1
|
Casalino G, Bozzo G, Dinardo FR, D’Amico F, Dimuccio MM, Camarda A, Ceci E, Romito D, Circella E. Prevalence and Antimicrobial Resistance of Campylobacter jejuni and Campylobacter coli from Laying Hens Housed in Different Rearing Systems. Animals (Basel) 2022; 12:ani12212978. [PMID: 36359101 PMCID: PMC9653605 DOI: 10.3390/ani12212978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Campylobacter (C.) jejuni and C. coli are responsible for food poisoning in humans. Laying hens may host the bacteria usually without developing symptoms. The aims of this paper were to evaluate the incidence of C. jejuni and C. coli infection in laying hen flocks housed in different rearing systems, the plasma levels of two welfare indicators (corticosterone and interleukin 6, IL-6) and the antimicrobial resistance of the detected Campylobacter strains. Two different flocks (1 and 2) from cage (A), barn (B) and aviary (C) farms were investigated. The highest (p < 0.05) levels of IL-6 were detected in laying hens housed in aviaries. A similar trend emerged in corticosterone level, although differences were found between C1 and C2. C. jejuni and C. coli were identified in 43.5% and 38.9% of birds, respectively. In total, 14 out of 177 (7.9%) hens simultaneously hosted C. jejuni and C. coli.C. jejuni was prevalently detected in hens housed in barns (B1: 53.3%; B2: 46.7%) and aviaries (C1: 34.6%; C2: 86.7%). Conversely, laying hens housed in cages were significantly exposed to infection of C. coli (A1: 41.9%; A2: 80%) while, regarding barns and aviaries, a significant prevalence emerged only in flocks B2 (40%) and C1 (54.8%). Simultaneous infection was statistically significant in barn B1 (36.7%). Antibiotic resistance was mainly detected among C. coli strains, and it was most frequent for fluoroquinolones and tetracycline. Multidrug resistance was also found in C. jejuni (19.7%) and C. coli (17.5%) strains. Based on the results of this study, we recommend increasing biosecurity and hygienic measures to manage hen flocks.
Collapse
|
2
|
Wurtz K, Thodberg K, Berenjian A, Foldager L, Tahamtani F, Riber A. Commercial layer hybrids kept under organic conditions: a comparison of range use, welfare and egg production in two layer strains. Poult Sci 2022; 101:102005. [PMID: 35841633 PMCID: PMC9293655 DOI: 10.1016/j.psj.2022.102005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
Outdoor range areas provide laying hens with improved opportunities to perform natural behaviors and increase the available space per bird, however, birds are also exposed to potentially stressful factors including weather and predators. Ability to cope with challenging environments varies between different strains and must be considered to ensure good welfare. The aim of this study was to determine how suitable 2 hybrids, the Dekalb White (DW) and the Bovans Brown (BB), are for organic production with special emphasis on ranging behavior. A total of 1,200 hens were housed according to organic regulations across 12 flocks of 100 birds. Range and shelter use, effect of weather, vegetation cover, egg production and quality, and mortality were assessed in addition to a range of clinical welfare indicators. Initially a greater proportion of DW hens accessed the range. However, after approximately 2 mo, a greater proportion of BB were using the range and venturing further from the house. DW hens were more likely to use the shelters than BB hens (P < 0.001). Vegetation was also worn away to a greater extent in the BB ranges. Weather affected the proportion of hens that went outside, the distance ranged from the popholes, and shelter use. BB hens were found to have better plumage condition (P < 0.001), fewer footpad lesions (P < 0.001), fewer comb wounds (P < 0.001), and lower mortality rates (P = 0.013). Both hybrids experienced keel bone fractures, though DW hens had more at the cranial portion (P < 0.001) and BB at the caudal portion (P < 0.001). DW hens had an earlier onset of lay and higher egg production than BB hens (P < 0.001), though BB hens laid heavier eggs (P < 0.001) with thicker shells (P = 0.001). Overall, BB hens seemed to perform superiorly or equivalently to the DW hens for all variables apart from egg production. These results demonstrate the importance of considering the strain of bird selected for organic production systems in order for the birds to reap the potential benefits that are offered by outdoor access.
