1
|
Lakatta EG. Heart Rhythm Harmony Becomes Discordant as We Age. Heart Lung Circ 2025:S1443-9506(25)00324-5. [PMID: 40355300 DOI: 10.1016/j.hlc.2025.04.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Accepted: 04/23/2025] [Indexed: 05/14/2025]
Abstract
Heartbeats are initiated by pacemaker cells within the sinoatrial node (SAN) that generate spontaneous impulses at intervals that resonate around a preferred mean frequency. A coupled-clock system (CCS) intrinsic to individual pacemaker cells, that is modulated by autonomic input, drives SAN normal automaticity. Subcellular and cell-wide mechanisms within the CCS are in "dynamic equilibrium," and never achieve a true steady state. Nanoscale electromagnetic "vibrations" caused by mechanisms intrinsic to the CCS and their autonomic modulation create heartbeat rhythm, ("heartbeat music"). A "Heart-Brain Grand Symphony" (HBGS), that emerges from this "beautiful noise" as the heart beats, is broadcast to the body surface, and its numerous motifs within the symphony can be experienced by tuning into electrocardiogram (EKG) RR-interval variability rhythms. As age increases, one or more of the components of physiologic coupling within the neuroautonomic regulatory sinus node and atrial networks begins to deteriorate, and cacophony emerges within the HBGS, manifested by reductions in the mean rate and rhythm at which the CCS within SAN cells fires action potentials. These subclinical changes in SAN structure and function as age advances become "partners" with pathophysiology that defines clinical SAN and other cardiac tissue diseases, e.g., Sick Sinus Syndrome and atrial fibrillation, and as such age-associated changes in SAN structure and function are co-morbidities of these clinical cardiac diseases. In other terms as age advances, sub-clinical age-associated changes in SAN structure and function, per se, are major shareholders in SAN disease enterprises.
Collapse
Affiliation(s)
- Edward G Lakatta
- Laboratory of Cardiovascular Science Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
2
|
Makio T, Chen J, Simmen T. ER stress as a sentinel mechanism for ER Ca 2+ homeostasis. Cell Calcium 2024; 124:102961. [PMID: 39471738 DOI: 10.1016/j.ceca.2024.102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
Endoplasmic reticulum (ER) stress is triggered upon the interference with oxidative protein folding that aims to produce fully folded, disulfide-bonded and glycosylated proteins, which are then competent to exit the ER. Many of the enzymes catalyzing this process require the binding of Ca2+ ions, including the chaperones BiP/GRP78, calnexin and calreticulin. The induction of ER stress with a variety of drugs interferes with chaperone Ca2+ binding, increases cytosolic Ca2+through the opening of ER Ca2+ channels, and activates store-operated Ca2+ entry (SOCE). Posttranslational modifications (PTMs) of the ER Ca2+ handling proteins through ER stress-dependent phosphorylation or oxidation control these mechanisms, as demonstrated in the case of the sarco/endoplasmic reticulum ATPase (SERCA), inositol 1,4,5 trisphosphate receptors (IP3Rs) or stromal interaction molecule 1 (STIM1). Their aim is to restore ER Ca2+ homeostasis but also to increase Ca2+ transfer from the ER to mitochondria during ER stress. This latter function boosts ER bioenergetics, but also triggers apoptosis if ER Ca2+ signaling persists. ER Ca2+ toolkit oxidative modifications upon ER stress can occur within the ER lumen or in the adjacent cytosol. Enzymes involved in this redox control include ER oxidoreductin 1 (ERO1) or the thioredoxin-family protein disulfide isomerases (PDI) and ERp57. A tight, but adaptive connection between ER Ca2+ content, ER stress and mitochondrial readouts allows for the proper functioning of many tissues, including skeletal muscle, the liver, and the pancreas, where ER stress either maintains or compromises their function, depending on its extent and context. Upon mutation of key regulators of ER Ca2+ signaling, diseases such as muscular defects (e.g., from mutated selenoprotein N, SEPN1/SELENON), or diabetes (e.g., from mutated PERK) are the result.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada
| | - Junsheng Chen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G2H7, Alberta, Canada.
| |
Collapse
|
3
|
Han YS, Pakkam M, Fogarty MJ, Sieck GC, Brozovich FV. Alterations in cardiac contractile and regulatory proteins contribute to age-related cardiac dysfunction in male rats. Physiol Rep 2024; 12:e70012. [PMID: 39169429 PMCID: PMC11338742 DOI: 10.14814/phy2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Aging is associated with cardiac contractile abnormalities, but the etiology of these contractile deficits is unclear. We hypothesized that cardiac contractile and regulatory protein expression is altered during aging. To investigate this possibility, left ventricular (LV) lysates were prepared from young (6 months) and old (24 months) Fischer344 rats. There are no age-related changes in SERCA2 expression or phospholamban phosphorylation. Additionally, neither titin isoform expression nor phosphorylation differed. However, there is a significant increase in β-isoform of the myosin heavy chain (MyHC) expression and phosphorylation of TnI and MyBP-C during aging. In permeabilized strips of papillary muscle, force and Ca2+ sensitivity are reduced during aging, consistent with the increase in β-MyHC expression and TnI phosphorylation. However, the increase in MyBP-C phosphorylation during aging may represent a mechanism to compensate for age-related contractile deficits. In isolated cardiomyocytes loaded with Fura-2, the peak of the Ca2+ transient is reduced, but the kinetics of the Ca2+ transient are not altered. Furthermore, the extent of shortening and the rates of both sarcomere shortening and re-lengthening are reduced. These results demonstrate that aging is associated with changes in contractile and regulatory protein expression and phosphorylation, which affect the mechanical properties of cardiac muscle.
Collapse
Affiliation(s)
- Young Soo Han
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Madona Pakkam
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Matthew J. Fogarty
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Gary C. Sieck
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Frank V. Brozovich
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
- Department of Cardiovascular DiseasesMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
4
|
Ribeiro ASF, Zerolo BE, López-Espuela F, Sánchez R, Fernandes VS. Cardiac System during the Aging Process. Aging Dis 2023:AD.2023.0115. [PMID: 37163425 PMCID: PMC10389818 DOI: 10.14336/ad.2023.0115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/15/2023] [Indexed: 05/12/2023] Open
Abstract
The aging process is accompanied by a continuous decline of the cardiac system, disrupting the homeostatic regulation of cells, organs, and systems. Aging increases the prevalence of cardiovascular diseases, thus heart failure and mortality. Understanding the cardiac aging process is of pivotal importance once it allows us to design strategies to prevent age-related cardiac events and increasing the quality of live in the elderly. In this review we provide an overview of the cardiac aging process focus on the following topics: cardiac structural and functional modifications; cellular mechanisms of cardiac dysfunction in the aging; genetics and epigenetics in the development of cardiac diseases; and aging heart and response to the exercise.
