1
|
Vo ATT, Khan U, Liopo AV, Mouli K, Olson KR, McHugh EA, Tour JM, Pooparayil Manoj M, Derry PJ, Kent TA. Harshly Oxidized Activated Charcoal Enhances Protein Persulfidation with Implications for Neurodegeneration as Exemplified by Friedreich's Ataxia. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:2007. [PMID: 39728543 DOI: 10.3390/nano14242007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Harsh acid oxidation of activated charcoal transforms an insoluble carbon-rich source into water-soluble, disc structures of graphene decorated with multiple oxygen-containing functionalities. We term these pleiotropic nano-enzymes as "pleozymes". A broad redox potential spans many crucial redox reactions including the oxidation of hydrogen sulfide (H2S) to polysulfides and thiosulfate, dismutation of the superoxide radical (O2-*), and oxidation of NADH to NAD+. The oxidation of H2S is predicted to enhance protein persulfidation-the attachment of sulfur to cysteine residues. Persulfidated proteins act as redox intermediates, and persulfidation protects proteins from irreversible oxidation and ubiquitination, providing an important means of signaling. Protein persulfidation is believed to decline in several neurological disorders and aging. Importantly, and consistent with the role of persulfidation in signaling, the master antioxidant transcription factor Nrf2 is regulated by Keap1's persulfidation. Here, we demonstrate that pleozymes increased overall protein persulfidation in cells from apparently healthy individuals and from individuals with the mitochondrial protein mutation responsible for Friedreich's ataxia. We further find that pleozymes specifically enhanced Keap1 persulfidation, with subsequent increased accumulation of Nrf2 and Nrf2's antioxidant targets.
Collapse
Affiliation(s)
- Anh T T Vo
- Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Uffaf Khan
- Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Anton V Liopo
- Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| | - Karthik Mouli
- Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine South Bend, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Emily A McHugh
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
| | - James M Tour
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Smalley-Curl Institute, Rice University, Houston, TX 77005, USA
- Rice Advanced Materials Institute, Rice University, Houston, TX 77005, USA
- The NanoCarbon Center, Rice University, Houston, TX 77005, USA
| | - Madhavan Pooparayil Manoj
- Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
| | - Paul J Derry
- Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Thomas A Kent
- Center for Genomics and Precision Medicine, Institute of Bioscience and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA
- Department of Chemistry, Rice University, Houston, TX 77005, USA
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, Houston, TX 77030, USA
| |
Collapse
|
2
|
Artimovič P, Badovská Z, Toporcerová S, Špaková I, Smolko L, Sabolová G, Kriváková E, Rabajdová M. Oxidative Stress and the Nrf2/PPARγ Axis in the Endometrium: Insights into Female Fertility. Cells 2024; 13:1081. [PMID: 38994935 PMCID: PMC11240766 DOI: 10.3390/cells13131081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Successful pregnancy depends on precise molecular regulation of uterine physiology, especially during the menstrual cycle. Deregulated oxidative stress (OS), often influenced by inflammatory changes but also by environmental factors, represents a constant threat to this delicate balance. Oxidative stress induces a reciprocally regulated nuclear factor erythroid 2-related factor 2/peroxisome proliferator-activated receptor-gamma (Nrf2/PPARγ) pathway. However, increased PPARγ activity appears to be a double-edged sword in endometrial physiology. Activated PPARγ attenuates inflammation and attenuates OS to restore redox homeostasis. However, it also interferes with physiological processes during the menstrual cycle, such as hormonal signaling and angiogenesis. This review provides an elucidation of the molecular mechanisms that support the interplay between PPARγ and OS. Additionally, it offers fresh perspectives on the Nrf2/PPARγ pathway concerning endometrial receptivity and its potential implications for infertility.
Collapse
Affiliation(s)
- Peter Artimovič
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Zuzana Badovská
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Silvia Toporcerová
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia;
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Lukáš Smolko
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Gabriela Sabolová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Eva Kriváková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Trieda SNP 1, 040 11 Košice, Slovakia; (P.A.); (I.Š.); (L.S.); (G.S.); (E.K.); (M.R.)
| |
Collapse
|
3
|
Pribil Pardun S, Bhat A, Anderson CP, Allen MF, Bruening W, Jacob J, Pendyala VV, Yu L, Bruett T, Zimmerman MC, Park SY, Zucker IH, Gao L. Electrical Pulse Stimulation Protects C2C12 Myotubes against Hydrogen Peroxide-Induced Cytotoxicity via Nrf2/Antioxidant Pathway. Antioxidants (Basel) 2024; 13:716. [PMID: 38929155 PMCID: PMC11201067 DOI: 10.3390/antiox13060716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Skeletal muscle contraction evokes numerous biochemical alterations that underpin exercise benefits. This present study aimed to elucidate the mechanism for electrical pulse stimulation (EPS)-induced antioxidant adaptation in C2C12 myotubes. We found that EPS significantly upregulated Nrf2 and a broad array of downstream antioxidant enzymes involved in multiple antioxidant systems. These effects were completely abolished by pretreatment with a ROS scavenger, N-acetylcysteine. MitoSOX-Red, CM-H2DCFDA, and EPR spectroscopy revealed a significantly higher ROS level in mitochondria and cytosol in EPS cells compared to non-stimulated cells. Seahorse and Oroboros revealed that EPS significantly increased the maximal mitochondrial oxygen consumption rate, along with an upregulated protein expression of mitochondrial complexes I/V, mitofusin-1, and mitochondrial fission factor. A post-stimulation time-course experiment demonstrated that upregulated NQO1 and GSTA2 last at least 24 h following the cessation of EPS, whereas elevated ROS declines immediately. These findings suggest an antioxidant preconditioning effect in the EPS cells. A cell viability study suggested that the EPS cells displayed 11- and 36-fold higher survival rates compared to the control cells in response to 2 and 4 mM H2O2 treatment, respectively. In summary, we found that EPS upregulated a large group of antioxidant enzymes in C2C12 myotubes via a contraction-mitochondrial-ROS-Nrf2 pathway. This antioxidant adaptation protects cells against oxidative stress-associated cytotoxicity.
