1
|
Toschi A, Yu LE, Bialkowski S, Schlitzkus L, Grilli E, Li Y. Dietary supplementation of microencapsulated botanicals and organic acids enhances the expression and function of intestine epithelial digestive enzymes and nutrient transporters in broiler chickens. Poult Sci 2024; 103:104237. [PMID: 39217663 PMCID: PMC11402617 DOI: 10.1016/j.psj.2024.104237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Organic acids and botanicals have shown protective effects on gut barrier and against inflammation in broilers. However, their effects on intestinal digestive enzymes and nutrients transporters expression and functions have not been fully studied. The objective of this study was to understand how a microencapsulated blend of botanicals and organic acids affected intestinal enzyme activities and nutrient transporters expression and functions in broilers. A total of 288 birds were assigned to a commercial control diet or diet supplemented with 500 g/MT (metric ton) of the microencapsulated additive. Growth performance was recorded weekly. At d 21 and d 42, jejunum and ileum were isolated for enzyme (maltase, sucrase, and aminopeptidase) and transporter (SGLT1, GLUT2, GLUT1, EAAT3, B0AT1, and PepT1) analyses. Jejunum specific nutrients (glucose, alanine, and glutamate) transport activities were evaluated by Ussing chamber. Protein expression of nutrient transporters in small intestine were measured in mucosa and brush-border membrane (BBM) samples by western blot. Intestinal gene expression of the transporters was determined by RT-PCR. Statistical analysis was performed using Student's t-test comparing the supplemented diet to the control. The feed efficiency was significantly improved through the study period in the supplemented group (P ≤ 0.05). Significant changes of intestinal histology were shown in both jejunum (P ≤ 0.10) and ileum (P ≤ 0.05) after 21 d of treatment. At d21, jejunal maltase activity was upregulated (P ≤ 0.10). The Ussing chamber transport of glucose and alanine was increased, which was in line with increased gene expression (GLUT2, GLUT1, EAAT3, and B0AT1) (P ≤ 0.10 and P ≤ 0.05, respectively) and BBMV protein levels (B0AT1, P < 0.10). At d21, ileal sucrase and maltase activities were upregulated (P ≤ 0.05). Increased expressions of GLUT1, EAAT3, and B0AT1 were observed in both mRNA and protein levels (P ≤ 0.05). Similar pattern of changes was also shown at d42 of age. Our results suggest that feeding microencapsulated additives improves intestinal nutrient digestion and transporter expression and function in broilers, thereby enhancing feed efficiency.
Collapse
Affiliation(s)
| | - Liang-En Yu
- Department of Animal and Food Sciences, University of Delaware, 19716 Newark, DE, USA
| | - Sofia Bialkowski
- Department of Animal and Food Sciences, University of Delaware, 19716 Newark, DE, USA
| | - Lydia Schlitzkus
- Department of Animal and Food Sciences, University of Delaware, 19716 Newark, DE, USA
| | - Ester Grilli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano Emilia, Bologna, Italy; Vetagro Inc., 60603 Chicago, IL, USA
| | - Yihang Li
- Department of Animal and Food Sciences, University of Delaware, 19716 Newark, DE, USA.
| |
Collapse
|
2
|
Shibata M, Takahashi T, Kozakai T, Shindo J, Kurose Y. Development of active jejunal glucose absorption in broiler chickens. Poult Sci 2023; 102:102804. [PMID: 37321034 PMCID: PMC10404788 DOI: 10.1016/j.psj.2023.102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Growth in chickens, especially meat-type chickens (broilers), is extremely rapid, but studies on the regulatory mechanism of intestinal glucose absorption with growth are few, contradictory, and unclear. Here, we investigated the regulation of intestinal glucose absorption with growth in broiler chickens using oral glucose gavage, intestinal Evans blue transit, intestinal glucose absorption, scanning electron microscopy, and glucose absorption- and cell junction-related gene expression analyses. Peak blood glucose levels after oral glucose gavage occurred at 10 and 50 min in chickens at 1 wk (C1W) and 5 wk (C5W) of age, respectively. The area under the curve for glucose levels was greater for the C5W than the C1W (P = 0.035). The stain ratio in the small intestine in the C5W was lower than that in the C1W (P = 0.01), but there were no differences in the tissue regions stained with Evans blue and the migration distance of Evans blue from Meckel's diverticulum. In everted sac and Ussing chamber experiments, we observed reduced intestinal glucose uptake and electrogenic glucose absorption in the jejunum of the C5W. Phloridzin, an inhibitor of sodium/glucose cotransporter 1 (SGLT1), suppressed the glucose-induced short-circuit current in the C1W (P = 0.016) but not the C5W. Although the addition of NaCl solution stimulated the glucose-induced short-circuit current in the C1W, no differences between the treatments were observed (P = 0.056), which was also the case in the C5W. Additionally, tissue conductance was diminished in the C5W compared with that in the C1W. Moreover, in the C5W, the intestinal tract was more developed and the jejunal villi were enlarged. In conclusion, glucose absorption throughout the intestine could be greater in C5W than in C1W; however, reduced SGLT1 sensitivity, decreased ion permeability, and intestinal overdevelopment lead to decreased local glucose absorption in the jejunum with growth in broiler chickens. These data provide a detailed analysis of intestinal glucose absorption in growing broiler chickens, and can contribute to the development of novel feeds.
