1
|
Madej JP, Graczyk S, Bobrek K, Bajzert J, Gaweł A. Impact of early posthatch feeding on the immune system and selected hematological, biochemical, and hormonal parameters in broiler chickens. Poult Sci 2024; 103:103366. [PMID: 38183879 PMCID: PMC10809208 DOI: 10.1016/j.psj.2023.103366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/08/2024] Open
Abstract
Under commercial conditions, chicks hatch within a 24 to 48 h window, a period known as the hatching window. Subsequently, they undergo various treatments before finally being transported to the broiler farm. These procedures may delay the chicks' access to food and water, sometimes receiving them as late as 72 h after hatching. Previous studies have indicated that fasting during this initial period is detrimental, leading to impaired body growth, compromised immune system response, and hindered muscle development. The objective of this study was to assess the impact of early posthatch feeding on immune system organs and selected hematological, biochemical, and hormonal parameters. The experiment utilized Ross 308 broiler eggs incubated under typical commercial hatchery conditions. The experimental group's eggs were hatched in HatchCare hatchers (HC) with immediate access to feed and water, while the control group's eggs were hatched under standard conditions (ST). Thirty chickens from each group were assessed on the 1st (D1), 7th (D7), 21st (D21), and 35th (D35) day after hatching. On D1, the HC group exhibited lower hemoglobin, hematocrit, and total serum protein values, suggesting that early access to water prevents initial dehydration in newborn chicks. Conversely, the ST group showed a stress reaction on D1 due to feed deprivation, leading to an almost 2-fold higher serum corticosterone concentration compared to the HC group. However, this increase did not result in a significant change in the heterophil/lymphocyte ratio. Furthermore, the HC group displayed an increase in triglyceride concentration and a decrease in HDL concentration on D1. On D7, the HC group exhibited an increased relative weight of the bursa and a higher CD4+ cell number in the cecal tonsil (CT), indicating a more rapid development of these organs resulting from early stimulation of the gastrointestinal tract. However, early feeding did not influence the numbers of Bu-1+, CD4+, and CD8+ cells or the germinal center (GC) areas in the spleen. In conclusion, early feeding contributes to the welfare of newborn chicks by reducing dehydration and stress levels and stimulating the development of gut-associated lymphoid tissue.
Collapse
Affiliation(s)
- Jan P Madej
- Department of Immunology, Pathophysiology and Veterinary Prevention, Wrocław University of Environmental and Life Sciences, Wrocław 50-375, Poland
| | - Stanisław Graczyk
- Department of Immunology, Pathophysiology and Veterinary Prevention, Wrocław University of Environmental and Life Sciences, Wrocław 50-375, Poland
| | - Kamila Bobrek
- Department of Epizootiology with Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, Wrocław 50-366, Poland
| | - Joanna Bajzert
- Department of Immunology, Pathophysiology and Veterinary Prevention, Wrocław University of Environmental and Life Sciences, Wrocław 50-375, Poland
| | - Andrzej Gaweł
- Department of Epizootiology with Clinic of Birds and Exotic Animals, Wrocław University of Environmental and Life Sciences, Wrocław 50-366, Poland.
| |
Collapse
|
2
|
Boyner M, Ivarsson E, Wattrang E, Sun L, Wistedt A, Wall H. Effects of access to feed, water, and a competitive exclusion product in the hatcher on some immune traits and gut development in broiler chickens. Br Poult Sci 2023. [PMID: 36628611 DOI: 10.1080/00071668.2022.2163152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This study evaluated the effect of access to feed, water, and the competitive exclusion (CE) product Broilact®, administered in the hatcher, on broiler performance, caecal microbiota development, organ development, intestinal morphology, serum levels of IgY and vaccine-induced antibody responses.In total, 250 chicks were hatched in a HatchCareTM hatcher and divided into four groups, given access to feed, water and the CE product sprayed on the chicks (CEs); access to feed, water, and the CE product in water (CEw); access to feed and water (Cpos); or no access to feed and water (Cneg) in the hatcher. At the research facility, 10 chicks per hatching treatment were euthanized for organ measurements. The remaining 200 chicks were randomly distributed to 20 pens. On d 11, all birds were vaccinated against avian pneumovirus (APV). Three focal birds per pen were blood-sampled weekly for quantification of IgY and serum antibodies to APV. On d 11 and 32, two birds per replicate pen were euthanised for organ measurements and sample collection. Feed intake and body weight were recorded weekly.Delayed access to feed and water reduced weight gain and feed intake early in life. At the end of the study, no differences in body weight remained.There were some early effects on organs, with depressed intestinal development and higher relative gizzard weight for the Cneg group at placement. No treatment effects on the immune traits measured were detected. The relative abundance of seven bacterial genera differed between treatment groups at d 11 of age. The results suggested that chickens are capable of compensating for 40 h feed and water deprival post-hatch. Provision of Broilact® did not have any persistent performance-enhancing properties, although different outcomes under rearing conditions closer to commercial production cannot be ruled out.