Collapse
Affiliation(s)
- Sarah Pribil Pardun
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.P.P.); (A.B.); (W.B.); (J.J.); (V.V.P.)
| | - Anjali Bhat
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.P.P.); (A.B.); (W.B.); (J.J.); (V.V.P.)
| | - Cody P. Anderson
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA; (C.P.A.); (M.F.A.); (S.-Y.P.)
| | - Michael F. Allen
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA; (C.P.A.); (M.F.A.); (S.-Y.P.)
| | - Will Bruening
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.P.P.); (A.B.); (W.B.); (J.J.); (V.V.P.)
| | - Joel Jacob
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.P.P.); (A.B.); (W.B.); (J.J.); (V.V.P.)
| | - Ved Vasishtha Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.P.P.); (A.B.); (W.B.); (J.J.); (V.V.P.)
| | - Li Yu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Y.); (T.B.); (M.C.Z.); (I.H.Z.)
| | - Taylor Bruett
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Y.); (T.B.); (M.C.Z.); (I.H.Z.)
| | - Matthew C. Zimmerman
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Y.); (T.B.); (M.C.Z.); (I.H.Z.)
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska Omaha, Omaha, NE 68182, USA; (C.P.A.); (M.F.A.); (S.-Y.P.)
| | - Irving H. Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (L.Y.); (T.B.); (M.C.Z.); (I.H.Z.)
| | - Lie Gao
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.P.P.); (A.B.); (W.B.); (J.J.); (V.V.P.)
| |
Collapse
|
4
|
Costa RM, Dias MC, Alves JV, Silva JLM, Rodrigues D, Silva JF, Francescato HDC, Ramalho LNZ, Coimbra TM, Tostes RC. Pharmacological activation of nuclear factor erythroid 2-related factor-2 prevents hyperglycemia-induced renal oxidative damage: Possible involvement of O-GlcNAcylation. Biochem Pharmacol 2024; 220:115982. [PMID: 38097051 DOI: 10.1016/j.bcp.2023.115982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
Hyperglycemia is a major risk factor for kidney diseases. Oxidative stress, caused by reactive oxygen species, is a key factor in the development of kidney abnormalities related to hyperglycemia. The nuclear factor erythroid 2-related factor-2 (Nrf2) plays a crucial role in defending cells against oxidative stress by activating genes that produce antioxidants. L-sulforaphane (SFN), a drug that activates Nrf2, reduces damage caused by hyperglycemia. Hyperglycemic Wistar rats and HEK 293 cells maintained in hyperglycemic medium exhibited decreased Nrf2 nuclear translocation and reduced expression and activity of antioxidant enzymes. SFN treatment increased Nrf2 activity and reversed decreased renal function, oxidative stress and cell death associated with hyperglycemia. To investigate mechanisms involved in hyperglycemia-induced reduced Nrf2 activity, we addressed whether Nrf2 is modified by O-linked β-N-acetylglucosamine (O-GlcNAc), a post-translational modification that is fueled in hyperglycemic conditions. In vivo, hyperglycemia increased O-GlcNAc-modified Nrf2 expression. Increased O-GlcNAc levels, induced by pharmacological inhibition of OGA, decreased Nrf2 activity in HEK 293 cells. In conclusion, hyperglycemia reduces Nrf2 activity, promoting oxidative stress, cell apoptosis and structural and functional renal damage. Pharmacological treatment with SFN attenuates renal injury. O-GlcNAcylation negatively modulates Nrf2 activity and represents a potential mechanism leading to oxidative stress and renal damage in hyperglycemic conditions.
Collapse
Affiliation(s)
- Rafael M Costa
- Institute of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| | - Mayara C Dias
- Institute of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil
| | - Juliano V Alves
- Institute of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - João Lucas M Silva
- Institute of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil
| | - Daniel Rodrigues
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Josiane F Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Heloísa D C Francescato
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Leandra N Z Ramalho
- Department of Pathology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Terezila M Coimbra
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
| |
Collapse
|
5
|
Glorieux C, Enríquez C, González C, Aguirre-Martínez G, Buc Calderon P. The Multifaceted Roles of NRF2 in Cancer: Friend or Foe? Antioxidants (Basel) 2024; 13:70. [PMID: 38247494 PMCID: PMC10812565 DOI: 10.3390/antiox13010070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Physiological concentrations of reactive oxygen species (ROS) play vital roles in various normal cellular processes, whereas excessive ROS generation is central to disease pathogenesis. The nuclear factor erythroid 2-related factor 2 (NRF2) is a critical transcription factor that regulates the cellular antioxidant systems in response to oxidative stress by governing the expression of genes encoding antioxidant enzymes that shield cells from diverse oxidative alterations. NRF2 and its negative regulator Kelch-like ECH-associated protein 1 (KEAP1) have been the focus of numerous investigations in elucidating whether NRF2 suppresses tumor promotion or conversely exerts pro-oncogenic effects. NRF2 has been found to participate in various pathological processes, including dysregulated cell proliferation, metabolic remodeling, and resistance to apoptosis. Herein, this review article will examine the intriguing role of phase separation in activating the NRF2 transcriptional activity and explore the NRF2 dual impacts on tumor immunology, cancer stem cells, metastasis, and long non-coding RNAs (LncRNAs). Taken together, this review aims to discuss the NRF2 multifaceted roles in both cancer prevention and promotion while also addressing the advantages, disadvantages, and limitations associated with modulating NRF2 therapeutically in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Cinthya Enríquez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Programa de Magister en Ciencias Químicas y Farmacéuticas, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Constanza González
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
| | - Gabriela Aguirre-Martínez
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Instituto de Química Medicinal, Universidad Arturo Prat, Iquique 1100000, Chile
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique 1100000, Chile; (C.E.); (C.G.); (G.A.-M.)