Collapse
Affiliation(s)
- Mikako Shibata
- Laboratory of Animal Metabolism and Function, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Tatsuyuki Takahashi
- Laboratory of Animal Metabolism and Function, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan.
| | - Takaharu Kozakai
- Faculty of Education, Art and Science, Yamagata University, Yamagata, Japan
| | - Junji Shindo
- Laboratory of Wildlife Science, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Yohei Kurose
- Laboratory of Animal Metabolism and Function, School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| |
Collapse
|
3
|
Li D, Dang DX, Xu H, Zhou H, Lou Y, Liu X, Cui Y. Growth performance, jejunal morphology, disaccharidase activities, and sugar transporter gene expression in Langde geese as affected by the in ovo injection of maltose plus sucrose. Front Vet Sci 2023; 10:1061998. [PMID: 36777674 PMCID: PMC9909528 DOI: 10.3389/fvets.2023.1061998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction The vigorous metabolic activity of an embryo increases the risk of low energy supply during incubation. The lack of energy during this critical period will lead to the death of an embryo. To avoid this risk, the in ovo injection technique in ovo allows for the injection of energy substances into an embryo. Methods This study investigated the effects of in ovo injection of maltose and sucrose (MS) in ovo on post-hatching growth performance, jejunal morphology and disaccharidase activities, and sugar transporter gene expression in Langde geese. A total of 300 fertilized eggs (115.75 ± 1.25 g) obtained from 3-year-old Langde geese were used in this study. The eggs were randomly assigned to two groups, and the difference between the two groups was whether 25g/L maltose and 25g/L sucrose (MS) dissolved in 7.5g/L NaCl were injected into the amnion on embryonic day 24. Each group had six replicates, which each replicate containing 25 eggs. The goslings were raised till day 28. Results and discussion The results showed that the in ovo injection of MS increased final body weight, average daily gain (ADG), and feed efficiency. Additionally, MS injection improved post-hatching jejunal morphology, disaccharidase activities, and sugar transporter gene expression at an early stage. Therefore, we considered that the in ovo injection of MS had positive effects on the nutrient absorption capacity of goslings, thus contributing to the improvement in their growth performance.