Collapse
Affiliation(s)
- M Boyner
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - E Ivarsson
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - E Wattrang
- Department of Microbiology, National Veterinary Institute, Uppsala
| | - L Sun
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - A Wistedt
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - H Wall
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
3
|
Bailey RA. Strategies and opportunities to control breast myopathies: An opinion paper. Front Physiol 2023; 14:1173564. [PMID: 37089423 PMCID: PMC10115961 DOI: 10.3389/fphys.2023.1173564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 04/25/2023] Open
|
4
|
Davies CP, Summers KL, Arfken AM, Darwish N, Chaudhari A, Frey JF, Schreier L, Proszkowiec-Weglarz M. Temporal dynamics of the chicken mycobiome. Front Physiol 2022; 13:1057810. [PMID: 36589448 PMCID: PMC9799259 DOI: 10.3389/fphys.2022.1057810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The microbiome is an integral part of chicken health and can affect immunity, nutrient utilization, and performance. The role of bacterial microbiota members in host health is relatively well established, but less attention has been paid to fungal members of the gastrointestinal tract (GIT) community. However, human studies indicate that fungi play a critical role in health. Here, we described fungal communities, or mycobiomes, in both the lumen and mucosa of the chicken ileum and cecum from hatch through 14 days of age. We also assessed the effects of delayed access to feed immediately post-hatch (PH) on mycobiome composition, as PH feed delay is commonly associated with poor health performance. Chicken mycobiomes in each of the populations were distinct and changed over time. All mycobiomes were dominated by Gibberella, but Aspergillus, Cladosporium, Sarocladium, Meyerozyma, and Penicillium were also abundant. Relative abundances of some taxa differed significantly over time. In the cecal and ileal lumens, Penicillium was present in extremely low quantities or absent during days one and two and then increased over time. Meyerozyma and Wickerhamomyces also increased over time in luminal sites. In contrast, several highly abundant unclassified fungi decreased after days one and two, highlighting the need for improved understanding of fungal gut biology. Mycobiomes from chicks fed during the first 2 days PH versus those not fed during the first 2 days did not significantly differ, except during days one and two. Similarities observed among mycobiomes of fed and unfed chicks at later timepoints suggest that delays in PH feeding do not have long lasting effects on mycobiome composition. Together, these results provide a foundation for future mycobiome studies, and suggest that negative health and production impacts of delayed feeding are not likely related to the development of fungal populations in the GIT.
Collapse
Affiliation(s)
- Cary Pirone Davies
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States,*Correspondence: Cary Pirone Davies,
| | - Katie Lynn Summers
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Ann M. Arfken
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States,Oak Ridge Institute for Science and Education through an interagency Agreement between the U.S., Department of Energy and the USDA, Atlanta, GA, United States,Oak Ridge Institute for Science and Education, Center for Disease Control, Atlanta, GA, United States
| | - Nadia Darwish
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States,Oak Ridge Institute for Science and Education through an interagency Agreement between the U.S., Department of Energy and the USDA, Atlanta, GA, United States,University of Arkansas for Medical Sciences, Little Rock, AK, United States
| | - Atul Chaudhari
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States,Oak Ridge Institute for Science and Education through an interagency Agreement between the U.S., Department of Energy and the USDA, Atlanta, GA, United States,Pharmaceuticals Product Development, Wilmington, NC, United States
| | - Juli Foster Frey
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States,Northeast Area, United States Department of Agriculture, Beltsville, MD, United States
| | - Lori Schreier
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
5
|
Kucharska-Gaca J, Adamski M, Biesek J. Goose Embryonic Development, Glucose and Thyroid Hormone Concentrations, and Eggshell Features Depend on Female Age and Laying Period. Animals (Basel) 2022; 12:2614. [PMID: 36230354 PMCID: PMC9559306 DOI: 10.3390/ani12192614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022] Open
Abstract
This study aimed to evaluate embryonic development; analyze the glucose, triiodothyronine (T3), and thyroxine (T4) concentrations in the blood of embryos and goslings; and assess the structure and temperature (EST) of the eggshell. The eggs that were analyzed were from four laying seasons of White Kołuda® geese at three periods (90 eggs × 4 groups × 3 periods). The different embryo proportions, fetal membranes in the egg, and sizes of internal organs indicate a different growth rate and degree of embryo development depending on the laying age and laying period. The goose age influenced the hormone concentrations in the embryos' blood on the 28th day of incubation, which supports a relationship between the females' age and development. The eggshell thickness and density change depending on the laying age and the laying period. A decrease in eggshell thickness in the eggs up to the third season was found after the 16th day of incubation (simultaneously, the density showed an increasing trend). A lower EST distinguished the eggs from the oldest geese in the first half of the hatch. The formation of the chorioallantois membrane was associated with an increase in EST in the oldest geese.