Collapse
|
3
|
Unfolding microbiota and volatile organic compounds of Portuguese Painho de Porco Preto fermented sausages. Food Res Int 2022; 155:111063. [DOI: 10.1016/j.foodres.2022.111063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023]
|
4
|
Kulshreshtha G, D’Alba L, Dunn IC, Rehault-Godbert S, Rodriguez-Navarro AB, Hincke MT. Properties, Genetics and Innate Immune Function of the Cuticle in Egg-Laying Species. Front Immunol 2022; 13:838525. [PMID: 35281050 PMCID: PMC8914949 DOI: 10.3389/fimmu.2022.838525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/31/2022] [Indexed: 01/13/2023] Open
Abstract
Cleidoic eggs possess very efficient and orchestrated systems to protect the embryo from external microbes until hatch. The cuticle is a proteinaceous layer on the shell surface in many bird and some reptile species. An intact cuticle forms a pore plug to occlude respiratory pores and is an effective physical and chemical barrier against microbial penetration. The interior of the egg is assumed to be normally sterile, while the outer eggshell cuticle hosts microbes. The diversity of the eggshell microbiome is derived from both maternal microbiota and those of the nesting environment. The surface characteristics of the egg, outer moisture layer and the presence of antimicrobial molecules composing the cuticle dictate constituents of the microbial communities on the eggshell surface. The avian cuticle affects eggshell wettability, water vapor conductance and regulates ultraviolet reflectance in various ground-nesting species; moreover, its composition, thickness and degree of coverage are dependent on species, hen age, and physiological stressors. Studies in domestic avian species have demonstrated that changes in the cuticle affect the food safety of eggs with respect to the risk of contamination by bacterial pathogens such as Salmonella and Escherichia coli. Moreover, preventing contamination of internal egg components is crucial to optimize hatching success in bird species. In chickens there is moderate heritability (38%) of cuticle deposition with a potential for genetic improvement. However, much less is known about other bird or reptile cuticles. This review synthesizes current knowledge of eggshell cuticle and provides insight into its evolution in the clade reptilia. The origin, composition and regulation of the eggshell microbiome and the potential function of the cuticle as the first barrier of egg defense are discussed in detail. We evaluate how changes in the cuticle affect the food safety of table eggs and vertical transmission of pathogens in the production chain with respect to the risk of contamination. Thus, this review provides insight into the physiological and microbiological characteristics of eggshell cuticle in relation to its protective function (innate immunity) in egg-laying birds and reptiles.
Collapse
Affiliation(s)
- Garima Kulshreshtha
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Liliana D’Alba
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, Netherlands
| | - Ian C. Dunn
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Maxwell T. Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
5
|
Sharma MK, McDaniel CD, Kiess AS, Loar RE, Adhikari P. Effect of housing environment and hen strain on egg production and egg quality as well as cloacal and eggshell microbiology in laying hens. Poult Sci 2022; 101:101595. [PMID: 34933221 PMCID: PMC8703072 DOI: 10.1016/j.psj.2021.101595] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 08/20/2021] [Accepted: 10/14/2021] [Indexed: 11/27/2022] Open
Abstract
This study was conducted to determine the effect of housing environment and laying hen strain on performance, egg quality, and microbiology of the cloaca and eggshell. A total of 1,152 Hy-Line Brown (HB) and Hy-Line W-36 White Leghorn (W-36) hens were used. All hens were kept in conventional cages (CC) from 18 to 32 wk of age and then moved to either enriched colony cages (EC) or free-range (FR) pens or continued in CC. Hens were randomly allocated into a 2 × 3 factorial arrangement of 2 laying hen strains (brown and white) and 3 housing environments (CC, EC, and FR) in a split plot in time (hen age) design. The experiment was conducted from 32 to 85 wk of age. The experiment was divided into 2 phases: early phase (32-51 wk of age) and late phase (52-85 wk of age). A 3-way interaction was observed for hen day egg production (HDEP) among housing environments, hen strain, and bird age in the early phase (P = 0.004) as well as in the late phase (P < 0.0001). In both of the phases, HDEP was higher in CC and FR than in EC. Hy-Line W-36 hens raised in EC had the lowest HDEP compared to other treatments. A 3-way interaction was observed for feed intake (FI; P = 0.017) and feed conversion ratio (FCR) in the late phase (P < 0.0001). The lowest FI and highest FCR were observed in EC for W-36 hens. Free-range hens performed in-between for eggshell quality when compared to CC and EC while HB had better egg quality than W-36. Free-range hens had higher cloacal bacterial counts for aerobes, anaerobes, and coliforms than CC and EC. Higher eggshell bacterial contamination was observed in eggs from FR versus eggs from CC and EC. These results indicate that both housing environment and laying hen strain affect performance and egg quality as well as cloacal and eggshell microbiology. Further studies should be conducted to determine food safety and economic impacts when using different hen strains and housing environments.
