1
|
Liao C, Shen H, Gao Z, Wang Y, Zhu Z, Xie Q, Wu T, Chen G, Hu Z. Overexpression of SlCRF6 in tomato inhibits leaf development and affects plant morphology. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111921. [PMID: 37949361 DOI: 10.1016/j.plantsci.2023.111921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Cytokinin response factors (CRFs) are transcription factors (TFs) that are specific to plants and have diverse functions in plant growth and stress responses. However, the precise roles of CRFs in regulating tomato plant architecture and leaf development have not been comprehensively investigated. Here, we identified a novel CRF, SlCRF6, which is involved in the regulation of plant growth via the gibberellin (GA) signaling pathway. SlCRF6-overexpressing (SlCRF6-OE) plants displayed pleiotropic phenotypic changes, including reduced internode length and leaf size, which caused dwarfism in tomato plants. This dwarfism could be alleviated by application of exogenous GA3. Remarkably, quantitative real-time PCR (qRTPCR), a dual luciferase reporter assay and a yeast one-hybrid (Y1H) assay revealed that SlCRF6 promoted the expression of SlDELLA (a GA signal transduction inhibitor) in vivo. Furthermore, transgenic plants displayed variegated leaves and diminished chlorophyll content, resulting in decreased photosynthetic efficiency and less starch than in wild-type (WT) plants. The results of transient expression assays and Y1H assays indicated that SlCRF6 suppressed the expression of SlPHAN (leaf morphology-related gene). Collectively, these findings suggest that SlCRF6 plays a crucial role in regulating tomato plant morphology, leaf development, and the accumulation of photosynthetic products.
Collapse
Affiliation(s)
- Changguang Liao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Hui Shen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Zihan Gao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Zhiguo Zhu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China; College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, Jiangxi, PR China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Ting Wu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
2
|
Li Y, Chen Y, Yi R, Yu X, Guo X, YiLin F, Zhou XJ, Ya H, Yu X. Genome-wide identification of Apetala2 gene family in Hypericum perforatum L and expression profiles in response to different abiotic and hormonal treatments. PeerJ 2023; 11:e15883. [PMID: 37663289 PMCID: PMC10470449 DOI: 10.7717/peerj.15883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
The Apetala2 (AP2) gene family of transcription factors (TFs) play important functions in plant development, hormonal response, and abiotic stress. To reveal the biological functions and the expression profiles of AP2 genes in Hypericum perforatum, genome-wide identification of HpAP2 family members was conducted. Methods We identified 21 AP2 TFs in H. perforatum using bioinformatic methods; their physical and chemical properties, gene structures, conserved motifs, evolutionary relationships, cis-acting elements, and expression patterns were investigated. Results We found that based on the structural characteristics and evolutionary relationships, the HpAP2 gene family can be divided into three subclasses: euANT, baselANT, and euAP2. A canonical HpAP2 TF shared a conserved protein structure, while a unique motif 6 was found in HpAP2_1, HpAP2_4, and HpAP2_5 from the euANT subgroup, indicating potential biological and regulatory functions of these genes. Furthermore, a total of 59 cis-acting elements were identified, most of which were associated with growth, development, and resistance to stress in plants. Transcriptomics data showed that 57.14% of the genes in the AP2 family were differentially expressed in four organs. For example, HpAP2_18 was specifically expressed in roots and stems, whereas HpAP2_17 and HpAP2_11 were specifically expressed in leaves and flowers, respectively. HpAP2_5, HpAP2_11, and HpAP2_18 showed tissue-specific expression patterns and responded positively to hormones and abiotic stresses. Conclusion These results demonstrated that the HpAP2 family genes are involved in diverse developmental processes and generate responses to abiotic stress conditions in H. perforatum. This article, for the first time, reports the identification and expression profiles of the AP2 family genes in H. perforatum, laying the foundation for future functional studies with these genes.
Collapse
Affiliation(s)
- Yonghui Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Yao Chen
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Ruyi Yi
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Xueting Yu
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Xiangmeng Guo
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Fan YiLin
- Technical Center of zhengzhou Customs Distric, Zhengzhou, Henan, China
| | - Xiao-Jun Zhou
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| | - Huiyuan Ya
- School of Food and Drug, Luoyang Normal University, Luoyang, Henan, China
| | - Xiangli Yu
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
3
|
Ranjan A, Perrone I, Alallaq S, Singh R, Rigal A, Brunoni F, Chitarra W, Guinet F, Kohler A, Martin F, Street NR, Bhalerao R, Legué V, Bellini C. Molecular basis of differential adventitious rooting competence in poplar genotypes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4046-4064. [PMID: 35325111 PMCID: PMC9232201 DOI: 10.1093/jxb/erac126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Recalcitrant adventitious root (AR) development is a major hurdle in propagating commercially important woody plants. Although significant progress has been made to identify genes involved in subsequent steps of AR development, the molecular basis of differences in apparent recalcitrance to form AR between easy-to-root and difficult-to-root genotypes remains unknown. To address this, we generated cambium tissue-specific transcriptomic data from stem cuttings of hybrid aspen, T89 (difficult-to-root) and hybrid poplar OP42 (easy-to-root), and used transgenic approaches to verify the role of several transcription factors in the control of adventitious rooting. Increased peroxidase activity was positively correlated with better rooting. We found differentially expressed genes encoding reactive oxygen species scavenging proteins to be enriched in OP42 compared with T89. A greater number of differentially expressed transcription factors in cambium cells of OP42 compared with T89 was revealed by a more intense transcriptional reprograming in the former. PtMYC2, a potential negative regulator, was less expressed in OP42 compared with T89. Using transgenic approaches, we demonstrated that PttARF17.1 and PttMYC2.1 negatively regulate adventitious rooting. Our results provide insights into the molecular basis of genotypic differences in AR and implicate differential expression of the master regulator MYC2 as a critical player in this process.
