic coast of the USA in winter and spring. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106674. [PMID: 39168086 DOI: 10.1016/j.marenvres.2024.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/30/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Oceans are increasingly crowded by anthropogenic activities yet the impact on Outer Continental Shelf (OCS) marine life remains largely unquantified. The MAPS (Marine Mammal Acoustic and Spatial Ecology) study of 2019 included passive acoustic and visual vessel surveys over the Mid-Atlantic OCS of the USA to address data gaps in winter/spring for deep-diving cetaceans, including sperm whales. Echolocation clicks were used to derive slant ranges to sperm whales for design- and model-based density estimates. Although more survey effort was realised in the spring, high densities of whales were identified in both winter and spring (10.46 and 8.89 per 1000 km2 respectively). The spring model-based abundance estimate of 1587 whales (CI 946-2663) was considered the most representative figure, in part due to lower coefficients of variation. Modelling suggested that high densities of whales were associated with warm core rings, eddies and edges. As OCS waters provide an important foraging habitat for North Atlantic sperm whales, appropriate mitigation is required to ensure commercial pressures to develop offshore energy do not negatively affect this endangered species.
Collapse
Affiliation(s)
- Oliver Boisseau
- Marine Conservation Research International, R/V Song of the Whale Team, 94 High Street, Kelvedon, CO5 9AA, UK.
| | - Doug Nowacek
- Duke University Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC, 28516, USA
| | - D Ann Pabst
- Department of Biology and Marine Biology, University of North Carolina Wilmington, 601 S. College Rd, Wilmington, NC, 28403, USA
| | - Jason Roberts
- Marine Geospatial Ecology Laboratory, Duke University, Durham, NC, 27708, USA
| | - Ashley Blawas
- Duke University Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC, 28516, USA; Hopkins Marine Station, Oceans Department, Stanford University, Pacific Grove, CA, 93950, USA
| | - Anna Clabaugh
- Duke University Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC, 28516, USA
| | - Richard McLanaghan
- Marine Conservation Research International, R/V Song of the Whale Team, 94 High Street, Kelvedon, CO5 9AA, UK
| | - Anna Moscrop
- Marine Conservation Research International, R/V Song of the Whale Team, 94 High Street, Kelvedon, CO5 9AA, UK
| | - J Jacob Levenson
- Environmental Studies Program, Bureau of Ocean Energy Management, U.S. Department of the Interior, Washington DC, 20240, USA
| |
Collapse
|
2
|
Pöyhönen V, Thomisch K, Kovacs KM, Lydersen C, Ahonen H. High Arctic "hotspots" for sperm whales (Physeter macrocephalus) off western and northern Svalbard, Norway, revealed by multi-year Passive Acoustic Monitoring (PAM). Sci Rep 2024; 14:5825. [PMID: 38461150 PMCID: PMC10924940 DOI: 10.1038/s41598-024-56287-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/05/2024] [Indexed: 03/11/2024] Open
Abstract
Despite the well-documented, broad global distribution of sperm whales (Physeter macrocephalus), their distributional patterns remain poorly known in Arctic regions, where year-round monitoring is challenging. Adult male sperm whales are known to migrate seasonally between nutrient-rich high latitude waters and low latitude breeding grounds. However, knowledge is limited regarding fine-scale distribution and seasonal presence at high latitudes. To investigate the acoustic occurrence of this vocally active species in the High Arctic of the Northeast Atlantic, this study combined automated and manual click detection methods to analyze passive acoustic data collected at eight locations around the Svalbard Archipelago, Norway, between 2012 and 2021. The results revealed the presence of sperm whales at six recording sites and demonstrated sperm whale "hotspots" in ice-free areas in eastern Fram Strait along the shelf break and close to the west coast of Spitsbergen from May-January, with some variation between years and locations. Although acoustic presence decreased with increasing latitude, even the northern-most location (81° N) recorded sperm whale vocal activity between August and January. This study provides a baseline for sperm whale acoustic presence in the High Arctic, which will be essential in the context of detecting future changes and also for predicting future distribution patterns in the rapidly changing Arctic marine environment.