Collapse
Affiliation(s)
- Milan K Sharma
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, USA
| | | | - Aaron S Kiess
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, USA
| | | | - Pratima Adhikari
- Department of Poultry Science, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
6
|
Regmi P, Jones D, Gast R, Guard J, Karcher D. Egg carton and eggshell: is there a possibility of Salmonella cross-contamination? J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2021.100185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
7
|
Kulshreshtha G, Benavides-Reyes C, Rodriguez-Navarro AB, Diep T, Hincke MT. Impact of Different Layer Housing Systems on Eggshell Cuticle Quality and Salmonella Adherence in Table Eggs. Foods 2021; 10:foods10112559. [PMID: 34828840 PMCID: PMC8625084 DOI: 10.3390/foods10112559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
The bacterial load on the eggshell surface is a key factor in predicting the bacterial penetration and contamination of the egg interior. The eggshell cuticle is the first line of defense against vertical penetration by microbial food-borne pathogens such as Salmonella Enteritidis. Egg producers are increasingly introducing alternative caging systems into their production chain as animal welfare concerns become of greater relevance to today’s consumer. Stress that is introduced by hen aggression and modified nesting behavior in furnished cages can alter the physiology of egg formation and affect the cuticle deposition/quality. The goal of this study was to determine the impact of caging systems (conventional, enriched, free-run, and free-range), on eggshell cuticle parameters and the eggshell bacterial load. The cuticle plug thickness and pore length were higher in the free-range eggs as compared to conventional eggs. The eggshells from alternative caging (enriched and free-range) had a higher total cuticle as compared to conventional cages. A reduction in bacterial cell counts was observed on eggshells that were obtained from free-range eggs as compared to the enriched systems. An inverse correlation between the contact angle and Salmonella adherence was observed. These results indicate that the housing systems of layer hens can modify the cuticle quality and thereby impact bacterial adherence and food safety.
Collapse
Affiliation(s)
- Garima Kulshreshtha
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Cristina Benavides-Reyes
- Departamento de Mineralogia y Petrologia, Campus de Fuentenueva, Universidad de Granada, 18002 Granada, Spain; (C.B.-R.); (A.B.R.-N.)
| | - Alejandro B. Rodriguez-Navarro
- Departamento de Mineralogia y Petrologia, Campus de Fuentenueva, Universidad de Granada, 18002 Granada, Spain; (C.B.-R.); (A.B.R.-N.)
| | - Ty Diep
- Lyn Egg Production and Grading, Burnbrae Farms Limited, Lyn, ON K0E 1M0, Canada;
| | - Maxwell T. Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-562-5800 (ext. 8193)
| |
Collapse
|
8
|
Effectiveness of Quaternary Ammonium in Reducing Microbial Load on Eggs. Molecules 2021; 26:molecules26175259. [PMID: 34500692 PMCID: PMC8434265 DOI: 10.3390/molecules26175259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
Table eggs are an affordable yet nutritious protein source for humans. Unfortunately, eggs are a vector for bacteria that could cause foodborne illness. This study aimed to investigate the effectiveness of a quaternary ammonium compound (quat) sanitizer against aerobic mesophilic bacteria, yeast, and mold load on the eggshell surface of free-range and commercial farms and the post-treatment effect on microbial load during storage. Total aerobic mesophilic bacteria, yeast, and molds were enumerated using plate count techniques. The efficacy of the quaternary ammonium sanitizer (quat) was tested using two levels: full factorial with two replicates for corner points, factor A (maximum: 200 ppm, minimum: 100 ppm) and factor B (maximum: 15 min, minimum: 5 min). Quat sanitizer significantly (p < 0.05) reduced approximately 4 log10 CFU/cm2 of the aerobic mesophilic bacteria, 1.5 to 2.5 log10 CFU/cm2 of the mold population, and 1.5 to 2 log10 CFU/cm2 of the yeast population. However, there was no significant (p ≥ 0.05) response observed between individual factor levels (maximum and minimum), and two-way interaction terms were also not statistically significant (p ≥ 0.05). A low (<1 log10 CFU/cm2) aerobic mesophilic bacteria trend was observed when shell eggs were stored in a cold environment up to the production expiry date. No internal microbial load was observed; thus, it was postulated that washing with quat sanitizer discreetly (without physically damaging the eggshell) does not facilitate microbial penetration during storage at either room temperature or cold storage. Current study findings demonstrated that the quat sanitizer effectively reduced the microbial population on eggshells without promoting internal microbial growth.