Collapse
Affiliation(s)
| | | | - Jakub Biesek
- Department of Animal Breeding and Nutrition, Faculty of Animal Breeding and Biology, Bydgoszcz University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| |
Collapse
|
6
|
Soglia F, Bordini M, Mazzoni M, Zappaterra M, Di Nunzio M, Clavenzani P, Davoli R, Meluzzi A, Sirri F, Petracci M. The evolution of vimentin and desmin in Pectoralis major muscles of broiler chickens supports their essential role in muscle regeneration. Front Physiol 2022; 13:970034. [PMID: 36134328 PMCID: PMC9483144 DOI: 10.3389/fphys.2022.970034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Vimentin (VIM) and desmin (DES) are muscle-specific proteins having crucial roles in maintaining the lateral organization and alignment of the sarcomeric structure during myofibrils’ regeneration. The present experiment was designed to ascertain the evolution of VIM and DES in Pectoralis major muscles (PM) of fast-growing (FG) and medium-growing (MG) meat-type chickens both at the protein and gene levels. MG broilers were considered as a control group whereas the evolution of VIM and DES over the growth period was evaluated in FG by collecting samples at different developmental stages (7, 14, 21, 28, 35, and 42 days). After performing a preliminary classification of the samples based on their histological features, 5 PM/sampling time/genotype were selected for western blot, immunohistochemistry (IHC), and gene expression analyses. Overall, the findings obtained at the protein level mirrored those related to their encoding genes, although a potential time lag required to observe the consequences of gene expression was evident. The two- and 3-fold higher level of the VIM-based heterodimer observed in FG at d 21 and d 28 in comparison with MG of the same age might be ascribed to the beginning and progressive development of the regenerative processes. This hypothesis is supported by IHC highlighting the presence of fibers to co-expressing VIM and DES. In addition, gene expression analyses suggested that, unlike VIM common sequence, VIM long isoform may not be directly implicated in muscle regeneration. As for DES content, the fluctuating trends observed for both the native protein and its heterodimer in FG might be ascribed to its importance for maintaining the structural organization of the regenerating fibers. Furthermore, the higher expression level of the DES gene in FG in comparison with MG further supported its potential application as a marker of muscle fibers’ regeneration. In conclusion, the findings of the present research seem to support the existence of a relationship between the occurrence of muscle regeneration and the growth rate of meat-type chickens and corroborate the potential use of VIM and DES as molecular markers of these cellular processes.
Collapse
Affiliation(s)
- Francesca Soglia
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Martina Bordini
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Maurizio Mazzoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
- *Correspondence: Martina Zappaterra,
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Paolo Clavenzani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Roberta Davoli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Adele Meluzzi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Liu Z, Chen X, Zhao Y, Peng J, Chen D, Yu S, Geng Z. Brooding Temperature Alters Yolk Sac Absorption and Affected Ovarian Development in Goslings. Animals (Basel) 2022; 12:ani12121513. [PMID: 35739850 PMCID: PMC9219442 DOI: 10.3390/ani12121513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
In order to explore the brooding temperature on the absorption of yolk sac and the ovary development of goslings, 126 1-day-old female goslings were randomly divided into three groups with three replicates in each group. The brooding temperatures were set at 32 °C, 29 °C and 26 °C (represent G32, G29 and G26), respectively, in each group. At 48, 60 and 72 h, two goslings from each replicate were weighed, and the yolk sac was collected and weighed. The fatty acid composition of yolk sac fluid was determined by gas chromatography-mass spectrometry (GC-MS). At 1, 2, 3, and 4 weeks of age, goslings from each replicate were weighed, the ovaries were weighed and fixed for hematoxylin-eosin (HE) staining, Cell cycle checkpoint kinase 1 (CHK1), fibroblast growth factor 12 (FGF12) and Sma-and Mad-related protein 4 (SMAD4) which related to regulation of ovarian development were determined by qRT-PCR. The body weight of G29 and G26 was significantly higher than that of G32 at 72 h (p < 0.05). The contents of C14:0, C16:0, C18:2n6c and total fatty acid (ΣTFA) from G32 were significantly higher than that of G26 (p < 0.05), and the contents of C18:1n9t and C22:0 in G29 were significantly higher than that of G26 (p < 0.05). The ovary index, ovary and body weight were significantly higher in G29 than those of G32 and G26 at 2 weeks of age (p < 0.05). The number of primordial follicles, number of primary follicles and diameter of primary follicles were significantly higher in G29 than those in G32 and G26 at 4 weeks of age (p < 0.05). In G29, the expression of CHK1 and SMAD4 was significantly higher than that in G32, and the expression of FGF12 and SMAD4 was significantly higher (p < 0.05) than that in G26 at 2 and 4 weeks of age. In conclusion, brooding temperature at 29 °C could promote the absorption of fatty acids in yolk sac, body weight gain, and ovarian development through up-regulating the expression of CHK1, FGF12 and SMAD4.
Collapse
Affiliation(s)
- Zhengquan Liu
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China; (Z.L.); (Y.Z.); (J.P.); (D.C.); (S.Y.); (Z.G.)
| | - Xingyong Chen
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China; (Z.L.); (Y.Z.); (J.P.); (D.C.); (S.Y.); (Z.G.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
- Correspondence: ; Tel.: +86-551-65786244
| | - Yutong Zhao
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China; (Z.L.); (Y.Z.); (J.P.); (D.C.); (S.Y.); (Z.G.)
| | - Jingzhou Peng
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China; (Z.L.); (Y.Z.); (J.P.); (D.C.); (S.Y.); (Z.G.)
| | - Daoyou Chen
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China; (Z.L.); (Y.Z.); (J.P.); (D.C.); (S.Y.); (Z.G.)
| | - Shiqi Yu
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China; (Z.L.); (Y.Z.); (J.P.); (D.C.); (S.Y.); (Z.G.)
| | - Zhaoyu Geng
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China; (Z.L.); (Y.Z.); (J.P.); (D.C.); (S.Y.); (Z.G.)