Collapse
Affiliation(s)
- Viivi Pöyhönen
- Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway
| | - Karolin Thomisch
- Ocean Acoustics Group of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570, Bremerhaven, Germany
| | - Kit M Kovacs
- Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway
| | | | - Heidi Ahonen
- Norwegian Polar Institute, Fram Centre, 9296, Tromsø, Norway.
| |
Collapse
|
3
|
Westell A, Sakai T, Valtierra R, Van Parijs SM, Cholewiak D, DeAngelis A. Sperm whale acoustic abundance and dive behaviour in the western North Atlantic. Sci Rep 2022; 12:16821. [PMID: 36207450 PMCID: PMC9546825 DOI: 10.1038/s41598-022-20868-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/20/2022] [Indexed: 11/24/2022] Open
Abstract
Sperm whales are an ideal species to study using passive acoustic technology because they spend the majority of their time underwater and produce echolocation clicks almost continuously while foraging. Passive acoustic line transect data collected between June and August 2016 were used to estimate a depth-corrected acoustic abundance and study the dive behaviour of foraging sperm whales in the western North Atlantic Ocean. 2D localizations (n = 699) were truncated at a slant range of 6500 m and combined with the multipath arrivals of surface reflected echoes to calculate 3D localizations (n = 274). Distance sampling using depth-corrected perpendicular distances resulted in a 10.5% change in the acoustic abundance estimate (2199 whales, CV = 14.6%) compared to uncorrected slant ranges (1969 whales, CV = 14.1%), and a detection function that was a better fit for the data. Sperm whales exhibited multiple foraging strategies, with bottom phases occurring at depths of 400–800, 800–1200, or > 1200 m, accounting for an average 39.2, 49.5, or 44.9% of the total recorded dive time, respectively. These results suggest that estimating 3D localizations using acoustic line transect data improves acoustic abundance estimation and can be used to answer population level questions about foraging ecology.
Collapse
Affiliation(s)
- Annabel Westell
- Under Contract to the Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 166 Water Street, Woods Hole, MA, 02543, USA.
| | - Taiki Sakai
- Environmental Assessment Services, LLC, 350 Hills St., Suite 112, Richland, WA, 99354, USA.,Under Contract to the Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA
| | - Robert Valtierra
- Marine Acoustics Inc., 2 Corporate Pl #105, Middletown, RI, 02842, USA
| | - Sofie M Van Parijs
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 166 Water Street, Woods Hole, MA, 02543, USA
| | - Danielle Cholewiak
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 166 Water Street, Woods Hole, MA, 02543, USA
| | - Annamaria DeAngelis
- Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 166 Water Street, Woods Hole, MA, 02543, USA
| |
Collapse
|
4
|
Rodofili EN, Lecours V, LaRue M. Remote sensing techniques for automated marine mammals detection: a review of methods and current challenges. PeerJ 2022; 10:e13540. [PMID: 35757165 PMCID: PMC9220915 DOI: 10.7717/peerj.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/13/2022] [Indexed: 01/17/2023] Open
Abstract
Marine mammals are under pressure from multiple threats, such as global climate change, bycatch, and vessel collisions. In this context, more frequent and spatially extensive surveys for abundance and distribution studies are necessary to inform conservation efforts. Marine mammal surveys have been performed visually from land, ships, and aircraft. These methods can be costly, logistically challenging in remote locations, dangerous to researchers, and disturbing to the animals. The growing use of imagery from satellite and unoccupied aerial systems (UAS) can help address some of these challenges, complementing crewed surveys and allowing for more frequent and evenly distributed surveys, especially for remote locations. However, manual counts in satellite and UAS imagery remain time and labor intensive, but the automation of image analyses offers promising solutions. Here, we reviewed the literature for automated methods applied to detect marine mammals in satellite and UAS imagery. The performance of studies is quantitatively compared with metrics that evaluate false positives and false negatives from automated detection against manual counts of animals, which allows for a better assessment of the impact of miscounts in conservation contexts. In general, methods that relied solely on statistical differences in the spectral responses of animals and their surroundings performed worse than studies that used convolutional neural networks (CNN). Despite mixed results, CNN showed promise, and its use and evaluation should continue. Overall, while automation can reduce time and labor, more research is needed to improve the accuracy of automated counts. With the current state of knowledge, it is best to use semi-automated approaches that involve user revision of the output. These approaches currently enable the best tradeoff between time effort and detection accuracy. Based on our analysis, we identified thermal infrared UAS imagery as a future research avenue for marine mammal detection and also recommend the further exploration of object-based image analysis (OBIA). Our analysis also showed that past studies have focused on the automated detection of baleen whales and pinnipeds and that there is a gap in studies looking at toothed whales, polar bears, sirenians, and mustelids.