Collapse
Affiliation(s)
| | | | | | - Rajesh Singh
- Present address: Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Adeline Rigal
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Champenoux, 54280France
| | - Federica Brunoni
- Present address: Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Slechtitelu 27, CZ-78371, Olomouc, Czech Republic
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), I-10135 Torino, Italy
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), I-31015 Conegliano (TV), Italy
| | - Frederic Guinet
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Champenoux, 54280France
| | - Annegret Kohler
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Champenoux, 54280France
| | - Francis Martin
- Université de Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Champenoux, 54280France
| | - Nathaniel R Street
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90736 Umeå, Sweden
| | - Rishikesh Bhalerao
- Umeå Plant Science Centre, Department of Forest Genetics and Physiology, Swedish Agricultural University, SE-90183 Umeå, Sweden
| | - Valérie Legué
- Present address: Université Clermont Auvergne, INRAE, UMR 547 PIAF, F-63000 Clermont-Ferrand, France
| | | |
Collapse
|
4
|
Riaz MW, Lu J, Shah L, Yang L, Chen C, Mei XD, Xue L, Manzoor MA, Abdullah M, Rehman S, Si H, Ma C. Expansion and Molecular Characterization of AP2/ERF Gene Family in Wheat ( Triticum aestivum L.). Front Genet 2021; 12:632155. [PMID: 33868370 PMCID: PMC8044323 DOI: 10.3389/fgene.2021.632155] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 01/02/2023] Open
Abstract
The AP2/ERF is a large protein family of transcription factors, playing an important role in signal transduction, plant growth, development, and response to various stresses. AP2/ERF super-family is identified and functionalized in a different plant but no comprehensive and systematic analysis in wheat (Triticum aestivum L.) has been reported. However, a genome-wide and functional analysis was performed and identified 322 TaAP2/ERF putative genes from the wheat genome. According to the phylogenetic and structural analysis, TaAP2/ERF genes were divided into 12 subfamilies (Ia, Ib, Ic, IIa, IIb, IIc, IIIa, IIIb, IIIc, IVa, IVb, and IVc). Furthermore, conserved motifs and introns/exons analysis revealed may lead to functional divergence within clades. Cis-Acting analysis indicated that many elements were involved in stress-related and plant development. Chromosomal location showed that 320 AP2/ERF genes were distributed among 21 chromosomes and 2 genes were present in a scaffold. Interspecies microsynteny analysis revealed that maximum orthologous between Arabidopsis, rice followed by wheat. Segment duplication events have contributed to the expansion of the AP2/ERF family and made this family larger than rice and Arabidopsis. Additionally, AP2/ERF genes were differentially expressed in wheat seedlings under the stress treatments of heat, salt, and drought, and expression profiles were verified by qRT-PCR. Remarkably, the RNA-seq data exposed that AP2/ERF gene family might play a vital role in stress-related. Taken together, our findings provided useful and helpful information to understand the molecular mechanism and evolution of the AP2/ERF gene family in wheat.
Collapse
Affiliation(s)
- Muhammad Waheed Riaz
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Liaqat Shah
- Department of Botany, Mir Chakar Khan Rind University, Sibi, Pakistan
| | - Liu Yang
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Can Chen
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Xu Dong Mei
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Liu Xue
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | | | - Muhammad Abdullah
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Shamsur Rehman
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Hongqi Si
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Hefei, China.,Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow & Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China.,National United Engineering Laboratory for Crop Stress Resistance Breeding, Hefei, China.,Anhui Key Laboratory of Crop Biology, Hefei, China
| |
Collapse
|
5
|
Lin CY, Donohoe BS, Bomble YJ, Yang H, Yunes M, Sarai NS, Shollenberger T, Decker SR, Chen X, McCann MC, Tucker MP, Wei H, Himmel ME. Iron incorporation both intra- and extra-cellularly improves the yield and saccharification of switchgrass (Panicum virgatum L.) biomass. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:55. [PMID: 33663584 PMCID: PMC7931346 DOI: 10.1186/s13068-021-01891-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pretreatments are commonly used to facilitate the deconstruction of lignocellulosic biomass to its component sugars and aromatics. Previously, we showed that iron ions can be used as co-catalysts to reduce the severity of dilute acid pretreatment of biomass. Transgenic iron-accumulating Arabidopsis and rice plants exhibited higher iron content in grains, increased biomass yield, and importantly, enhanced sugar release from the biomass. RESULTS In this study, we used intracellular ferritin (FerIN) alone and in combination with an improved version of cell wall-bound carbohydrate-binding module fused iron-binding peptide (IBPex) specifically targeting switchgrass, a bioenergy crop species. The FerIN switchgrass improved by 15% in height and 65% in yield, whereas the FerIN/IBPex transgenics showed enhancement up to 30% in height and 115% in yield. The FerIN and FerIN/IBPex switchgrass had 27% and 51% higher in planta iron accumulation than the empty vector (EV) control, respectively, under normal growth conditions. Improved pretreatability was observed in FerIN switchgrass (~ 14% more glucose release than the EV), and the FerIN/IBPex plants showed further enhancement in glucose release up to 24%. CONCLUSIONS We conclude that this iron-accumulating strategy can be transferred from model plants and applied to bioenergy crops, such as switchgrass. The intra- and extra-cellular iron incorporation approach improves biomass pretreatability and digestibility, providing upgraded feedstocks for the production of biofuels and bioproducts.