- Instituto de Química Medicinal, Universidad Arturo Prat, Iquique 1100000, Chile
- Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
6
|
Mandel N, Büttner M, Poschet G, Kuner R, Agarwal N. SUMOylation Modulates Reactive Oxygen Species (ROS) Levels and Acts as a Protective Mechanism in the Type 2 Model of Diabetic Peripheral Neuropathy. Cells 2023; 12:2511. [PMID: 37947589 PMCID: PMC10648122 DOI: 10.3390/cells12212511] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is the prevalent type of peripheral neuropathy; it primarily impacts extremity nerves. Its multifaceted nature makes the molecular mechanisms of diabetic neuropathy intricate and incompletely elucidated. Several types of post-translational modifications (PTMs) have been implicated in the development and progression of DPN, including phosphorylation, glycation, acetylation and SUMOylation. SUMOylation involves the covalent attachment of small ubiquitin-like modifier (SUMO) proteins to target proteins, and it plays a role in various cellular processes, including protein localization, stability, and function. While the specific relationship between high blood glucose and SUMOylation is not extensively studied, recent evidence implies its involvement in the development of DPN in type 1 diabetes. In this study, we investigated the impact of SUMOylation on the onset and progression of DPN in a type 2 diabetes model using genetically modified mutant mice lacking SUMOylation, specifically in peripheral sensory neurons (SNS-Ubc9-/-). Behavioural measurement for evoked pain, morphological analyses of nerve fibre loss in the epidermis, measurement of reactive oxygen species (ROS) levels, and antioxidant molecules were analysed over several months in SUMOylation-deficient and control mice. Our longitudinal analysis at 30 weeks post-high-fat diet revealed that SNS-Ubc9-/- mice exhibited earlier and more pronounced thermal and mechanical sensation loss and accelerated intraepidermal nerve fibre loss compared to control mice. Mechanistically, these changes are associated with increased levels of ROS both in sensory neuronal soma and in peripheral axonal nerve endings in SNS-Ubc9-/- mice. In addition, we observed compromised detoxifying potential, impaired respiratory chain complexes, and reduced levels of protective lipids in sensory neurons upon deletion of SUMOylation in diabetic mice. Importantly, we also identified mitochondrial malate dehydrogenase (MDH2) as a SUMOylation target, the activity of which is negatively regulated by SUMOylation. Our results indicate that SUMOylation is an essential neuroprotective mechanism in sensory neurons in type 2 diabetes, the deletion of which causes oxidative stress and an impaired respiratory chain, resulting in energy depletion and subsequent damage to sensory neurons.
Collapse
Affiliation(s)
- Nicolas Mandel
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany (R.K.)
| | - Michael Büttner
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany (R.K.)
| | - Nitin Agarwal
- Institute of Pharmacology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany (R.K.)
| |
Collapse
|
7
|
Somashekara SC, Dhyani KM, Thakur M, Muniyappa K. SUMOylation of yeast Pso2 enhances its translocation and accumulation in the mitochondria and suppresses methyl methanesulfonate-induced mitochondrial DNA damage. Mol Microbiol 2023; 120:587-607. [PMID: 37649278 DOI: 10.1111/mmi.15145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
Saccharomyces cerevisiae Pso2/SNM1 is essential for DNA interstrand crosslink (ICL) repair; however, its mechanism of action remains incompletely understood. While recent work has revealed that Pso2/Snm1 is dual-localized in the nucleus and mitochondria, it remains unclear whether cell-intrinsic and -extrinsic factors regulate its subcellular localization and function. Herein, we show that Pso2 undergoes ubiquitination and phosphorylation, but not SUMOylation, in unstressed cells. Unexpectedly, we found that methyl methanesulfonate (MMS), rather than ICL-forming agents, induced robust SUMOylation of Pso2 on two conserved residues, K97 and K575, and that SUMOylation markedly increased its abundance in the mitochondria. Reciprocally, SUMOylation had no discernible impact on Pso2 translocation to the nucleus, despite the presence of steady-state levels of SUMOylated Pso2 across the cell cycle. Furthermore, substitution of the invariant residues K97 and K575 by arginine in the Pso2 SUMO consensus motifs severely impaired SUMOylation and abolished its translocation to the mitochondria of MMS-treated wild type cells, but not in unstressed cells. We demonstrate that whilst Siz1 and Siz2 SUMO E3 ligases catalyze Pso2 SUMOylation, the former plays a dominant role. Notably, we found that the phenotypic characteristics of the SUMOylation-defective mutant Pso2K97R/K575R closely mirrored those observed in the Pso2Δ petite mutant. Additionally, leveraging next-generation sequencing analysis, we demonstrate that Pso2 mitigates MMS-induced damage to mitochondrial DNA (mtDNA). Viewed together, our work offers previously unknown insights into the link between genotoxic stress-induced SUMOylation of Pso2 and its preferential targeting to the mitochondria, as well as its role in attenuating MMS-induced mtDNA damage.
