1
|
Salami EA, Rotimi OA. The impact of Bisphenol-A on human reproductive health. Toxicol Rep 2024; 13:101773. [PMID: 39526236 PMCID: PMC11550589 DOI: 10.1016/j.toxrep.2024.101773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Bisphenol-A (BPA) is a recognized endocrine-disrupting chemical used to produce several consumer goods and products. There has been widespread exposure to BPA because of increased industrial production and use of BPA-containing products. As a result of these exposures, BPA is found in several human body fluids and can cause endocrine disruption by interfering with hormone signaling pathways and epigenetic modifications. Therefore, human reproductive health and development have been adversely affected by BPA. This review aimed to consolidate existing knowledge on the impact of BPA on human reproductive health, examining its effects on both males and females. To achieve this, we systematically searched four databases for studies that associated BPA with reproductive health (male and female), after which we retrieved the important information from the selected articles. There was an association of reproductive health diseases with high BPA exposure. In males, BPA was associated with increased sperm alterations, altered reproductive hormone levels, and testicular atrophy. In females, there was an association of BPA exposure with hormonal imbalances, reduced ovarian reserve, and increased likelihood of conditions such as fibroids, polycystic ovarian syndrome, endometriosis and infertility. BPA's pervasive presence and its harmful effects on reproductive health underscore the need for global regulation and public awareness. Although substantial evidence from animal and in vitro studies supports the detrimental effects of BPA, there is a need for more human-focused research, particularly in developing countries, to confirm these findings. This review advocates for increased regulatory measures to limit BPA exposure.
Collapse
Affiliation(s)
- Esther A. Salami
- Department of Biochemistry, Covenant University, Ogun State, Nigeria
| | | |
Collapse
|
2
|
Jiang B, Yang D, Peng H. Environmental toxins and reproductive health: unraveling the effects on Sertoli cells and the blood-testis barrier in animals†. Biol Reprod 2024; 111:977-986. [PMID: 39180724 DOI: 10.1093/biolre/ioae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024] Open
Abstract
Environmental pollution is an inevitable ecological issue accompanying the process of socialization, with increasing attention to its impacts on individual organisms and ecological chains. The reproductive system, responsible for transmitting genetic material in animals, is one of the most sensitive systems to environmental toxins. Research reveals that Sertoli cells are the primary target cells for the action of environmental toxins. Different environmental toxins mostly affect the blood-testis barrier and lead to male reproductive disorders by disrupting Sertoli cells. Therefore, this article provides an in-depth exploration of the toxic mechanisms of various types of environmental toxins on the male testes. It reveals the dynamic processes of tight junctions in the blood-testis barrier affected by environmental toxins and their specific roles in the reconstruction process.
Collapse
Affiliation(s)
- Biao Jiang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Diqi Yang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
| | - Hui Peng
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, P.R. China
| |
Collapse
|
3
|
Davis OS, Scandlan OLM, Sabry R, Ghaffarzadeh M, Hannam TG, Lagunov A, Favetta LA. High seminal BPA in IVF patients correlates with lower sperm count and up-regulated miR-21 and miR-130a. Reprod Toxicol 2024; 128:108651. [PMID: 38925230 DOI: 10.1016/j.reprotox.2024.108651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/06/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Bisphenol A (BPA) is a widespread industrial chemical, used as the key monomer of polycarbonate plastics and epoxy resins. BPA has been detected in human seminal fluid and has been correlated with changes in sperm parameters, crucial in determining male fertility. In this study, semen samples were collected from 100 patients aged 29-47 years undergoing fertility assessment between 2021 and 2023 and analyzed according to WHO guidelines. BPA levels in the seminal plasma were then measured through an enzyme-linked immunosorbent assay (ELISA) and compared to sperm quality metrics. The relative mRNA/miRNA expression of key genes associated to male reproduction, including androgen receptor, miR-34c, miR-21, miR-130a, was then quantified and compared between groups with high or low BPA content. Our results revealed that BPA levels were increased with age and were negatively correlated with sperm counts (p<0.05). The negative correlation remained significant when patients were age-matched. No other relationships between seminal BPA and motility, morphology or DNA fragmentation levels were observed. qPCR analysis showed that androgen receptor mRNA expression was significantly greater in sperm with high seminal BPA (p<0.05). Moreover, we found that the expression of miR-21 and miR-130a was also upregulated in the higher BPA group (p<0.05). These results display a relationship between BPA content in the semen and male fertility parameters, and provide insights into the molecular mechanisms through which BPA may be affecting male reproductive capability. Ultimately, this research can potentially drive changes to guidelines and exposure limits for BPA exposure.
Collapse
Affiliation(s)
- Ola S Davis
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, OVC, University of Guelph, Guelph, ON, Canada
| | - Olivia L M Scandlan
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, OVC, University of Guelph, Guelph, ON, Canada
| | - Reem Sabry
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, OVC, University of Guelph, Guelph, ON, Canada
| | | | | | | | - Laura A Favetta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, OVC, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
4
|
Jurikova M, Dvorakova D, Bechynska K, Pulkrabova J. Bisphenols in daily clothes from conventional and recycled material: evaluation of dermal exposure to potentially toxic substances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55663-55675. [PMID: 39240436 DOI: 10.1007/s11356-024-34904-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/30/2024] [Indexed: 09/07/2024]
Abstract
Given the increasing concern about chemical exposure from textiles, our study examines the risks of dermal exposure to bisphenol A (BPA), bisphenol S (BPS), bisphenol B (BPB) and bisphenol F (BPF) from conventional and recycled textiles for adults, aiming to obtain new data, assess exposure, and evaluate the impact of washing on bisphenol levels. A total of 57 textile samples (33 from recycled and 24 from conventional material) were subjected to ultrasound-assisted extraction (UAE) followed by ultra-high performance liquid chromatography with tandem mass spectrometry analysis (UHPLC-MS/MS). The BPA and BPS concentrations varied widely (BPA: < 0.050 to 625 ng/g, BPS: 0.277-2,474 ng/g). The median BPA content in recycled textiles (13.5 ng/g) was almost twice as high as that of 7.66 ng/g in conventional textiles. BPS showed a median of 1.85 ng/g in recycled textiles and 3.42 ng/g in conventional textiles, indicating a shift from BPA to BPS in manufacturing practices. Simulated laundry experiments showed an overall reduction in bisphenols concentrations after washing. The study also assessed potential health implications via dermal exposure to dry and sweat-wet textiles compared to a tolerable daily intake (TDI) of 0.2 ng/kg bw/day for BPA set by the European Food Safety Authority (EFSA). Exposure from dry textiles remained below this threshold, while exposure from wet textiles often exceeded it, indicating an increased risk under conditions that simulate sweating or humidity. By finding the widespread presence of bisphenols in textiles, our study emphasises the importance of being aware of the potential risks associated with recycling materials as well as the benefits.
Collapse
Affiliation(s)
- Martina Jurikova
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Technicka 5, 166 28, Prague, Czechia
| | - Darina Dvorakova
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Technicka 5, 166 28, Prague, Czechia
| | - Kamila Bechynska
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Technicka 5, 166 28, Prague, Czechia
| | - Jana Pulkrabova
- Faculty of Food and Biochemical Technology, Department of Food Analysis and Nutrition, University of Chemistry and Technology (UCT), Prague, Technicka 5, 166 28, Prague, Czechia.
| |
Collapse
|
5
|
Charkiewicz AE, Omeljaniuk WJ, Nikliński J. Bisphenol A-What Do We Know? A Global or Local Approach at the Public Health Risk Level. Int J Mol Sci 2024; 25:6229. [PMID: 38892416 PMCID: PMC11172700 DOI: 10.3390/ijms25116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
BPA has demonstrated enormous multisystem and multi-organ toxicity shown mainly in animal models. Meanwhile, the effects of its exposure in humans still require years of observation, research, and answers to many questions. Even minimal and short-term exposure contributes to disorders or various types of dysfunction. It is released directly or indirectly into the environment at every stage of the product life cycle, demonstrating its ease of penetration into the body. The ubiquity and general prevalence of BPA influenced the main objective of the study, which was to assess the toxicity and health effects of BPA and its derivatives based on the available literature. In addition, the guidelines of various international institutions or regions of the world in terms of its reduction in individual products were checked. Bisphenol A is the most widely known chemical and perhaps even the most studied by virtually all international or national organizations, but nonetheless, it is still controversial. In general, the level of BPA biomonitoring is still too high and poses a potential threat to public health. It is beginning to be widely argued that future toxicity studies should focus on molecular biology and the assessment of human exposure to BPA, as well as its substitutes. The effects of its exposure still require years of observation, extensive research, and answers to many questions. It is necessary to continue to deepen the knowledge and interest of many organizations, companies, and consumers around the world in order to make rational purchases as well as future choices, not only consumer ones.
Collapse
Affiliation(s)
| | - Wioleta Justyna Omeljaniuk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
6
|
Zhao Y, Luo X, Hu J, Panga MJ, Appiah C, Du Z, Zhu L, Retyunskiy V, Gao X, Ma B, Zhang Q. Syringin alleviates bisphenol A-induced spermatogenic defects and testicular injury by suppressing oxidative stress and inflammation in male zebrafish. Int Immunopharmacol 2024; 131:111830. [PMID: 38520788 DOI: 10.1016/j.intimp.2024.111830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Syringin (SRG) is a bioactive principle possessing extensive activities including scavenging of free radicals, inhibition of apoptosis, and anti-inflammatory properties. However, its effects on spermatogenic defects and testicular injury as well as the underlying mechanisms are still unclear. This study aims to investigate the protective effect of SRG on testis damage in zebrafish and explore its potential molecular events. Zebrafish testicular injury was induced by exposure to bisphenol A (BPA) (3000 μg/L) for two weeks. Fish were treated with intraperitoneal injection of SRG at different doses (5 and 50 mg/kg bodyweight) for two more weeks under BPA induction. Subsequently, the testis and sperm were collected for morphological, histological, biochemical and gene expression examination. It was found that the administration of SRG resulted in a significant protection from BPA-caused impact on sperm concentration, morphology, motility, fertility rate, testosterone level, spermatogenic dysfunction and resulted in increased apoptotic and reactive oxygen species' levels. Furthermore, testicular transcriptional profiling alterations revealed that the regulation of inflammatory response and oxidative stress were generally enriched in differentially expressed genes (DEGs) after SRG treatment. Additionally, it was identified that SRG prevented BPA-induced zebrafish testis injury through upregulation of fn1a, krt17, fabp10a, serpina1l and ctss2. These results indicate that SRG alleviated spermatogenic defects and testicular injury by suppressing oxidative stress and inflammation in male zebrafish.