Collapse
Affiliation(s)
- Chien-Yuan Lin
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
- Present Address: Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA 94608 USA
- Present Address: Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| | - Bryon S. Donohoe
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Yannick J. Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Haibing Yang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
- Present Address: South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650 China
| | - Manal Yunes
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
- Present Address: Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309 USA
| | - Nicholas S. Sarai
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
- Present Address: Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 USA
| | - Todd Shollenberger
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Stephen R. Decker
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Xiaowen Chen
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Maureen C. McCann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907 USA
| | - Melvin P. Tucker
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Hui Wei
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| |
Collapse
|
6
|
De novo transcriptome in roots of switchgrass (Panicum virgatum L.) reveals gene expression dynamic and act network under alkaline salt stress. BMC Genomics 2021; 22:82. [PMID: 33509088 PMCID: PMC7841905 DOI: 10.1186/s12864-021-07368-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/05/2021] [Indexed: 12/30/2022] Open
Abstract
Background Soil salinization is a major limiting factor for crop cultivation. Switchgrass is a perennial rhizomatous bunchgrass that is considered an ideal plant for marginal lands, including sites with saline soil. Here we investigated the physiological responses and transcriptome changes in the roots of Alamo (alkaline-tolerant genotype) and AM-314/MS-155 (alkaline-sensitive genotype) under alkaline salt stress. Results Alkaline salt stress significantly affected the membrane, osmotic adjustment and antioxidant systems in switchgrass roots, and the ASTTI values between Alamo and AM-314/MS-155 were divergent at different time points. A total of 108,319 unigenes were obtained after reassembly, including 73,636 unigenes in AM-314/MS-155 and 65,492 unigenes in Alamo. A total of 10,219 DEGs were identified, and the number of upregulated genes in Alamo was much greater than that in AM-314/MS-155 in both the early and late stages of alkaline salt stress. The DEGs in AM-314/MS-155 were mainly concentrated in the early stage, while Alamo showed greater advantages in the late stage. These DEGs were mainly enriched in plant-pathogen interactions, ubiquitin-mediated proteolysis and glycolysis/gluconeogenesis pathways. We characterized 1480 TF genes into 64 TF families, and the most abundant TF family was the C2H2 family, followed by the bZIP and bHLH families. A total of 1718 PKs were predicted, including CaMK, CDPK, MAPK and RLK. WGCNA revealed that the DEGs in the blue, brown, dark magenta and light steel blue 1 modules were associated with the physiological changes in roots of switchgrass under alkaline salt stress. The consistency between the qRT-PCR and RNA-Seq results confirmed the reliability of the RNA-seq sequencing data. A molecular regulatory network of the switchgrass response to alkaline salt stress was preliminarily constructed on the basis of transcriptional regulation and functional genes. Conclusions Alkaline salt tolerance of switchgrass may be achieved by the regulation of ion homeostasis, transport proteins, detoxification, heat shock proteins, dehydration and sugar metabolism. These findings provide a comprehensive analysis of gene expression dynamic and act network induced by alkaline salt stress in two switchgrass genotypes and contribute to the understanding of the alkaline salt tolerance mechanism of switchgrass and the improvement of switchgrass germplasm. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07368-w.