Collapse
Affiliation(s)
| | - Kshitiza M Dhyani
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Manoj Thakur
- Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| |
Collapse
|
8
|
Yang H, Du Y, Fei X, Huang S, Yimiti M, Yang X, Ma J, Li S, Tuoheniyazi H, Zhao Y, Gu Z, Xu D. SUMOylation of the ubiquitin ligase component KEAP1 at K39 upregulates NRF2 and its target function in lung cancer cell proliferation. J Biol Chem 2023; 299:105215. [PMID: 37660919 PMCID: PMC10556770 DOI: 10.1016/j.jbc.2023.105215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) is important for the expression of genes associated with oxidative stress. The levels of NRF2 are controlled by Kelch-like ECH-associated protein 1 (KEAP1)-dependent degradation. Although oxidative stress is known to suppress KEAP1 activity to stabilize the levels of NRF2, the mechanism for this control is unclear. Here, we identify that KEAP1 is modified by SUMO1 at the lysine residue position 39 (K39). Arginine replacement of this lysine (K39R) in KEAP1 did not affect its stability, subcellular localization, or dimerization but promoted the formation of the Cullin 3 ubiquitin ligase and increased NRF2 ubiquitination. This was accompanied by decreased NRF2 expression. Gene reporter assays showed that the transcription of antioxidant response elements was heightened in KEAP1-WT cells compared to cells expressing the KEAP1-K39R SUMO1 substrate mutant. Consistent with this, chromatin immunoprecipitation assays revealed higher NRF2 binding to the promoter regions of antioxidant genes in cells expressing the KEAP1-WT compared to the KEAP1-K39R mutant protein in H1299 lung cancer cell. The significance of this suppression of KEAP1 activity by its SUMOylation was tested in a subcutaneous tumor model of H1299 lung cancer cell lines that differentially expressed the WT and K39R KEAP1 constructs. This model showed that mutating the SUMOylation site on KEAP1 altered the production of reactive oxygen species and suppressed tumor growth. Taken together, our study recognizes that NRF2-dependent redox control is regulated by the SUMOylation of KEAP1. These findings identify a potential new therapeutic option to counteract oxidative stress.
Collapse
Affiliation(s)
- Hao Yang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuzhang Du
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Fei
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu Huang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maimaitiaili Yimiti
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobao Yang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junrui Ma
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuhui Li
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huxidanmu Tuoheniyazi
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Zhao
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhidong Gu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Laboratory Medicine, Ruijin-Hainan Hospital, Shanghai Jiao Tong University School of Medicine (Hainan Boao Research Hospital), Hainan, China.
| | - Dakang Xu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Mapuskar KA, Pulliam CF, Zepeda-Orozco D, Griffin BR, Furqan M, Spitz DR, Allen BG. Redox Regulation of Nrf2 in Cisplatin-Induced Kidney Injury. Antioxidants (Basel) 2023; 12:1728. [PMID: 37760031 PMCID: PMC10525889 DOI: 10.3390/antiox12091728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Cisplatin, a potent chemotherapeutic agent, is marred by severe nephrotoxicity that is governed by mechanisms involving oxidative stress, inflammation, and apoptosis pathways. The transcription factor Nrf2, pivotal in cellular defense against oxidative stress and inflammation, is the master regulator of the antioxidant response, upregulating antioxidants and cytoprotective genes under oxidative stress. This review discusses the mechanisms underlying chemotherapy-induced kidney injury, focusing on the role of Nrf2 in cancer therapy and its redox regulation in cisplatin-induced kidney injury. We also explore Nrf2's signaling pathways, post-translational modifications, and its involvement in autophagy, as well as examine redox-based strategies for modulating Nrf2 in cisplatin-induced kidney injury while considering the limitations and potential off-target effects of Nrf2 modulation. Understanding the redox regulation of Nrf2 in cisplatin-induced kidney injury holds significant promise for developing novel therapeutic interventions. This knowledge could provide valuable insights into potential strategies for mitigating the nephrotoxicity associated with cisplatin, ultimately enhancing the safety and efficacy of cancer treatment.
Collapse
Affiliation(s)
- Kranti A. Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Casey F. Pulliam
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Diana Zepeda-Orozco
- Pediatric Nephrology and Hypertension at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin R. Griffin
- Division of Nephrology, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Muhammad Furqan
- Department of Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Douglas R. Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Bryan G. Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Tang YC, Chuang YJ, Chang HH, Juang SH, Yen GC, Chang JY, Kuo CC. How to deal with frenemy NRF2: Targeting NRF2 for chemoprevention and cancer therapy. J Food Drug Anal 2023; 31:387-407. [PMID: 39666284 PMCID: PMC10629913 DOI: 10.38212/2224-6614.3463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 12/13/2024] Open
Abstract
Induction of antioxidant proteins and phase 2 detoxifying enzymes that neutralize reactive electrophiles are important mechanisms for protection against carcinogenesis. Normal cells provide multifaceted pathways to tightly control NF-E2-related factor 2 (NRF2)-mediated gene expression in response to an assault by a range of endogenous and exogenous oncogenic molecules. Transient activation of NRF2 by its activators is able to induce ARE-mediated cytoprotective proteins which are essential for protection against various toxic and oxidative damages, and NRF2 activators thereby have efficacy in cancer chemoprevention. Because NRF2 has a cytoprotective function, it can protect normal cells from carcinogens like an angel, but when the protective effect acts on cancer cells, it will give rise to invincible cancer cells and play a devilish role in tumor progression. Indeed, aberrant activation of NRF2 has been found in a variety of cancers that create a favorable environment for the proliferation and survival of cancer cells and leads to drug resistance, ultimately leading to the poor clinical prognosis of patients. Therefore, pharmacological inhibition of NRF2 signaling has emerged as a promising approach for cancer therapy. This review aims to compile the regulatory mechanisms of NRF2 and its double-edged role in cancer. In addition, we also summarize the research progress of NRF2 modulators, especially phytochemicals, in chemoprevention and cancer therapy.