Collapse
Affiliation(s)
- Esteban N. Rodofili
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, United States of America
| | - Vincent Lecours
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, United States of America,School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL, United States of America
| | - Michelle LaRue
- School of Earth and Environment, University of Canterbury, Christchurch, New Zealand,Department of Earth and Environmental Science, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
5
|
Stanistreet JE, Beslin WAM, Kowarski K, Martin SB, Westell A, Moors-Murphy HB. Changes in the acoustic activity of beaked whales and sperm whales recorded during a naval training exercise off eastern Canada. Sci Rep 2022; 12:1973. [PMID: 35132140 PMCID: PMC8821608 DOI: 10.1038/s41598-022-05930-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 01/20/2022] [Indexed: 11/09/2022] Open
Abstract
Experimental research has shown that beaked whales exhibit strong avoidance reactions to naval active sonars used during antisubmarine warfare training exercises, including cessation of echolocation and foraging activity. Behavioural responses to sonar have also been linked to strandings and mortality. Much of the research on the responses of beaked whales and other cetaceans to naval active sonar has occurred on or near U.S. naval training ranges, and the impacts of sonar in other regions remain poorly understood, particularly as these impacts, including mortality, are likely to go unobserved in offshore areas. In September 2016 the multinational naval exercise 'CUTLASS FURY 2016' (CF16) was conducted off eastern Canada. We used passive acoustic recordings collected in the region to quantify the occurrence and characteristics of sonar signals, measure ambient noise levels, and assess changes in the acoustic activity of beaked and sperm whales. The number of hours per day with echolocation clicks from Cuvier's beaked whales and sperm whales were significantly reduced during CF16, compared to the pre-exercise period in 2016 (sperm whales) and to control data from 2015 (both species). Clicks from an unidentified Mesoplodont beaked whale species, sporadically detected prior to CF16, were absent during the exercise and for 7 days afterward. These results suggest that beaked and sperm whales ceased foraging in the vicinity of CF16 and likely avoided the affected area. Such disturbance may have energetic, health, and fitness consequences.
Collapse
Affiliation(s)
- Joy E Stanistreet
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, Canada.
| | - Wilfried A M Beslin
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, Canada
| | - Katie Kowarski
- JASCO Applied Sciences, 32 Troop Avenue, Suite 202, Dartmouth, NS, Canada
| | - S Bruce Martin
- JASCO Applied Sciences, 32 Troop Avenue, Suite 202, Dartmouth, NS, Canada
| | - Annabel Westell
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, Canada
| | - Hilary B Moors-Murphy
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, Canada
| |
Collapse
|
6
|
Nelms SE, Alfaro-Shigueto J, Arnould JPY, Avila IC, Bengtson Nash S, Campbell E, Carter MID, Collins T, Currey RJC, Domit C, Franco-Trecu V, Fuentes MMPB, Gilman E, Harcourt RG, Hines EM, Hoelzel AR, Hooker SK, Johnston DW, Kelkar N, Kiszka JJ, Laidre KL, Mangel JC, Marsh H, Maxwell SM, Onoufriou AB, Palacios DM, Pierce GJ, Ponnampalam LS, Porter LJ, Russell DJF, Stockin KA, Sutaria D, Wambiji N, Weir CR, Wilson B, Godley BJ. Marine mammal conservation: over the horizon. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01115] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Marine mammals can play important ecological roles in aquatic ecosystems, and their presence can be key to community structure and function. Consequently, marine mammals are often considered indicators of ecosystem health and flagship species. Yet, historical population declines caused by exploitation, and additional current threats, such as climate change, fisheries bycatch, pollution and maritime development, continue to impact many marine mammal species, and at least 25% are classified as threatened (Critically Endangered, Endangered or Vulnerable) on the IUCN Red List. Conversely, some species have experienced population increases/recoveries in recent decades, reflecting management interventions, and are heralded as conservation successes. To continue these successes and reverse the downward trajectories of at-risk species, it is necessary to evaluate the threats faced by marine mammals and the conservation mechanisms available to address them. Additionally, there is a need to identify evidence-based priorities of both research and conservation needs across a range of settings and taxa. To that effect we: (1) outline the key threats to marine mammals and their impacts, identify the associated knowledge gaps and recommend actions needed; (2) discuss the merits and downfalls of established and emerging conservation mechanisms; (3) outline the application of research and monitoring techniques; and (4) highlight particular taxa/populations that are in urgent need of focus.