Collapse
Affiliation(s)
- Ye Zhao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Xu Luo
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Jinyuan Hu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Mogellah John Panga
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Clara Appiah
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Zhanxiang Du
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Lin Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Vladimir Retyunskiy
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xing Gao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China.
| | - Qi Zhang
- School of Food Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
7
|
El-Beshbishy HA, Waggas DS, Ali RA. Rats' testicular toxicity induced by bisphenol A is lessened by crocin via an antiapoptotic mechanism and bumped P-glycoprotein expression. Toxicon 2024; 241:107674. [PMID: 38458495 DOI: 10.1016/j.toxicon.2024.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Bisphenol A (BPA) engenders testicular toxicity via hydroxyl free radical genesis in rat striatum and depletion of the endogenous antioxidants in the epididymal sperms. The multi-drug resistance efflux carrier; P-glycoprotein (P-gp) expel the BPA from the testis and is responsible for the testicular protection through the deactivation of numerous xenobiotics. In our study, we investigated whether the BPA-induced testicular toxicity could be circumvented through administration of an antioxidant; crocin (Cr). Implication of P-gp expression was also investigated. Rats administered BPA (10 mg/kg b.w. orally for 14 days), dropped the body weight, testes/body weight ratio, total protein content, testosterone, follicle stimulating hormone, luteinizing hormone, and sperm motility & count, total antioxidant status, glutathione content and antioxidant enzymes (superoxide dismutase and catalase), concomitant with the elevation of the percentage abnormal sperm morphology, as well as testicular lipid peroxides and nitrite/nitrate levels. Histopathological examination showed spermatogenesis disorders after the BPA rats exposure. The immunohistochemical study showed up-regulation of the P-gp as evident by increasing immunoreactivity in interstitial cells, with positive localization in some spermatogonia cells. The BPA-treated rats showed positive immunoreactivity against caspase-3. The co-intake of Cr (200 mg/kg b.w./day, i.p. 14 days) along with the BPA, significantly ameliorated all the mentioned parameters, boosted histopathological image, fell the caspase-3 up-regulation, and perched the P-gp expression. We showed that, Cr promotes P-gp as an approach to nurture the testicles against the BPA toxicity. In conclusion; Cr lessens the oxidative stress conditions to safeguard rats from the BPA-induced testicular toxicity and sex hormones abnormalities, reducing apoptosis and up-regulating P-gp.
Collapse
Affiliation(s)
- Hesham A El-Beshbishy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, 11231, Egypt; Medical Laboratory Sciences Department, Fakeeh College for Medical Sciences, Jeddah, 21461, Saudi Arabia.
| | - Dania S Waggas
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, 21461, Saudi Arabia
| | - Rabab A Ali
- Genetics Unit, Children Hospital, Mansoura University, Mansoura, 35516, Egypt; Medical Laboratory Technology Dept., College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| |
Collapse
|
8
|
Nie J, Mao Z, Zeng X, Zhao X. Rapamycin protects Sertoli cells against BPA-induced autophagy disorders. Food Chem Toxicol 2024; 186:114510. [PMID: 38365117 DOI: 10.1016/j.fct.2024.114510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Bisphenol A (BPA) is a well-known environmental contaminant that can negatively impact reproductive function. Disruption of autophagy is implicated in BPA-induced cell injury, the specific molecular mechanisms through which BPA affects autophagy in Sertoli cells are still unknown. In the present study, TM4 cells were exposed to various doses of BPA (10, 100, and 200 μM), and the results indicated that BPA exposure led to the accumulation of autophagosomes, this change was accompanied by increased expression of p-mTOR and decreased expression of Atg12, a protein involved in regulating autophagy initiation. Additionally, BPA exposure upregulated the expression levels of p62, a protein involved in autophagic degradation. The inhibition of autophagy initiation and autophagic degradation contributes to the accumulation of autophagosomes. Further studies showed that BPA exposure didn't affect the expression of the lysosome protein LAMP1; however, decreased cytoplasmic retention of acridine orange in TM4 cells may explain the disruption of autophagy. The role of rapamycin and chloroquine (CQ), an autophagy inhibitor that impairs lysosomal degradation also confirmed the effect of BPA on autophagy regulation. Specifically, rapamycin can protect Sertoli cells against BPA-induced cell injury by promoting autophagy. These findings contribute to our understanding of the mechanisms underlying reproductive toxicity caused by BPA.
Collapse
Affiliation(s)
- Junyu Nie
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China.
| | - Zhimin Mao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China
| | - Xiuling Zhao
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
9
|
Sánchez-Resino E, Marquès M, Gutiérrez-Martín D, Restrepo-Montes E, Martínez MÁ, Salas-Huetos A, Babio N, Salas-Salvadó J, Gil-Solsona R, Gago-Ferrero P. Exploring the Occurrence of Organic Contaminants in Human Semen through an Innovative LC-HRMS-Based Methodology Suitable for Target and Nontarget Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19236-19252. [PMID: 37934628 PMCID: PMC10722465 DOI: 10.1021/acs.est.3c04347] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
Understanding the potential impact of organic contaminants on male fertility is crucial, yet limited studies have examined these chemicals in semen, with most focusing on urine and blood. To address this gap, we developed and validated a robust LC-HRMS methodology for semen analysis, with a focus on polar and semipolar chemicals. Our methodology enables the quantitative (or semiquantitative) analysis of >2000 chemicals being compatible with suspect and nontarget strategies and providing unprecedented insights into the occurrence and potential bioaccumulation of diverse contaminants in this matrix. We comprehensively analyzed exogenous organic chemicals and associated metabolites in ten semen samples from Spanish participants collected in an area with a large presence of the chemical industry included in the LED-FERTYL Spanish study cohort. This investigation revealed the presence of various contaminants in semen, including plastic additives, PFAS, flame retardants, surfactants, and insecticides. Notably, prevalent plastic additives such as phthalic acid esters and bisphenols were identified, indicating potential health risks. Additionally, we uncovered previously understudied chemicals like the tire additive 2-mercaptobenzothiazole and specific organophosphate flame retardants. This study showcases the potential of our methodology as a valuable tool for large-scale cohort studies, providing insights into the association between contaminant exposure and the risk of male fertility impairments.
Collapse
Affiliation(s)
- Elena Sánchez-Resino
- Laboratory
of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, IISPV, Sant LLorenç 21, Reus, Catalonia 43201, Spain
- Center
of Environmental, Food and Toxicological Technology - TecnATox, Universitat Rovira i Virgili, Reus 43201, Spain
| | - Montse Marquès
- Laboratory
of Toxicology and Environmental Health, School of Medicine, Universitat Rovira i Virgili, IISPV, Sant LLorenç 21, Reus, Catalonia 43201, Spain
- Center
of Environmental, Food and Toxicological Technology - TecnATox, Universitat Rovira i Virgili, Reus 43201, Spain
| | - Daniel Gutiérrez-Martín
- Department
of Environmental Chemistry, Institute of Environmental Assessment
and Water Research − Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona 08034, Spain
- Institute
of Sustainable Processes (ISP) and Department of Analytical Chemistry,
Faculty of Sciences, University of Valladolid
(UVa), Valladolid 47011, Spain
| | - Esteban Restrepo-Montes
- Department
of Environmental Chemistry, Institute of Environmental Assessment
and Water Research − Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona 08034, Spain
| | - María Ángeles Martínez
- Departament
de Bioquímica i Biotecnologia, Grup ANut-DSM, Institut d’Investigació
Sanitària Pere Virgili, CIBEROBN, Fisiopatologia de la Obesidad
y Nutrición (ISCIII), Universitat
Rovira i Virgili, Reus 43201, Spain
| | - Albert Salas-Huetos
- Departament
de Ciències Mèdiques Bàsiques, Unitat de Medicina
Preventiva, Grup ANut-DSM, Institut d’Investigació Sanitària
Pere Virgili, CIBEROBN, Fisiopatologia de la Obesidad y Nutrición
(ISCIII), Universitat Rovira i Virgili, Reus 43201, Spain
- Department
of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| | - Nancy Babio
- Departament
de Bioquímica i Biotecnologia, Grup ANut-DSM, Institut d’Investigació
Sanitària Pere Virgili, CIBEROBN, Fisiopatologia de la Obesidad
y Nutrición (ISCIII), Universitat
Rovira i Virgili, Reus 43201, Spain
| | - Jordi Salas-Salvadó
- Departament
de Bioquímica i Biotecnologia, Grup ANut-DSM, Institut d’Investigació
Sanitària Pere Virgili, CIBEROBN, Fisiopatologia de la Obesidad
y Nutrición (ISCIII), Universitat
Rovira i Virgili, Reus 43201, Spain
| | - Rubén Gil-Solsona
- Department
of Environmental Chemistry, Institute of Environmental Assessment
and Water Research − Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona 08034, Spain
| | - Pablo Gago-Ferrero
- Department
of Environmental Chemistry, Institute of Environmental Assessment
and Water Research − Severo Ochoa Excellence Center (IDAEA), Spanish Council of Scientific Research (CSIC), Barcelona 08034, Spain
| |
Collapse
|
10
|
Ryu DY, Pang WK, Adegoke EO, Rahman MS, Park YJ, Pang MG. Bisphenol-A disturbs hormonal levels and testis mitochondrial activity, reducing male fertility. Hum Reprod Open 2023; 2023:hoad044. [PMID: 38021376 PMCID: PMC10681812 DOI: 10.1093/hropen/hoad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
STUDY QUESTION How does bisphenol-A (BPA) influence male fertility, and which mechanisms are activated following BPA exposure? SUMMARY ANSWER BPA exposure causes hormonal disruption and alters mitochondrial dynamics and activity, ultimately leading to decreased male fertility. WHAT IS KNOWN ALREADY As public health concerns following BPA exposure are rising globally, there is a need to understand the exact mechanisms of BPA on various diseases. BPA exposure causes hormonal imbalances and affects male fertility by binding the estrogen receptors (ERs), but the mechanism of how it mediates the hormonal dysregulation is yet to be studied. STUDY DESIGN SIZE DURATION This study consisted of a comparative study using mice that were separated into a control group and a group exposed to the lowest observed adverse effect level (LOAEL) (n = 20 mice/group) after a week of acclimatization to the environment. For this study, the LOAEL established by the US Environmental Protection Agency of 50 mg/kg body weight (BW)/day of BPA was used. The control mice were given corn oil orally. Based on the daily variations in BW, both groups were gavaged every day from 6 to 11 weeks (6-week exposure). Before sampling, mice were stabilized for a week. Then, the testes and spermatozoa of each mouse were collected to investigate the effects of BPA on male fertility. IVF was carried out using the cumulus-oocyte complexes from female hybrid B6D2F1/CrljOri mice (n = 3) between the ages of eight and twelve weeks. PARTICIPANTS/MATERIALS SETTING METHODS Signaling pathways, apoptosis, and mitochondrial activity/dynamics-related proteins were evaluated by western blotting. ELISA was performed to determine the levels of sex hormones (FSH, LH, and testosterone) in serum. Hematoxylin and eosin staining was used to determine the effects of BPA on histological morphology and stage VII/VIII testicular seminiferous epithelium. Blastocyst formation and cleavage development rate were evaluated using IVF. MAIN RESULTS AND THE ROLE OF CHANCE BPA acted by binding to ERs and G protein-coupled receptors and activating the protein kinase A and mitogen-activated protein kinase signaling pathways, leading to aberrant hormone levels and effects on the respiratory chain complex, ATP synthase and protein-related apoptotic pathways in testis mitochondria (P < 0.05). Subsequently, embryo cleavage and blastocyst formation were reduced after the use of affected sperm, and abnormal morphology of seminiferous tubules and stage VII and VIII seminiferous epithelial cells (P < 0.05) was observed. It is noteworthy that histopathological lesions were detected in the testes at the LOAEL dose, even though the mice remained generally healthy and did not exhibit significant changes in BW following BPA exposure. These observations suggest that testicular toxicity is more than a secondary outcome of compromised overall health in the mice due to systemic effects. LARGE SCALE DATA Not applicable. LIMITATIONS REASONS FOR CAUTION Since the protein expression levels in the testes were validated, in vitro studies in each testicular cell type (Leydig cells, Sertoli cells, and spermatogonial stem cells) would be required to shed further light on the exact mechanism resulting from BPA exposure. Furthermore, the BPA doses employed in this study significantly exceed the typical human exposure levels in real-life scenarios. Consequently, it is imperative to conduct experiments focusing on the effects of BPA concentrations more in line with daily human exposures to comprehensively assess their impact on testicular toxicity and mitochondrial activity. WIDER IMPLICATIONS OF THE FINDINGS These findings demonstrate that BPA exposure impacts male fertility by disrupting mitochondrial dynamics and activities in the testes and provides a solid foundation for subsequent investigations into the effects on male reproductive function and fertility following BPA exposure, and the underlying mechanisms responsible for these effects. In addition, these findings suggest that the LOAEL concentration of BPA demonstrates exceptional toxicity, especially when considering its specific impact on the testes and its adverse consequences for male fertility by impairing mitochondrial activity. Therefore, it is plausible to suggest that BPA elicits distinct toxicological responses and mechanistic endpoints based on the particular concentration levels for each target organ. STUDY FUNDING/COMPETING INTERESTS This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1A6A1A03025159). No competing interests are declared.