Collapse
Affiliation(s)
- Ya-Chu Tang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
| | - Yung-Jen Chuang
- School of Medicine, National Tsing Hua University, Hsinchu,
Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu,
Taiwan
| | - Hsin-Huei Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
| | - Shin-Hun Juang
- School of Pharmacy, China Medical University, Taichung,
Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung,
Taiwan
| | - Jang-Yang Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
- Taipei Cancer Center, Taipei Medical University Hospital, Taipei,
Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei,
Taiwan
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli,
Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung,
Taiwan
| |
Collapse
|
11
|
Reduced SUMOylation of Nrf2 signaling contributes to its inhibition induced by amyloid-β. Neurosci Lett 2023; 799:137118. [PMID: 36764479 DOI: 10.1016/j.neulet.2023.137118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/15/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Oxidative stress induced by amyloid-β (Aβ) has been considered as one of the important mechanisms in the development of Alzheimer disease (AD). The inhibition of endogenous antioxidant Nrf2 signaling in the brain of AD patients aggravates the oxidative damage, however, the causes of Nrf2 signaling inhibition are unclear. It is reported that smallubiquitin-like modification (SUMOylation) is involved in the process of oxidative injury. To investigate whether and how SUMOylation was involved in the inhibition of Nrf2 signaling pathway induced by Aβ, Aβ intrahippocampal injection rat model and Aβ treated SH-SY5Y cell model were used in the current study. Small interfering RNA and lentivirus transfection were used to intervene SUMOylation, and the level of SUMOylation was assessed by immunoprecipitation. The present in vivo and in vitro studies revealed that SUMOylation levels of Nrf2 and MafF, as well as the overall SUMOylation level were reduced under long-term Aβ insult. Meanwhile, the binding of Nrf2 to MafF was decreased, accompanied by low interaction with antioxidant response element (ARE) area of gene. Down-regulation of SUMO protein exacerbated the Aβ-induced inhibition of Nrf2 signaling pathway, while, enhancement of SUMOylation of Nrf2 and MafF by overexpression of Ubc9 reversed this process. These results imply that reduction in SUMOylation induced by Aβ contributed to the inhibition of Nrf2 signaling, and SUMOylation might be a potential therapeutic target of AD.
Collapse
|
12
|
McCord JM, Gao B, Hybertson BM. The Complex Genetic and Epigenetic Regulation of the Nrf2 Pathways: A Review. Antioxidants (Basel) 2023; 12:antiox12020366. [PMID: 36829925 PMCID: PMC9952775 DOI: 10.3390/antiox12020366] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Nrf2 is a major transcription factor that significantly regulates-directly or indirectly-more than 2000 genes. While many of these genes are involved in maintaining redox balance, others are involved in maintaining balance among metabolic pathways that are seemingly unrelated to oxidative stress. In the past 25 years, the number of factors involved in the activation, nuclear translocation, and deactivation of Nrf2 has continued to expand. The purpose of this review is to provide an overview of the remarkable complexity of the tortuous sequence of stop-and-go signals that not only regulate expression or repression, but may also modify transcriptional intensity as well as the specificity of promoter recognition, allowing fluidity of its gene expression profile depending on the various structural modifications the transcription factor encounters on its journey to the DNA. At present, more than 45 control points have been identified, many of which represent sites of action of the so-called Nrf2 activators. The complexity of the pathway and the synergistic interplay among combinations of control points help to explain the potential advantages seen with phytochemical compositions that simultaneously target multiple control points, compared to the traditional pharmaceutical paradigm of "one-drug, one-target".
Collapse
Affiliation(s)
- Joe M. McCord
- Pathways Bioscience, Aurora, CO 80045, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Correspondence:
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO 80045, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Brooks M. Hybertson
- Pathways Bioscience, Aurora, CO 80045, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Stewart EC, Davis JS, Walters TS, Chen Z, Miller ST, Duke JM, Alexander LR, Akohoue SA, Russell R, Rowan N, Campbell L, Baxter I, Tolbert S, Erves JC. Development of strategies for community engaged research dissemination by basic scientists: a case study. Transl Res 2023; 252:91-98. [PMID: 36108910 DOI: 10.1016/j.trsl.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 01/14/2023]
Abstract
As depicted in the translational research continuum, dissemination of research findings to past research participants and the community-at-large is integral to improving health outcomes. Blocks in translation exist in which poor dissemination is a major contributor. Limited progress has been made on how to engage basic scientists at T1 and T2 phases to meaningfully disseminate study findings to community. Our objective is to report on 4 cases of community engaged research dissemination activities among 3 basic scientists (ie, a cancer biologist, a biochemist, and a molecular biologist.): a townhall, a radio listening session, a community newsletter, and a Facebook Live segment. The Meharry Community Engagement Core dissemination team designed these activities using community informed processes. To plan and conduct these activities, a basic scientist is partnered with a community engaged researcher and a community-based organization to create a dissemination product which can be understood and potentially used by past research participants and the community-at-large. We share reflections from basic scientists, community organizations, and event participants. Finally, we provide competencies, informed by basic scientists, needed to engage in effective, community-engaged research dissemination. The activities, reflections, and competencies can be used by basic scientists and academic institutions as models to guide their community engaged research dissemination activities. This work supports the goal to bridge the translational research gap.