Collapse
Affiliation(s)
| | - Blanca Egea Zerolo
- Escuela de Enfermería y Fisioterapia San Juan de Dios. Universidad Pontificia Comillas, Madrid, Spain
| | - Fidel López-Espuela
- Metabolic Bone Diseases Research Group, Nursing and Occupational Therapy College, University of Extremadura, Caceres, Spain
| | - Raúl Sánchez
- Unidad de Cardiopatías Congénitas, Hospital Universitario La Paz, Madrid, Spain
| | - Vítor S Fernandes
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Moen JM, Morrell CH, Matt MG, Ahmet I, Tagirova S, Davoodi M, Petr M, Charles S, de Cabo R, Yaniv Y, Lakatta EG. Emergence of heartbeat frailty in advanced age I: perspectives from life-long EKG recordings in adult mice. GeroScience 2022; 44:2801-2830. [PMID: 35759167 PMCID: PMC9768068 DOI: 10.1007/s11357-022-00605-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/06/2022] [Indexed: 01/07/2023] Open
Abstract
The combined influences of sinoatrial nodal (SAN) pacemaker cell automaticity and its response to autonomic input determine the heart's beating interval variability and mean beating rate. To determine the intrinsic SAN and autonomic signatures buried within EKG RR interval time series change in advanced age, we measured RR interval variability before and during double autonomic blockade at 3-month intervals from 6 months of age until the end of life in long-lived (those that achieved the total cohort median life span of 24 months and beyond) C57/BL6 mice. Prior to 21 months of age, time-dependent changes in intrinsic RR interval variability and mean RR interval were relatively minor. Between 21 and 30 months of age, however, marked changes emerged in intrinsic SAN RR interval variability signatures, pointing to a reduction in the kinetics of pacemaker clock mechanisms, leading to reduced synchronization of molecular functions within and among SAN cells. This loss of high-frequency signal processing within intrinsic SAN signatures resulted in a marked increase in the mean intrinsic RR interval. The impact of autonomic signatures on RR interval variability were net sympathetic and partially compensated for the reduced kinetics of the intrinsic SAN RR interval variability signatures, and partially, but not completely, shifted the EKG RR time series intervals to a more youthful pattern. Cross-sectional analyses of other subsets of C57/BL6 ages indicated that at or beyond the median life span of our longitudinal cohort, noncardiac, constitutional, whole-body frailty was increased, energetic efficiency was reduced, and the respiratory exchange ratio increased. We interpret the progressive reduction in kinetics in intrinsic SAN RR interval variability signatures in this context of whole-body frailty beyond 21 months of age to be a manifestation of "heartbeat frailty."
Collapse
Affiliation(s)
- Jack M Moen
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, CA, USA
| | - Christopher H Morrell
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michael G Matt
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
- Pediatric Residency Program, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ismayil Ahmet
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Syevda Tagirova
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Moran Davoodi
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Michael Petr
- Laboratory of Experimental Gerontology Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
- Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Shaquille Charles
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Laboratory of Experimental Gerontology Intramural Research Program, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute On Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
6
|
Iakovou E, Kourti M. A Comprehensive Overview of the Complex Role of Oxidative Stress in Aging, The Contributing Environmental Stressors and Emerging Antioxidant Therapeutic Interventions. Front Aging Neurosci 2022; 14:827900. [PMID: 35769600 PMCID: PMC9234325 DOI: 10.3389/fnagi.2022.827900] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Aging is a normal, inevitable, irreversible, and progressive process which is driven by internal and external factors. Oxidative stress, that is the imbalance between prooxidant and antioxidant molecules favoring the first, plays a key role in the pathophysiology of aging and comprises one of the molecular mechanisms underlying age-related diseases. However, the oxidative stress theory of aging has not been successfully proven in all animal models studying lifespan, meaning that altering oxidative stress/antioxidant defense systems did not always lead to a prolonged lifespan, as expected. On the other hand, animal models of age-related pathological phenotypes showed a well-correlated relationship with the levels of prooxidant molecules. Therefore, it seems that oxidative stress plays a more complicated role than the one once believed and this role might be affected by the environment of each organism. Environmental factors such as UV radiation, air pollution, and an unbalanced diet, have also been implicated in the pathophysiology of aging and seem to initiate this process more rapidly and even at younger ages. Aim The purpose of this review is to elucidate the role of oxidative stress in the physiology of aging and the effect of certain environmental factors in initiating and sustaining this process. Understanding the pathophysiology of aging will contribute to the development of strategies to postpone this phenomenon. In addition, recent studies investigating ways to alter the antioxidant defense mechanisms in order to prevent aging will be presented. Conclusions Careful exposure to harmful environmental factors and the use of antioxidant supplements could potentially affect the biological processes driving aging and slow down the development of age-related diseases. Maybe a prolonged lifespan could not be achieved by this strategy alone, but a longer healthspan could also be a favorable target.
Collapse
Affiliation(s)
- Evripides Iakovou
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
| | - Malamati Kourti
- Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
- Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Center, Department of Life Sciences, European University Cyprus, Nicosia, Cyprus
- *Correspondence: Malamati Kourti
| |
Collapse
|
7
|
Iacobazzi D, Alvino VV, Caputo M, Madeddu P. Accelerated Cardiac Aging in Patients With Congenital Heart Disease. Front Cardiovasc Med 2022; 9:892861. [PMID: 35694664 PMCID: PMC9177956 DOI: 10.3389/fcvm.2022.892861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 01/03/2023] Open
Abstract
An increasing number of patients with congenital heart disease (CHD) survive into adulthood but develop long-term complications including heart failure (HF). Cellular senescence, classically defined as stable cell cycle arrest, is implicated in biological processes such as embryogenesis, wound healing, and aging. Senescent cells have a complex senescence-associated secretory phenotype (SASP), involving a range of pro-inflammatory factors with important paracrine and autocrine effects on cell and tissue biology. While senescence has been mainly considered as a cause of diseases in the adulthood, it may be also implicated in some of the poor outcomes seen in patients with complex CHD. We propose that patients with CHD suffer from multiple repeated stress from an early stage of the life, which wear out homeostatic mechanisms and cause premature cardiac aging, with this term referring to the time-related irreversible deterioration of the organ physiological functions and integrity. In this review article, we gathered evidence from the literature indicating that growing up with CHD leads to abnormal inflammatory response, loss of proteostasis, and precocious age in cardiac cells. Novel research on this topic may inspire new therapies preventing HF in adult CHD patients.
Collapse
Affiliation(s)
| | | | | | - Paolo Madeddu
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
8
|
Santalla M, García A, Mattiazzi A, Valverde CA, Schiemann R, Paululat A, Hernández G, Meyer H, Ferrero P. Interplay between SERCA, 4E-BP, and eIF4E in the Drosophila heart. PLoS One 2022; 17:e0267156. [PMID: 35588119 PMCID: PMC9119464 DOI: 10.1371/journal.pone.0267156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/03/2022] [Indexed: 11/19/2022] Open
Abstract
Appropriate cardiac performance depends on a tightly controlled handling of Ca2+ in a broad range of species, from invertebrates to mammals. The role of the Ca2+ ATPase, SERCA, in Ca2+ handling is pivotal, and its activity is regulated, inter alia, by interacting with distinct proteins. Herein, we give evidence that 4E binding protein (4E-BP) is a novel regulator of SERCA activity in Drosophila melanogaster during cardiac function. Flies over-expressing 4E-BP showed improved cardiac performance in young individuals associated with incremented SERCA activity. Moreover, we demonstrate that SERCA interacts with translation initiation factors eIF4E-1, eIF4E-2 and eIF4E-4 in a yeast two-hybrid assay. The specific identification of eIF4E-4 in cardiac tissue leads us to propose that the interaction of elF4E-4 with SERCA may be the basis of the cardiac effects observed in 4E-BP over-expressing flies associated with incremented SERCA activity.