Collapse
Affiliation(s)
- Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
11
|
Presunto M, Mariana M, Lorigo M, Cairrao E. The Effects of Bisphenol A on Human Male Infertility: A Review of Current Epidemiological Studies. Int J Mol Sci 2023; 24:12417. [PMID: 37569791 PMCID: PMC10419136 DOI: 10.3390/ijms241512417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Endocrine disruptor chemicals (EDCs) can have a harmful effect on the human body's endocrine system and thus adversely affect the development, reproduction, neurological, cardiovascular, and immune systems and metabolism in humans and wildlife. According to the World Health Organization, EDCs are mostly man-made and found ubiquitously in our daily lives, notably in pesticides, metals, and additives or contaminants in food and personal care products. Human exposure occurs through ingestion, inhalation, and dermal contact. Bisphenol A (BPA) is a proven EDC capable of mimicking or blocking receptors and altering hormone concentrations and metabolism. Although consumed in low doses, it can stimulate cellular responses and affect the body's functions. In humans, exposure to BPA has been correlated with the onset or development of several diseases. This literature review aimed to verify the effects of BPA on human male infertility using the most recently published literature. Thus, this review allowed us to conclude that this compound seems to have harmful effects on human male fertility, causing changes in hormonal and semen characteristics. However, these conclusions lack more robust and reproducible scientific studies. Even so, and since male infertility prevalence is increasing, preventive measures must be taken to ensure male fertility.
Collapse
Affiliation(s)
- Mafalda Presunto
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (M.P.); (M.M.); (M.L.)
| | - Melissa Mariana
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (M.P.); (M.M.); (M.L.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Margarida Lorigo
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (M.P.); (M.M.); (M.L.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Elisa Cairrao
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506 Covilhã, Portugal; (M.P.); (M.M.); (M.L.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| |
Collapse
|
12
|
Jiang W, Ding K, Huang W, Xu F, Lei M, Yue R. Potential effects of bisphenol A on diabetes mellitus and its chronic complications: A narrative review. Heliyon 2023; 9:e16340. [PMID: 37251906 PMCID: PMC10213369 DOI: 10.1016/j.heliyon.2023.e16340] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease caused by multiple factors such as genetics, environment, and lifestyle. Bisphenol A (BPA), as one of the most common endocrine-disrupting chemicals (EDCs), has been strongly implicated in the development of type 2 diabetes mellitus (T2DM). BPA exposure is associated with target organ damage in DM and may exacerbate the progression of some chronic complications of DM. This paper reviews relevant epidemiological, in vivo, and in vitro studies to better understand BPA's potential risk associations and pathological mechanisms in several chronic diabetic complications.
Collapse
Affiliation(s)
- Wei Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Kaixi Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Wenjie Huang
- Chengdu University of Technology, College of Ecology and Environment, Chengdu, 610075, China
| | - Feng Xu
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Ming Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| |
Collapse
|
13
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
14
|
Gonkowski S, Martín J, Aparicio I, Santos JL, Alonso E, Rytel L. Evaluation of Parabens and Bisphenol A Concentration Levels in Wild Bat Guano Samples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1928. [PMID: 36767313 PMCID: PMC9916121 DOI: 10.3390/ijerph20031928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Parabens and bisphenol A are synthetic compounds found in many everyday objects, including bottles, food containers, personal care products, cosmetics and medicines. These substances may penetrate the environment and living organisms, on which they have a negative impact. Till now, numerous studies have described parabens and BPA in humans, but knowledge about terrestrial wild mammals' exposure to these compounds is very limited. Therefore, during this study, the most common concentration levels of BPA and parabens were selected (such as methyl paraben-MeP, ethyl paraben-EtP, propyl paraben-PrP and butyl paraben-BuP) and analyzed in guano samples collected in summer (nursery) colonies of greater mouse-eared bats (Myotis myotis) using liquid chromatography with the tandem mass spectrometry (LC-MS-MS) method. MeP has been found in all guano samples and its median concentration levels amounted to 39.6 ng/g. Other parabens were present in smaller number of samples (from 5% for BuP to 62.5% for EtP) and in lower concentrations. Median concentration levels of these substances achieved 0.95 ng/g, 1.45 ng/g and 15.56 ng/g for EtP, PrP and BuP, respectively. BPA concentration levels did not exceed the method quantification limit (5 ng/g dw) in any sample. The present study has shown that wild bats are exposed to parabens and BPA, and guano samples are a suitable matrix for studies on wild animal exposure to these substances.
Collapse
Affiliation(s)
- Slawomir Gonkowski
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Street Oczapowskiego 14, 10-719 Olsztyn, Poland
| | - Julia Martín
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Irene Aparicio
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Sevilla, Spain
| | - Liliana Rytel
- Department of Internal Diseases with Clinic, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 14, 10-719 Olsztyn, Poland
| |
Collapse
|
15
|
Wang A, Wan Y, Zhou L, Xia W, Guo Y, Mahai G, Yang Z, Xu S, Zhang R. Neonicotinoid insecticide metabolites in seminal plasma: Associations with semen quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151407. [PMID: 34808154 DOI: 10.1016/j.scitotenv.2021.151407] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Animal studies have revealed that exposure to neonicotinoid insecticides (NNIs) could compromise male reproductive function; however, related data on the occurrence of NNIs and their specific metabolites in human seminal plasma are scarce. To explore the potential effects of NNI exposure on male semen quality, we determined the concentrations of NNIs and some of their metabolites (collectively defined as mNNIs) in seminal plasma samples collected from men (n = 191) who visited a fertility clinic in Shijiazhuang, North China from 2018 to 2019. Associations between the mNNI concentrations and semen quality parameters were assessed using linear regression models, adjusting for important covariates. In the seminal plasma samples, desmethyl-acetamiprid (DM-ACE, detection frequency: 98.4%), imidacloprid-olefin (IMI-olefin, detection frequency: 86.5%), and desmethyl-clothianidin (DM-CLO, detection frequency: 70.8%) were frequently detected at median concentrations of 0.052, 0.003, and 0.007 ng/mL, respectively; meanwhile other compounds were detected at less than the method detection limits. In the single-mNNI models, the IMI-olefin concentration was associated with decreased progressive motility [IMI-olefin concentration: percent change (%Δ) = -17.0; 95% confidence interval (CI) = -30.3, -0.92; the highest tertile compared with the lowest tertile: %Δ = -21.1; 95% CI = -37.5, -0.23]. Similar results were found in the multiple-mNNIs models. No other inverse associations were found between the other mNNI concentrations and semen quality parameters. This is the first study to identify the occurrence of mNNIs in the seminal plasma and the potential associations of their concentrations with human semen quality parameters. These findings imply an inverse association between the IMI-olefin concentration and semen quality.
Collapse
Affiliation(s)
- Aizhen Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yanjian Wan
- Institute of Environmental Health, Wuhan Centers for Disease Prevention & Control, Wuhan, Hubei 430024, PR China
| | - Lixiao Zhou
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China; Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Yinsheng Guo
- Environment and Health Department, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, PR China
| | - Gaga Mahai
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | | | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, PR China.
| |
Collapse
|
16
|
Maršálek P, Kovaříková S, Lueerssen F, Večerek V. Determination of bisphenol A in commercial cat food marketed in the Czech Republic. J Feline Med Surg 2022; 24:160-167. [PMID: 34013813 PMCID: PMC10812174 DOI: 10.1177/1098612x211013745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Bisphenol A (BPA) is one of the most widely used synthetic compounds on the planet. It is used in the synthesis of polycarbonate plastics, epoxy resins and other polymer materials. Owing to its excellent chemical and physical properties, it is used to produce food and beverage containers or the linings for metal products. BPA has been mentioned as a possible cause of feline hyperthyroidism. Cat food is considered one of the main sources of BPA intake. The purpose of this study was to evaluate BPA concentration in various types of commercial cat food available in the Czech Republic. METHODS In total, 172 samples prepared from 86 different types of commercial cat food were assessed. The concentration of BPA was measured using liquid chromatography-tandem mass spectrometry. RESULTS Measurable concentration of BPA was found in all samples (range 0.065-131 ng/g), with the highest concentration (mean ± SD) of BPA in canned food (24.6 ± 34.8 ng/g). When comparing BPA concentration in food trays (1.58 ± 0.974 ng/g), pouches (0.591 ± 0.592 ng/g) and dry food (1.18 ± 0.518 ng/g), concentrations of BPA in food trays and dry food were significantly higher (P <0.01) compared with pouches. Comparing BPA concentrations in canned food of different manufacturers, statistically significant differences were found as well. CONCLUSIONS AND RELEVANCE The highest concentrations of BPA were found in cans. Thus, cans represent the highest possibility of exposure to BPA in comparison with other types of commercial feline food.
Collapse
Affiliation(s)
- Petr Maršálek
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Simona Kovaříková
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Friedrich Lueerssen
- Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Vladimír Večerek
- Department of Animal Protection and Welfare and Veterinary Public Health, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
17
|
Bisphenol A and Male Infertility: Role of Oxidative Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:119-135. [PMID: 36472820 DOI: 10.1007/978-3-031-12966-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical that is capable of mimicking, antagonizing, and interfering with the normal biological functioning of the endocrine system. BPA is used in diverse industries, hence its vast sources of exposure. Although the half-life of BPA is relatively short (<24 hours), studies have reported its detection in the urine of different populations. It, therefore, became important to investigate its effect on general health, including male reproductive health. The adverse effects of BPA on male fertility have been evaluated and reported from both in vivo and in vitro studies. Up to date, reports from randomized controlled trials remain controversial, as some revealed decreased sperm quality, sperm concentration, and total sperm count, while others reported that no adverse effect was seen after exposure. Findings from animal model studies and in vitro experiments have shown that exposure to BPA led to a reduction in sperm quality and increased sperm DNA fragmentation, and some even revealed altered expression of the gene that encodes gonadotropin-releasing hormone. This shows that BPA not only may adversely affect male fertility by acting as an endocrine disruptor but also can potentially impact male fertility via its possible contribution to oxidative stress. Therefore, this book chapter aims to identify and elucidate the effect of BPA exposure on male fertility, and to as well illustrate the mechanisms through which this occurs, while emphasizing the role of oxidative stress as a potential pathway.