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| |
Collapse
|
8
|
Lingens JB, Abd El-Wahab A, Ahmed MFE, Schubert DC, Sürie C, Visscher C. Effects of Early Nutrition of Hatched Chicks on Welfare and Growth Performance: A Pilot Study. Animals (Basel) 2021; 11:ani11102888. [PMID: 34679909 PMCID: PMC8532627 DOI: 10.3390/ani11102888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary It is common practice that one-day-old chicks can be deprived of feed for about 48 h or more before they are housed on farms. Thus, we hypothesized that early nutrition on-farm hatched chicks might overcome the adverse effects of delayed nutrition on-hatchery hatched chicks regarding some animal welfare issues such as foot pad health as well as growth performance of birds. Our results confirmed that early nutrition on-farm hatched chicks together with using new fresh litter at d 7 of life led to a reduction in the severity of foot pad lesions and improved the growth performance of broiler chickens. Abstract This study aimed to investigate the possibility of rearing newly hatched chicks with immediate access to feed and water in the same hatching unit one week prior to transferring them to the conventional broiler house with special regards to foot pad health and growth performance. Two trials were performed with a total of 6900/6850 (trials 1/2) broiler chickens (ROSS 308). A total of 3318/3391 chicks (trials 1/2) were transported from the hatchery (duration of about 3 h) and reared in a conventional broiler house (control group: delayed nutrition on-hatchery hatched). The control group did not receive any form of nutrition until they were taken to conventional broiler housing. Additionally, a total of 3582/3459 (trials 1/2) embryonated eggs (d 18) were obtained from the same parent flock of the same commercial hatchery and taken to the farm facility. After on-farm hatch, the chicks had immediate access to water and feed (experimental group: early nutrition on-farm hatched). After d 6/7 of life, the on-farm hatched chicks (trials 1/2) were transferred to the broiler house on the same facility. The delayed nutrition on-hatchery hatched groups displayed a significantly lower dry matter content in the litter compared to the early nutrition on-farm hatched groups (two-factorial analysis) at d 6/7 and d 14 of life. However, thereafter, no significant differences were noted. Based upon two-factorial analysis, the early nutrition on-farm hatched groups revealed lower foot pad lesions from d 14 of life onwards and showed a higher body weight (BW) throughout the rearing period compared to the delayed nutrition on-hatchery hatched groups (p < 0.05). Overall, early nutrition on-farm hatched chickens is of critical importance together with using new litter at d 7 to maintain healthy foot pads as well as to enhance nutrient utilization and optimize the growth performance.
Collapse
Affiliation(s)
- Jan Berend Lingens
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany; (A.A.E.-W.); (D.C.S.); (C.V.)
- Correspondence:
| | - Amr Abd El-Wahab
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany; (A.A.E.-W.); (D.C.S.); (C.V.)
- Department of Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Marwa Fawzy Elmetwaly Ahmed
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Dana Carina Schubert
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany; (A.A.E.-W.); (D.C.S.); (C.V.)
| | - Christian Sürie
- Farm for Education and Research Ruthe, University of Veterinary Medicine Hannover, Foundation, Schäferberg 1, D-31157 Sarstedt, Germany;
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany; (A.A.E.-W.); (D.C.S.); (C.V.)
| |
Collapse
|
9
|
Sousa R, Carvalho F, Guimarães I, Café M, Stringhini J, Ulhôa C, Oliveira H, Leandro N. The effect of hydrothermal processing on the performance of broiler chicks fed corn or sorghum-based diets. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Qu Y, Kahl S, Miska KB, Schreier LL, Russell B, Elsasser TH, Proszkowiec-Weglarz M. The effect of delayed feeding post-hatch on caeca development in broiler chickens. Br Poult Sci 2021; 62:731-748. [PMID: 33834926 DOI: 10.1080/00071668.2021.1912291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. Broiler chicks are frequently deprived of food up to 72 h due to uneven hatching rates, management procedures and transportation to farms. Little is known about the effect of delayed feeding due to extended hatching times on the early neonatal development of the caeca. Therefore, the objective of this study was to investigate the developmental changes and effects of a 48-h delay in feed access immediately post-hatch (PH) on the caeca.2. After hatch, birds (Ross 708) were randomly divided into two treatment groups (n = 6 battery pen/treatment). One group (early fed; EF) received feed and water immediately after hatch, while the second group (late fed; LF) had access to water but had delayed access to feed for 48 h. Contents averaging across all regions of the caeca were collected for mRNA expression as well as for histological analysis at -48, 0, 4 h PH and then at 1, 2, 3, 4, 6, 8, 10, 12 and 14 days PH.3. Expression of MCT-1 (a nutrient transporter), Cox7A2 (related to mitochondrial function) IgA, pIgR, and ChIL-8 (immune function) genes was affected by delayed access to feed that was dependent by the time PH. Expression of immune and gut barrier function-related genes (LEAP2 and MUC2, respectively) was increased in LF group. There was no effect of feed delay on expression of genes related to mitochondrial functions in the caeca, although developmental changes were observed (ATP5F1B, Cox4|1). Caecal mucus and muscle thickness were affected by delayed access to feed during caeca development.4. The data suggested a limited effect of delayed feed access PH on the developmental changes in caecal functions. However, the caeca seemed to be relatively resistant to delayed access to feed early PH, with only a few genes affected.