Collapse
Affiliation(s)
- Manuela Santalla
- Departamento de Ciencias Básicas y Experimentales, UNNOBA, Pergamino, Buenos Aires, Argentina
- Centro de Investigaciones Cardiovasculares ‘Dr. Horacio E. Cingolani’, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Alejandra García
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), Mexico City, Mexico
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares ‘Dr. Horacio E. Cingolani’, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Carlos A. Valverde
- Centro de Investigaciones Cardiovasculares ‘Dr. Horacio E. Cingolani’, CONICET-UNLP, La Plata, Buenos Aires, Argentina
| | - Ronja Schiemann
- Department of Zoology & Developmental Biology, Osnabrück University, Osnabrück, Germany
| | - Achim Paululat
- Department of Zoology & Developmental Biology, Osnabrück University, Osnabrück, Germany
| | - Greco Hernández
- Translation and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), Mexico City, Mexico
| | - Heiko Meyer
- Department of Zoology & Developmental Biology, Osnabrück University, Osnabrück, Germany
- * E-mail: (PF); (HM)
| | - Paola Ferrero
- Departamento de Ciencias Básicas y Experimentales, UNNOBA, Pergamino, Buenos Aires, Argentina
- Centro de Investigaciones Cardiovasculares ‘Dr. Horacio E. Cingolani’, CONICET-UNLP, La Plata, Buenos Aires, Argentina
- * E-mail: (PF); (HM)
| |
Collapse
|
9
|
Ciumărnean L, Milaciu MV, Negrean V, Orășan OH, Vesa SC, Sălăgean O, Iluţ S, Vlaicu SI. Cardiovascular Risk Factors and Physical Activity for the Prevention of Cardiovascular Diseases in the Elderly. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:207. [PMID: 35010467 PMCID: PMC8751147 DOI: 10.3390/ijerph19010207] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases create an important burden on the public health systems, especially in the elderly, mostly because this group of patients frequently suffer from multiple comorbidities. Accumulating cardiovascular risk factors during their lifetime has a detrimental effect on an older adult's health status. The modifiable and non-modifiable cardiovascular risk factors are very diverse, and are frequently in a close relationship with the metabolic comorbidities of the elderly, mainly obesity and Diabetes Mellitus. In this review, we aim to present the most important cardiovascular risk factors which link aging and cardiovascular diseases, starting from the pathophysiological links between these factors and the aging process. Next, we will further review the main interconnections between obesity and Diabetes Mellitus and cardiovascular diseases of the elderly. Lastly, we consider the most important aspects related to prevention through lifestyle changes and physical activity on the occurrence of cardiovascular diseases in the elderly.
Collapse
Affiliation(s)
- Lorena Ciumărnean
- Department 5 Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (V.N.); (O.H.O.)
| | - Mircea Vasile Milaciu
- Department 5 Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (V.N.); (O.H.O.)
| | - Vasile Negrean
- Department 5 Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (V.N.); (O.H.O.)
| | - Olga Hilda Orășan
- Department 5 Internal Medicine, 4th Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania; (L.C.); (M.V.M.); (V.N.); (O.H.O.)
| | - Stefan Cristian Vesa
- Department 2 Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Octavia Sălăgean
- Regional Institute of Gastroenterology and Hepatology ‘Octavian Fodor’ Cluj-Napoca, 400162 Cluj-Napoca, Romania;
| | - Silvina Iluţ
- Department 10 Neurosciences, Discipline of Neurology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Sonia Irina Vlaicu
- Department 5 Internal Medicine, 1st Medical Clinic, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| |
Collapse
|
10
|
"Accelerated aging" of the heart as heart failure with preserved ejection fraction-analysis using leg-positive pressure stress echocardiography. Int J Cardiovasc Imaging 2021; 37:2473-2482. [PMID: 33939071 DOI: 10.1007/s10554-021-02258-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/26/2021] [Indexed: 01/14/2023]
Abstract
The aging process is a significant risk factor for heart failure. The incidence of heart failure with preserved ejection fraction (HFpEF) dramatically increases with age. Although HFpEF occurs along a continuum of aging of the cardiovascular system, the pathophysiology that differentiates overt HFpEF from physiological aging is not fully understood. A total of 102 subjects were prospectively recruited: 25 patients with HFpEF and 77 healthy controls. Controls were stratified into three age-groups: young (n = 27, 20-40 years), middle aged (n = 25, 40-65 years), and elderly (n = 25, > 65 years). All participants underwent preload stress echocardiography using a leg-positive pressure (LPP) maneuver. With an increase in age, progressive concentric left ventricular (LV) remodeling was observed in healthy controls, resulting in the hemodynamic consequences of an age-dependent increase in the E/e' ratio (ANOVA, P < 0.001). During LPP stress, the E/e' ratio significantly increased in the middle-aged and elderly groups (from 8 ± 2 to 9 ± 3, from 10 ± 2 to 12 ± 3, P < 0.05, respectively), and this was more pronounced in patients with HFpEF (from 16 ± 5 to 17 ± 7, P < 0.05). Forward stroke volume (SV) significantly increased in each healthy group during LPP stress (all P < 0.001) but failed to increase in the HFpEF group (from 43 ± 13 to 44 ± 14 mL/m2, P = 0.65). In a multivariate analysis, LV mass index (odds ratio [OR] 1.051, P < 0.05), E/e' ratio (OR 1.480; P < 0.05), and change in SV (OR 0.780; P < 0.05) were independent parameters that differentiated HFpEF from physiological aging. Structural remodeling and impaired preload reserve may both be critical features that characterize the pathophysiology of HFpEF.
Collapse
|
11
|
Tini G, Cannatà A, Canepa M, Masci PG, Pardini M, Giacca M, Sinagra G, Marchionni N, Del Monte F, Udelson JE, Olivotto I. Is heart failure with preserved ejection fraction a 'dementia' of the heart? Heart Fail Rev 2021; 27:587-594. [PMID: 33907929 DOI: 10.1007/s10741-021-10114-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 01/09/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains an elusive entity, due to its heterogeneous clinical profile and an arbitrarily defined nosology. Several pathophysiological mechanisms recognized as central for the development of HFpEF appear to be in common with the process of physiological aging of the heart. Both conditions are characterized by progressive impairment in cardiac function, accompanied by left ventricular hypertrophy, diastolic dysfunction, sarcomeric, and metabolic abnormalities. The neurological paradigm of dementia-intended as a progressive, multifactorial organ damage with decline of functional reserve, eventually leading to irreversible dysfunction-is well suited to represent HFpEF. In such perspective, certain phenotypes of HFpEF may be viewed as a maladaptive response to environmental modifiers, causing premature and pathological aging of the heart. We here propose that the 'HFpEF syndrome' may reflect the interplay of adverse structural remodelling and erosion of functional reserve, mirroring the processes leading to dementia in the brain. The resulting conceptual framework may help advance our understanding of HFpEF and unravel potential therapeutical targets.
Collapse
Affiliation(s)
- Giacomo Tini
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy. .,Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy.