Collapse
|
18
|
Palak E, Lebiedzińska W, Anisimowicz S, Sztachelska M, Pierzyński P, Wiczkowski W, Żelazowska-Rutkowska B, Niklińska GN, Ponikwicka-Tyszko D, Wołczyński S. The Association between Bisphenol A, Steroid Hormones, and Selected MicroRNAs Levels in Seminal Plasma of Men with Infertility. J Clin Med 2021; 10:jcm10245945. [PMID: 34945242 PMCID: PMC8703400 DOI: 10.3390/jcm10245945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Bisphenol A (BPA), the most common endocrine-disrupting chemical, has been associated with male reproductive dysfunctions. Recently, it has been shown that BPA may also affect miRNAs expression. Herein, we aimed to evaluate the association of BPA levels with steroid hormone concentration and circulating miRNAs levels to investigate the potential direct effect of BPA on homeostasis in the testis environment. The level of BPA in the seminal plasma of azoospermic men was significantly higher compared to the healthy control. The concentrations of estradiol (E2) and androstenedione (A) were significantly decreased in the seminal plasma of azoospermic men compared to the normospermic men. The levels of miR-let-7a, miR-let-7b, and miR-let-7c were significantly up-regulated, and the level of miR-518f was significantly down-regulated in the seminal plasma of the azoospermic men compared to the healthy control. The level of BPA correlated negatively with sperm concentration and normal semen morphology. A significant positive correlation was found between BPA levels and miR-let-7a and miR-let-7c levels, whereas BPA negatively correlated with miR-518f levels. Our results suggest that BPA may negatively affect sperm quality. Moreover, BPA correlated with the miR-let-7a, miR-let-7c, and miR-518f levels in seminal plasma, which suggests that BPA may act directly in seminal plasma, affecting the testicular environment.
Collapse
Affiliation(s)
- Ewelina Palak
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (E.P.); (M.S.); (D.P.-T.)
| | - Weronika Lebiedzińska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, 15-089 Białystok, Poland;
| | - Sławomir Anisimowicz
- Gynecology and Reproductive Endocrinology Centre ARTemida, 15-464 Białystok, Poland;
| | - Maria Sztachelska
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (E.P.); (M.S.); (D.P.-T.)
| | | | - Wiesław Wiczkowski
- Department of Chemistry and Biodynamics of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Beata Żelazowska-Rutkowska
- Department of Pediatric Laboratory Diagnostic, Medical University of Bialystok, 15-089 Białystok, Poland;
| | | | - Donata Ponikwicka-Tyszko
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (E.P.); (M.S.); (D.P.-T.)
| | - Sławomir Wołczyński
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland; (E.P.); (M.S.); (D.P.-T.)
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, 15-089 Białystok, Poland;
- Correspondence: ; Tel.: +48-85-746-88-18
| |
Collapse
|
19
|
Rato L, Sousa ACA. The Impact of Endocrine-Disrupting Chemicals in Male Fertility: Focus on the Action of Obesogens. J Xenobiot 2021; 11:163-196. [PMID: 34940512 PMCID: PMC8709303 DOI: 10.3390/jox11040012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022] Open
Abstract
The current scenario of male infertility is not yet fully elucidated; however, there is increasing evidence that it is associated with the widespread exposure to endocrine-disrupting chemicals (EDCs), and in particular to obesogens. These compounds interfere with hormones involved in the regulation of metabolism and are associated with weight gain, being also able to change the functioning of the male reproductive axis and, consequently, the testicular physiology and metabolism that are pivotal for spermatogenesis. The disruption of these tightly regulated metabolic pathways leads to adverse reproductive outcomes. The permanent exposure to obesogens has raised serious health concerns. Evidence suggests that obesogens are one of the leading causes of the marked decline of male fertility and key players in shaping the future health outcomes not only for those who are directly exposed but also for upcoming generations. In addition to the changes that lead to inefficient functioning of the male gametes, obesogens induce alterations that are “imprinted” on the genes of the male gametes, establishing a link between generations and contributing to the transmission of defects. Unveiling the molecular mechanisms by which obesogens induce toxicity that may end-up in epigenetic modifications is imperative. This review describes and discusses the suggested molecular targets and potential mechanisms for obesogenic–disrupting chemicals and the subsequent effects on male reproductive health.
Collapse
Affiliation(s)
- Luís Rato
- Health School of the Polytechnic Institute of Guarda, 6300-035 Guarda, Portugal
- Correspondence: (L.R.); (A.C.A.S.)
| | - Ana C. A. Sousa
- Department of Biology, School of Science and Technology, University of Évora, 7006-554 Évora, Portugal
- Comprehensive Health Research Centre (CHRC), University of Évora, 7000-671 Évora, Portugal
- Correspondence: (L.R.); (A.C.A.S.)
| |
Collapse
|
20
|
Giovanni SM, Letizia AAM, Chiara M, Vincenzo S, Erika P, Marta S. The Male Reproductive System and Endocrine Disruptors. Endocr Metab Immune Disord Drug Targets 2021; 22:686-703. [PMID: 34607552 DOI: 10.2174/1871530321666211004100633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022]
Abstract
The male reproductive system is exposed to a great number of chemical substances which can interfere with the normal hormonal milieu and reproductive function; these are called endocrine disruptors (EDs). Despite a growing number of studies evaluating the negative effects of EDs, their production is continuously growing although some of which have been prohibited. The prevalence of poor semen quality, hypospadias, cryptorchidism, and testicular cancer have increased in the last decades, and recently, it has been postulated that these could all be part of a unique syndrome called testicular dysgenesis syndrome. This syndrome could be related to exposure to a number of EDs which cause imbalances in the hormonal milieu and oestrogenic over-exposure during the foetal stage. The same EDs can also impair spermatogenesis in offspring and have epigenetic effects. Although studies on animal and in vitro models have raised concerns, data are conflicting. However, these studies must be considered as the basis for future research to promote male reproductive health.
Collapse
Affiliation(s)
| | | | - Maneschi Chiara
- Department of Internal Medicine, Villa Salus Hospital, Mestre (VE). Italy
| | - Sciabica Vincenzo
- Department of Internal Medicine, Villa Salus Hospital, Mestre (VE). Italy
| | - Pigatto Erika
- Department of Internal Medicine, Villa Salus Hospital, Mestre (VE). Italy
| | - Sanna Marta
- Department of Internal Medicine, Villa Salus Hospital, Mestre (VE). Italy
| |
Collapse
|
21
|
Li N, Kang H, Peng Z, Wang HF, Weng SQ, Zeng XH. Physiologically detectable bisphenol A impairs human sperm functions by reducing protein-tyrosine phosphorylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112418. [PMID: 34146982 DOI: 10.1016/j.ecoenv.2021.112418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bisphenol A (BPA), a widely used plastic monomer and plasticizer, is detectable in blood, urine and semen of a healthy people, with concentrations ranging from 0.1 nM to 10 nM. It has been shown that in vitro exposure of BPA as low as 0.001 nM could significantly inhibited mouse sperm motility and acrosome reaction. However, it is still unclear whether BPA at those physiologically detectable concentration affects human sperm. METHODS The effects of different concentrations of BPA (0, 10-3, 10-2, 10-1, 10, 103 nM) on sperm functions were examined, including human sperm viability, kinematic parameters, hyperactivation and capacitation. RESULTS BPA caused a remarkable decline in human sperm viability, motility and progressive motility, hyperactivation, capacitation and progesterone-induced acrosome reaction. Mechanism studies showed that BPA could suppress the protein tyrosine phosphorylation level of human sperm, but had no effect on sperm calcium signaling. CONCLUSIONS Physiologically detectable concentrations of BPA may impair human sperm functions via suppressing protein tyrosine phosphorylation of human sperm, implying that environmental pollution of BPA might be a factor contributing to male infertility.
Collapse
Affiliation(s)
- Na Li
- Clinical Medical Research Center, Yichun People's Hospital, Yichun, Jiangxi 336000, PR China; Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China; Laboratory Department, Affiliated Reproductive Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330031, PR China
| | - Hang Kang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zhen Peng
- Clinical Medical Research Center, Yichun People's Hospital, Yichun, Jiangxi 336000, PR China; Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Hua-Feng Wang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Shi-Qi Weng
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Xu-Hui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226000, PR China; Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China.
| |
Collapse
|
22
|
Abstract
Anthropogenic environmental pollutants affect many physiological, biochemical, and endocrine actions as reproduction, metabolism, immunity, behavior and as such can interfere with any aspect of hormone action. Microbiota and their genes, microbiome, a large body of microorganisms, first of all bacteria and co-existing in the host´s gut, are now believed to be autonomous endocrine organ, participating at overall endocrine, neuroendocrine and immunoendocrine regulations. While an extensive literature is available on the physiological and pathological aspects of both players, information about their mutual relationships is scarce. In the review we attempted to show various examples where both, endocrine disruptors and microbiota are meeting and can act cooperatively or in opposition and to show the mechanism, if known, staying behind these actions.
Collapse
Affiliation(s)
- R Hampl
- Institute of Endocrinology, Prague, Czech Republic.
| | | |
Collapse
|
23
|
Sex-Specific Effects of Plastic Caging in Murine Viral Myocarditis. Int J Mol Sci 2021; 22:ijms22168834. [PMID: 34445539 PMCID: PMC8396197 DOI: 10.3390/ijms22168834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/29/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Myocarditis is an inflammatory heart disease caused by viral infections that can lead to heart failure, and occurs more often in men than women. Since animal studies have shown that myocarditis is influenced by sex hormones, we hypothesized that endocrine disruptors, which interfere with natural hormones, may play a role in the progression of the disease. The human population is exposed to the endocrine disruptor bisphenol A (BPA) from plastics, such as water bottles and plastic food containers. Methods: Male and female adult BALB/c mice were housed in plastic versus glass caging, or exposed to BPA in drinking water versus control water. Myocarditis was induced with coxsackievirus B3 on day 0, and the endpoints were assessed on day 10 post infection. Results: We found that male BALB/c mice that were exposed to plastic caging had increased myocarditis due to complement activation and elevated numbers of macrophages and neutrophils, whereas females had elevated mast cell activation and fibrosis. Conclusions: These findings show that housing mice in traditional plastic caging increases viral myocarditis in males and females, but using sex-specific immune mechanisms.
Collapse
|
24
|
Zhou Y, Xu W, Yuan Y, Luo T. What is the Impact of Bisphenol A on Sperm Function and Related Signaling Pathways: A Mini-review? Curr Pharm Des 2021; 26:4822-4828. [PMID: 32954995 DOI: 10.2174/1381612826666200821113126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023]
Abstract
Bisphenol A (BPA) is an organic synthetic compound that is ubiquitously present in daily life. It is a typical environmental endocrine disruptor that affects the functions of endogenous hormones. There is a significant negative correlation between BPA and male reproduction. This mini-review describes current research data on the negative effects of BPA on sperm functions in humans and animal models, as well as on its supposed mechanisms of action, such as CATSPER-Ca2+ signaling, cAMP-protein kinase A signaling, and epigenetic changes. The published evidence showed an adverse impact of BPA on sperm tail morphology, counts, motility, and acrosome reaction action. Sperm function related signaling pathways, such as CATSPER-Ca2+ signaling, cAMP-protein kinase A signaling, and phosphorylation signaling, as well as epigenetic changes and sperm aging, are associated with BPA exposure in human and animal models. The clear risks of BPA exposure can provide greater awareness of the potential threat of environmental contaminants on male fertility.