Collapse
Affiliation(s)
- Y Qu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, USA
| | - S Kahl
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - K B Miska
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - L L Schreier
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - B Russell
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - T H Elsasser
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - M Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| |
Collapse
|
11
|
Boyner M, Ivarsson E, Franko MA, Rezaei M, Wall H. Effect of hatching time on time to first feed intake, organ development, enzymatic activity and growth in broiler chicks hatched on-farm. Animal 2020; 15:100083. [PMID: 33712206 DOI: 10.1016/j.animal.2020.100083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/24/2023] Open
Abstract
The conventional commercial hatcheries used today do not allow the newly hatched chicks to consume feed or water. Combined with natural variation in hatching time, this can lead to early hatched chicks being feed-deprived for up to 72 h before being unloaded at the rearing site. This study investigated the effects of hatching time on time to first feed intake and development of organs, digestive enzymes and productivity in terms of growth and feed conversion ratio in chicks hatched on-farm. Chicks were divided into three hatching groups (early, mid-term and late), and assessed over a full production cycle of 34 days. The results revealed that chicks remain inactive for a considerable amount of time before engaging in eating-related activities. Eating activity of 5% (i.e. when 5% of birds in each hatching group were eating or standing close to the feeder) was recorded at an average biological age (BA) of 25.4 h and a proportion of 50% birds with full crop was reached at an average BA of 30.6 h. Considering that the hatching window was 35 h in this study, the average chick probably did not benefit from access to feed and water immediately post-hatch in this case. At hatch, mid-term hatchlings had a heavier small intestine (30.1 g/kg bw) than both early (26.4 g/kg bw) and late (26.0 g/kg bw) hatchlings. Relative length of the small intestine was shorter in late hatchlings (735 cm/kg bw) than in mid-term (849 cm/kg bw) and early (831 cm/kg bw) hatchlings. However, the relative weight of the bursa fabricii was greater in mid-term (1.30 g/kg bw) than in early hatchlings (1.01 g/kg bw). At hatch, late hatchlings were heavier than early and mid-term hatchlings (P < 0.05), but by 3 days of age early hatchlings were heavier than mid-term and late hatchlings (P < 0.01). The only effect persisting throughout the study was a difference in the relative weight of the small intestine, where late hatchlings had heavier intestines than early hatchlings (P < 0.05). Thus, while there were differences between hatching groups, this study showed that the hatchlings seemed capable of compensating for these as they grew.
Collapse
Affiliation(s)
- M Boyner
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, PO Box 7015, 75007 Uppsala, Sweden.
| | - E Ivarsson
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, PO Box 7015, 75007 Uppsala, Sweden
| | - M Andersson Franko
- Department of Energy and Technology, Swedish University of Agricultural Sciences, PO Box 7015, 75007 Uppsala, Sweden
| | - M Rezaei
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, PO Box 7015, 75007 Uppsala, Sweden
| | - H Wall
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, PO Box 7015, 75007 Uppsala, Sweden
| |
Collapse
|
12
|
Özlü S, Uçar A, Romanini CEB, Banwell R, Elibol O. Effect of posthatch feed and water access time on residual yolk and broiler live performance. Poult Sci 2020; 99:6737-6744. [PMID: 33248589 PMCID: PMC7704965 DOI: 10.1016/j.psj.2020.09.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/01/2020] [Accepted: 09/15/2020] [Indexed: 11/29/2022] Open
Abstract
This study investigated the effect of feed and water access time on yolk sac utilization and subsequent broiler live performance. Hatching eggs were collected from commercial flocks of Ross 308 breeders at 35 and 39 wk of age in experiments 1 and 2, respectively. Chicks already out of their shells that still had some dampness on their down were removed, recorded, feather-sexed, and weighed at 488 h of incubation in both experiments. Chicks were weighed individually and received feed and water at 2 (immediate feed; IF), 8, 12, 16, 20, 24, 28, and 32 h after hatching (488 h) in experiments 1 and 2 (IF) and at 24, 26, 28, 32, 36, and 40 h after hatching in experiment 2. The residual yolk sac weight was determined at 32 and 40 h after hatching (day 0) in all groups in experiments 1 and 2, respectively. Feed consumption and BW were recorded at 7, 14, 21, and 35 d and at the same age relative to placement on feed and water at the end of the growing period. Mortality was recorded twice daily in both experiments. Feed and water access time did not influence yolk sac utilization in either experiment (P > 0.05). The IF group exhibited a higher (P < 0.05) BW than those that received feed at or after 28 h at 35 d in both experiments. There was a significant increase in feed consumption in the IF group compared with the groups with access to feed and water after 24 h at 35 d in experiment 2 (P < 0.05), with a similar trend in experiment 1 (P > 0.05). There were no significant differences in the feed conversion ratio (FCR) or mortality at 35 d of age, but the IF group tended to have a poorer FCR than the other groups in both experiments. When the total feed and water times were equalized among all groups, irrespective of the deprivation duration, there were no significant differences among the groups in the BW, feed consumption, the FCR, or mortality in both experiments. It can be concluded that feed and water deprivation for 28 h or longer after hatching (≥28 h) negatively affects the final BW but tends to improve the FCR at 35 d of age compared with chicks that receive feed immediately (2 h after hatching). When the feeding period was equalized in all groups, feed and water deprivation up to 40 h under optimum conditions had no detrimental effect on final live performance. These results suggest that the total feeding period is more critical for broiler performance than the time of posthatch access to feed and water.