| | - Antonio Cannatà
- Cardiothoracic Department, Azienda Sanitaria Universitaria Integrata Di Trieste, University of Trieste, Trieste, Italy
| | - Marco Canepa
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, University of Genova, Genova, Italy
| | - Pier Giorgio Masci
- Department of Cardiovascular Imaging, School of Biomedical Engineering and Imaging Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Mauro Giacca
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, UK
| | - Gianfranco Sinagra
- Cardiothoracic Department, Azienda Sanitaria Universitaria Integrata Di Trieste, University of Trieste, Trieste, Italy
| | - Niccolò Marchionni
- Cardiothoracovascular Department, Careggi University Hospital, Florence, Italy
| | - Federica Del Monte
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - James E Udelson
- Division of Cardiology, Tufts Medical Center, Boston, MA, USA
| | - Iacopo Olivotto
- Cardiomyopathy Unit, Careggi University Hospital, Florence, Italy.,Cardiothoracovascular Department, Careggi University Hospital, Florence, Italy
| |
Collapse
|
12
|
Tian F, Zhang Y. Overexpression of SERCA2a Alleviates Cardiac Microvascular Ischemic Injury by Suppressing Mfn2-Mediated ER/Mitochondrial Calcium Tethering. Front Cell Dev Biol 2021; 9:636553. [PMID: 33869181 PMCID: PMC8047138 DOI: 10.3389/fcell.2021.636553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Our previous research has shown that type-2a Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) undergoes posttranscriptional oxidative modifications in cardiac microvascular endothelial cells (CMECs) in the context of excessive cardiac oxidative injury. However, whether SERCA2a inactivity induces cytosolic Ca2+ imbalance in mitochondrial homeostasis is far from clear. Mitofusin2 (Mfn2) is well known as an important protein involved in endoplasmic reticulum (ER)/mitochondrial Ca2+ tethering and the regulation of mitochondrial quality. Therefore, the aim of our study was to elucidate the specific mechanism of SERCA2a-mediated Ca2+ overload in the mitochondria via Mfn2 tethering and the survival rate of the heart under conditions of cardiac microvascular ischemic injury. In vitro, CMECs extracted from mice were subjected to 6 h of hypoxic injury to mimic ischemic heart injury. C57-WT and Mfn2KO mice were subjected to a 1 h ischemia procedure via ligation of the left anterior descending branch to establish an in vivo cardiac ischemic injury model. TTC staining, immunohistochemistry and echocardiography were used to assess the myocardial infarct size, microvascular damage, and heart function. In vitro, ischemic injury induced irreversible oxidative modification of SERCA2a, including sulfonylation at cysteine 674 and nitration at tyrosine 294/295, and inactivation of SERCA2a, which initiated calcium overload. In addition, ischemic injury-triggered [Ca2+]c overload and subsequent [Ca2+]m overload led to mPTP opening and ΔΨm dissipation compared with the control. Furthermore, ablation of Mfn2 alleviated SERCA2a-induced mitochondrial calcium overload and subsequent mito-apoptosis in the context of CMEC hypoxic injury. In vivo, compared with that in wild-type mice, the myocardial infarct size in Mfn2KO mice was significantly decreased. In addition, the findings revealed that Mfn2KO mice had better heart contractile function, decreased myocardial infarction indicators, and improved mitochondrial morphology. Taken together, the results of our study suggested that SERCA2a-dependent [Ca2+]c overload led to mitochondrial dysfunction and activation of Mfn2-mediated [Ca2+]m overload. Overexpression of SERCA2a or ablation of Mfn2 expression mitigated mitochondrial morphological and functional damage by modifying the SERCA2a/Ca2+-Mfn2 pathway. Overall, these pathways are promising therapeutic targets for acute cardiac microvascular ischemic injury.
Collapse
Affiliation(s)
- Feng Tian
- Department of Cardiology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Cardiology, The First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Benchside to the bedside of frailty and cardiovascular aging: Main shared cellular and molecular mechanisms. Exp Gerontol 2021; 148:111302. [PMID: 33675900 DOI: 10.1016/j.exger.2021.111302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/13/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
Due to the impact that frailty and cardiac aging have on society and health systems, the mechanisms surrounding these conditions must be known. If the frailty and cardiovascular complications are due to numerous controllable factors or not, different strategies must be considered to improve the elderly patient's prognosis and improve their quality of life. This review aimed to investigate the main shared mechanisms of cardiac aging and frailty. MEDLINE-PubMed, Cohrane and EMBASE databases were searched to perform this review. The mesh-terms used for this search was frailty, cardiovascular disease, cardiovascular aging, or heart failure (HF). Frailty frequently coexists with heart conditions since they share predisposing pathophysiological alterations, the aging process, and elevated comorbidity burden, contributing to fast functional decline and sarcopenia. Mitochondrial dysfunctions and decreased protein synthesis lead to protein degradation, denervation, atrophy, impairment in the fatty acid oxidation, resulting in cardiomyopathy. The homeostasis of muscle metabolism deteriorates with aging, leading to a reduction in muscle quality and quantity. The installation of a low-grade and chronic inflammatory process adds to an impairment in glucose, protein and lipid metabolism, endothelial dysfunction, cardiovascular conditions, sarcopenia, and HF. The exacerbated rise in inflammatory biomarkers and impaired insulin resistance leads to worsening of the patient's general condition. The good news is that frailty is a dynamic syndrome, fluctuating between different states of seriousness but still has potential for reversibility based on physical activity, cognitive training, nutrition intervention, and a plethora of other approaches that can be performed by a multi-disciplinary team.
Collapse
|
14
|
Bassot A, Chen J, Simmen T. Post-Translational Modification of Cysteines: A Key Determinant of Endoplasmic Reticulum-Mitochondria Contacts (MERCs). CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:25152564211001213. [PMID: 37366382 PMCID: PMC10243593 DOI: 10.1177/25152564211001213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/18/2021] [Accepted: 02/08/2021] [Indexed: 06/28/2023]
Abstract
Cells must adjust their redox state to an ever-changing environment that could otherwise result in compromised homeostasis. An obvious way to adapt to changing redox conditions depends on cysteine post-translational modifications (PTMs) to adapt conformation, localization, interactions and catalytic activation of proteins. Such PTMs should occur preferentially in the proximity of oxidative stress sources. A particular concentration of these sources is found near membranes where the endoplasmic reticulum (ER) and the mitochondria interact on domains called MERCs (Mitochondria-Endoplasmic Reticulum Contacts). Here, fine inter-organelle communication controls metabolic homeostasis. MERCs achieve this goal through fluxes of Ca2+ ions and inter-organellar lipid exchange. Reactive oxygen species (ROS) that cause PTMs of mitochondria-associated membrane (MAM) proteins determine these intertwined MERC functions. Chronic changes of the pattern of these PTMs not only control physiological processes such as the circadian clock but could also lead to or worsen many human disorders such as cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Thomas Simmen
- Thomas Simmen, Department of Cell
Biology, Faculty of Medicine and Dentistry, University of Alberta,
Edmonton, Alberta, Canada T6G2H7.
| |
Collapse
|
15
|
Ferro MS, Mascaro MB, De Souza RR. Effects of aging on the secretory apparatus in the right atrial cardiomyocytes of rats. Acta Histochem 2020; 122:151579. [PMID: 32778241 DOI: 10.1016/j.acthis.2020.151579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/27/2020] [Accepted: 06/22/2020] [Indexed: 10/24/2022]
Abstract
The cardiac atria secrets polypeptide hormones usually called natriuretic peptides (NPs). These substances play a relevant role in the blood pressure regulation. The objective of the study was to estimate the effects of aging on the secretory apparatus of NPs in cardiomyocytes of the right atrium. Twenty male Wistar rats were studied: 10 young animals aged 3 months old (237 ± 27 g; mean ± SD) and 10 old animals aged 20 months old (450 ± 68 g; mean ± SD). The systolic blood pressure was verified instants before the moment of the euthanasia. Electron micrographs were prepared to quantify the area and density of the NP granules and the relative volumes of the endoplasmic reticulum, Golgi complex, and mitochondria. In addition, the number of pores per 10 μm of karyotheca was another variable evaluated. The significance of the results between the two groups evaluated was analyzed by the Student's t test (p < 0.05). The cardiomyocytes obtained from animals of the old group showed decreased in sectional area and density of secretory granules of NP and lower relative volume of endoplasmic reticulum, Golgi complex, and mitochondria compared with the young rats. Moreover, the quantitative density of nuclear pores was significantly lower compared with the youngers. CONCLUSION: Aging causes hypotrophy of the cardiomyocytes of right atrium, similar to what occurs in ventricular cardiomyocytes.