Collapse
Affiliation(s)
- Elizabeth C Stewart
- Department of Surgery, School of Medicine, Meharry Medical College, Nashville, Tennessee
| | - Jamaine S Davis
- Department of Biochemistry and Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee
| | - Treniqka S Walters
- Department of Biochemistry and Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee
| | - Zhenbang Chen
- Department of Biochemistry and Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee
| | - Stephania T Miller
- Department of Surgery, School of Medicine, Meharry Medical College, Nashville, Tennessee
| | - Jillian M Duke
- Department of Surgery, School of Medicine, Meharry Medical College, Nashville, Tennessee
| | - Leah R Alexander
- Division of Public Health Practice, School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennesse
| | - Sylvie A Akohoue
- Department of Family and Community Medicine, School of Medicine, Meharry Medical College, Nashville, Tennessee
| | | | - Nicole Rowan
- Metropolitan Action Commission, Nashville, Tennessee
| | - Lanese Campbell
- Second Missionary Baptist Cooperative Ministries, Nashville, Tennessee
| | - Ira Baxter
- Prostate Cancer Coalition of Tennessee, Nashville, Tennessee
| | | | - Jennifer Cunningham Erves
- Department of Internal Medicine, School of Medicine, Meharry Medical College, Nashville, Tennessee; Department of Family and Community Medicine, School of Medicine, Meharry Medical College, Nashville, Tennessee.
| |
Collapse
|
14
|
Reciprocal REG γ-Nrf2 Regulation Promotes Long Period ROS Scavenging in Oxidative Stress-Induced Cell Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:4743885. [PMID: 36659906 PMCID: PMC9845040 DOI: 10.1155/2023/4743885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/18/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023]
Abstract
Increased accumulation of reactive oxygen species (ROS) and decline of adaptive response of antioxidants to oxidative stimuli has been implicated in the aging process. Nuclear factor erythroid 2-related factor 2 (Nrf2) activation is a core event in attenuating oxidative stress-associated aging. The activity is modulated by a more complex regulatory network. In this study, we demonstrate the proteasome activator REGγ function as a new regulator of Nrf2 activity upon oxidative stress in cell aging model induced by hydrogen peroxide (H2O2). REGγ deficiency promotes cell senescence in primary MEF cells after H2O2 treatment. Accordingly, ROS scavenging is accelerated in WT cells but blunted in REGγ lacking cells during 12-hour recovery from a 1-hour H2O2 treatment, indicating long-lasting antioxidant buffering capacity of REGγ. Mechanistically, through GSK-3β inhibition, REGγ enhances the nuclear distribution and transcriptional activity of Nrf2, which is surveyed by induction of phase II enzymes including Ho1 and Nqo1. Meanwhile, Nrf2 mediates the transcriptional activation of REGγ upon H2O2 stimulation. More interestingly, short-term exposure to H2O2 leads to transiently upregulation and gradually descent of REGγ transcription, however sustained higher REGγ protein level even in the absence of H2O2 for 24 hours. Thus, our results establish a positive feedback loop between REGγ and Nrf2 and a new layer of adaptive response after oxidative stimulation that is the REGγ-GSK-3β-Nrf2 pathway.
Collapse
|
15
|
Mathis BJ, Kato H, Hiramatsu Y. Induction of Cardiac Pathology: Endogenous versus Exogenous Nrf2 Upregulation. Cells 2022; 11:cells11233855. [PMID: 36497112 PMCID: PMC9736027 DOI: 10.3390/cells11233855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of the endogenous antioxidant response to reactive oxygen species as well as a controller of Phase II detoxification in response to xenobiotics. This amenity to specific external manipulation exploits the binding affinity of Nrf2 for its constitutive repressor and degradation facilitator Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1). Derived from both natural and synthesized origins, these compounds have been extensively tested without definitive beneficial results. Unfortunately, multiple terminated trials have shown a negative side to Nrf2 with regard to cardiac pathologies while animal-based studies have demonstrated cardiomyocyte hypertrophy and heart failure after chronic Nrf2 upregulation. Putatively based on autophagic control of Nrf2 activity-modulating upstream factors, new evidence of miRNA involvement has added complexity to this mechanism. What follows is an extensive survey of Nrf2-regulating exogenous compounds that may promote cardiomyopathy, clinical trial evidence, and a comparison to exercise-induced factors that also upregulate Nrf2 while preventing cardiac pathologies.