Collapse
Affiliation(s)
- S Özlü
- Department of Animal Science, Faculty of Agriculture, Ankara University, Ankara 06110, Turkey
| | - A Uçar
- Department of Animal Science, Faculty of Agriculture, Ankara University, Ankara 06110, Turkey
| | | | - R Banwell
- Petersime nv, Zulte (Olsene), 9870, Belgium
| | - O Elibol
- Department of Animal Science, Faculty of Agriculture, Ankara University, Ankara 06110, Turkey.
| |
Collapse
|
13
|
Payne JA, Proszkowiec-Weglarz M, Ellestad LE. Delayed access to feed alters gene expression associated with hormonal signaling, cellular differentiation, and protein metabolism in muscle of newly hatch chicks. Gen Comp Endocrinol 2020; 292:113445. [PMID: 32135160 DOI: 10.1016/j.ygcen.2020.113445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 10/24/2022]
Abstract
Birds rely solely on utilization of the yolk sac as a means of nutritional support throughout embryogenesis and early post-hatch, before first feeding occurs. Newly hatched broiler (meat-type) chickens are frequently not given immediate access to feed, and this can result in numerous alterations to developmental processes, including those that occur in muscle. The objective of this study was to characterize the gene expression profile of newly hatched chicks' breast muscle with regards to hormonal regulation of growth and metabolism and development and differentiation of muscle tissue, and determine impacts of delayed access to feed on these profiles. Within 3 h of hatch, birds were placed in battery pens and given immediate access to feed (Fed) or delayed access to feed for 48 h (Delayed Fed). Breast muscle collected from male birds at hatch, or 4 h, 1 day (D), 2D, 4D, and 8D after hatch was used for analysis of mRNA expression by reverse transcription-quantitative PCR. Under fully fed conditions, insulin-like growth factor receptor and leptin receptor mRNA expression decreased as birds aged; however, delayed access to feed resulted in prolonged upregulation of these genes so their mRNA levels were higher in Delayed Fed birds at 2D. These expression profiles suggest that delayed feed access alters sensitivity to hormones that may regulate muscle development. Myogenin, a muscle differentiation factor, showed increasing mRNA expression in Fed birds through 2D, after which expression decreased. A similar expression pattern in Delayed Fed birds was deferred until 4D. Levels of myostatin, a negative regulator of muscle growth, increased in Fed birds starting at 2D, while levels in Delayed Fed birds began to increase at 4D. In Fed birds, levels of transcripts for two genes associated with protein catabolism, F-box protein 32 and forkhead box O3, were lower at 2D, while Delayed Fed mRNA levels did not decrease until 4D. Mechanistic target of rapamycin mRNA levels decreased from 1D through 8D in both treatments, except for a transient increase in the Delayed Fed birds between 1D and 2D. These data suggest that within breast muscle, delayed feeding alters hormonal signaling, interrupts tissue differentiation, postpones onset of growth, and may lead to increased protein catabolism. Together, these processes could ultimately contribute to a reduction in proper growth and development of birds not given feed immediately after hatch, and ultimately hinder the long-term potential of muscle accretion in meat type birds.
Collapse
Affiliation(s)
- Jason A Payne
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30601, USA.
| | - Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Service, Northeast Area, 10300 Baltimore Ave, BARC-East, Bldg 200, Beltsville, MD 20705, USA.
| | - Laura E Ellestad
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA 30601, USA.
| |
Collapse
|
14
|
Hopcroft RL, Groves PJ, Muir WI. Changes to Cobb 500 chick characteristics, bone ash, and residual yolk mineral reserves during time spent in the hatcher. Poult Sci 2020; 99:2176-2184. [PMID: 32241503 PMCID: PMC7587620 DOI: 10.1016/j.psj.2019.11.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 12/04/2022] Open
Abstract
Previous work has identified an effect of hatch time on chick femur mineralization. This experiment assessed the impact of hatch time and a 24-h post-hatch unfed time period on chick bone mineralization and yolk mineral utilization. In early hatching chicks, yolk Mg, Zn, K, P, Fe, and Cu decreased by 40 to 50% over the 24-h post-hatch unfed time period, whereas yolk Ca and Na decreased by 25 to 40% (P = 0.026). Yolk Sr was intermediate, decreasing by 37%. Late hatching chicks which had been hatched for no more than 30 h had a higher femur bone ash percentage compared to early hatching chicks which had spent over a 30-hour sojourn unfed in the incubator (P = 0.013). These results indicate that removing chicks from the incubator within 30 h of their hatch is likely to benefit their femoral mineralization.
Collapse
Affiliation(s)
- R L Hopcroft
- Sydney School of Veterinary Science, Poultry Research Foundation, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia.