Collapse
|
9
|
Guinea fowl (Numida meleagris) eggs and free-range housing: a convenient alternative to laying hens' eggs in terms of food safety? Poult Sci 2021; 100:101006. [PMID: 33662664 PMCID: PMC7930637 DOI: 10.1016/j.psj.2021.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/21/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023] Open
Abstract
The aim of this study was to evaluate the impact of the genotype (guinea fowl, native breed Leghorn, and commercial hybrid hens), storage time (0, 14, 28 d) and storage temperature (fresh, 5, 20°C) on eggshell quality traits and microbiological contamination of eggshell, eggshell membranes, and albumen. A total of 150 hens (50 hens per genotype—divided into 2 equal groups because of the results replication) were used. There were 150 eggs (50 per genotype) used for microbial analysis and 600 eggs used for the analysis of eggshell quality. The effects of genotype, storage time, and storage temperature were observed. Moreover, interactions between these factors were calculated. The significant effect of genotype (P = 0.0001) was found in egg weight, in all observed parameters of eggshell quality (proportion, thickness, strength, surface, and index), eggshell contamination of Escherichia coli (EC) and total number of micro-organisms (TNM), penetration of TNM into eggshell membranes (P = 0.0014), and penetration of TNM into albumen (P = 0.0019). Storage time significantly affected egg weight and all parameters of eggshell quality except the eggshell strength and index. It also significantly affected count of Enterococcus (ENT) on eggshell, TNM in eggshell membranes and TNM in albumen. Storage temperature significantly influenced egg weight (P = 0.0001) and all parameters but eggshell thickness and surface. Regarding the microbial contamination, storage temperature significantly affected a count of ENT on shell, TNM in shell membranes, and TNM in albumen. Concerning significant interactions, the interaction among genotype and storage time was found significant (P = 0.0148). Fresh and 28-day-old commercial hybrid eggs were the most contaminated, whereas guinea fowl eggs (fresh and 14 d old) and Leghorn hen eggs (fresh, 14, 28 d old) had the lowest level of contamination by EC. When looking for an alternative to laying hens, guinea fowls should be taken into consideration due to their higher resistance to diseases, ability of adaptation to different environmental conditions, and especially in terms of eggshell quality and therefore egg safety.
Collapse
|
10
|
Sustainability and Quality Aspects of Different Table Egg Production Systems: A Literature Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12197884] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Eggs are of considerable importance in feeding the population, as they are a relatively inexpensive and complex food source of very high biological value. The daily animal protein requirement for the human body can be covered with eggs in the cheapest way and with the lowest environmental impact. As animal welfare, as well as environmental and health awareness issues, become increasingly prominent in developed countries, consumer demand for eggs has also changed significantly in recent years, with an increasing number of consumers buying eggs produced in non-cage housing systems. In recent years, cage housing has been more frequently debated in EU member states. An initiative was launched in 2018 to end cage housing technologies and the sale of eggs produced in this way. However, in addition to animal welfare, a number of other factors need to be considered in relation to sustainable production. For this reason, the aim of this research is to provide a comprehensive overview of the sustainability issues of various housing technologies, as well as quality factors affecting consumer health and egg consumption based on the relevant international references and databases. Although there is a growing demand for products produced in non-cage housing systems due to the increasing relevance of environmental protection, health awareness and animal welfare issues in Western societies, research has shown that non-caged production is not the best solution for environmentally, socially and economically sustainable egg production.