Collapse
|
7
|
Muliyar RK, Chowdappa P, Behera SK, Kasaragod S, Gangaraj KP, Kotimoole CN, Nekrakalaya B, Mohanty V, Sampgod RB, Banerjee G, Das AJ, Niral V, Karun A, Mahato AK, Gaikwad K, Singh NK, Prasad TSK. Assembly and Annotation of the Nuclear and Organellar Genomes of a Dwarf Coconut (Chowghat Green Dwarf) Possessing Enhanced Disease Resistance. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:726-742. [PMID: 33170083 DOI: 10.1089/omi.2020.0147] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Coconut (Cocos nucifera L.), an important source of vegetable oil, nutraceuticals, functional foods, and housing materials, provides raw materials for a repertoire of industries engaged in the manufacture of cosmetics, soaps, detergents, paints, varnishes, and emulsifiers, among other products. The palm plays a vital role in maintaining and promoting the sustainability of farming systems of the fragile ecosystems of islands and coastal regions of the tropics. In this study, we present the genome of a dwarf coconut variety "Chowghat Green Dwarf" (CGD) from India, possessing enhanced resistance to root (wilt) disease. Utilizing short reads from the Illumina HiSeq 4000 platform and long reads from the Pacific Biosciences RSII platform, we have assembled the draft genome assembly of 1.93 Gb. The genome is distributed over 26,855 scaffolds, with ∼81.56% of the assembled genome present in scaffolds of lengths longer than 50 kb. About 77.29% of the genome was composed of transposable elements and repeats. Gene prediction yielded 51,953 genes, which upon stringent filtering, based on Annotation Edit Distance, resulted in 13,707 genes, which coded for 11,181 proteins. Among these, we gathered transcript level evidence for a total of 6828 predicted genes based on the RNA-Seq data from different coconut tissues, since they presented assembled transcripts within the genome annotation coordinates. A total of 112 nucleotide-binding and leucine-rich repeat loci, belonging to six classes, were detected. We have also undertaken the assembly and annotation of the CGD chloroplast and mitochondrial genomes. The availability of the dwarf coconut genome shall prove invaluable for deducing the origin of dwarf coconut cultivars, dissection of genes controlling plant habit and fruit color, and accelerated breeding for improved agronomic traits.
Collapse
Affiliation(s)
| | - Pallem Chowdappa
- ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, India
| | - Santosh Kumar Behera
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sandeep Kasaragod
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Chinmaya Narayana Kotimoole
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Bhagya Nekrakalaya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Varshasnata Mohanty
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | | | | | | - Vittal Niral
- ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, India
| | - Anitha Karun
- ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod, India
| | - Ajay Kumar Mahato
- ICAR-National Research Center on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Kishor Gaikwad
- ICAR-National Research Center on Plant Biotechnology, Pusa Campus, New Delhi, India
| | - Nagendra Kumar Singh
- ICAR-National Research Center on Plant Biotechnology, Pusa Campus, New Delhi, India
| | | |
Collapse
|
8
|
Zeng X, Sheng J, Zhu F, Wei T, Zhao L, Hu X, Zheng X, Zhou F, Hu Z, Diao Y, Jin S. Genetic, transcriptional, and regulatory landscape of monolignol biosynthesis pathway in Miscanthus × giganteus. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:179. [PMID: 33117433 PMCID: PMC7590476 DOI: 10.1186/s13068-020-01819-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Miscanthus × giganteus is widely recognized as a promising lignocellulosic biomass crop due to its advantages of high biomass production, low environmental impacts, and the potential to be cultivated on marginal land. However, the high costs of bioethanol production still limit the current commercialization of lignocellulosic bioethanol. The lignin in the cell wall and its by-products released in the pretreatment step is the main component inhibiting the enzymatic reactions in the saccharification and fermentation processes. Hence, genetic modification of the genes involved in lignin biosynthesis could be a feasible strategy to overcome this barrier by manipulating the lignin content and composition of M. × giganteus. For this purpose, the essential knowledge of these genes and understanding the underlying regulatory mechanisms in M. × giganteus is required. RESULTS In this study, MgPAL1, MgPAL5, Mg4CL1, Mg4CL3, MgHCT1, MgHCT2, MgC3'H1, MgCCoAOMT1, MgCCoAOMT3, MgCCR1, MgCCR2, MgF5H, MgCOMT, and MgCAD were identified as the major monolignol biosynthetic genes in M. × giganteus based on genetic and transcriptional evidence. Among them, 12 genes were cloned and sequenced. By combining transcription factor binding site prediction and expression correlation analysis, MYB46, MYB61, MYB63, WRKY24, WRKY35, WRKY12, ERF021, ERF058, and ERF017 were inferred to regulate the expression of these genes directly. On the basis of these results, an integrated model was summarized to depict the monolignol biosynthesis pathway and the underlying regulatory mechanism in M. × giganteus. CONCLUSIONS This study provides a list of potential gene targets for genetic improvement of lignocellulosic biomass quality of M. × giganteus, and reveals the genetic, transcriptional, and regulatory landscape of the monolignol biosynthesis pathway in M. × giganteus.