| | - P J Groves
- Sydney School of Veterinary Science, Poultry Research Foundation, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - W I Muir
- School of Life and Environmental Sciences, Poultry Research Foundation, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| |
Collapse
|
15
|
Velleman SG, Clark DL, Tonniges JR. The effect of nutrient restriction and syndecan-4 or glypican-1 knockdown on the differentiation of turkey pectoralis major satellite cells differing in age and growth selection. Poult Sci 2020; 98:6078-6090. [PMID: 31180126 DOI: 10.3382/ps/pez304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/16/2019] [Indexed: 11/20/2022] Open
Abstract
Skeletal muscle growth is mediated by the proliferation and differentiation of satellite cells, whose activity is affected by both nutrition and the expression of syndecan-4 and glypican-1. Previous research has not addressed if there is an interactive effect of nutrition with the expression of syndecan-4 and glypican-1. Thus, the objective of the current study was to determine if the response of satellite cells to nutrient restriction was altered by syndecan-4 or glypican-1 knockdown and if age and growth selection are factors. Satellite cells were isolated from pectoralis major muscle of 1-day, 7-wk, and 16-wk-old turkeys selected for increased 16-wk body weight (F line) and the randombred control (RBC2) line from which the F line was selected. Syndecan-4 or glypican-1 expression was knocked down in both lines using small interfering RNAs along with nutrient restriction of 0 or 20% of the standard cell culture medium either applied during proliferation with subsequent normal differentiation medium (RN) or during differentiation with preceding normal proliferation medium (NR). For both lines, nutrient restriction and syndecan-4 or glypican-1 knockdown had an independent and additive effect on satellite cell differentiation at 72 h of differentiation except for 1 d satellite cells. The 1 d satellite cell differentiation was increased by RN treatment, but when combined with syndecan-4 or glypican-1 knockdown, the increase in differentiation was negated. At 48 h of differentiation, syndecan-4 knockdown in 7 and 16 wk satellite cells and glypican-1 knockdown in 7 wk cells cancelled the effect of the RN treatment, but enhanced the effect of NR treatment at 24 h of differentiation. Growth selection had little effect on the interaction between nutrient restriction and syndecan-4 or glypican-1 knockdown. Taken together, these data demonstrate that the satellite cell response to nutrition is dependent on the expression of syndecan-4 and glypican-1 in an age-dependent manner with growth selection having little impact.
Collapse
Affiliation(s)
- Sandra G Velleman
- The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Daniel L Clark
- The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Jeffrey R Tonniges
- The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| |
Collapse
|
16
|
Payne JA, Proszkowiec-Weglarz M, Ellestad LE. Delayed access to feed alters expression of genes associated with carbohydrate and amino acid utilization in newly hatched broiler chicks. Am J Physiol Regul Integr Comp Physiol 2019; 317:R864-R878. [PMID: 31596116 PMCID: PMC6962625 DOI: 10.1152/ajpregu.00117.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022]
Abstract
Newly hatched chicks must transition from lipid-rich yolk to carbohydrate-rich feed as their primary nutrient source, and posthatch delays in access to feed can have long-term negative consequences on growth and metabolism. In this study, impacts of delayed access to feed at hatch on expression of genes related to nutrient uptake and utilization in two metabolically important tissues, liver and muscle, were determined in broiler (meat-type) chickens. Hatched chicks were given access to feed within 3 h (fed) or delayed access to feed for 48 h (delayed fed), and liver and breast muscle were collected from males at hatch and 4 h, 1 day, 2 days, 4 days, and 8 days posthatch for analysis of gene expression. Differential expression of carbohydrate response element-binding protein and peroxisome proliferator-activated receptor-γ in muscle and liver was observed, with results indicating a transitional delay from lipid to carbohydrate metabolism when hatched chicks were not given immediate access to feed. Extended upregulation of insulin receptor mRNA was observed in both tissues in delayed fed birds, suggesting increased sensitivity to circulating levels of the hormone. Developmental delays in expression patterns of cationic amino acid transporters 1 and 2 in both tissues and large neutral amino acid transporter 1 in muscle were also apparent when immediate feed access was prevented. These data suggest that delayed transition to carbohydrate use and altered nutrient transport and utilization within liver and breast muscle are key factors negatively affecting growth and metabolism following delayed feed access in broiler chickens.
Collapse
Affiliation(s)
- Jason A Payne
- Department of Poultry Science, University of Georgia, Athens, Georgia
| | - Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture, Agricultural Research Services, Northeast Area, Beltsville, Maryland
| | - Laura E Ellestad
- Department of Poultry Science, University of Georgia, Athens, Georgia
| |
Collapse
|
17
|
Velleman SG, Clark DL, Tonniges JR. The effect of nutrient restriction on the proliferation and differentiation of turkey pectoralis major satellite cells differing in age and growth rate. Poult Sci 2019; 98:1893-1902. [DOI: 10.3382/ps/pey509] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/24/2018] [Indexed: 11/20/2022] Open
|
18
|
Yang T, Zhao M, Li J, Zhang L, Jiang Y, Zhou G, Gao F. In ovo feeding of creatine pyruvate alters energy metabolism in muscle of embryos and post-hatch broilers. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:834-841. [PMID: 30744365 PMCID: PMC6498083 DOI: 10.5713/ajas.18.0588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/06/2018] [Indexed: 11/27/2022]
Abstract
Objective This study was conducted to investigate the effects of in ovo feeding (IOF) of creatine pyruvate (CrPyr) on the energy metabolism in thigh muscle of embryos and neonatal broilers. Methods A total of 960 eggs were randomly assigned to three treatments: i) non-injected control group, ii) saline group injected with 0.6 mL of physiological saline (0.75%), and iii) CrPyr group injected with 0.6 mL of physiological saline (0.75%) containing 12 mg CrPyr/egg on 17.5 d of incubation. After hatching, 120 male chicks (close to the average body weight of the pooled group) in each group were randomly assigned to eight replications. The feeding experiment lasted 7 days. Results The results showed that IOF of CrPyr increased glucose concentrations in the thigh muscle of broilers on 2 d after injection (p<0.05). Compared with the control and saline groups, the concentration of creatine in CrPyr group was increased on 2 d after injection and the day of hatch (p<0.05). Moreover, IOF of CrPyr increased the creatine kinase activity at hatch and increased the activities of hexokinase and pyruvate kinase on 2 d after injection and the day of hatch (p<0.05). Chicks in CrPyr group showed higher mRNA expressions of glucose transporter 3 (GLUT3) and GLUT8 on the day of hatch (p<0.05). Conclusion These results demonstrated that IOF of CrPyr was beneficial to enhance muscle energy reserves of embryos and hatchlings.