Collapse
|
11
|
Li G, Xu Y, Zhao Y, Du Q, Huang Y. Evaluating Convolutional Neural Networks for Cage-Free Floor Egg Detection. SENSORS 2020; 20:s20020332. [PMID: 31936028 PMCID: PMC7013917 DOI: 10.3390/s20020332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/27/2019] [Accepted: 01/05/2020] [Indexed: 01/31/2023]
Abstract
The manual collection of eggs laid on the floor (or ‘floor eggs’) in cage-free (CF) laying hen housing is strenuous and time-consuming. Using robots for automatic floor egg collection offers a novel solution to reduce labor yet relies on robust egg detection systems. This study sought to develop vision-based floor-egg detectors using three Convolutional Neural Networks (CNNs), i.e., single shot detector (SSD), faster region-based CNN (faster R-CNN), and region-based fully convolutional network (R-FCN), and evaluate their performance on floor egg detection under simulated CF environments. The results show that the SSD detector had the highest precision (99.9 ± 0.1%) and fastest processing speed (125.1 ± 2.7 ms·image−1) but the lowest recall (72.1 ± 7.2%) and accuracy (72.0 ± 7.2%) among the three floor-egg detectors. The R-FCN detector had the slowest processing speed (243.2 ± 1.0 ms·image−1) and the lowest precision (93.3 ± 2.4%). The faster R-CNN detector had the best performance in floor egg detection with the highest recall (98.4 ± 0.4%) and accuracy (98.1 ± 0.3%), and a medium prevision (99.7 ± 0.2%) and image processing speed (201.5 ± 2.3 ms·image−1); thus, the faster R-CNN detector was selected as the optimal model. The faster R-CNN detector performed almost perfectly for floor egg detection under a wide range of simulated CF environments and system settings, except for brown egg detection at 1 lux light intensity. When tested under random settings, the faster R-CNN detector had 91.9–94.7% precision, 99.8–100.0% recall, and 91.9–94.5% accuracy for floor egg detection. It is concluded that a properly-trained CNN floor-egg detector may accurately detect floor eggs under CF housing environments and has the potential to serve as a crucial vision-based component for robotic floor egg collection systems.
Collapse
Affiliation(s)
- Guoming Li
- Department of Agricultural and Biological Engineering, Mississippi State University, Starkville, MS 39762, USA;
| | - Yan Xu
- Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS 39762, USA; (Y.X.); (Q.D.)
| | - Yang Zhao
- Department of Agricultural and Biological Engineering, Mississippi State University, Starkville, MS 39762, USA;
- Correspondence: ; Tel.: +1-662-325-7347
| | - Qian Du
- Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS 39762, USA; (Y.X.); (Q.D.)
| | - Yanbo Huang
- Agricultural Research Service, Crop Production Systems Research Unit, United States Department of Agriculture, Stoneville, MS 38776, USA;
| |
Collapse
|
12
|
Eberle-Krish K, Jones D, Gast R, Robison C, Anderson K, Karcher D. Microbiological Impact of Delayed Movement of Pullets. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfy074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Osimani A, Garofalo C, Aquilanti L, Milanović V, Cardinali F, Taccari M, Pasquini M, Tavoletti S, Clementi F. Transferable Antibiotic Resistances in Marketed Edible Grasshoppers (Locusta migratoria migratorioides). J Food Sci 2017; 82:1184-1192. [PMID: 28339104 DOI: 10.1111/1750-3841.13700] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/14/2017] [Accepted: 02/25/2017] [Indexed: 11/30/2022]
Abstract
Grasshoppers are the most commonly eaten insects by humans worldwide, as they are rich in proteins and micronutrients. This study aimed to assess the occurrence of transferable antibiotic resistance genes in commercialized edible grasshoppers. To this end, the prevalence of 12 selected genes [aac(6')-Ie aph(2″)-Ia, blaZ, erm(A), erm(B), erm(C), mecA, tet(M), tet(O), tet(S), tet(K), vanA, vanB] coding for resistance to antibiotics conventionally used in clinical practice was determined. The majority of samples were positive for tet(M) (70.0%), tet(K) (83.3%) and blaZ (83.3%). A low percentage of samples were positive for erm(B) (16.7%), erm(C) (26.7%), and aac(6')-Ie aph(2″)-Ia (13.3%), whereas no samples were positive for erm(A), vanA, vanB, tet(O), and mecA. Cluster analysis identified 4 main clusters, allowing a separation of samples on the basis of their country of origin.