Collapse
Affiliation(s)
- Xiaofei Zeng
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 People’s Republic of China
| | - Jiajing Sheng
- School of Life Sciences, Nantong University, Nantong, 226019 People’s Republic of China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Fenglin Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Tianzi Wei
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055 People’s Republic of China
| | - Lingling Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Xiaohu Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Xingfei Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Fasong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Zhongli Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Hubei Lotus Engineering Center, Wuhan University, Wuhan, 430072 People’s Republic of China
| | - Ying Diao
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, 430023 People’s Republic of China
| | - Surong Jin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
9
|
Zhang Y, Yang X, Cao P, Xiao Z, Zhan C, Liu M, Nvsvrot T, Wang N. The bZIP53-IAA4 module inhibits adventitious root development in Populus. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3485-3498. [PMID: 32076710 PMCID: PMC7307859 DOI: 10.1093/jxb/eraa096] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 02/19/2020] [Indexed: 05/04/2023]
Abstract
Adventitious roots (ARs) are important for some plants that depend on clonal propagation. In this study, we demonstrate that a salt-responsive gene module is involved in the negative regulation of AR development in poplar. In this module, the expression of bZIP53 is induced by salt stress and it encodes a transcription factor with transactivation activity. Overexpression or induced expression of bZIP53 in poplar lines resulted in inhibition of AR growth, while heterologous overexpression of bZIP53 in Arabidopsis resulted in a similar phenotype. Results from RNA-seq and RT-qPCR assays predicted IAA4-1 and IAA4-2 to be downstream genes that were regulated by bZIP53. Further investigation of protein-DNA interactions using yeast one-hybrid, electrophoretic mobility shift, dual luciferase reporter, and GUS co-expression assays also showed that IAA4-1/2 were the genes that were directly regulated by bZIP53. Induced-expression IAA4-1/2 transgenic poplar lines also showed inhibited AR growth. In addition, both poplar bZIP53 and IAA4-1/2 showed a response to salt stress. On the basis of these results, we conclude that the bZIP53-IAA4 module is involved in the negative regulation of AR development in poplar.
Collapse
Affiliation(s)
- Yan Zhang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Xiaoqing Yang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Pei Cao
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Zheng’ang Xiao
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Chang Zhan
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Meifeng Liu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Tashbek Nvsvrot
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Nian Wang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Forestry Information, Huazhong Agricultural University, Wuhan, China
- Correspondence:
| |
Collapse
|
10
|
Liu Y, Yan J, Wang K, Li D, Han Y, Zhang W. Heteroexpression of Osa- miR319b improved switchgrass biomass yield and feedstock quality by repression of PvPCF5. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:56. [PMID: 32206089 PMCID: PMC7081615 DOI: 10.1186/s13068-020-01693-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/02/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.), a C4 perennial grass, has been recognized as one of the most potentially important lignocellulose biofuel crops. MicroRNA319 (miR319) plays a key role in plant development, abiotic resistance, and cell wall biosynthesis by repressing expression of its target TCP genes. We hypothesized miR319-TCP pathway could play important roles in switchgrass feedstock characteristics for biofuel production, and produced switchgrass transgenic plants overexpressing miR319 (by ectopic expressing Osa-MIR319b gene), blocking miR319 (by overexpressing a target mimicry of miR319/MIM319) and repression of miR319 target gene PvPCF5. Plant phenotype, biomass yield, and feedstock quality of transgenic plants were analyzed. RESULTS Overexpression of miR319 in switchgrass promoted leaf elongation and expansion of transgenic plants, increased plant height, stem diameter, and resulted in a significant increase in plant biomass yield. Transgenic plants overexpressing of miR319 reduced lignin content, showed significantly higher enzymatic hydrolysis efficiency compared to the wild type plant. However, opposite results were observed in the MIM319 plants. Furthermore, suppression of miR319 target gene PvPCF5 activity also reduced lignin content, increased lignin monomer S/G ratio and the proportion of β-O-4 linkages, while significantly improving the sugar production per plant. Quantitative real-time (qRT-PCR) analysis indicated that expression of PvMYB58/63B and PvHCT with predicted TCP binding sites in their promoter regions was negatively regulated by miR319-PvPCF5 module. CONCLUSIONS MiR319-PvPCF5 module plays positive roles in regulating biomass yield and quality of switchgrass. It can be utilized as a candidate molecular tool in regulating biomass yield and feedstock quality. The finding could also be transferred to other grasses for forage quality improvement through genetic manipulation.
Collapse
Affiliation(s)
- Yanrong Liu
- College of Biological Science, China Agricultural University, Beijing, 100193 People’s Republic of China
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Jianping Yan
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Kexin Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Dayong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, 100097 People’s Republic of China
| | - Yejun Han
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190 China
| | - Wanjun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193 People’s Republic of China
- National Energy R &D Center for Biomass (NECB), China Agricultural University, Beijing, 100193 People’s Republic of China
| |
Collapse
|
11
|
Srivastava R, Kumar R. The expanding roles of APETALA2/Ethylene Responsive Factors and their potential applications in crop improvement. Brief Funct Genomics 2019; 18:240-254. [PMID: 30783669 DOI: 10.1093/bfgp/elz001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 11/29/2018] [Accepted: 01/23/2019] [Indexed: 01/10/2023] Open
Abstract
Understanding the molecular basis of the gene-regulatory networks underlying agronomic traits or plant responses to abiotic/biotic stresses is very important for crop improvement. In this context, transcription factors, which either singularly or in conjugation directly control the expression of many target genes, are suitable candidates for improving agronomic traits via genetic engineering. In this regard, members of one of the largest class of plant-specific APETALA2/Ethylene Response Factor (AP2/ERF) superfamily, which is implicated in various aspects of development and plant stress adaptation responses, are considered high-value targets for crop improvement. Besides their long-known regulatory roles in mediating plant responses to abiotic stresses such as drought and submergence, the novel roles of AP2/ERFs during fruit ripening or secondary metabolites production have also recently emerged. The astounding functional plasticity of AP2/ERF members is considered to be achieved by their interplay with other regulatory networks and signalling pathways. In this review, we have integrated the recently accumulated evidence from functional genomics studies and described their newly emerged functions in plants. The key structural features of AP2/ERF proteins and the modes of their action are briefly summarized. The importance of AP2/ERFs in plant development and stress responses and a summary of the event of their successful applications in crop improvement programs are also provided. Altogether, we envisage that the synthesized information presented in this review will be useful to design effective strategies for improving agronomic traits in crop plants.