Collapse
Affiliation(s)
- Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan
- Correspondence: ; Tel.: +81-29-853-3004
| | - Hideyuki Kato
- Department of Cardiovascular Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Ibaraki, Japan
| | - Yuji Hiramatsu
- International Medical Center, University of Tsukuba Hospital, Tsukuba 305-8576, Ibaraki, Japan
| |
Collapse
|
16
|
Kopacz A, Rojo AI, Patibandla C, Lastra-Martínez D, Piechota-Polanczyk A, Kloska D, Jozkowicz A, Sutherland C, Cuadrado A, Grochot-Przeczek A. Overlooked and valuable facts to know in the NRF2/KEAP1 field. Free Radic Biol Med 2022; 192:37-49. [PMID: 36100148 DOI: 10.1016/j.freeradbiomed.2022.08.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Affiliation(s)
- Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Chinmai Patibandla
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, James Arrott Drive, Dundee, United Kingdom
| | - Diego Lastra-Martínez
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Aleksandra Piechota-Polanczyk
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Calum Sutherland
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, James Arrott Drive, Dundee, United Kingdom
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC/UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
17
|
Zhang Y, Yu W, Liu Y, Chang W, Wang M, Zhang L. Regulation of nuclear factor erythroid-2-related factor 2 as a potential therapeutic target in intracerebral hemorrhage. Front Mol Neurosci 2022; 15:995518. [PMID: 36245922 PMCID: PMC9559574 DOI: 10.3389/fnmol.2022.995518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/16/2022] [Indexed: 12/04/2022] Open
Abstract
Hemorrhagic stroke can be categorized into several subtypes. The most common is intracerebral hemorrhage (ICH), which exhibits significant morbidity and mortality, affecting the lives of millions of people worldwide every year. Brain injury after ICH includes the primary injury that results from direct compression as well as stimulation by the hematoma and secondary brain injury (SBI) that is due to ischemia and hypoxia in the penumbra around the hematoma. A number of recent studies have analyzed the mechanisms producing the oxidative stress and inflammation that develop following hematoma formation and are associated with the ICH induced by the SBI as well as the resulting neurological dysfunction. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a critical component in mediating oxidative stress and anti-inflammatory response. We summarize the pathological mechanisms of ICH focusing on oxidative stress and the regulatory role of Nrf2, and review the mechanisms regulating Nrf2 at the transcriptional and post-transcriptional levels by influencing gene expression levels, protein stability, subcellular localization, and synergistic effects with other transcription factors. We further reviewing the efficacy of several Nrf2 activators in the treatment of ICH in experimental ICH models. Activation of Nrf2 might produce antioxidant, anti-inflammatory, and neuron-protection effects, which could potentially be a focus for developing future treatments and prevention of ICH.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- *Correspondence: Yuan Zhang,
| | - Wanpeng Yu
- Medical College, Qingdao University, Qingdao, China
| | - Yingying Liu
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Wenguang Chang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Man Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lei Zhang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
18
|
Petsouki E, Cabrera SNS, Heiss EH. AMPK and NRF2: Interactive players in the same team for cellular homeostasis? Free Radic Biol Med 2022; 190:75-93. [PMID: 35918013 DOI: 10.1016/j.freeradbiomed.2022.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/11/2022] [Accepted: 07/19/2022] [Indexed: 11/27/2022]
Abstract
NRF2 (Nuclear factor E2 p45-related factor 2) is a stress responsive transcription factor lending cells resilience against oxidative, xenobiotic, and also nutrient or proteotoxic insults. AMPK (AMP-activated kinase), considered as prime regulator of cellular energy homeostasis, not only tunes metabolism to provide the cell at any time with sufficient ATP or building blocks, but also controls redox balance and inflammation. Due to observed overlapping cellular responses upon AMPK or NRF2 activation and common stressors impinging on both AMPK and NRF2 signaling, it is plausible to assume that AMPK and NRF2 signaling may interdepend and cooperate to readjust cellular homeostasis. After a short introduction of the two players this narrative review paints the current picture on how AMPK and NRF2 signaling might interact on the molecular level, and highlights their possible crosstalk in selected examples of pathophysiology or bioactivity of drugs and phytochemicals.
Collapse
Affiliation(s)
- Eleni Petsouki
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria
| | - Shara Natalia Sosa Cabrera
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (VDS PhaNuSpo), University of Vienna, Austria
| | - Elke H Heiss
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Faculty of Life Sciences, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
19
|
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022; 188:221-261. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) represents a global health concern. It is characterised by fatty liver, hepatocyte cell death and inflammation, which are associated with lipotoxicity, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, iron overload and oxidative stress. NF-E2 p45-related factor 2 (Nrf2) is a transcription factor that combats oxidative stress. Remarkably, Nrf2 is downregulated during the development of NASH, which probably accelerates disease, whereas in pre-clinical studies the upregulation of Nrf2 inhibits NASH. We now review the scientific literature that proposes Nrf2 downregulation during NASH involves its increased ubiquitylation and proteasomal degradation, mediated by Kelch-like ECH-associated protein 1 (Keap1) and/or β-transducin repeat-containing protein (β-TrCP) and/or HMG-CoA reductase degradation protein 1 (Hrd1, also called synoviolin (SYVN1)). Additionally, downregulation of Nrf2-mediated transcription during NASH may involve diminished recruitment of coactivators by Nrf2, due to increased levels of activating transcription factor 3 (ATF3) and nuclear factor-kappaB (NF-κB) p65, or competition for promoter binding due to upregulation of BTB and CNC homology 1 (Bach1). Many processes that downregulate Nrf2 are triggered by transforming growth factor-beta (TGF-β), with oxidative stress amplifying its signalling. Oxidative stress may also increase suppression of Nrf2 by β-TrCP through facilitating formation of the DSGIS-containing phosphodegron in Nrf2 by glycogen synthase kinase-3. In animal models, knockout of Nrf2 increases susceptibility to NASH, while pharmacological activation of Nrf2 by inducing agents that target Keap1 inhibits development of NASH. These inducing agents probably counter Nrf2 downregulation affected by β-TrCP, Hrd1/SYVN1, ATF3, NF-κB p65 and Bach1, by suppressing oxidative stress. Activation of Nrf2 is also likely to inhibit NASH by ameliorating lipotoxicity, inflammation, ER stress and iron overload. Crucially, pharmacological activation of Nrf2 in mice in which NASH has already been established supresses liver steatosis and inflammation. There is therefore compelling evidence that pharmacological activation of Nrf2 provides a comprehensive multipronged strategy to treat NASH.