Collapse
Affiliation(s)
- Andrea Osimani
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Cristiana Garofalo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Lucia Aquilanti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Vesna Milanović
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Federica Cardinali
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Manuela Taccari
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Marina Pasquini
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Stefano Tavoletti
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Francesca Clementi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| |
Collapse
|
14
|
Jones DR, Guard J, Gast RK, Buhr RJ, Fedorka-Cray PJ, Abdo Z, Plumblee JR, Bourassa DV, Cox NA, Rigsby LL, Robison CI, Regmi P, Karcher DM. Influence of commercial laying hen housing systems on the incidence and identification of Salmonella and Campylobacter. Poult Sci 2016; 95:1116-24. [PMID: 26976901 PMCID: PMC4876611 DOI: 10.3382/ps/pew036] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/05/2016] [Indexed: 11/30/2022] Open
Abstract
The housing of laying hens is important for social, industrial, and regulatory aspects. Many studies have compared hen housing systems on the research farm, but few have fully examined commercial housing systems and management strategies. The current study compared hens housed in commercial cage-free aviary, conventional cage, and enriched colony cage systems. Environmental and eggshell pool samples were collected from selected cages/segments of the housing systems throughout the production cycle and monitored for Salmonella and Campylobacter prevalence. At 77 wk of age, 120 hens per housing system were examined for Salmonella and Campylobacter colonization in the: adrenal glands, spleen, ceca, follicles, and upper reproductive tract. All isolates detected from environmental swabs, eggshell pools, and tissues were identified for serotype. Two predominant Salmonella were detected in all samples: S. Braenderup and S. Kentucky. Campylobacter coli and C. jejuni were the only Campylobacter detected in the flocks. Across all housing systems, approximately 7% of hens were colonized with Salmonella, whereas > 90% were colonized with Campylobacter. Salmonella Braenderup was the isolate most frequently detected in environmental swabs (P < 0.0001) and housing system impacted Salmonella spp. shedding (P < 0.0001). Campylobacter jejuni was the isolate most frequently found in environmental swabs (P < 0.01), while housing system impacted the prevalence of C. coli and jejuni in ceca (P < 0.0001). The results of this study provide a greater understanding of the impact of hen housing systems on hen health and product safety. Additionally, producers and academia can utilize the findings to make informed decisions on hen housing and management strategies to enhance hen health and food safety.
Collapse
Affiliation(s)
- D R Jones
- USDA, Agricultural Research Service, US National Poultry Research Center, Athens, GA 30605
| | - J Guard
- USDA, Agricultural Research Service, US National Poultry Research Center, Athens, GA 30605
| | - R K Gast
- USDA, Agricultural Research Service, US National Poultry Research Center, Athens, GA 30605
| | - R J Buhr
- USDA, Agricultural Research Service, US National Poultry Research Center, Athens, GA 30605
| | - P J Fedorka-Cray
- USDA, Agricultural Research Service, US National Poultry Research Center, Athens, GA 30605
| | - Z Abdo
- USDA, Agricultural Research Service, US National Poultry Research Center, Athens, GA 30605
| | - J R Plumblee
- USDA, Agricultural Research Service, US National Poultry Research Center, Athens, GA 30605
| | - D V Bourassa
- USDA, Agricultural Research Service, US National Poultry Research Center, Athens, GA 30605
| | - N A Cox
- USDA, Agricultural Research Service, US National Poultry Research Center, Athens, GA 30605
| | - L L Rigsby
- USDA, Agricultural Research Service, US National Poultry Research Center, Athens, GA 30605
| | - C I Robison
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - P Regmi
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - D M Karcher
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
15
|
Trends in the microbial contamination of bovine, ovine and swine carcasses in three small-scale abattoirs in central Italy: A four-year monitoring. Meat Sci 2016; 111:53-9. [DOI: 10.1016/j.meatsci.2015.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/28/2015] [Accepted: 08/24/2015] [Indexed: 11/24/2022]
|
16
|
Gast RK, Guraya R, Jones DR, Anderson KE. Persistence of fecal shedding of Salmonella Enteritidis by experimentally infected laying hens housed in conventional or enriched cages. Poult Sci 2015; 94:1650-6. [PMID: 25910903 DOI: 10.3382/ps/pev113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2015] [Indexed: 11/20/2022] Open
Abstract
Salmonella Enteritidis can be deposited inside eggs laid by infected hens, so the prevalence of this pathogen in commercial egg-producing flocks is an important risk factor for human illness. Opportunities for the introduction, transmission, and persistence of salmonellae in poultry are potentially influenced by flock housing and management systems. Animal welfare concerns have spurred the development of alternatives to traditional cage-based housing. However, the consequences of poultry housing systems for food safety have not been fully resolved by prior research. The present study assessed the effects of two different housing systems (conventional cages and colony cages enriched with perching and nesting areas) on the persistence of fecal shedding of Salmonella Enteritidis by groups of experimentally infected laying hens. In each of two trials, 136 hens were distributed among cages of both housing systems and orally inoculated with doses of 10(8) cfu of Salmonella Enteritidis (phage type 13a in one trial and phage type 4 in the other). At weekly intervals, samples of voided feces were collected from beneath each cage and cultured to detect Salmonella Enteritidis. Fecal shedding of Salmonella Enteritidis was detected for up to 8 wk post-inoculation by hens housed in enriched colony cages and 10 wk by hens housed in conventional cages. For both trials combined, the frequency of positive fecal cultures was significantly (P < 0.05) greater for conventional cages than for enriched colony cages at 1 wk (84.7 vs. 71.5%), 2 wk (54.2 vs. 31.3%), 3 wk (21.5 vs. 7.6%), and 4 wk (9.7 vs. 2.8%) post-inoculation. These results demonstrate that the susceptibility of hens to intestinal colonization by Salmonella Enteritidis can differ between conventional and enriched cage-based production systems, although this effect does not necessarily translate into a corresponding difference in the longer-term persistence of fecal shedding.