Collapse
Affiliation(s)
- Yian Zhou
- Institute of Life Science and School of Life Science, Nanchang University, No. 999, Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China.,Nanchang University Queen Mary School, Jiangxi Medical College of Nanchang University, 999 Xuefu
Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Wenqing Xu
- Institute of Life Science and School of Life Science, Nanchang University, No. 999, Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Yuan Yuan
- Institute of Life Science and School of Life Science, Nanchang University, No. 999, Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, No. 999, Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China.,Nanchang University Queen Mary School, Jiangxi Medical College of Nanchang University, 999 Xuefu
Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| |
Collapse
|
25
|
Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants. Antioxidants (Basel) 2021; 10:antiox10020289. [PMID: 33671960 PMCID: PMC7919053 DOI: 10.3390/antiox10020289] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 01/23/2023] Open
Abstract
Bisphenol A (BPA), a well-known endocrine disruptor present in epoxy resins and polycarbonate plastics, negatively disturbs the male reproductive system affecting male fertility. In vivo studies showed that BPA exposure has deleterious effects on spermatogenesis by disturbing the hypothalamic–pituitary–gonadal axis and inducing oxidative stress in testis. This compound seems to disrupt hormone signalling even at low concentrations, modifying the levels of inhibin B, oestradiol, and testosterone. The adverse effects on seminal parameters are mainly supported by studies based on urinary BPA concentration, showing a negative association between BPA levels and sperm concentration, motility, and sperm DNA damage. Recent studies explored potential approaches to treat or prevent BPA-induced testicular toxicity and male infertility. Since the effect of BPA on testicular cells and spermatozoa is associated with an increased production of reactive oxygen species, most of the pharmacological approaches are based on the use of natural or synthetic antioxidants. In this review, we briefly describe the effects of BPA on male reproductive health and discuss the use of antioxidants to prevent or revert the BPA-induced toxicity and infertility in men.
Collapse
|
26
|
Urinary Bisphenol A, F and S Levels and Semen Quality in Young Adult Danish Men. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041742. [PMID: 33670148 PMCID: PMC7916849 DOI: 10.3390/ijerph18041742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022]
Abstract
Bisphenol A (BPA) is considered an endocrine disruptor and has been associated with deleterious effects on spermatogenesis and male fertility. Bisphenol F (BPF) and S (BPS) are structurally similar to BPA, but knowledge of their effects on male fertility remains limited. In this cross–sectional study, we investigated the associations between exposure to BPA, BPF, and BPS and semen quality in 556 men 18–20 years of age from the Fetal Programming of Semen Quality (FEPOS) cohort. A urine sample was collected from each participant for determination of BPA, BPF, and BPS concentrations while a semen sample was collected to determine ejaculate volume, sperm concentration, total sperm count, sperm motility, and sperm morphology. Associations between urinary bisphenol levels (continuous and quartile–divided) and semen characteristics were estimated using a negative binomial regression model adjusting for urine creatinine concentration, alcohol intake, smoking status, body mass index (BMI), fever, sexual abstinence time, maternal pre–pregnancy BMI, and first trimester smoking, and highest parental education during first trimester. We found no associations between urinary bisphenol of semen quality in a sample of young men from the general Danish population.
Collapse
|
27
|
Rodprasert W, Toppari J, Virtanen HE. Endocrine Disrupting Chemicals and Reproductive Health in Boys and Men. Front Endocrinol (Lausanne) 2021; 12:706532. [PMID: 34690925 PMCID: PMC8530230 DOI: 10.3389/fendo.2021.706532] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
Male reproductive health has declined as indicated by increasing rates of cryptorchidism, i.e., undescended testis, poor semen quality, low serum testosterone level, and testicular cancer. Exposure to endocrine disrupting chemicals (EDCs) has been proposed to have a role in this finding. In utero exposure to antiandrogenic EDCs, particularly at a sensitive period of fetal testicular development, the so-called 'masculinization programming window (MPW)', can disturb testicular development and function. Low androgen effect during the MPW can cause both short- and long-term reproductive disorders. A concurrent exposure to EDCs may also affect testicular function or damage testicular cells. Evidence from animal studies supports the role of endocrine disrupting chemicals in development of male reproductive disorders. However, evidence from epidemiological studies is relatively mixed. In this article, we review the current literature that evaluated relationship between prenatal EDC exposures and anogenital distance, cryptorchidism, and congenital penile abnormality called hypospadias. We review also studies on the association between early life and postnatal EDC exposure and semen quality, hypothalamic-pituitary-gonadal axis hormone levels and testicular cancer.
Collapse
Affiliation(s)
- Wiwat Rodprasert
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Helena E. Virtanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- *Correspondence: Helena E. Virtanen,
| |
Collapse
|
28
|
Lukac N, Forgacs Z, Duranova H, Jambor T, Zemanova J, Massanyi P, Tombarkiewicz B, Roychoudhury S, Knazicka Z. In vitro assessment of the impact of nickel on the viability and steroidogenesis in the human adrenocortical carcinoma (NCI-H295R) cell line. Physiol Res 2020; 69:871-883. [PMID: 32901497 DOI: 10.33549/physiolres.934452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Nickel is a ubiquitous environmental pollutant, which has various effects on reproductive endocrinology. In this study, human adrenocortical carcinoma (NCI-H295R) cell line was used as an in vitro biological model to study the effect of nickel chloride (NiCl2) on the viability and steroidogenesis. The cells were exposed to different concentrations (3.90; 7.80; 15.60; 31.20; 62.50; 125; 250 and 500 microM) of NiCl2 and compared with control group (culture medium without NiCl2). The cell viability was measured by the metabolic activity assay. Production of sexual steroid hormones was quantified by enzyme linked immunosorbent assay. Following 48 h culture of the cells in the presence of NiCl2 a dose-dependent depletion of progesterone release was observed even at the lower concentrations. In fact, lower levels of progesterone were detected in groups with higher doses (>/=125 microM) of NiCl2 (P<0.01), which also elicited cytotoxic action. A more prominent decrease in testosterone production (P<0.01) was also noted in comparison to that of progesterone. On the other hand, the release of 17beta-estradiol was substantially increased at low concentrations (3.90 to 62.50 microM) of NiCl2. The cell viability remained relatively unaltered up to 125 microM (P>0.05) and slightly decreased from 250 microM of NiCl2 (P<0.05). Our results indicate endocrine disruptive effect of NiCl2 on the release of progesterone and testosterone in the NCI-H295R cell line. Although no detrimental effect of NiCl2 (</=62.50 microM) could be found on 17beta-estradiol production, its toxicity may reflect at other points of the steroidogenic pathway.
Collapse
Affiliation(s)
- N Lukac
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic, AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Massányi M, Halo M, Strapáková L, Slanina T, Ivanič P, Strapáková E, Strapák P, Halo M, Greń A, Formicki G, Massányi P. The Effect of Resorcinol on Bovine Spermatozoa Parameters in Vitro. Physiol Res 2020; 69:675-686. [PMID: 32584138 DOI: 10.33549/physiolres.934466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The goal of this study was to observe the effect of resorcinol on motility, viability and morphology of bovine spermatozoa. The semen was used from six randomly chosen breeding bulls. Ejaculate was diluted by different solutions of resorcinol in 1:40 ratio. Samples were divided into 7 groups with different concentrations of resorcinol (Control, RES1 - 4 mg/ml, RES2 - 2 mg/ml, RES3 - 1 mg/ml, RES4 - 0.5 mg/ml, RES5 - 0.25 mg/ml and RES6 - 0.125 mg/ml). Motility of spermatozoa was detected using CASA method at temperature of 37 °C in time periods 0, 1, 2, 3, 4 hours from the start of the experiment. Significant motility differences between all groups except control and RES6 with difference of 5.58 %, as well as between RES1 and RES2 groups with difference of 2.17 % were found. Progressive motility had the same significant differences. Spermatozoa viability (MTT test) decreased compared to control in all experimental groups during the entire duration of experiment. Observing morphologically changed spermatozoa, no significant changes were observed and a higher percentage of spermatozoa with separated flagellum in all experimental resorcinol groups compared to control were detected. Also, increased number of spermatozoa with broken flagellum, acrosomal changes and other morphological forms in the group with the highest concentration of resorcinol (RES1) were found. Results of our study clearly show negative effects on motility parameters of spermatozoa which depend on concentration, cultivation temperature and time period.
Collapse
Affiliation(s)
- M Massányi
- Department of Animal Husbandry, Faculty of Agrobiology and Food Sources, Slovak University of Agriculture, Nitra, Slovak Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cimmino I, Fiory F, Perruolo G, Miele C, Beguinot F, Formisano P, Oriente F. Potential Mechanisms of Bisphenol A (BPA) Contributing to Human Disease. Int J Mol Sci 2020; 21:E5761. [PMID: 32796699 PMCID: PMC7460848 DOI: 10.3390/ijms21165761] [Citation(s) in RCA: 202] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Bisphenol A (BPA) is an organic synthetic compound serving as a monomer to produce polycarbonate plastic, widely used in the packaging for food and drinks, medical devices, thermal paper, and dental materials. BPA can contaminate food, beverage, air, and soil. It accumulates in several human tissues and organs and is potentially harmful to human health through different molecular mechanisms. Due to its hormone-like properties, BPA may bind to estrogen receptors, thereby affecting both body weight and tumorigenesis. BPA may also affect metabolism and cancer progression, by interacting with GPR30, and may impair male reproductive function, by binding to androgen receptors. Several transcription factors, including PPARγ, C/EBP, Nrf2, HOX, and HAND2, are involved in BPA action on fat and liver homeostasis, the cardiovascular system, and cancer. Finally, epigenetic changes, such as DNA methylation, histones modification, and changes in microRNAs expression contribute to BPA pathological effects. This review aims to provide an extensive and comprehensive analysis of the most recent evidence about the potential mechanisms by which BPA affects human health.
Collapse
Affiliation(s)
| | | | | | | | | | - Pietro Formisano
- Department of Translational Medicine, Federico II University of Naples and URT “Genomic of Diabetes” of Institute of Experimental Endocrinology and Oncology, National Council of Research (CNR), 80131 Naples, Italy; (I.C.); (F.F.); (G.P.); (C.M.); (F.B.); (F.O.)
| | | |
Collapse
|
31
|
Panner Selvam MK, Ambar RF, Agarwal A, Henkel R. Etiologies of sperm DNA damage and its impact on male infertility. Andrologia 2020; 53:e13706. [PMID: 32559347 DOI: 10.1111/and.13706] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
Male factor is responsible for up to 50% of infertility cases in the world. Semen analysis is considered the cornerstone of laboratory evaluation of male infertility, but it has its own drawbacks and fails to predict the male fertility potential with high sensitivity and specificity. Different etiologies have been linked with male infertility, of which sperm DNA damage has gained significant attention with extensive research on sperm function tests. The associations between sperm DNA damage and a variety of disorders such as varicocele, obesity, cancer, radiation and lifestyle factors are explored in this review. Furthermore, we discuss the mechanisms of DNA damage as well as its impact in different scenarios of male infertility, associated with spontaneous and assisted reproduction. Finally, we review the clinical applicability of sperm DNA fragmentation testing in the management of male infertility.