Collapse
Affiliation(s)
- Rajat Srivastava
- Plant Translational Research Laboratory, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Rahul Kumar
- Plant Translational Research Laboratory, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
12
|
Pazhany AS, Henry RJ. Genetic Modification of Biomass to Alter Lignin Content and Structure. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Adhini S. Pazhany
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, 4072 Queensland, Australia
- ICAR - Sugarcane Breeding Institute, Coimbatore, 641 007 Tamil Nadu, India
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, 4072 Queensland, Australia
| |
Collapse
|
13
|
Figueiredo R, Araújo P, Llerena JPP, Mazzafera P. Suberin and hemicellulose in sugarcane cell wall architecture and crop digestibility: A biotechnological perspective. Food Energy Secur 2019. [DOI: 10.1002/fes3.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Raquel Figueiredo
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
| | - Pedro Araújo
- Department of Genetics, Evolution and Bioagents Institute of Biology State University of Campinas Campinas Brazil
| | - Juan Pablo P. Llerena
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
| | - Paulo Mazzafera
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
- Department of Crop Science College of Agriculture Luiz de Queiroz University of São Paulo Piracicaba Brazil
| |
Collapse
|
14
|
Yan J, Liu Y, Wang K, Li D, Hu Q, Zhang W. Overexpression of OsPIL1 enhanced biomass yield and saccharification efficiency in switchgrass. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 276:143-151. [PMID: 30348312 DOI: 10.1016/j.plantsci.2018.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 05/20/2023]
Abstract
Switchgrass (Panicum virgatum L.) is a herbaceous cellulosic biofuel plant with broad adaptability. However, the intrinsic recalcitrance of biomass and limited land for switchgrass planting hinder its utilization as feedstock for biofuel ethanol production. The OsPIL1 (PHYTOCHROME INTERACTING FACTOR 3-LIKE 1) gene encodes a basic helix-loop-helix transcription factor. Its expression is induced by light, which facilitated the expression of cell wall-related genes, promoted cell elongation and resulted in longer internode in rice. Here, we introduced the OsPIL1 gene into switchgrass by Agrobacterium-mediated transformation with the aim of improving biomass yield of transgenic switchgrass plants. The transgenic plants were verified by PCR, Southern-blotting, RT-PCR and qRT-PCR tests, respectively. The transgenic plants overexpression of OsPIL1 showed increased plant height and biomass yield. Microscopy analysis showed that the length of epidermal cells of transgenic plants was longer than that of wild type. OsPIL1 overexpressed transgenic switchgrass plants also released more soluble sugar after enzymatic hydrolysis, indicating improved saccharification efficiency. The results suggest OsPIL1 can be used as a useful molecular tool in improving plant biomass and saccharification efficiency with the purpose of plant fiber biofuel ethanol production.
Collapse
Affiliation(s)
- Jianping Yan
- Department of Grassland Science, China Agricultural University, Beijing, 100193, PR China.
| | - Yanrong Liu
- Department of Grassland Science, China Agricultural University, Beijing, 100193, PR China.
| | - Kexin Wang
- Department of Grassland Science, China Agricultural University, Beijing, 100193, PR China.
| | - Dayong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| | - Qingquan Hu
- Yunnan Animal Science and Veterinary Institute, Kunming, 650224, PR China.
| | - Wanjun Zhang
- Department of Grassland Science, China Agricultural University, Beijing, 100193, PR China; National Energy R&D Center for Biomass (NECB), China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
15
|
Combinatorial Interactions of Biotic and Abiotic Stresses in Plants and Their Molecular Mechanisms: Systems Biology Approach. Mol Biotechnol 2018; 60:636-650. [PMID: 29943149 DOI: 10.1007/s12033-018-0100-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plants are continually facing biotic and abiotic stresses, and hence, they need to respond and adapt to survive. Plant response during multiple and combined biotic and abiotic stresses is highly complex and varied than the individual stress. These stresses resulted alteration of plant behavior through regulating the levels of microRNA, heat shock proteins, epigenetic variations. These variations can cause many adverse effects on the growth and development of the plant. Further, in natural conditions, several abiotic stresses causing factors make the plant more susceptible to pathogens infections and vice-versa. A very intricate and multifaceted interactions of various biomolecules are involved in metabolic pathways that can direct towards a cross-tolerance and improvement of plant's defence system. Systems biology approach plays a significant role in the investigation of these molecular interactions. The valuable information obtained by systems biology will help to develop stress-resistant plant varieties against multiple stresses. Thus, this review aims to decipher various multilevel interactions at the molecular level under combinatorial biotic and abiotic stresses and the role of systems biology to understand these molecular interactions.