Collapse
Affiliation(s)
- Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|
20
|
Hybertson BM, Gao B, McCord JM. Effects of the Phytochemical Combination PB123 on Nrf2 Activation, Gene Expression, and the Cholesterol Pathway in HepG2 Cells. OBM INTEGRATIVE AND COMPLIMENTARY MEDICINE 2022; 7. [PMID: 35252766 PMCID: PMC8896855 DOI: 10.21926/obm.icm.2201002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There has been a long history of human usage of the biologically-active phytochemicals in Salvia rosmarinus, Zingiber officinale, and Sophora japonica for health purposes, and we recently reported on a combination of those plant materials as the PB123 dietary supplement. In the present work we extended those studies to evaluate activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor and differential gene expression in cultured HepG2 (hepatocellular carcinoma) cells treated with PB123. We determined transcriptome changes using mRNA-seq methods, and analyzed the affected pathways using Ingenuity Pathway Analysis and BioJupies, indicating that primary effects included increasing the Nrf2 pathway and decreasing the cholesterol biosynthesis pathway. Pretreatment of cultured HepG2 cells with PB123 upregulated Nrf2-dependent cytoprotective genes and increased cellular defenses against cumene hydroperoxide-induced oxidative stress. In contrast, pretreatment of cultured HepG2 cells with PB123 downregulated cholesterol biosynthesis genes and decreased cellular cholesterol levels. These findings support the possible beneficial effects of PB123 as a healthspan-promoting dietary supplement.
Collapse
Affiliation(s)
- Brooks M Hybertson
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Bifeng Gao
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joe M McCord
- Pathways Bioscience, Aurora, CO 80045, USA.,Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
21
|
Emanuele S, Celesia A, D’Anneo A, Lauricella M, Carlisi D, De Blasio A, Giuliano M. The Good and Bad of Nrf2: An Update in Cancer and New Perspectives in COVID-19. Int J Mol Sci 2021; 22:7963. [PMID: 34360732 PMCID: PMC8348506 DOI: 10.3390/ijms22157963] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/08/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a well-known transcription factor best recognised as one of the main regulators of the oxidative stress response. Beyond playing a crucial role in cell defence by transactivating cytoprotective genes encoding antioxidant and detoxifying enzymes, Nrf2 is also implicated in a wide network regulating anti-inflammatory response and metabolic reprogramming. Such a broad spectrum of actions renders the factor a key regulator of cell fate and a strategic player in the control of cell transformation and response to viral infections. The Nrf2 protective roles in normal cells account for its anti-tumour and anti-viral functions. However, Nrf2 overstimulation often occurs in tumour cells and a complex correlation of Nrf2 with cancer initiation and progression has been widely described. Therefore, if on one hand, Nrf2 has a dual role in cancer, on the other hand, the factor seems to display a univocal function in preventing inflammation and cytokine storm that occur under viral infections, specifically in coronavirus disease 19 (COVID-19). In such a variegate context, the present review aims to dissect the roles of Nrf2 in both cancer and COVID-19, two widespread diseases that represent a cause of major concern today. In particular, the review describes the molecular aspects of Nrf2 signalling in both pathological situations and the most recent findings about the advantages of Nrf2 inhibition or activation as possible strategies for cancer and COVID-19 treatment respectively.
Collapse
Affiliation(s)
- Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.C.); (M.L.); (D.C.)
| | - Adriana Celesia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.C.); (M.L.); (D.C.)
| | - Antonella D’Anneo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Biochemistry Building, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.); (A.D.B.); (M.G.)
| | - Marianna Lauricella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.C.); (M.L.); (D.C.)
| | - Daniela Carlisi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.C.); (M.L.); (D.C.)
| | - Anna De Blasio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Biochemistry Building, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.); (A.D.B.); (M.G.)
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Biochemistry Building, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy; (A.D.); (A.D.B.); (M.G.)
| |
Collapse
|
22
|
Jenkins T, Gouge J. Nrf2 in Cancer, Detoxifying Enzymes and Cell Death Programs. Antioxidants (Basel) 2021; 10:1030. [PMID: 34202320 PMCID: PMC8300779 DOI: 10.3390/antiox10071030] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) play an important role in cell proliferation and differentiation. They are also by-products of aerobic living conditions. Their inherent reactivity poses a threat for all cellular components. Cells have, therefore, evolved complex pathways to sense and maintain the redox balance. Among them, Nrf2 (Nuclear factor erythroid 2-related factor 2) plays a crucial role: it is activated under oxidative conditions and is responsible for the expression of the detoxification machinery and antiapoptotic factors. It is, however, a double edge sword: whilst it prevents tumorigenesis in healthy cells, its constitutive activation in cancer promotes tumour growth and metastasis. In addition, recent data have highlighted the importance of Nrf2 in evading programmed cell death. In this review, we will focus on the activation of the Nrf2 pathway in the cytoplasm, the molecular basis underlying Nrf2 binding to the DNA, and the dysregulation of this pathway in cancer, before discussing how Nrf2 contributes to the prevention of apoptosis and ferroptosis in cancer and how it is likely to be linked to detoxifying enzymes containing selenium.
Collapse
Affiliation(s)
- Tabitha Jenkins
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| | - Jerome Gouge
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK
| |
Collapse
|