Collapse
Affiliation(s)
- SE Nelms
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
| | - J Alfaro-Shigueto
- ProDelphinus, Jose Galvez 780e, Miraflores, Perú
- Facultad de Biologia Marina, Universidad Cientifica del Sur, Lima, Perú
| | - JPY Arnould
- School of Life and Environmental Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - IC Avila
- Grupo de Ecología Animal, Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali, Colombia
| | - S Bengtson Nash
- Environmental Futures Research Institute (EFRI), Griffith University, Nathan Campus, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - E Campbell
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
- ProDelphinus, Jose Galvez 780e, Miraflores, Perú
| | - MID Carter
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, Fife, KY16 8LB, UK
| | - T Collins
- Wildlife Conservation Society, 2300 Southern Blvd., Bronx, NY 10460, USA
| | - RJC Currey
- Marine Stewardship Council, 1 Snow Hill, London, EC1A 2DH, UK
| | - C Domit
- Laboratory of Ecology and Conservation, Marine Study Center, Universidade Federal do Paraná, Brazil
| | - V Franco-Trecu
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Uruguay
| | - MMPB Fuentes
- Marine Turtle Research, Ecology and Conservation Group, Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL 32306, USA
| | - E Gilman
- Pelagic Ecosystems Research Group, Honolulu, HI 96822, USA
| | - RG Harcourt
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - EM Hines
- Estuary & Ocean Science Center, San Francisco State University, 3150 Paradise Dr. Tiburon, CA 94920, USA
| | - AR Hoelzel
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - SK Hooker
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, Fife, KY16 8LB, UK
| | - DW Johnston
- Duke Marine Lab, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA
| | - N Kelkar
- Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srirampura, Jakkur PO, Bangalore 560064, Karnataka, India
| | - JJ Kiszka
- Department of Biological Sciences, Coastlines and Oceans Division, Institute of Environment, Florida International University, Miami, FL 33199, USA
| | - KL Laidre
- Polar Science Center, APL, University of Washington, 1013 NE 40th Street, Seattle, WA 98105, USA
| | - JC Mangel
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
- ProDelphinus, Jose Galvez 780e, Miraflores, Perú
| | - H Marsh
- James Cook University, Townsville, QLD 48111, Australia
| | - SM Maxwell
- School of Interdisciplinary Arts and Sciences, University of Washington Bothell, Bothell WA 98011, USA
| | - AB Onoufriou
- School of Biology, University of St Andrews, Fife, KY16 8LB, UK
- Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - DM Palacios
- Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, Newport, OR, 97365, USA
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97330, USA
| | - GJ Pierce
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Cientificas, Eduardo Cabello 6, 36208 Vigo, Pontevedra, Spain
| | - LS Ponnampalam
- The MareCet Research Organization, 40460 Shah Alam, Malaysia
| | - LJ Porter
- SMRU Hong Kong, University of St. Andrews, Hong Kong
| | - DJF Russell
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, Fife, KY16 8LB, UK
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - KA Stockin
- Animal Welfare Science and Bioethics Centre, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, New Zealand
| | - D Sutaria
- School of Interdisciplinary Arts and Sciences, University of Washington Bothell, Bothell WA 98011, USA
| | - N Wambiji
- Kenya Marine and Fisheries Research Institute, P.O. Box 81651, Mombasa-80100, Kenya
| | - CR Weir
- Ketos Ecology, 4 Compton Road, Kingsbridge, Devon, TQ7 2BP, UK
| | - B Wilson
- Scottish Association for Marine Science, Oban, Argyll, PA37 1QA, UK
| | - BJ Godley
- Centre for Ecology and Conservation, University of Exeter, Cornwall, TR10 9EZ, UK
| |
Collapse
|
7
|
Shabangu FW, Andrew RK. Clicking throughout the year: sperm whale clicks in relation to environmental conditions off the west coast of South Africa. ENDANGER SPECIES RES 2020. [DOI: 10.3354/esr01089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Knowledge of cetacean occurrence and behaviour in southern African waters is limited, and passive acoustic monitoring has the potential to address this gap efficiently. Seasonal acoustic occurrence and diel-vocalizing patterns of sperm whales in relation to environmental conditions are described here using passive acoustic monitoring data collected off the west coast of South Africa. Four autonomous acoustic recorders (AARs) were deployed on 3 oceanographic moorings from July 2014 to January 2017. Sperm whale clicks were detected year round in most recording sites, with peaks in acoustic occurrence in summer and late winter through spring. Diel-vocalizing patterns were detected in winter, spring and summer. Higher percentages of sperm whale clicks were recorded by AARs deployed at 1100 m water depth compared to those concurrently deployed at 850 and 4500 m, likely inferring that the whales exhibited some preference to water depths around 1100 m. Acoustic propagation modelling suggested a maximum detection range of 83 km in winter for sperm whale clicks produced at 1100 m. Random forest models classified daylight regime, sea surface height anomaly and month of the year as the most important predictors of sperm whale acoustic occurrence. The continuous acoustic occurrence of sperm whales suggests that the study area supports large biomasses of prey to sustain this species’ food requirements year round. This is the first study to describe the seasonal acoustic occurrence and diel-vocalizing patterns of sperm whales off the west coast of South Africa, extending knowledge of the species previously available only through whaling records.