Collapse
|
16
|
Bachar-Wikstrom E, Curman P, Ahanian T, Leong IUS, Larsson H, Cederlöf M, Wikstrom JD. Darier disease is associated with heart failure: a cross-sectional case-control and population based study. Sci Rep 2020; 10:6886. [PMID: 32327688 PMCID: PMC7181854 DOI: 10.1038/s41598-020-63832-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/03/2020] [Indexed: 01/16/2023] Open
Abstract
Human data supporting a role for endoplasmic reticulum (ER) stress and calcium dyshomeostasis in heart disease is scarce. Darier disease (DD) is a hereditary skin disease caused by mutations in the ATP2A2 gene encoding the sarcoendoplasmic-reticulum Ca2+ ATPase isoform 2 (SERCA2), which causes calcium dyshomeostasis and ER stress. We hypothesized that DD patients would have an increased risk for common heart disease. We performed a cross-sectional case-control clinical study on 25 DD patients and 25 matched controls; and a population-based cohort study on 935 subjects with DD and matched comparison subjects. Main outcomes and measures were N-terminal pro-brain natriuretic peptide, ECG and heart diagnosis (myocardial infarction, heart failure and arrythmia). DD subjects showed normal clinical heart phenotype including heart failure markers and ECG. The risk for heart failure was 1.59 (1,16-2,19) times elevated in DD subjects, while no major differences were found in myocardial infarcation or arrhythmias. Risk for heart failure when corrected for cardivascular risk factors or alcohol misuse was 1.53 (1.11-2.11) and 1.58 (1,15-2,18) respectively. Notably, heart failure occurred several years earlier in DD patients as compared to controls. We conclude that DD patients show a disease specific increased risk of heart failure which should be taken into account in patient management. The observation also strenghtens the clinical evidence on the important role of SERCA2 in heart failure pathophysiology.
Collapse
Affiliation(s)
- Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Philip Curman
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Tara Ahanian
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Ivone U S Leong
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Henrik Larsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Cederlöf
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, and Stockholm Health Care Services, Norra Stationsgatan 69, Stockholm, Sweden
| | - Jakob D Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
17
|
Upadhya B, Haykowsky MJ, Kitzman DW. Therapy for heart failure with preserved ejection fraction: current status, unique challenges, and future directions. Heart Fail Rev 2019; 23:609-629. [PMID: 29876843 DOI: 10.1007/s10741-018-9714-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is the most common form of HF. Among elderly women, HFpEF comprises more than 80% of incident HF cases. Adverse outcomes-exercise intolerance, poor quality of life, frequent hospitalizations, and reduced survival-approach those of classic HF with reduced EF (HFrEF). However, despite its importance, our understanding of the pathophysiology of HFpEF is incomplete, and despite intensive efforts, optimal therapy remains uncertain, as most trials to date have been negative. This is in stark contrast to management of HFrEF, where dozens of positive trials have established a broad array of effective, guidelines-based therapies that definitively improve a range of clinically meaningful outcomes. In addition to providing an overview of current management status, we examine evolving data that may help explain this paradox, overcome past challenges, provide a roadmap for future success, and that underpin a wave of new trials that will test novel approaches based on these insights.
Collapse
Affiliation(s)
- Bharathi Upadhya
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1045, USA
| | - Mark J Haykowsky
- College of Nursing and Health Innovation, University of Texas Arlington, Arlington, TX, USA
| | - Dalane W Kitzman
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1045, USA.
| |
Collapse
|
18
|
Blice-Baum AC, Guida MC, Hartley PS, Adams PD, Bodmer R, Cammarato A. As time flies by: Investigating cardiac aging in the short-lived Drosophila model. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1831-1844. [PMID: 30496794 PMCID: PMC6527462 DOI: 10.1016/j.bbadis.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/05/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
Abstract
Aging is associated with a decline in heart function across the tissue, cellular, and molecular levels. The risk of cardiovascular disease grows significantly over time, and as developed countries continue to see an increase in lifespan, the cost of cardiovascular healthcare for the elderly will undoubtedly rise. The molecular basis for cardiac function deterioration with age is multifaceted and not entirely clear, and there is a limit to what investigations can be performed on human subjects or mammalian models. Drosophila melanogaster has emerged as a useful model organism for studying aging in a short timeframe, benefitting from a suite of molecular and genetic tools and displaying highly conserved traits of cardiac senescence. Here, we discuss recent advances in our understanding of cardiac aging and how the fruit fly has aided in these developments.
Collapse
Affiliation(s)
| | - Maria Clara Guida
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Paul S Hartley
- Bournemouth University, Department of Life and Environmental Science, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, UK.
| | - Peter D Adams
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, CA, USA.
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
Hamilton S, Terentyev D. Altered Intracellular Calcium Homeostasis and Arrhythmogenesis in the Aged Heart. Int J Mol Sci 2019; 20:ijms20102386. [PMID: 31091723 PMCID: PMC6566636 DOI: 10.3390/ijms20102386] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/29/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Aging of the heart is associated with a blunted response to sympathetic stimulation, reduced contractility, and increased propensity for arrhythmias, with the risk of sudden cardiac death significantly increased in the elderly population. The altered cardiac structural and functional phenotype, as well as age-associated prevalent comorbidities including hypertension and atherosclerosis, predispose the heart to atrial fibrillation, heart failure, and ventricular tachyarrhythmias. At the cellular level, perturbations in mitochondrial function, excitation-contraction coupling, and calcium homeostasis contribute to this electrical and contractile dysfunction. Major determinants of cardiac contractility are the intracellular release of Ca2+ from the sarcoplasmic reticulum by the ryanodine receptors (RyR2), and the following sequestration of Ca2+ by the sarco/endoplasmic Ca2+-ATPase (SERCa2a). Activity of RyR2 and SERCa2a in myocytes is not only dependent on expression levels and interacting accessory proteins, but on fine-tuned regulation via post-translational modifications. In this paper, we review how aberrant changes in intracellular Ca2+ cycling via these proteins contributes to arrhythmogenesis in the aged heart.
Collapse
Affiliation(s)
- Shanna Hamilton
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | - Dmitry Terentyev
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Cardiovascular Risks Associated with Gender and Aging. J Cardiovasc Dev Dis 2019; 6:jcdd6020019. [PMID: 31035613 PMCID: PMC6616540 DOI: 10.3390/jcdd6020019] [Citation(s) in RCA: 508] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
The aging and elderly population are particularly susceptible to cardiovascular disease. Age is an independent risk factor for cardiovascular disease (CVD) in adults, but these risks are compounded by additional factors, including frailty, obesity, and diabetes. These factors are known to complicate and enhance cardiac risk factors that are associated with the onset of advanced age. Sex is another potential risk factor in aging adults, given that older females are reported to be at a greater risk for CVD than age-matched men. However, in both men and women, the risks associated with CVD increase with age, and these correspond to an overall decline in sex hormones, primarily of estrogen and testosterone. Despite this, hormone replacement therapies are largely shown to not improve outcomes in older patients and may also increase the risks of cardiac events in older adults. This review discusses current findings regarding the impacts of age and gender on heart disease.
Collapse
|
21
|
Cannata' A, Merlo M, Artico J, Gentile P, Camparini L, Cristallini J, Porcari A, Loffredo F, Sinagra G. Cardiovascular aging: the unveiled enigma from bench to bedside. J Cardiovasc Med (Hagerstown) 2018; 19:517-526. [PMID: 30024423 DOI: 10.2459/jcm.0000000000000694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
: The rapid increase in the median age of the world's population requires particular attention towards older and more fragile people. Cardiovascular risk factors, time and comorbidities play a vicious role in the development of heart failure, both with reduced and preserved ejection fraction, in the elderly. Understanding the mechanisms underlying the pathophysiological processes observed with aging is pivotal to target those patients and their therapeutic needs properly. This review aims to investigate and to dissect the main pathways leading to the aging cardiomyopathy, helping to understand the relationship from bench to bedside of the clinical phenotype.