Collapse
Affiliation(s)
- Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - De Xin Dang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China,Department of Animal Resources Science, Dankook University, Cheonan, Republic of Korea
| | - Han Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Haizhu Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Yujie Lou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiao Liu
- College of Animal Science and Technology, Institute of Animal Nutrition, Northeast Agricultural University, Harbin, China
| | - Yan Cui
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China,*Correspondence: Yan Cui ✉
| |
Collapse
|
4
|
Dang DX, Zhou H, Lou Y, Li D. Effects of in ovo feeding of methionine and/or disaccharide on post-hatching breast development, glycogen reserves, nutrients absorption parameters, and jejunum antioxidant indices in geese. Front Vet Sci 2022; 9:944063. [PMID: 36072396 PMCID: PMC9441801 DOI: 10.3389/fvets.2022.944063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
We investigated the effects of in ovo injection of methionine (Met) and/or disaccharide (DS) on breast muscle and small intestine development, and the aspect of the glycogen contents, digestive enzymes activities, and jejunal antioxidant parameters in geese after incubation. A total of 600 fertilized eggs were used in this study to be employed in a 2 × 2 factorial experiment. Eggs were randomly assigned to 4 groups, 6 replicates per group, and 25 eggs per replicate. Factors in four groups included non-injection, Met injection (5 g/L Met dissolved in 7.5 g/L NaCl), DS injection (25 g/L maltose and 25 g/L sucrose dissolved in 7.5 g/L NaCl), and DS plus Met injection (25 g/L maltose, 25 g/L sucrose, and 5 g/L Met dissolved in 7.5 g/L NaCl). As a result, birth weight, relative weight of breast muscle, diameter of myofiber, glycogen contents, jejunal villus and surface area, and jejunal digestive enzymes activities improved, while liver glucose-6-phosphatase activity decreased, by DS injection. Additionally, DS administration upregulated the expression of myogenic factor-5 (Myf-5) from breast muscle and sodium/glucose cotransporter protein-1 (SGLT-1) from jejunum. In ovo delivery of DS has long-term effects on the improvement of jejunal glucose transporter-2 (GLUT-2) and sucrase-isomaltase expression. In ovo feeding of Met improved the relative weight of breast muscle and small intestine, diameter of myofiber, length of small intestine, jejunal villus width, jejunal sucrase, Na+/K+ATPase and alkaline phosphatase activities, and jejunal glutathione (GSH) concentration, and decreased the jejunal glutathione disulfide (GSSH) and the ratio of GSSG to GSH, in early-life post-hatching. The breast muscle Myf-5 and myostatin expression, jejunal villus height and surface area, jejunal glutathione peroxidase concentration, and the expression of GLUT-2 in jejunum long-term improved by in ovo delivery of Met. Moreover, in ovo feeding of DS plus Met mixture synergistically improved the diameter of myofiber, jejunal villus height and width, jejunal sucrase, and alkaline phosphatase activities in early-life post-hatching, but long-term upregulated the expression of jejunal GLUT-2. Therefore, we concluded that in ovo injection of Met plus DS is an effective way to improve the development of gosling during post-hatching stages.
Collapse
Affiliation(s)
- De Xin Dang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
- Department of Animal Resources Science, Dankook University, Cheonan, South Korea
| | - Haizhu Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yujie Lou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
- *Correspondence: Desheng Li
| |
Collapse
|
5
|
Basile AJ, Singh KC, Watson DF, Sweazea KL. Effect of macronutrient and micronutrient manipulation on avian blood glucose concentration: A systematic review. Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111279. [PMID: 35902002 DOI: 10.1016/j.cbpa.2022.111279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 10/16/2022]
Abstract
Animals with natural protections against diabetes complications may provide clues to improve human health. Birds are unique in their ability to avoid hyperglycemia-associated complications (e.g., glycation and oxidative stress) despite having naturally high blood glucose (BG) concentrations. This makes them useful models to elucidate strategies to prevent and/or treat diabetes-related complications in mammals. As diet plays a key role in BG concentration and diabetes risk, this systematic review aimed to summarize the effects of macro and micronutrient manipulation on avian BG. Three databases were searched (PubMed, SCOPUS, and Web of Science) for articles that met inclusion criteria: altered at least one nutrient and measured BG in at least one avian species. The search yielded 91 articles that produced 128 datasets (i.e., one nutrient manipulation in one sample). Across all macronutrient manipulations (n = 69 datasets), 62% reported no change in BG and 23% measured an increase (p < 0.001). Within the macronutrient groups (carbohydrate, lipid, protein, and mixed) most datasets showed no change in BG (67%, 62%, 52%, and 86%, respectively). Across micronutrient manipulations (n = 59 datasets), 51% demonstrated no change and 41% decreased BG (p < 0.001). While manipulations that altered vitamin intake largely produced no change in BG (62%), 48% of datasets examining altered mineral intake found no change and 46% decreased BG. Chromium was the most studied micronutrient (n = 24 datasets), where 67% of datasets reported a decrease in BG. These results suggest birds are largely able to maintain blood glucose homeostasis in response to altered nutrient intake indicative of dietary flexibility.