Collapse
Affiliation(s)
- Richard K Gast
- United States Department of Agriculture, Agricultural Research Service, Egg Safety and Quality Research Unit, Athens, Georgia 30605
| | - Rupa Guraya
- United States Department of Agriculture, Agricultural Research Service, Egg Safety and Quality Research Unit, Athens, Georgia 30605
| | - Deana R Jones
- United States Department of Agriculture, Agricultural Research Service, Egg Safety and Quality Research Unit, Athens, Georgia 30605
| | - Kenneth E Anderson
- Department of Poultry Science, North Carolina State University, Raleigh, 29765
| |
Collapse
|
17
|
Jones DR, Cox NA, Guard J, Fedorka-Cray PJ, Buhr RJ, Gast RK, Abdo Z, Rigsby LL, Plumblee JR, Karcher DM, Robison CI, Blatchford RA, Makagon MM. Microbiological impact of three commercial laying hen housing systems. Poult Sci 2014; 94:544-51. [PMID: 25480737 PMCID: PMC4990896 DOI: 10.3382/ps/peu010] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Hen housing for commercial egg production continues to be a societal and regulatory concern. Controlled studies have examined various aspects of egg safety, but a comprehensive assessment of commercial hen housing systems in the US has not been conducted. The current study is part of a holistic, multidisciplinary comparison of the diverse aspects of commercial conventional cage, enriched colony cage, and cage-free aviary housing systems and focuses on environmental and egg microbiology. Environmental swabs and eggshell pools were collected from all housing systems during 4 production periods. Total aerobes and coliforms were enumerated, and the prevalence of Salmonella and Campylobacter spp. was determined. Environmental aerobic and coliform counts were highest for aviary drag swabs (7.5 and 4.0 log cfu/mL, respectively) and enriched colony cage scratch pad swabs (6.8 and 3.8 log cfu/mL, respectively). Aviary floor and system wire shell pools had the greatest levels of aerobic contamination for all eggshell pools (4.9 and 4.1 log cfu/mL, respectively). Hens from all housing systems were shedding Salmonella spp. (89–100% of manure belt scraper blade swabs). The dry belt litter removal processes for all housing systems appear to affect Campylobacter spp. detection (0–41% of manure belt scraper blade swabs) considering detection of Campylobacter spp. was much higher for other environmental samples. Aviary forage area drag swabs were 100% contaminated with Campylobacter spp., whereas enriched colony cage scratch pads had a 93% positive rate. There were no differences in pathogen detection in the shell pools from the 3 housing systems. Results indicate egg safety is enhanced when hens in alternative housing systems use nest boxes. Additionally, current outcomes indicate the use of scratch pads in hen housing systems needs to be more thoroughly investigated for effects on hen health and egg safety.