Collapse
Affiliation(s)
- Antonio Cannata'
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste.,International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Marco Merlo
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste
| | - Jessica Artico
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste
| | - Piero Gentile
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste
| | - Luca Camparini
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Jacopo Cristallini
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste
| | - Aldostefano Porcari
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste
| | - Francesco Loffredo
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste.,International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Gianfranco Sinagra
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste
| |
Collapse
|
22
|
Loss of myocardial protection against myocardial infarction in middle-aged transgenic mice overexpressing cardiac thioredoxin-1. Oncotarget 2017; 7:11889-98. [PMID: 26933812 PMCID: PMC4914256 DOI: 10.18632/oncotarget.7726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/30/2016] [Indexed: 11/25/2022] Open
Abstract
Thioredoxin-1 (Trx1) protects the heart from ischemia/reperfusion (I/R) injury. Given that the age at which the first episode of coronary disease takes place has considerably decreased, life at middle-aged (MA) emerges as a new field of study. The aim was determine whether infarct size, Trx1 expression and activity, Akt and GSK-3β were altered in young (Y) and MA mice overexpressing cardiac Trx1, and in a dominant negative (DN-Trx1) mutant of Trx1. Langendorff-perfused hearts were subjected to 30 minutes of ischemia and 120 minutes of reperfusion (R). We used 3 and 12 month-old male of wild type (WT), Trx1, and DN-Trx1. Trx1 overexpression reduced infarct size in young mice (WT-Y: 46.8±4.1% vs. Trx1-Y: 27.6±3.5%, p < 0.05). Trx1 activity was reduced by 52.3±3.2% (p < 0.05) in Trx1-MA, accompanied by an increase in nitration by 17.5±0.9%, although Trx1 expression in transgenic mice was similar between young and middle-aged. The expression of p-Akt and p-GSK-3β increased during reperfusion in Trx1-Y. DN-Trx1 mice showed neither reduction in infarct size nor Akt and GSK-3β phosphorylation. Our data suggest that the lack of protection in Trx1 middle-aged mice even with normal Trx1 expression may be associated to decreased Trx1 activity, increased nitration and inhibition of p-Akt and p-GSK-3β.
Collapse
|
23
|
Steenman M, Lande G. Cardiac aging and heart disease in humans. Biophys Rev 2017; 9:131-137. [PMID: 28510085 DOI: 10.1007/s12551-017-0255-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/05/2017] [Indexed: 02/06/2023] Open
Abstract
The world population continues to grow older rapidly, mostly because of declining fertility and increasing longevity. Since age represents the largest risk factor for cardiovascular disease, the prevalence of these pathologies increases dramatically with increasing age. In order to improve patient care and prevention for age-related cardiac diseases, insight should be gained from the analysis of processes involved in and leading to cardiac aging. It is from this perspective that we provide here an overview of changes associated with age in the heart on four levels: functional, structural, cellular and molecular. We highlight those changes that are in common with the development of the two major age-associated cardiac pathologies: heart failure and atrial fibrillation. These commonly affected processes in aging and cardiac pathophysiology may provide an explanation for the age risk factor in cardiac disease.
Collapse
Affiliation(s)
- Marja Steenman
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, Nantes, France.
| | - Gilles Lande
- l'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France
| |
Collapse
|
24
|
Li X, Li W, Gao Z, Li H. Association of cardiac injury with iron-increased oxidative and nitrative modifications of the SERCA2a isoform of sarcoplasmic reticulum Ca2+-ATPase in diabetic rats. Biochimie 2016; 127:144-52. [DOI: 10.1016/j.biochi.2016.05.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/17/2016] [Indexed: 12/21/2022]
|
25
|
Cannatà A, Camparini L, Sinagra G, Giacca M, Loffredo FS. Pathways for salvage and protection of the heart under stress: novel routes for cardiac rejuvenation. Cardiovasc Res 2016; 111:142-53. [DOI: 10.1093/cvr/cvw106] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/10/2016] [Indexed: 01/07/2023] Open
|
26
|
D'Annunzio V, Perez V, Boveris A, Gelpi RJ, Poderoso JJ. Role of thioredoxin-1 in ischemic preconditioning, postconditioning and aged ischemic hearts. Pharmacol Res 2016; 109:24-31. [PMID: 26987940 DOI: 10.1016/j.phrs.2016.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 01/12/2023]
Abstract
Thioredoxin is one of the most important cellular antioxidant systems known to date, and is responsible of maintaining the reduced state of the intracellular space. Trx-1 is a small cytosolic protein whose transcription is induced by stress. Therefore it is possible that this antioxidant plays a protective role against the oxidative stress caused by an increase of reactive oxygen species concentration, as occurs during the reperfusion after an ischemic episode. However, in addition to its antioxidant properties, it is able to activate other cytoplasmic and nuclear mediators that confer cardioprotection. It is remarkable that Trx-1 also participates in myocardial protection mechanisms such as ischemic preconditioning and postconditioning, activating proteins related to cellular survival. In this sense, it has been shown that Trx-1 inhibition abolished the preconditioning cardioprotective effect, evidenced through apoptosis and infarct size. Furthermore, ischemic postconditioning preserves Trx-1 content at reperfusion, after ischemia. However, comorbidities such as aging can modify this powerful cellular defense leading to decrease cardioprotection. Even ischemic preconditioning and postconditioning protocols performed in aged animal models failed to decrease infarct size. Therefore, the lack of success of antioxidants therapies to treat ischemic heart disease could be solved, at least in part, avoiding the damage of Trx system.
Collapse
Affiliation(s)
- Veronica D'Annunzio
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Argentina; Institute of Cardiovascular Physiopathology, Department of Pathology, Faculty of Medicine, University of Buenos Aires, Argentina
| | - Virginia Perez
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Argentina; Institute of Cardiovascular Physiopathology, Department of Pathology, Faculty of Medicine, University of Buenos Aires, Argentina
| | - Alberto Boveris
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Argentina
| | - Ricardo J Gelpi
- Institute of Biochemistry and Molecular Medicine (IBIMOL, UBA-CONICET), Argentina; Institute of Cardiovascular Physiopathology, Department of Pathology, Faculty of Medicine, University of Buenos Aires, Argentina.
| | - Juan J Poderoso
- Laboratory of Oxygen Metabolism, University Hospital, University of Buenos Aires, Argentina
| |
Collapse
|
27
|
Griecsová L, Farkašová V, Gáblovský I, Khandelwal VKM, Bernátová I, Tatarková Z, Kaplan P, Ravingerová T. Effect of maturation on the resistance of rat hearts against ischemia. Study of potential molecular mechanisms. Physiol Res 2015; 64:S685-96. [PMID: 26674286 DOI: 10.33549/physiolres.933222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Reduced tolerance to ischemia/reperfusion (IR) injury has been shown in elder human and animal hearts, however, the onset of this unfavorable phenotype and cellular mechanisms behind remain unknown. Moreover, aging may interfere with the mechanisms of innate cardioprotection (preconditioning, PC) and cause defects in protective cell signaling. We studied the changes in myocardial function and response to ischemia, as well as selected proteins involved in "pro-survival" pathways in the hearts from juvenile (1.5 months), younger adult (3 months) and mature adult (6 months) male Wistar rats. In Langendorff-perfused hearts exposed to 30-min ischemia/2-h reperfusion with or without prior PC (one cycle of 5-min ischemia/5-min reperfusion), we measured occurrence of reperfusion-induced arrhythmias, recovery of contractile function (left ventricular developed pressure, LVDP, in % of pre-ischemic values), and size of infarction (IS, in % of area at risk size, TTC staining and computerized planimetry). In parallel groups, LV tissue was sampled for the detection of protein levels (WB) of Akt kinase (an effector of PI3-kinase), phosphorylated (activated) Akt (p-Akt), its target endothelial NO synthase (eNOS) and protein kinase Cepsilon (PKCepsilon) as components of "pro-survival" cascades. Maturation did not affect heart function, however, it impaired cardiac response to lethal IR injury (increased IS) and promoted arrhythmogenesis. PC reduced the occurrence of malignant arrhythmias, IS and improved LVDP recovery in the younger animals, while its efficacy was attenuated in the mature adults. Loss of PC protection was associated with age-dependent reduced Akt phosphorylation and levels of eNOS and PKCepsilon in the hearts of mature animals compared with the younger ones, as well as with a failure of PC to upregulate these proteins. Aging-related alterations in myocardial response to ischemia may be caused by dysfunction of proteins involved in protective cell signaling that may occur already during the process of maturation.