Collapse
Affiliation(s)
- Anthony J Basile
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA; Center for Evolution and Medicine, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA.
| | - Kavita C Singh
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA.
| | - Deborah F Watson
- College of Health Solutions, Arizona State University, 550 N. 3(rd) St, Phoenix, AZ 85004, USA
| | - Karen L Sweazea
- Center for Evolution and Medicine, Arizona State University, 427 E. Tyler Mall, Tempe, AZ 85287, USA; College of Health Solutions, Arizona State University, 550 N. 3(rd) St, Phoenix, AZ 85004, USA.
| |
Collapse
|
6
|
Effects of dietary electrolyte balance on performance, energy balance, and expression of genes related to acid-basic balance, absorption, and transport of nutrients in broilers. Trop Anim Health Prod 2022; 54:165. [DOI: 10.1007/s11250-022-03165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/07/2022] [Indexed: 11/27/2022]
|
7
|
Effects of methionine and/or disaccharide injected in the amnion of geese on post-hatching pectoral muscle and small intestine development, glycogen reserves, jejunum morphology, and digestive enzymes activities. Poult Sci 2022; 101:101867. [PMID: 35986947 PMCID: PMC9405100 DOI: 10.1016/j.psj.2022.101867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/09/2022] [Accepted: 03/13/2022] [Indexed: 01/18/2023] Open
Abstract
This study was conducted to investigate the effects of in ovo injection of methionine (Met) and/or disaccharide (DS) on post-hatching pectoral muscle and small intestine development, glycogen reserves, jejunum morphology, and jejunum digestive enzymes activities. A total of 600 fertilized eggs containing live embryo from geese were randomly assigned into 4 groups with 6 replicates and 25 eggs per replicate in a completely randomized design employing a 2 × 2 factorial experiment. Factors in 4 groups included noninjection, Met injection (5 g/L Met + 7.5 g/L NaCl), DS injection (25 g/L maltose + 25 g/L sucrose + 7.5 g/L NaCl), or DS plus Met injection (25 g/L maltose + 25 g/L sucrose + 5 g/L Met + 7.5g/L NaCl), respectively. In ovo nutritional injections were performed at day 23 of incubation, and the experiment until d 21 post-hatching. We found that in ovo feeding of Met increased relative weight of pectoral muscle and small intestine, jejunum alkaline phosphatase activities, and jejunum villus height and surface area. DS injection improved the relative weight of pectoral muscle, pectoral and liver glycogen contents, jejunum villus height, width, and surface area, and jejunum sucrase, Na+/K+ATPase, and alkaline phosphatase activities. In addition, Met plus DS injection synergistically improved jejunum villus height and surface area. Therefore, Met plus DS injection is a suitable strategy for improving intestinal parameters in gosling during post-hatching periods.
Collapse
|
8
|
Barekatain R, Chalvon-Demersay T, McLaughlan C, Lambert W. Intestinal Barrier Function and Performance of Broiler Chickens Fed Additional Arginine, Combination of Arginine and Glutamine or an Amino Acid-Based Solution. Animals (Basel) 2021; 11:2416. [PMID: 34438873 PMCID: PMC8388668 DOI: 10.3390/ani11082416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023] Open
Abstract
Two experiments were conducted to investigate the effect of arginine (Arg); the combination of Arg and glutamine (Gln); as well as an amino acid-based solution (MIX) containing Arg, Gln, threonine (Thr), and grape extract, on performance, intestinal permeability, and expression of selected mechanistic genes. Using 240 male Ross 308 off-sex broiler chickens, four experimental treatments were replicated six times with 10 birds per replicate. The experimental treatments included 5 g/kg Arg, 2.5 g/kg Arg and 2.5 g/kg Gln, and 1 g/kg MIX added to a basal diet as control. In the second study, the four dietary treatments were then given to 24 birds with or without a synthetic glucocorticoid, dexamethasone (DEX), as a gut dysfunction model. Feed conversion ratio was improved by all the supplemented treatments from day 7 to 35 of age (p < 0.001). DEX injections increased (p < 0.001) the intestinal permeability in all treatments, which tended to be reversed by Arg or MIX. Additional Arg, Arg-Gln, and MIX suppressed (p < 0.05) the overexpression of IL-1β generated by DEX. Feeding birds with MIX treatment increased (p < 0.05) expression of SGLT-1 and glutathione synthetase. In conclusion, tested amino acid supplements were effective in improving feed efficiency and restraining intestinal inflammation caused by DEX through IL-1β pathway.