Collapse
Affiliation(s)
| | - Rafael F Ambar
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Sexual and Reproductive Medicine - Department of Urology, Faculdade de Medicina do ABC, Santo André, Brazil
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
32
|
Chioccarelli T, Manfrevola F, Migliaccio M, Altucci L, Porreca V, Fasano S, Cobellis G. Fetal-Perinatal Exposure to Bisphenol-A Affects Quality of Spermatozoa in Adulthood Mouse. Int J Endocrinol 2020; 2020:2750501. [PMID: 32256569 PMCID: PMC7109585 DOI: 10.1155/2020/2750501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Bisphenol-A (BPA) is considered an endocrine disruptor with estrogenic activity. It is described as an environment-polluting industrial chemical whose adverse effects on the male reproductive system depend on the period of exposure (i.e., fetal, prepubertal, or adult life). We exposed male mice to BPA during the fetal-perinatal period (from 10 days post coitum to 31 days post partum) and investigated the impact of this early-life exposure on gamete health in adulthood animals at 78 days of age. Both in control and BPA-exposed mice, viability and motility of spermatozoa, as well as sperm motility acquisition and chromatin condensation of spermatozoa, have been evaluated. Results reveal harmful effect of BPA on viability and motility of sperm cells as well as on chromatin condensation status during epididymal maturation of spermatozoa. In particular, BPA exposure interferes with biochemical mechanism useful to stabilize sperm chromatin condensation, as it interferes with oxidation of thiol groups associated to chromatin.
Collapse
Affiliation(s)
- Teresa Chioccarelli
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Marina Migliaccio
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, Università degli Studi della Campania “L. Vanvitelli”, Via L. De Crecchio 7, 80138 Napoli, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, Sez. Bottazzi, Università degli Studi della Campania “L. Vanvitelli”, Via Costantinopoli 16, 80138 Napoli, Italy
| |
Collapse
|
33
|
Leong JY, Blachman-Braun R, Patel AS, Patel P, Ramasamy R. Association between polychlorinated biphenyl 153 exposure and serum testosterone levels: analysis of the National Health and Nutrition Examination Survey. Transl Androl Urol 2019; 8:666-672. [PMID: 32038962 DOI: 10.21037/tau.2019.11.26] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background To examine the effects of environmental polychlorinated biphenyls (PCBs) 153 exposure, an industrial plasticizer, on serum testosterone levels. Methods Using data collected from the 1999-2000 and 2001-2002 National Health and Nutrition Examination Survey (NHANES), we analyzed serum total testosterone and PCB153 levels, demographic data and comorbidities for men aged 18 years and older. Univariate and multivariate linear regression analysis was used to evaluate the association between total testosterone and serum PCB153. Results Five hundred and fifty-seven men met inclusion criteria. Median age was 45.7 [33.4-60.4] years old while median serum total testosterone and PCB153 levels were 479 [352.5-607] ng/dL and 0.20 [0.11-0.39] ng/g, respectively. Increasing age, higher body mass index (BMI), higher levels of serum PCB153, lower levels of activity and a history of diabetes mellitus and coronary heart disease were associated with decreasing serum testosterone levels on univariate linear regression. On multivariate linear regression, increasing age (estimate -6.29 ng/dL per year of life, P<0.001) and BMI (estimate -7.08 ng/dL per unit BMI, P<0.001) were associated with declining serum testosterone levels. While serum PCB153 levels were found to be negatively correlated with serum testosterone levels on univariate analysis (estimate -179.67, P<0.001), this association was not significant on the multivariable model (estimate -12.83, P=0.673). Conclusions In this population-based analysis, we report an association between a decrease in serum testosterone with increasing serum levels of PCB153. Identifying environmental factors for etiology of low testosterone and mechanisms for causation will be important to aid in strategies to increase testosterone naturally in men.
Collapse
Affiliation(s)
- Joon Yau Leong
- Department of Urology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ruben Blachman-Braun
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Amir Shahreza Patel
- Department of Urology, Oregon Health and Science University, Portland, OR, USA
| | - Premal Patel
- Section of Urology, University of Manitoba, Winnipeg, MB, Canada
| | - Ranjith Ramasamy
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
34
|
Ma Y, Liu H, Wu J, Yuan L, Wang Y, Du X, Wang R, Marwa PW, Petlulu P, Chen X, Zhang H. The adverse health effects of bisphenol A and related toxicity mechanisms. ENVIRONMENTAL RESEARCH 2019; 176:108575. [PMID: 31299621 DOI: 10.1016/j.envres.2019.108575] [Citation(s) in RCA: 389] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/09/2019] [Accepted: 07/02/2019] [Indexed: 05/20/2023]
Abstract
Bisphenol A (BPA) is an industrial component commonly used in synthesis of polycarbonate plastics, epoxy resin and other polymer materials. Due to its mass productions and widespread applications, the presence of BPA is ubiquitous in the environment. BPA can enter the body via different ways such as digestive tract, respiratory tract and dermal tract. As an endocrine disruptor, BPA has estrogen-like and anti-androgen effects causing damages to different tissues and organs, including reproductive system, immune system and neuroendocrine system, etc. Recently, it has been shown that BPA could induce carcinogenesis and mutagenesis in animal models. Here, the underlying mechanisms of BPA-induced multi-organ toxicity were well summarized, involving the receptor pathways, disruption of neuroendocrine system, inhibition of enzymes, modulation of immune and inflammatory responses, as well as genotoxic and epigenetic mechanisms. The aim of this review is to compile the available current research data regarding BPA and provide an overview of the current status of BPA exposure and relevant health effects covering reproductive, developmental, metabolic, immuno, respiratory, hepatic and renal toxicity and carcinogenesis of BPA. This review provides comprehensive data of BPA toxicity on human health and related mechanisms. We also identify any missing data which should be addressed by further studies.
Collapse
Affiliation(s)
- Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinxia Wu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Le Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yueqin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | | | | | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
35
|
Yuan G, Liu Y, Liu G, Wei L, Wen Y, Huang S, Guo Y, Zou F, Cheng J. Associations between semen phytoestrogens concentrations and semen quality in Chinese men. ENVIRONMENT INTERNATIONAL 2019; 129:136-144. [PMID: 31128434 DOI: 10.1016/j.envint.2019.04.076] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/15/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Phytoestrogens (PEs) are naturally estrogen-like chemicals, and increasing evidences have indicated their endocrine disruption effects on male reproductivity, but the conclusions from previous epidemiological studies were controversial. OBJECTIVE To examine the associations between nine phytoestrogens in semen and semen quality in a Chinese population. METHODS In this cross-sectional study, a total of 1319 reproductive-aged men were recruited from Shenzhen, China. Semen phytoestrogens were measured by ultra-performance liquid chromatography and tandem mass spectrometry. Semen quality was assessed by sperm concentration, sperm count, progressive motility, total motility, volume, and the sperm motion parameters. Both multivariate linear regression and logistic regression models were conducted to evaluate the associations between semen phytoestrogens and semen quality with adjustment for confounders. RESULTS In logistic regression models, we found significant associations between semen secoisolariciresinol (SEC) and lower sperm concentrations (odd ratios (OR): 2.38; 95% confidence interval, 95% CI: 1.47, 3.93), sperm counts (OR: 2.27; 95% CI: 1.34, 3.94), and total motility (OR: 1.55; 95% CI: 1.08, 2.24). Negative associations were also observed for semen genistein (GEN) with sperm counts (OR: 2.28; 95% CI: 1.29, 4.14; p for trend = 0.04) and sperm concentrations (OR: 1.98; 95% CI: 1.21, 3.03; p for trend = 0.07). Semen naringenin (NAR) were found to be positively associated with progressive motility (OR: 0.57; 95% CI: 0.38, 0.83) and total motility (OR: 0.57; 95% CI: 0.40, 0.81). Results from multivariate linear regression models were similar to those from logistic regression models for semen SEC, GEN, and NAR. CONCLUSIONS We suggested that semen levels of phytoestrogens may be associated with semen quality in men. Further investigations are warranted to confirm the findings in prospective studies and to explore the underlying mechanism.
Collapse
Affiliation(s)
- Guanxiang Yuan
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China; Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | - Yu Liu
- Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Guihua Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Lan Wei
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Ying Wen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yinsheng Guo
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China.
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China.
| |
Collapse
|
36
|
Le J, Lei X, Ren Y, Li Z, Tu H, Ding F, Yi X, Zhou Y, Liu Q, Zhang S. Exogenous oestradiol benzoate induces male mice azoospermia through modulation of oxidative stress and testicular metabolic cooperation. Mol Med Rep 2019; 19:4955-4963. [PMID: 31059031 DOI: 10.3892/mmr.2019.10169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 03/20/2019] [Indexed: 11/06/2022] Open
Abstract
In most cases, exogenous oestradiol benzoate (EB) inhibits spermatogenesis, however, the mechanism underlying this process has not been fully elucidated. The present study investigated the effect of EB on redox equilibrium and glycometabolism in mouse testes. Male Kunming mice were divided into 3 groups and injected with 0, 5 and 10 mg/kg EB, respectively. Histological analysis revealed no sperm and far fewer spermatogenic cells in the testes of EB‑treated mice. Additionally, transmission electron microscopy revealed that mitochondria in Sertoli cells were transformed to vacuoles with irregular cristae in the EB‑treated group. EB also significantly decreased the activities and mRNA expression of catalase, superoxide dismutase, and glutathione peroxidase and increased the activity of nitric oxide synthase and nitric oxide concentration in the testes compared with the control. These results indicated that oxidative damage was caused by EB treatment. With regard to glycometabolism, ATP content and activities of hexokinase and pyruvate kinase were significantly reduced in the EB‑treated group. Although glucose and pyruvate concentrations were significantly increased by EB treatment, levels of lactate, the main energy source of spermatogenic cells, were unchanged. Monocarboxylate transporter 2 (MCT2) and MCT4, which are responsible for lactate transportation, were downregulated by EB. In conclusion, the results of the present study indicated that azoospermia induced by EB in male mice was associated with oxidative damage and the disorder of testicular metabolic cooperation.