Collapse
Affiliation(s)
- L Griecsová
- Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Upadhya B, Taffet GE, Cheng CP, Kitzman DW. Heart failure with preserved ejection fraction in the elderly: scope of the problem. J Mol Cell Cardiol 2015; 83:73-87. [PMID: 25754674 DOI: 10.1016/j.yjmcc.2015.02.025] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 12/13/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is the most common form of heart failure (HF) in older adults, particularly women, and is increasing in prevalence as the population ages. With morbidity and mortality on par with HF with reduced ejection fraction, it remains a most challenging clinical syndrome for the practicing clinician and basic research scientist. Originally considered to be predominantly caused by diastolic dysfunction, more recent insights indicate that HFpEF in older persons is typified by a broad range of cardiac and non-cardiac abnormalities and reduced reserve capacity in multiple organ systems. The globally reduced reserve capacity is driven by: 1) inherent age-related changes; 2) multiple, concomitant co-morbidities; 3) HFpEF itself, which is likely a systemic disorder. These insights help explain why: 1) co-morbidities are among the strongest predictors of outcomes; 2) approximately 50% of clinical events in HFpEF patients are non-cardiovascular; 3) clinical drug trials in HFpEF have been negative on their primary outcomes. Embracing HFpEF as a true geriatric syndrome, with complex, multi-factorial pathophysiology and clinical heterogeneity could provide new mechanistic insights and opportunities for progress in management. This article is part of a Special Issue entitled CV Aging.
Collapse
Affiliation(s)
- Bharathi Upadhya
- Cardiology Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - George E Taffet
- Geriatrics and Cardiovascular Sciences, Baylor College of Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Che Ping Cheng
- Cardiology Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Dalane W Kitzman
- Cardiology Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
29
|
Fernandez-Sanz C, Ruiz-Meana M, Castellano J, Miro-Casas E, Nuñez E, Inserte J, Vázquez J, Garcia-Dorado D. Altered FoF1 ATP synthase and susceptibility to mitochondrial permeability transition pore during ischaemia and reperfusion in aging cardiomyocytes. Thromb Haemost 2015; 113:441-51. [PMID: 25631625 DOI: 10.1160/th14-10-0901] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/15/2015] [Indexed: 12/27/2022]
Abstract
Aging is a major determinant of the incidence and severity of ischaemic heart disease. Preclinical information suggests the existence of intrinsic cellular alterations that contribute to ischaemic susceptibility in senescent myocardium, by mechanisms not well established. We investigated the role of altered mitochondrial function in the adverse effect of aging. Isolated perfused hearts from old mice (> 20 months) displayed increased ischaemia-reperfusion injury as compared to hearts from adult mice (6 months) despite delayed onset of ischaemic rigor contracture. In cardiomyocytes from aging hearts there was a more rapid decline of mitochondrial membrane potential (Δψm) as compared to young ones, but ischaemic rigor shortening was also delayed. Transient recovery of Δψm observed during ischaemia, secondary to the reversal of mitochondrial FoF1 ATP synthase to ATPase mode, was markedly reduced in aging cardiomyocytes. Proteomic analysis demonstrated increased oxidation of different subunits of ATP synthase. Altered bionergetics in aging cells was associated with reduced mitochondrial calcium uptake and more severe cytosolic calcium overload during ischaemia-reperfusion. Despite attenuated ROS burst and mitochondrial calcium overload, mitochondrial permeability transition pore (mPTP) opening and cell death was increased in reperfused aged cells. In vitro studies demonstrated a significantly reduced calcium retention capacity in interfibrillar mitochondria from aging hearts. Our results identify altered FoF1 ATP synthase and increased sensitivity of mitochondria to undergo mPTP opening as important determinants of the reduced tolerance to ischaemia-reperfusion in aging hearts. Because ATP synthase has been proposed to conform mPTP, it is tempting to hypothesise that oxidation of ATP synthase underlie both phenomena.
Collapse
Affiliation(s)
| | - Marisol Ruiz-Meana
- Marisol Ruiz-Meana, Cardiologia, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron- Universitat Autonoma de Barcelona, Pg Vall d'Hebron 119-129, 08035 Barcelona, Spain, Tel.: +34 93 489 4037, Fax:+34 93 489 4032, E-mail:
| | | | | | | | | | | | | |
Collapse
|
30
|
Martin B, Chadwick W, Janssens J, Premont RT, Schmalzigaug R, Becker KG, Lehrmann E, Wood WH, Zhang Y, Siddiqui S, Park SS, Cong WN, Daimon CM, Maudsley S. GIT2 Acts as a Systems-Level Coordinator of Neurometabolic Activity and Pathophysiological Aging. Front Endocrinol (Lausanne) 2015; 6:191. [PMID: 26834700 PMCID: PMC4716144 DOI: 10.3389/fendo.2015.00191] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/14/2015] [Indexed: 01/08/2023] Open
Abstract
Aging represents one of the most complicated and highly integrated somatic processes. Healthy aging is suggested to rely upon the coherent regulation of hormonal and neuronal communication between the central nervous system and peripheral tissues. The hypothalamus is one of the main structures in the body responsible for sustaining an efficient interaction between energy balance and neurological activity and therefore likely coordinates multiple systems in the aging process. We previously identified, in hypothalamic and peripheral tissues, the G protein-coupled receptor kinase interacting protein 2 (GIT2) as a stress response and aging regulator. As metabolic status profoundly affects aging trajectories, we investigated the role of GIT2 in regulating metabolic activity. We found that genomic deletion of GIT2 alters hypothalamic transcriptomic signatures related to diabetes and metabolic pathways. Deletion of GIT2 reduced whole animal respiratory exchange ratios away from those related to primary glucose usage for energy homeostasis. GIT2 knockout (GIT2KO) mice demonstrated lower insulin secretion levels, disruption of pancreatic islet beta cell mass, elevated plasma glucose, and insulin resistance. High-dimensionality transcriptomic signatures from islets isolated from GIT2KO mice indicated a disruption of beta cell development. Additionally, GIT2 expression was prematurely elevated in pancreatic and hypothalamic tissues from diabetic-state mice (db/db), compared to age-matched wild type (WT) controls, further supporting the role of GIT2 in metabolic regulation and aging. We also found that the physical interaction of pancreatic GIT2 with the insulin receptor and insulin receptor substrate 2 was diminished in db/db mice compared to WT mice. Therefore, GIT2 appears to exert a multidimensional "keystone" role in regulating the aging process by coordinating somatic responses to energy deficits.
Collapse
Affiliation(s)
- Bronwen Martin
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Wayne Chadwick
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jonathan Janssens
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Richard T. Premont
- Department of Medicine, Gastroenterology Division, Duke University, Durham, NC, USA
| | - Robert Schmalzigaug
- Department of Medicine, Gastroenterology Division, Duke University, Durham, NC, USA
| | - Kevin G. Becker
- Gene Expression and Genomics Unit, National Institutes of Health, Baltimore, MD, USA
| | - Elin Lehrmann
- Gene Expression and Genomics Unit, National Institutes of Health, Baltimore, MD, USA
| | - William H. Wood
- Gene Expression and Genomics Unit, National Institutes of Health, Baltimore, MD, USA
| | - Yongqing Zhang
- Gene Expression and Genomics Unit, National Institutes of Health, Baltimore, MD, USA
| | - Sana Siddiqui
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Sung-Soo Park
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Wei-na Cong
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Caitlin M. Daimon
- Metabolism Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Stuart Maudsley
- Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Translational Neurobiology Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
- *Correspondence: Stuart Maudsley,
| |
Collapse
|
31
|
Loffredo FS, Nikolova AP, Pancoast JR, Lee RT. Heart failure with preserved ejection fraction: molecular pathways of the aging myocardium. Circ Res 2014; 115:97-107. [PMID: 24951760 DOI: 10.1161/circresaha.115.302929] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Age-related diastolic dysfunction is a major factor in the epidemic of heart failure. In patients hospitalized with heart failure, HFpEF is now as common as heart failure with reduced ejection fraction. We now have many successful treatments for heart failure with reduced ejection fraction, while specific treatment options for HFpEF patients remain elusive. The lack of treatments for HFpEF reflects our very incomplete understanding of this constellation of diseases. There are many pathophysiological factors in HFpEF, but aging appears to play an important role. Here, we propose that aging of the myocardium is itself a specific pathophysiological process. New insights into the aging heart, including hormonal controls and specific molecular pathways, such as microRNAs, are pointing to myocardial aging as a potentially reversible process. While the overall process of aging remains mysterious, understanding the molecular pathways of myocardial aging has never been more important. Unraveling these pathways could lead to new therapies for the enormous and growing problem of HFpEF.