Collapse
Affiliation(s)
- Tong Yang
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Minmeng Zhao
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaolong Li
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Lin Zhang
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Jiang
- Ginling College, Nanjing Normal University, Nanjing 210097, China
| | - Guanghong Zhou
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.,Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
de Jong IC, van Riel J, Bracke MBM, van den Brand H. A 'meta-analysis' of effects of post-hatch food and water deprivation on development, performance and welfare of chickens. PLoS One 2017; 12:e0189350. [PMID: 29236747 PMCID: PMC5728577 DOI: 10.1371/journal.pone.0189350] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/24/2017] [Indexed: 11/18/2022] Open
Abstract
A 'meta-analysis' was performed to determine effects of post-hatch food and water deprivation (PHFWD) on chicken development, performance and welfare (including health). Two types of meta-analysis were performed on peer-reviewed scientific publications: a quantitative 'meta-analysis' (MA) and a qualitative analysis (QA). Previously reported effects of PHFWD were quantified in the MA, for variables related to performance, mortality and relative yolk sac weight. The QA counted the number of studies reporting (non-)significant effects when five or more records were available in the data set (i.e. relative heart, liver and pancreas weight; plasma T3, T4 and glucose concentrations; relative duodenum, jejunum and ileum weight; duodenum, jejunum and ileum length; and villus height and crypt depth in duodenum, jejunum and ileum). MA results indicated that 24 hours of PHFWD (i.e. ≥12-36 hours) or more resulted in significantly lower body weights compared to early-fed chickens up to six weeks of age. Body weights and food intake were more reduced as durations of PHFWD (24, 48, 72, ≥84 hours) increased. Feed conversion rate increased in chickens up to 21 and 42 days of age after ≥84 hours PHFWD in comparison with chickens fed earlier. Total mortality at day 42 was higher in chickens after 48 hours PHFWD compared to early fed chickens or chickens after 24 hours PHFWD. First week mortality was higher in chickens after ≥84 hours PHFWD than in early fed chickens. The MA for relative yolk sac weight was inconclusive for PHFWD. The QA for plasma T3, T4 and glucose concentrations indicated mainly short-term decreases in T3 and glucose in PHFWD chickens compared to early fed chickens, and no effects of PHFWD on T4 concentrations. Relative weights of liver, pancreas and heart were lower after PHFWD, but only in the first week of life. A retarded development of gut segments (duodenum, jejunum and ileum) was found in the first week of life, measured as shorter, lower relative weight, and lower villus height and crypt depth. It is concluded that 48 hours (≥36-60 hours) PHFWD leads to lower body weights and higher total mortality in chickens up to six weeks of age, the latter suggesting compromised chicken welfare, but effects of PHFWD on organ development and physiological status appear to be mainly short-term.
Collapse
Affiliation(s)
- Ingrid C. de Jong
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, The Netherlands
- * E-mail:
| | - Johan van Riel
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Marc B. M. Bracke
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Henry van den Brand
- Adaptation Physiology Group,Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
20
|
Zhao M, Gong D, Gao T, Zhang L, Li J, Lv P, Yu L, Gao F, Zhou G. In ovo feeding of creatine pyruvate increases hatching weight, growth performance, and muscle growth but has no effect on meat quality in broiler chickens. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Clark D, Walter K, Velleman S. Incubation temperature and time of hatch impact broiler muscle growth and morphology. Poult Sci 2017; 96:4085-4095. [DOI: 10.3382/ps/pex202] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/13/2017] [Indexed: 11/20/2022] Open
|
22
|
Zhao MM, Gong DQ, Gao T, Zhang L, Li JL, Lv PA, Yu LL, Gao F, Zhou GH. In ovo feeding of creatine pyruvate modulates growth performance, energy reserves and mRNA expression levels of gluconeogenesis and glycogenesis enzymes in liver of embryos and neonatal broilers. J Anim Physiol Anim Nutr (Berl) 2017; 102:e758-e767. [DOI: 10.1111/jpn.12831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/19/2017] [Indexed: 12/18/2022]
Affiliation(s)
- M. M. Zhao
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
- College of Animal Science and Technology; Yangzhou University; Yangzhou China
| | - D. Q. Gong
- College of Animal Science and Technology; Yangzhou University; Yangzhou China
| | - T. Gao
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - L. Zhang
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - J. L. Li
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - P. A. Lv
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - L. L. Yu
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - F. Gao
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| | - G. H. Zhou
- College of Animal Science and Technology; Jiangsu Key Laboratory of Animal Origin Food Production and Safety Guarantee; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; Nanjing Agricultural University; Nanjing China
| |
Collapse
|