Collapse
|
16
|
Li G, Jones KC, Eudes A, Pidatala VR, Sun J, Xu F, Zhang C, Wei T, Jain R, Birdseye D, Canlas PE, Baidoo EEK, Duong PQ, Sharma MK, Singh S, Ruan D, Keasling JD, Mortimer JC, Loqué D, Bartley LE, Scheller HV, Ronald PC. Overexpression of a rice BAHD acyltransferase gene in switchgrass (Panicum virgatum L.) enhances saccharification. BMC Biotechnol 2018; 18:54. [PMID: 30180895 PMCID: PMC6123914 DOI: 10.1186/s12896-018-0464-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/27/2018] [Indexed: 11/10/2022] Open
Abstract
Background Switchgrass (Panicum virgatum L.) is a promising bioenergy feedstock because it can be grown on marginal land and produces abundant biomass. Recalcitrance of the lignocellulosic components of the switchgrass cell wall to enzymatic degradation into simple sugars impedes efficient biofuel production. We previously demonstrated that overexpression of OsAT10, a BAHD acyltransferase gene, enhances saccharification efficiency in rice. Results Here we show that overexpression of the rice OsAT10 gene in switchgrass decreased the levels of cell wall-bound ferulic acid (FA) in green leaf tissues and to a lesser extent in senesced tissues, and significantly increased levels of cell wall-bound p-coumaric acid (p-CA) in green leaves but decreased its level in senesced tissues of the T0 plants under greenhouse conditions. The engineered switchgrass lines exhibit an approximate 40% increase in saccharification efficiency in green tissues and a 30% increase in senesced tissues. Conclusion Our study demonstrates that overexpression of OsAT10, a rice BAHD acyltransferase gene, enhances saccharification of lignocellulosic biomass in switchgrass. Electronic supplementary material The online version of this article (10.1186/s12896-018-0464-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guotian Li
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Kyle C Jones
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Aymerick Eudes
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | | - Jian Sun
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Biomass Science and Conversion Technology Department, Sandia National Laboratories, CA94551, Livermore, USA
| | - Feng Xu
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chengcheng Zhang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Tong Wei
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Rashmi Jain
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Devon Birdseye
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Patrick E Canlas
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Phat Q Duong
- Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Manoj K Sharma
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA.,School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Seema Singh
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Biomass Science and Conversion Technology Department, Sandia National Laboratories, CA94551, Livermore, USA
| | - Deling Ruan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Bioengineering and Department of Chemical & Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Dominique Loqué
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Laura E Bartley
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Pamela C Ronald
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Plant Pathology and the Genome Center, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
17
|
Ambavaram MMR, Ali A, Ryan KP, Peoples O, Snell KD, Somleva MN. Novel transcription factors PvBMY1 and PvBMY3 increase biomass yield in greenhouse-grown switchgrass (Panicum virgatum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:100-109. [PMID: 29907302 DOI: 10.1016/j.plantsci.2018.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Increasing crop yield requires the coordination of multiple metabolic pathways spanning photosynthetic carbon fixation, central carbon metabolism, and finally targeted carbon deposition to end product. In this study, we used a transcriptome-based gene regulatory association network to search for transcription factor genes that could play a role in increasing carbon flow through pathways associated with these processes to increase biomass yield in switchgrass. Two novel switchgrass transcription factors, PvBMY1 (BioMass Yield 1, belonging to the APETALA2/Ethylene Response Factor family of transcription factors) and PvBMY3 (BioMass Yield 3, a member of the Nuclear-Factor Y family of transcription factors), with predicted roles in the regulation of photosynthesis and related metabolism were identified. These genes were overexpressed in switchgrass to determine their impact on biomass yield. A significant increase in both aboveground and root biomass was observed in transgenic greenhouse grown plants compared to wild-type control plants with the best line producing 160% more aboveground biomass than controls. Transgenic lines with elevated electron transport rate of photosystems I and II as well as increased levels of starch and soluble sugars were identified.
Collapse
Affiliation(s)
| | - Aminat Ali
- Yield10 Bioscience, Inc., 19 Presidential Way, Woburn, MA 01801, United States
| | - Kieran P Ryan
- Yield10 Bioscience, Inc., 19 Presidential Way, Woburn, MA 01801, United States
| | - Oliver Peoples
- Yield10 Bioscience, Inc., 19 Presidential Way, Woburn, MA 01801, United States
| | - Kristi D Snell
- Yield10 Bioscience, Inc., 19 Presidential Way, Woburn, MA 01801, United States.