Collapse
Affiliation(s)
- Jianghua Le
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Xiaocan Lei
- Department of Histology and Embryology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Yanping Ren
- Department of Histology and Embryology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Zhipeng Li
- State Key Laboratory for Conversation and Utilization of Subtropical Agro‑Bioresources, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Haoyan Tu
- Department of Histology and Embryology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Fangya Ding
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Xiaodong Yi
- Department of Histology and Embryology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Yi Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Qingyou Liu
- State Key Laboratory for Conversation and Utilization of Subtropical Agro‑Bioresources, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Shun Zhang
- Department of Reproductive Medical Center, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|
37
|
Independent and combined effects of diethylhexyl phthalate and polychlorinated biphenyl 153 on sperm quality in the human and dog. Sci Rep 2019; 9:3409. [PMID: 30833626 PMCID: PMC6399337 DOI: 10.1038/s41598-019-39913-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/04/2019] [Indexed: 01/19/2023] Open
Abstract
A temporal decline in human and dog sperm quality is thought to reflect a common environmental aetiology. This may reflect direct effects of seminal chemicals on sperm function and quality. Here we report the effects of diethylhexyl phthalate (DEHP) and polychlorinated biphenyl 153 (PCB153) on DNA fragmentation and motility in human and dog sperm. Human and dog semen was collected from registered donors (n = 9) and from stud dogs (n = 11) and incubated with PCB153 and DEHP, independently and combined, at 0x, 2x, 10x and 100x dog testis concentrations. A total of 16 treatments reflected a 4 × 4 factorial experimental design. Although exposure to DEHP and/or PCB153 alone increased DNA fragmentation and decreased motility, the scale of dose-related effects varied with the presence and relative concentrations of each chemical (DEHP.PCB interaction for: DNA fragmentation; human p < 0.001, dog p < 0.001; Motility; human p < 0.001, dog p < 0.05). In both human and dog sperm, progressive motility negatively correlated with DNA fragmentation regardless of chemical presence (Human: P < 0.0001, r = −0.36; dog P < 0.0001, r = −0.29). We conclude that DEHP and PCB153, at known tissue concentrations, induce similar effects on human and dog sperm supporting the contention of the dog as a sentinel species for human exposure.
Collapse
|
38
|
Cariati F, D'Uonno N, Borrillo F, Iervolino S, Galdiero G, Tomaiuolo R. "Bisphenol a: an emerging threat to male fertility". Reprod Biol Endocrinol 2019; 17:6. [PMID: 30660193 PMCID: PMC6339693 DOI: 10.1186/s12958-018-0447-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/17/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Among the factors causing male infertility, one of the most debated is the exposure to environmental contaminants. Recently, the chemical compound Bisphenol A (BPA) has drawn attention from the reproductive science community, due to its ubiquitous presence in day-to-day life. Its toxic action appears to mainly affect the male reproductive system, directly impacting male fertility. MAIN: The purpose of this review is to investigate current research data on BPA, providing an overview of the findings obtained from studies in animal and human models, as well as on its supposed mechanisms of action. CONCLUSION A clear understanding of BPA action mechanisms, as well as the presumed risks deriving from its exposure, is becoming crucial to preserve male fertility. The development and validation of methodologies to detect BPA toxic effects on reproductive organs can provide greater awareness of the potential threat that this chemical represents.
Collapse
Affiliation(s)
- Federica Cariati
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini, 5 -, 80131, Naples, Italy.
- CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy.
- KronosDNA s.r.l., Spin-off Università degli Studi di Napoli Federico II, Naples, Italy.
| | - Nadja D'Uonno
- CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy
| | - Francesca Borrillo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini, 5 -, 80131, Naples, Italy
- CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy
| | - Stefania Iervolino
- KronosDNA s.r.l., Spin-off Università degli Studi di Napoli Federico II, Naples, Italy
| | - Giacomo Galdiero
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Rossella Tomaiuolo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Sergio Pansini, 5 -, 80131, Naples, Italy
- CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy
- KronosDNA s.r.l., Spin-off Università degli Studi di Napoli Federico II, Naples, Italy
| |
Collapse
|
39
|
De Toni L, Šabovic I, Cosci I, Ghezzi M, Foresta C, Garolla A. Testicular Cancer: Genes, Environment, Hormones. Front Endocrinol (Lausanne) 2019; 10:408. [PMID: 31338064 PMCID: PMC6626920 DOI: 10.3389/fendo.2019.00408] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/07/2019] [Indexed: 12/19/2022] Open
Abstract
Testicular cancer (TC) represents one of the most peculiar clinical challenges at present. In fact, currently treatments are so effective ensuring a 5 years disease-free survival rate in nearly 95% of patients. On the other hand however, TC represents the most frequent newly diagnosed form of cancer in men between the ages of 14 and 44 years, with an incidence ranging from <1 to 9.9 affected individuals per 100,000 males across countries, while the overall incidence is also increasing worldwide. Furthermore, cancer survivors show a 2% risk of developing cancer in the contralateral testis within 15 years of initial diagnosis. This complex and multifaceted scenario requires a great deal of effort to understand the clinical base of available evidence. It is now clear that genetic, environmental and hormonal risk factors concur and mutually influence both the development of the disease and its prognosis, in terms of response to treatment and the risk of recurrence. In this paper, the most recent issues describing the relative contribution of the aforementioned risk factors in TC development are discussed. In addition, particular attention is paid to the exposure to environmental chemical substances and thermal stress, whose role in cancer development and progression has recently been investigated at the molecular level.
Collapse
Affiliation(s)
- Luca De Toni
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Iva Šabovic
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Ilaria Cosci
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
- Department of Clinical and Experimental Oncology, IOV-IRCCS, Padova, Italy
| | - Marco Ghezzi
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| | - Carlo Foresta
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
- *Correspondence: Carlo Foresta
| | - Andrea Garolla
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, Padova, Italy
| |
Collapse
|
40
|
Smarr MM, Kannan K, Sun L, Honda M, Wang W, Karthikraj R, Chen Z, Weck J, Buck Louis GM. Preconception seminal plasma concentrations of endocrine disrupting chemicals in relation to semen quality parameters among male partners planning for pregnancy. ENVIRONMENTAL RESEARCH 2018; 167:78-86. [PMID: 30014899 DOI: 10.1016/j.envres.2018.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/29/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Some non-persistent endocrine disruptors (EDCs) are adversely associated with semen quality and few studies have measured those EDCs in seminal plasma. OBJECTIVE To find an association between EDCs in seminal plasma and semen quality parameters. METHODS Five chemical classes of non-persistent EDCs were quantified in seminal plasma from 339 male partners who participated in a prospective pregnancy study. Bisphenols, benzophenone UV-filters, antimicrobials and phthalate diesters and their monoester metabolites were measured using high performance liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. Semen samples underwent next day analysis using a standardized protocol for the quantification of 35 endpoints. Linear mixed-effects models of EDCs that were log transformed and rescaled by their standard deviations or dichotomized at the 75th percentile for each exposure and outcomes with covariate adjustment were performed. EDCs in seminal plasma were also assessed relative to clinical reference values of semen quality endpoints using logistic regression or generalized estimating equations. RESULTS The most consistent findings supporting adverse associations between seminal EDCs and semen quality were observed for some phthalate metabolites. For example, seminal plasma mono-ethyl, mono-n-butyl, mono-2-isobutyl and mono-benzyl phthalate concentrations were associated with decreased odds of having semen volume above clinical reference values (mEP: aOR=0.46; 95%CI= 0.32, 0.66; mBP: aOR=0.40; 95%CI= 0.28, 0.57; miBP: aOR=0.39; 95%CI= 0.27, 0.56), and mBzP: aOR= 0.34; 95%CI= 0.24, 0.49). CONCLUSIONS Environmentally relevant concentrations of specific phthalates in seminal plasma were associated with diminished semen volume, sperm motility, viability, and morphological alterations in sperm heads such that semen volume and sperm viability fall below reference values.
Collapse
Affiliation(s)
- Melissa M Smarr
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA; Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY, USA
| | | | - Masato Honda
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Wei Wang
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | - Zhen Chen
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Weck
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA
| | - Germaine M Buck Louis
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, The National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
41
|
Grami D, Rtibi K, Selmi S, Jridi M, Sebai H, Marzouki L, Sabovic I, Foresta C, De Toni L. Aqueous extract of Eruca Sativa protects human spermatozoa from mitochondrial failure due to bisphenol A exposure. Reprod Toxicol 2018; 82:103-110. [PMID: 30393182 DOI: 10.1016/j.reprotox.2018.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/08/2018] [Accepted: 10/17/2018] [Indexed: 01/11/2023]
Abstract
Medicinal plants are suggested to counteract health disorders from chemical pollutants. Here we explored the possible ameliorative effect of Eruca sativa aqueous extract (ESAE) on in vitro acute functional disturbance induced by Bisphenol A (BPA), a disruptor model in human spermatozoa. Phytochemical screening, high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) analysis and 2,2'-azino-bis [3-ethylbenzthiazoline-6-sulphonic acid]/α,α-diphenyl-β-picrylhydrazyl (ABTS/DPPH) tests disclosed antioxidant properties of ESAE, ascribed to polyphenols and flavonoids. The toxicological impact of BPA on sperm viability and motility was detected for concentration greater than 10 μM but co-incubation with ESAE recovered sperm function at low concentration (15.62 μg/ml). BPA reduced mitochondrial membrane potential (ΔΨm), with no impact on plasma membrane potential (ΔΨp). At low doses, ESAE recovered ΔΨm but higher doses were associated with impairment of both ΔΨm and ΔΨp. ESAE protects towards in vitro BPA-mediated toxicity and its possible use as complementary treatment for male reproductive disorders is critically discussed.
Collapse
Affiliation(s)
- Dhekra Grami
- Laboratory of Functional Physiology and Valorization of Bioresources-Higher Institute of Biotechnology of Beja, B.P. 382-9000 Beja, University of Jendouba, Tunisia.
| | - Kaïs Rtibi
- Laboratory of Functional Physiology and Valorization of Bioresources-Higher Institute of Biotechnology of Beja, B.P. 382-9000 Beja, University of Jendouba, Tunisia.
| | - Slimen Selmi
- Laboratory of Functional Physiology and Valorization of Bioresources-Higher Institute of Biotechnology of Beja, B.P. 382-9000 Beja, University of Jendouba, Tunisia.
| | - Morad Jridi
- Laboratory of Enzymatic Engineering and Microbiology, National School of Engineers of Sfax, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia.