Collapse
Affiliation(s)
- FW Shabangu
- Fisheries Management Branch, Department of Environment, Forestry and Fisheries, Foreshore, Cape Town 8018, South Africa
- Mammal Research Institute Whale Unit, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa
| | - RK Andrew
- Applied Physics Laboratory, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
8
|
Cauchy P, Heywood KJ, Risch D, Merchant ND, Queste BY, Testor P. Sperm whale presence observed using passive acoustic monitoring from gliders of opportunity. ENDANGER SPECIES RES 2020. [DOI: 10.3354/esr01044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Habitat use by the endangered Mediterranean sperm whale subpopulation remains poorly understood, especially in winter. The sustained presence of oceanographic autonomous underwater vehicles in the area presents an opportunity to improve observation effort, enabling collection of valuable sperm whale distribution data, which may be crucial to their conservation. Passive acoustic monitoring loggers were deployed on vertically profiling oceanographic gliders surveying the north-western Mediterranean Sea during winter 2012-2013 and June 2014. Sperm whale echolocation ‘usual click’ trains, characteristic of foraging activity, were detected and classified from the recordings, providing information about the presence of sperm whales along the glider tracks. Widespread presence of sperm whales in the north-western Mediterranean Sea was confirmed. Winter observations suggest different foraging strategies between the Ligurian Sea, where mobile and scattered individuals forage at all times of day, and the Gulf of Lion, where larger aggregations target intense oceanographic features in the open ocean such as fronts and mixing events, with reduced acoustic presence at dawn. This study demonstrates the ability to successfully observe sperm whale behaviour from passive acoustic monitoring gliders. We identified possible mission design changes to optimize data collected from passive acoustic monitoring glider surveys and significantly improve sperm whale population monitoring and habitat use.
Collapse
Affiliation(s)
- P Cauchy
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Centre for Environment, Fisheries & Aquaculture Science (Cefas), Lowestoft NR33 0HT, UK
| | - KJ Heywood
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - D Risch
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, Argyll PA37 1QA, UK
| | - ND Merchant
- Centre for Environment, Fisheries & Aquaculture Science (Cefas), Lowestoft NR33 0HT, UK
| | - BY Queste
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
- Department of Marine Sciences, University of Gothenburg (UGOT), 405 30 Gothenburg, Sweden
| | - P Testor
- CNRS-Sorbonne Universités (UPMC Univ. Pierre et Marie Curie, Paris 06)-CNRS-IRD-MNHN, UMR 7159, Laboratoire d’Océanographie et de Climatologie (LOCEAN), Institut Pierre Simon Laplace (IPSL), Observatoire Ecce Terra, 75005 Paris, France
| |
Collapse
|
9
|
Giorli G, Goetz KT. Foraging activity of sperm whales (Physeter macrocephalus) off the east coast of New Zealand. Sci Rep 2019; 9:12182. [PMID: 31434937 PMCID: PMC6704262 DOI: 10.1038/s41598-019-48417-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 07/31/2019] [Indexed: 11/09/2022] Open
Abstract
The occurrence and distribution of sperm whales in New Zealand waters is mainly known from whaling records or opportunistic sightings by the public and a systematic estimation of the abundance and distribution has never been conducted. In this study, we investigated the foraging activity and occurrence of sperm whales off the Eastern coast of New Zealand using passive acoustic monitoring techniques. Three acoustic recorders were moored to the ocean floor at different locations on the east side of the North and South Island to collect passive acoustic data from June 2016 until August 2017. A total of 53,823 echolocation click trains were recorded and analyzed to understand the spatial and temporal variation of sperm whale foraging activity. No difference in the foraging activity was found between night-time and day-time periods at any of the locations. Click train detections increased toward the south, suggesting increased foraging activity near Kaikoura. At each station, sperm whale foraging activity varied by month.