Collapse
Affiliation(s)
- D R Jones
- USDA, Agricultural Research Service, Russell Research Center, Athens, GA 30605
| | - N A Cox
- USDA, Agricultural Research Service, Russell Research Center, Athens, GA 30605
| | - J Guard
- USDA, Agricultural Research Service, Russell Research Center, Athens, GA 30605
| | - P J Fedorka-Cray
- USDA, Agricultural Research Service, Russell Research Center, Athens, GA 30605
| | - R J Buhr
- USDA, Agricultural Research Service, Russell Research Center, Athens, GA 30605
| | - R K Gast
- USDA, Agricultural Research Service, Russell Research Center, Athens, GA 30605
| | - Z Abdo
- USDA, Agricultural Research Service, Russell Research Center, Athens, GA 30605
| | - L L Rigsby
- USDA, Agricultural Research Service, Russell Research Center, Athens, GA 30605
| | - J R Plumblee
- USDA, Agricultural Research Service, Russell Research Center, Athens, GA 30605
| | - D M Karcher
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - C I Robison
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - R A Blatchford
- Department of Animal Science, University of California, Davis 95616
| | - M M Makagon
- Department of Animal Science, Michigan State University, East Lansing 48824
| |
Collapse
|
18
|
Gast RK, Guraya R, Jones DR, Anderson KE. Horizontal transmission of Salmonella Enteritidis in experimentally infected laying hens housed in conventional or enriched cages. Poult Sci 2014; 93:3145-51. [PMID: 25306464 DOI: 10.3382/ps.2014-04237] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The majority of human illnesses caused by Salmonella Enteritidis are attributed to contaminated eggs, and the prevalence of this pathogen in commercial laying flocks has been identified as a leading epidemiologic risk factor. Flock housing and management systems can affect opportunities for the introduction, transmission, and persistence of foodborne pathogens in poultry. The animal welfare implications of different types of housing for laying hens have been widely discussed in recent years, but the food safety consequences of these production systems remain incompletely understood. The present study assessed the effects of 2 different housing systems (conventional cages and colony cages enriched with perching and nesting areas) on the horizontal transmission of experimentally introduced Salmonella Enteritidis infection within groups of laying hens. In each of 2 trials, 136 hens were distributed among cages of both housing systems and approximately one-third of the hens in each cage were orally inoculated with doses of 10(8) cfu of Salmonella Enteritidis (phage type 13a in one trial and phage type 4 in the other). At regular intervals through 23 d postinoculation, cloacal swabs were collected from all hens (inoculated and uninoculated) and cultured for Salmonella Enteritidis. Horizontal contact transmission of infection was observed for both Salmonella Enteritidis strains, reaching peak prevalence values of 27.1% of uninoculated hens in conventional cages and 22.7% in enriched cages. However, no significant differences (P > 0.05) in the overall frequencies of horizontal Salmonella Enteritidis transmission were evident between the 2 types of housing. These results suggest that opportunities for Salmonella Enteritidis infection to spread horizontally throughout laying flocks may be similar in conventional and enriched cage-based production systems.
Collapse
Affiliation(s)
- Richard K Gast
- USDA, Agricultural Research Service, Egg Safety and Quality Research Unit, Athens, GA 30605
| | - Rupa Guraya
- USDA, Agricultural Research Service, Egg Safety and Quality Research Unit, Athens, GA 30605
| | - Deana R Jones
- USDA, Agricultural Research Service, Egg Safety and Quality Research Unit, Athens, GA 30605
| | - Kenneth E Anderson
- Department of Poultry Science, North Carolina State University, Raleigh 29765
| |
Collapse
|
19
|
Gast RK, Guraya R, Jones DR, Anderson KE. Contamination of eggs by Salmonella Enteritidis in experimentally infected laying hens housed in conventional or enriched cages. Poult Sci 2014; 93:728-33. [PMID: 24604868 DOI: 10.3382/ps.2013-03641] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both epidemiologic analyses and active disease surveillance confirm an ongoing strong association between human salmonellosis and the prevalence of Salmonella enterica subspecies enterica serovar Enteritidis in commercial egg flocks. The majority of human illnesses caused by this pathogen are attributed to the consumption of contaminated eggs. Animal welfare concerns have increasingly influenced commercial poultry production practices in recent years, but the food safety implications of different housing systems for egg-laying hens are not definitively understood. The present study assessed the effects of 2 different housing systems (conventional cages and colony cages enriched with perching and nesting areas) on the frequency of Salmonella Enteritidis contamination inside eggs laid by experimentally infected laying hens. In each of 2 trials, groups of laying hens housed in each cage system were orally inoculated with doses of 1.0 × 10(8) cfu of Salmonella Enteritidis. All eggs laid between 5 and 25 d postinoculation were collected and cultured to detect internal contamination with Salmonella Enteritidis. For both trials combined, Salmonella Enteritidis was recovered from 3.97% of eggs laid by hens in conventional cages and 3.58% of eggs laid by hens in enriched cages. No significant differences (P > 0.05) in the frequency of egg contamination were observed between the 2 housing systems.
Collapse
Affiliation(s)
- Richard K Gast
- Egg Safety and Quality Research Unit, Agricultural Research Service, USDA, Athens, GA 30605
| | | | | | | |
Collapse
|