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bioresources-Higher Institute of Biotechnology of Beja, B.P. 382-9000 Beja, University of Jendouba, Tunisia.
| | - Lamjed Marzouki
- Laboratory of Functional Physiology and Valorization of Bioresources-Higher Institute of Biotechnology of Beja, B.P. 382-9000 Beja, University of Jendouba, Tunisia.
| | - Iva Sabovic
- Department of Medicine and Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani 2, 35128, Padova, Italy.
| | - Carlo Foresta
- Laboratory of Enzymatic Engineering and Microbiology, National School of Engineers of Sfax, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia.
| | - Luca De Toni
- Department of Medicine and Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani 2, 35128, Padova, Italy.
| |
Collapse
|
42
|
Omran GA, Gaber HD, Mostafa NAM, Abdel-Gaber RM, Salah EA. Potential hazards of bisphenol A exposure to semen quality and sperm DNA integrity among infertile men. Reprod Toxicol 2018; 81:188-195. [DOI: 10.1016/j.reprotox.2018.08.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 11/25/2022]
|
43
|
Radwan M, Wielgomas B, Dziewirska E, Radwan P, Kałużny P, Klimowska A, Hanke W, Jurewicz J. Urinary Bisphenol A Levels and Male Fertility. Am J Mens Health 2018; 12:2144-2151. [PMID: 30261816 PMCID: PMC6199454 DOI: 10.1177/1557988318799163] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bisphenol A (BPA) is a high-production volume industrial chemical found in many consumer products. BPA is a suspected potent endocrine disruptor, with endocrine-disrupting properties demonstrated in animal studies. Few human studies have examined bisphenol A exposure in relation to male fertility and, results are divergent. The aim of the study is to examine the associations between urinary BPA concentration and male fertility. Bisphenol A urinary concentrations were measured using gas chromatography coupled with tandem mass spectrometry in 315 men under 45 years of age with normal sperm concentration (⩾15 mln/ml) recruited from a male reproductive health clinic. Participants were interviewed and provided a semen sample. BPA was detected in 98.10% of urine samples, with a median concentration of 1.87 µg/l (1.63 µg/ g creatinine). A multiple linear regression analysis identified a positive association between the urinary concentrations of bisphenol A 25th–50th percentile and total sperm sex chromosome disomy (p = .004). Also when modeled as continuous variable urinary BPA concentration increased total sperm sex chromosome disomy (p = .01). Urinary concentration of BPA also increase the percentage of immature sperm (HDS) (p = .018) and decrease motility (p = .03). The study provides evidence that exposure to BPA is associated with poorer semen quality. Future studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Michał Radwan
- 1 Faculty of Health Sciences. The State University of Applied Sciences in Plock, Poland.,2 Department of Gynecology and Reproduction; "Gameta" Hospital, Rzgów, Poland
| | - Bartosz Wielgomas
- 3 Department of Toxicology, Medical University of Gdańsk, Gdańsk, Poland
| | - Emila Dziewirska
- 4 Department of Environmental Epidemiology; Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Paweł Radwan
- 2 Department of Gynecology and Reproduction; "Gameta" Hospital, Rzgów, Poland
| | - Paweł Kałużny
- 4 Department of Environmental Epidemiology; Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Anna Klimowska
- 3 Department of Toxicology, Medical University of Gdańsk, Gdańsk, Poland
| | - Wojciech Hanke
- 4 Department of Environmental Epidemiology; Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Joanna Jurewicz
- 4 Department of Environmental Epidemiology; Nofer Institute of Occupational Medicine, Lodz, Poland
| |
Collapse
|
44
|
Buck Louis GM, Smarr MM, Sun L, Chen Z, Honda M, Wang W, Karthikraj R, Weck J, Kannan K. Endocrine disrupting chemicals in seminal plasma and couple fecundity. ENVIRONMENTAL RESEARCH 2018; 163:64-70. [PMID: 29426029 PMCID: PMC5878734 DOI: 10.1016/j.envres.2018.01.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 05/02/2023]
Abstract
Growing evidence supports the importance of men's exposure to non-persistent endocrine disruptors (EDCs) and couple fecundability, as measured by time-to-pregnancy (TTP). This evolving literature contrasts with the largely equivocal findings reported for women's exposures and fecundity. While most evidence relies upon urinary concentrations, quantification of EDCs in seminal plasma may be more informative about potential toxicity arising within the testes. We analyzed 5 chemical classes of non-persistent EDCs in seminal plasma for 339 male partners of couples who were recruited prior to conception and who were followed daily until pregnant or after one year of trying. Benzophenones, bisphenols, parabens, and phthalate metabolites and phthalate diesters were measured using high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) except for phthalate diesters, which were analyzed using gas chromatography-mass spectrometry. Cox regression with discrete-time was used to estimate fecundability odds ratios (FORs) and 95% confidence intervals (CIs) for each chemical to estimate the probability of pregnancy. While most EDCs were detected in seminal plasma, concentrations were lower than urinary concentrations previously analyzed for the cohort. None of the EDCs were significantly associated with fecundability even after covariate adjustment, though benzophenones consistently yielded FORs <1.0 (ranging from 0.72 to 0.91) in couple-adjusted models suggestive of diminished fecundity (longer TTP). The findings underscore that a range of EDCs can be quantified in seminal plasma, but the lower concentrations may require a large cohort for assessing couple fecundability, as well as the need to consider other fecundity outcomes such as semen quality.
Collapse
Affiliation(s)
- Germaine M Buck Louis
- Office of the Director, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, The National Institutes of Health, 6710b Rockledge Drive, Bethesda, MD 20892, United States.
| | - Melissa M Smarr
- Office of the Director, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, The National Institutes of Health, 6710b Rockledge Drive, Bethesda, MD 20892, United States.
| | - Liping Sun
- Glotec, Inc., Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, The National Institutes of Health, 6710b Rockledge Drive, Bethesda, MD 20892, United States.
| | - Zhen Chen
- Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, The National Institutes of Health, 6710b Rockledge Drive, Bethesda, MD 20892, United States.
| | - Masato Honda
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York 12201, United States
| | - Wei Wang
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York 12201, United States
| | - Rajendiran Karthikraj
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York 12201, United States
| | - Jennifer Weck
- Office of the Director, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute for Child Health and Human Development, The National Institutes of Health, 6710b Rockledge Drive, Bethesda, MD 20892, United States.
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, New York 12201, United States.
| |
Collapse
|
45
|
Xing JS, Bai ZM. Is testicular dysgenesis syndrome a genetic, endocrine, or environmental disease, or an unexplained reproductive disorder? Life Sci 2018; 194:120-129. [DOI: 10.1016/j.lfs.2017.11.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/14/2017] [Accepted: 11/24/2017] [Indexed: 11/29/2022]
|
46
|
Kolatorova Sosvorova L, Chlupacova T, Vitku J, Vlk M, Heracek J, Starka L, Saman D, Simkova M, Hampl R. Determination of selected bisphenols, parabens and estrogens in human plasma using LC-MS/MS. Talanta 2017; 174:21-28. [DOI: 10.1016/j.talanta.2017.05.070] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/17/2017] [Accepted: 05/25/2017] [Indexed: 11/25/2022]
|
47
|
Vitku J, Kolatorova L, Hampl R. Occurrence and reproductive roles of hormones in seminal plasma. Basic Clin Androl 2017; 27:19. [PMID: 29046808 PMCID: PMC5640966 DOI: 10.1186/s12610-017-0062-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022] Open
Abstract
Only 2-5% of seminal fluid is composed of spermatozoa, while the rest is seminal plasma. The seminal plasma is a rich cocktail of organic and inorganic compounds including hormones, serving as a source of nutrients for sperm development and maturation, protecting them from infection and enabling them to overcome the immunological and chemical environment of the female reproductive tract. In this review, a survey of the hormones found in human seminal plasma, with particular emphasis on reproductive hormones is provided. Their participation in fertilization is discussed including their indispensable role in ovum fertilization. The origin of individual hormones found in seminal plasma is discussed, along with differences in the concentrations in seminal plasma and blood plasma. A part of review is devoted to methods of measurement, emphasising particular instances in which they differ from measurement in blood plasma. These methods include separation techniques, overcoming the matrix effect and current ways for end-point measurement, focusing on so called hyphenated techniques as a combination of chromatographic separation and mass spectrometry. Finally, the informative value of their determination as markers of male fertility disorders (impaired spermatogenesis, abnormal sperm parameters, varicocele) is discussed, along with instances where measuring their levels in seminal plasma is preferable to measurement of levels in blood plasma.
Collapse
Affiliation(s)
- Jana Vitku
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Lucie Kolatorova
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| | - Richard Hampl
- Department of Steroids and Proteofactors, Institute of Endocrinology, Narodni 8, 116 94 Prague, Czech Republic
| |
Collapse
|
48
|
Lee C, Kim CH, Kim S, Cho SH. Simultaneous determination of bisphenol A and estrogens in hair samples by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1058:8-13. [PMID: 28521190 DOI: 10.1016/j.jchromb.2017.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 12/01/2022]
Abstract
Bisphenol A (BPA), an endocrine disrupter, is widely used to make chemicals for polycarbonate, plastics, beverage containers, epoxy resins, and cash register receipts. BPA is one of the known xenoestrogens, which have weak estrogenic activity and cause obesity, diabetes, breast cancer, and reproductive disorders. Even though the concentration level of metabolomes in hair is usually lower than that in urine and blood, there are several reasons why we chose to use hair samples. First, the sampling procedure of hairs is simple. Second, it is also easy to preserve the sample for long term and track the drug-exposure record of a given sample. Third, deformation and contamination of samples rarely occur. In this study, an improved analytical method to determine the levels of BPA and estrogens in hair samples was developed by liquid chromatography-electrospray tandem mass spectrometry (LC-ESI/MS/MS). Hair samples were extracted by an Oasis HLB extraction cartridge after incubation with 1N HCl and derivatized with dansyl chloride to increase sensitivity. BPA and estrogens (estrone, 17β-estradiol, and estriol) were separated using Shiseido CAPCELL PAK C18 column (2.0×100mm, 3μm) and a mobile phase consisting of 10mM ammonium acetate in water and acetonitrile with a gradient program at a flow rate of 0.3mL/min and were monitored with electrospray tandem mass spectrometry (ESI-MS/MS). The linearity of this method was over 0.995. The limits of detection (LOD) at a signal-to-noise (S/N) ratio of 3 were 0.25-6.0ng/g. The alteration of estrogens levels induced by BPA may play important role to understanding probable endocrine disruptive exposure, and the described methods could be used to evaluate and monitor exposure of endocrine disruptor.
Collapse
Affiliation(s)
- Chaelin Lee
- Center for Chemical Analysis, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 305-600, Republic of Korea; Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Chong Hyeak Kim
- Center for Chemical Analysis, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 305-600, Republic of Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sung-Hee Cho
- Center for Chemical Analysis, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 305-600, Republic of Korea.
| |
Collapse
|
49
|
Mínguez-Alarcón L, Hauser R, Gaskins AJ. Effects of bisphenol A on male and couple reproductive health: a review. Fertil Steril 2016; 106:864-70. [PMID: 27498136 PMCID: PMC5242098 DOI: 10.1016/j.fertnstert.2016.07.1118] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/19/2016] [Accepted: 07/26/2016] [Indexed: 11/22/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental toxicant with endocrine-disrupting properties and is suspected to affect human reproduction. The objective of this review was to summarize the potential effects of male exposure to BPA on markers of testicular function and couple reproductive outcomes. Five epidemiologic studies on BPA and reproductive hormones all found significant associations with at least one reproductive hormone; however, no consistent relationships were observed across studies. Six epidemiologic studies evaluated the relation between BPA and semen parameters, and although the majority reported negative associations with various parameters, there were few consistent trends across studies. Finally, three epidemiologic studies examined BPA and couple reproductive outcomes, and only one found an association. Overall, the evidence supporting an association between BPA exposure and adverse male reproductive health outcomes in humans remains limited and inconclusive. Reasons for the discrepancies in results could include, but are not limited to, differences in study populations (e.g., fertile vs. subfertile men), BPA urinary concentrations (occupationally vs. nonoccupationally exposed), misclassification of BPA exposure (e.g., using one urine sample to characterize exposure vs. multiple samples), sample sizes, study design (e.g., cross-sectional vs. prospective), and residual confounding (e.g., due to diet and lifestyle factors). It is also possible that some of the statistically significant findings were due to chance alone. Clearly, further studies are needed to further clarify the role of this ubiquitous endocrine-disrupting chemical on male reproductive health.
Collapse
Affiliation(s)
- Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Russ Hauser
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Audrey J Gaskins
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
50
|
Wang HF, Liu M, Li N, Luo T, Zheng LP, Zeng XH. Bisphenol A Impairs Mature Sperm Functions by a CatSper-Relevant Mechanism. Toxicol Sci 2016; 152:145-54. [DOI: 10.1093/toxsci/kfw070] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|