Collapse
Affiliation(s)
- Giacomo Giorli
- National Institute of Water and Atmospheric Research, Coasts and Oceans, 301 Evans Bay Parade, Greta Point, Wellington, 6021, New Zealand.
| | - Kimberly T Goetz
- Marine Mammal Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way N.E., Seattle, Washington, 98115-6349, USA
| |
Collapse
|
10
|
Merkens KP, Simonis AE, Oleson EM. Geographic and temporal patterns in the acoustic detection of sperm whales Physeter macrocephalus in the central and western North Pacific Ocean. ENDANGER SPECIES RES 2019. [DOI: 10.3354/esr00960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Commercial fishing patterns influence odontocete whale-longline interactions in the Southern Ocean. Sci Rep 2019; 9:1904. [PMID: 30760725 PMCID: PMC6374415 DOI: 10.1038/s41598-018-36389-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/19/2018] [Indexed: 11/12/2022] Open
Abstract
The emergence of longline fishing around the world has been concomitant with an increase in depredation-interactions by odontocete whales (removal of fish caught on hooks), resulting in substantial socio-economic and ecological impacts. The extent, trends and underlying mechanisms driving these interactions remain poorly known. Using long-term (2003–2017) datasets from seven major Patagonian toothfish (Dissostichus eleginoides) longline fisheries, this study assessed the levels and inter-annual trends of sperm whale (Physeter macrocephalus) and/or killer whale (Orcinus orca) interactions as proportions of fishing time (days) and fishing area (spatial cells). The role of fishing patterns in explaining between-fisheries variations of probabilities of odontocete interactions was investigated. While interaction levels remained globally stable since the early 2000s, they varied greatly between fisheries from 0 to >50% of the fishing days and area. Interaction probabilities were influenced by the seasonal concentration of fishing effort, size of fishing areas, density of vessels, their mobility and the depth at which they operated. The results suggest that between-fisheries variations of interaction probabilities are largely explained by the extent to which vessels provide whales with opportunities for interactions. Determining the natural distribution of whales will, therefore, allow fishers to implement better strategies of spatio-temporal avoidance of depredation.
Collapse
|
12
|
Brown A, Garg S, Montgomery J. Scalable preprocessing of high volume environmental acoustic data for bioacoustic monitoring. PLoS One 2018; 13:e0201542. [PMID: 30075012 PMCID: PMC6075764 DOI: 10.1371/journal.pone.0201542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/17/2018] [Indexed: 11/18/2022] Open
Abstract
In this work, we examine the problem of efficiently preprocessing and denoising high volume environmental acoustic data, which is a necessary step in many bird monitoring tasks. Preprocessing is typically made up of multiple steps which are considered separately from each other. These are often resource intensive, particularly because the volume of data involved is high. We focus on addressing two challenges within this problem: how to combine existing preprocessing tasks while maximising the effectiveness of each step, and how to process this pipeline quickly and efficiently, so that it can be used to process high volumes of acoustic data. We describe a distributed system designed specifically for this problem, utilising a master-slave model with data parallelisation. By investigating the impact of individual preprocessing tasks on each other, and their execution times, we determine an efficient and accurate order for preprocessing tasks within the distributed system. We find that, using a single core, our pipeline executes 1.40 times faster compared to manually executing all preprocessing tasks. We then apply our pipeline in the distributed system and evaluate its performance. We find that our system is capable of preprocessing bird acoustic recordings at a rate of 174.8 seconds of audio per second of real time with 32 cores over 8 virtual machines, which is 21.76 times faster than a serial process.
Collapse
Affiliation(s)
- Alexander Brown
- School of Technology, Environments and Design, University of Tasmania, Hobart, Tasmania, Australia
| | - Saurabh Garg
- School of Technology, Environments and Design, University of Tasmania, Hobart, Tasmania, Australia
| | - James Montgomery
- School of Technology, Environments and Design, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|