Collapse
Affiliation(s)
- Francesco S Loffredo
- From the Department of Stem Cell and Regenerative Biology, Harvard University, Brigham Regenerative Medicine Center, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA; and Harvard Stem Cell Institute, Cambridge, MA
| | - Andriana P Nikolova
- From the Department of Stem Cell and Regenerative Biology, Harvard University, Brigham Regenerative Medicine Center, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA; and Harvard Stem Cell Institute, Cambridge, MA
| | - James R Pancoast
- From the Department of Stem Cell and Regenerative Biology, Harvard University, Brigham Regenerative Medicine Center, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA; and Harvard Stem Cell Institute, Cambridge, MA
| | - Richard T Lee
- From the Department of Stem Cell and Regenerative Biology, Harvard University, Brigham Regenerative Medicine Center, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA; and Harvard Stem Cell Institute, Cambridge, MA.
| |
Collapse
|
32
|
Liu J, Sirenko S, Juhaszova M, Sollott SJ, Shukla S, Yaniv Y, Lakatta EG. Age-associated abnormalities of intrinsic automaticity of sinoatrial nodal cells are linked to deficient cAMP-PKA-Ca(2+) signaling. Am J Physiol Heart Circ Physiol 2014; 306:H1385-97. [PMID: 24633551 DOI: 10.1152/ajpheart.00088.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A reduced sinoatrial node (SAN) functional reserve underlies the age-associated decline in heart rate acceleration in response to stress. SAN cell function involves an oscillatory coupled-clock system: the sarcoplasmic reticulum (SR), a Ca(2+) clock, and the electrogenic-sarcolemmal membrane clock. Ca(2+)-activated-calmodulin-adenylyl cyclase/CaMKII-cAMP/PKA-Ca(2+) signaling regulated by phosphodiesterase activity drives SAN cells automaticity. SR-generated local calcium releases (LCRs) activate Na(+)/Ca(2+) exchanger in the membrane clock, which initiates the action potential (AP). We hypothesize that SAN cell dysfunctions accumulate with age. We found a reduction in single SAN cell AP firing in aged (20-24 mo) vs. adult (3-4 mo) mice. The sensitivity of the SAN beating rate responses to both muscarinic and adrenergic receptor activation becomes decreased in advanced age. Additionally, age-associated coincident dysfunctions occur stemming from compromised clock functions, including a reduced SR Ca(2+) load and a reduced size, number, and duration of spontaneous LCRs. Moreover, the sensitivity of SAN beating rate to a cAMP stress induced by phosphodiesterase inhibitor is reduced, as are the LCR size, amplitude, and number in SAN cells from aged vs. adult mice. These functional changes coincide with decreased expression of crucial SR Ca(2+)-cycling proteins, including SR Ca(2+)-ATPase pump, ryanodine receptors, and Na(+)/Ca(2+) exchanger. Thus a deterioration in intrinsic Ca(2+) clock kinetics in aged SAN cells, due to deficits in intrinsic SR Ca(2+) cycling and its response to a cAMP-dependent pathway activation, is involved in the age-associated reduction in intrinsic resting AP firing rate, and in the reduction in the acceleration of heart rate during exercise.
Collapse
Affiliation(s)
- Jie Liu
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland; and Department of Physiology, University of Sydney, Sydney, New South Wales, Australia
| | - Syevda Sirenko
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland; and
| | - Magdalena Juhaszova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland; and
| | - Steven J Sollott
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland; and
| | - Shweta Shukla
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland; and
| | - Yael Yaniv
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland; and
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland; and
| |
Collapse
|
33
|
Yaniv Y, Juhaszova M, Sollott SJ. Age-related changes of myocardial ATP supply and demand mechanisms. Trends Endocrinol Metab 2013; 24:495-505. [PMID: 23845538 PMCID: PMC3783621 DOI: 10.1016/j.tem.2013.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 01/03/2023]
Abstract
In advanced age, the resting myocardial oxygen consumption rate (MVO2) and cardiac work (CW) in the rat remain intact. However, MVO2, CW and cardiac efficiency achieved at high demand are decreased with age, compared to maximal values in the young. Whether this deterioration is due to decrease in myocardial ATP demand, ATP supply, or the control mechanisms that match them remains controversial. Here we discuss evolving perspectives of age-related changes of myocardial ATP supply and demand mechanisms, and critique experimental models used to investigate aging. Specifically, we evaluate experimental data collected at the level of isolated mitochondria, tissue, or organism, and discuss how mitochondrial energetic mechanisms change in advanced age, both at basal and high energy-demand levels.
Collapse
Affiliation(s)
- Yael Yaniv
- Laboratory of Cardiovascular Science, Biomedical Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | | | | |
Collapse
|
34
|
Balderas-Villalobos J, Molina-Muñoz T, Mailloux-Salinas P, Bravo G, Carvajal K, Gómez-Viquez NL. Oxidative stress in cardiomyocytes contributes to decreased SERCA2a activity in rats with metabolic syndrome. Am J Physiol Heart Circ Physiol 2013; 305:H1344-53. [PMID: 23997093 DOI: 10.1152/ajpheart.00211.2013] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ca(+) mishandling due to impaired activity of cardiac sarco(endo)plasmic reticulum Ca(2+) ATPase (SERCA2a) has been associated with the development of left ventricular diastolic dysfunction in insulin-resistant cardiomyopathy. However, the molecular causes underlying SERCA2a alterations induced by insulin resistance and related metabolic disorders, such as metabolic syndrome (MetS), are not completely understood. In this study, we used a sucrose-fed rat model of MetS to test the hypothesis that decreased SERCA2a activity is mediated by elevated oxidative stress produced in the MetS heart. Production of ROS and cytosolic Ca(2+) concentration were recorded in left ventricular myocytes using confocal imaging. The level of SERCA2a oxidation was determined in left ventricular homogenates by biotinylated iodoacetamide labeling. Compared with control rats, sucrose-fed rats exhibited several characteristics of MetS, including central obesity, insulin resistance, hyperinsulinemia, and hypertriglyceridemia. Moreover, relative to myocytes from control rats, myocytes from MetS rats exhibited elevated basal production of ROS accompanied by slowed cytosolic Ca(2+) removal, reflected by prolonged Ca(2+) transients. The slowed cytosolic Ca(2+) removal was associated with a significant decrease in SERCA2a-mediated Ca(2+) reuptake and increased SERCA2a oxidation. Importantly, myocytes from MetS rats treated with the antioxidant N-acetylcysteine showed normal ROS levels and SERCA2a-mediated Ca(2+) reuptake as well as accelerated cytosolic Ca(2+) removal. These data suggest that elevated oxidative stress may induce oxidative modifications on SERCA2a leading to abnormal function of this protein in the MetS heart.
Collapse
Affiliation(s)
- Jaime Balderas-Villalobos
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados-Instituto Politécnico Nacional, Mexico City, Mexico; and
| | | | | | | | | | | |
Collapse
|