Collapse
Affiliation(s)
- Reza Barekatain
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia;
| | | | - Clive McLaughlan
- South Australian Research and Development Institute, Roseworthy Campus, University of Adelaide, Roseworthy, SA 5371, Australia;
| | - William Lambert
- METEX NOOVISTAGO, 32 Rue Guersant, 75017 Paris, France; (T.C.-D.); (W.L.)
| |
Collapse
|
9
|
Priyadarshini S, Arunkumar E, Moses J, Anandharamakrishnan C. Predicting human glucose response curve using an engineered small intestine system in combination with mathematical modeling. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Jababu Y, Blue C, Ferket P, Fasina Y. Comparative Effects of Spray-Dried Plasma and Bacitracin Methylene Disalicylate on Intestinal Development in Broiler Chicks. ACTA ACUST UNITED AC 2020. [DOI: 10.3923/ijps.2020.161.168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Abstract
Broiler chickens grow rapidly within a short period; in this regard, our group had previously reported a decrease in the active transport of glucose in the intestines of broiler chickens with their growth. Therefore, in this study, we compared the active transport process of amino acids in the intestines between 1- and 5-week-old broilers using everted sac, Ussing chamber techniques, and real-time quantitative polymerase chain reaction (RT-PCR). The everted sac experiment showed that amino acids were absorbed from all segments of the small intestine in both age groups. There were no significant differences in the serosal to mucosal ratio between 1- and 5-week-old broilers. The Ussing chamber experiment showed that amino acid-induced short-circuit current (ΔIsc) in the ileal epithelium was significantly greater in the 5-week-old chickens than in the 1-week-old chicks (P=0.035). Membrane conductance, an indicator of ion permeability, showed no significant difference between the two groups. Moreover, the mRNA expression levels of amino acid transporters (ASCT1, EAAT3, B0AT1, and y+LAT1) were significantly elevated in the distal ileum of the 5-week-old broilers compared to those in the 1-week-old broilers (P<0.05), while no significant differences were observed in the mRNA levels of ATB0'+, B0/+AT, rBAT, CAT1, and CAT2 in both groups. Our study provides clear evidence that age-dependent increase in the active transport of amino acid across the ileal epithelium is caused by the high expression of Na+-dependent amino acid transporters in broiler chickens.
Collapse
|
12
|
Tahir SK, Yousaf MS, Ahmad S, Shahzad MK, Khan AF, Raza M, Majeed KA, Khalid A, Zaneb H, Rabbani I, Rehman H. Effects of Chromium-Loaded Chitosan Nanoparticles on the Intestinal Electrophysiological Indices and Glucose Transporters in Broilers. Animals (Basel) 2019; 9:ani9100819. [PMID: 31627287 PMCID: PMC6826477 DOI: 10.3390/ani9100819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to evaluate the effect of chromium-loaded chitosan nanoparticles (Cr-CNPs) on the electrophysiological indices, gene expression of glucose transporters, and tissue glycogen in broilers. A total of 200 one-day-old broilers were randomly divided into five groups, with each having five replicates (n = 8). Group A was fed a corn-soybean meal diet, while the diets of groups B, C, D, and E were supplemented with 200, 400, 800, and 1200 µg/kg of Cr as Cr-CNPs, respectively. On day 35, the jejunum was collected for electrophysiological study, gene expression of glucose transporters, and tissues glycogen determination. The basal short-circuit current and tissue conductance before the addition of glucose was the same in all groups. Following the addition of glucose, the change in short-circuit current decreased (p < 0.05) in the jejunal tissues of birds supplemented with 400 and 1200 µg Cr-CNPs compared with the control group. Gene expression of SGLT-1 and GLUT-2 remained unaffected with supplementation. The serum glucose and liver glycogen concentration decreased (p < 0.05) linearly with supplementation, while no effect was observed on muscle glycogen. In conclusion, Cr-CNPs supplementation decreases the glucose absorption and liver glycogen content, without affecting the gene expression of glucose transporters.
Collapse
Affiliation(s)
- Sajid Khan Tahir
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Muhammad Shahbaz Yousaf
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Sohrab Ahmad
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | | | - Ather Farooq Khan
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore 45550, Pakistan.
| | - Mohsin Raza
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Khalid Abdul Majeed
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Abia Khalid
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Hafsa Zaneb
- Department of Anatomy and Histology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Imtiaz Rabbani
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| | - Habib Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.
| |
Collapse
|