| | - Maria N Somleva
- Yield10 Bioscience, Inc., 19 Presidential Way, Woburn, MA 01801, United States
| |
Collapse
|
18
|
Zuo C, Blow M, Sreedasyam A, Kuo RC, Ramamoorthy GK, Torres-Jerez I, Li G, Wang M, Dilworth D, Barry K, Udvardi M, Schmutz J, Tang Y, Xu Y. Revealing the transcriptomic complexity of switchgrass by PacBio long-read sequencing. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:170. [PMID: 29951114 PMCID: PMC6009963 DOI: 10.1186/s13068-018-1167-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/08/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Switchgrass (Panicum virgatum L.) is an important bioenergy crop widely used for lignocellulosic research. While extensive transcriptomic analyses have been conducted on this species using short read-based sequencing techniques, very little has been reliably derived regarding alternatively spliced (AS) transcripts. RESULTS We present an analysis of transcriptomes of six switchgrass tissue types pooled together, sequenced using Pacific Biosciences (PacBio) single-molecular long-read technology. Our analysis identified 105,419 unique transcripts covering 43,570 known genes and 8795 previously unknown genes. 45,168 are novel transcripts of known genes. A total of 60,096 AS transcripts are identified, 45,628 being novel. We have also predicted 1549 transcripts of genes involved in cell wall construction and remodeling, 639 being novel transcripts of known cell wall genes. Most of the predicted transcripts are validated against Illumina-based short reads. Specifically, 96% of the splice junction sites in all the unique transcripts are validated by at least five Illumina reads. Comparisons between genes derived from our identified transcripts and the current genome annotation revealed that among the gene set predicted by both analyses, 16,640 have different exon-intron structures. CONCLUSIONS Overall, substantial amount of new information is derived from the PacBio RNA data regarding both the transcriptome and the genome of switchgrass.
Collapse
Affiliation(s)
- Chunman Zuo
- College of Computer Science and Technology, Jilin University, Changchun, China
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA USA
- BESC BioEnergy Research Center, Oak Ridge National Lab, Oak Ridge, TN USA
| | - Matthew Blow
- Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | | | - Rita C. Kuo
- Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | | | | | - Guifen Li
- Noble Research Institute, LLC, Ardmore, OK USA
| | - Mei Wang
- Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - David Dilworth
- Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | | | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, Walnut Creek, CA USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Yuhong Tang
- BESC BioEnergy Research Center, Oak Ridge National Lab, Oak Ridge, TN USA
- Noble Research Institute, LLC, Ardmore, OK USA
| | - Ying Xu
- College of Computer Science and Technology, Jilin University, Changchun, China
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA USA
- BESC BioEnergy Research Center, Oak Ridge National Lab, Oak Ridge, TN USA
| |
Collapse
|
19
|
Liu W, Mazarei M, Ye R, Peng Y, Shao Y, Baxter HL, Sykes RW, Turner GB, Davis MF, Wang ZY, Dixon RA, Stewart CN. Switchgrass ( Panicum virgatum L.) promoters for green tissue-specific expression of the MYB4 transcription factor for reduced-recalcitrance transgenic switchgrass. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:122. [PMID: 29713381 PMCID: PMC5914048 DOI: 10.1186/s13068-018-1119-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/16/2018] [Indexed: 05/09/2023]
Abstract
BACKGROUND Genetic engineering of switchgrass (Panicum virgatum L.) for reduced cell wall recalcitrance and improved biofuel production has been a long pursued goal. Up to now, constitutive promoters have been used to direct the expression of cell wall biosynthesis genes toward attaining that goal. While generally sufficient to gauge a transgene's effects in the heterologous host, constitutive overexpression often leads to undesirable plant phenotypic effects. Green tissue-specific promoters from switchgrass are potentially valuable to directly alter cell wall traits exclusively in harvestable aboveground biomass while not changing root phenotypes. RESULTS We identified and functionally characterized three switchgrass green tissue-specific promoters and assessed marker gene expression patterns and intensity in stably transformed rice (Oryza sativa L.), and then used them to direct the expression of the switchgrass MYB4 (PvMYB4) transcription factor gene in transgenic switchgrass to endow reduced recalcitrance in aboveground biomass. These promoters correspond to photosynthesis-related light-harvesting complex II chlorophyll-a/b binding gene (PvLhcb), phosphoenolpyruvate carboxylase (PvPEPC), and the photosystem II 10 kDa R subunit (PvPsbR). Real-time RT-PCR analysis detected their strong expression in the aboveground tissues including leaf blades, leaf sheaths, internodes, inflorescences, and nodes of switchgrass, which was tightly up-regulated by light. Stable transgenic rice expressing the GUS reporter under the control of each promoter (756-2005 bp in length) further confirmed their strong expression patterns in leaves and stems. With the exception of the serial promoter deletions of PvLhcb, all GUS marker patterns under the control of each 5'-end serial promoter deletion were not different from that conveyed by their respective promoters. All of the shortest promoter fragments (199-275 bp in length) conveyed strong green tissue-specific GUS expression in transgenic rice. PvMYB4 is a master repressor of lignin biosynthesis. The green tissue-specific expression of PvMYB4 via each promoter in transgenic switchgrass led to significant gains in saccharification efficiency, decreased lignin, and decreased S/G lignin ratios. In contrast to constitutive overexpression of PvMYB4, which negatively impacts switchgrass root growth, plant growth was not compromised in green tissue-expressed PvMYB4 switchgrass plants in the current study. CONCLUSIONS Each of the newly described green tissue-specific promoters from switchgrass has utility to change cell wall biosynthesis exclusively in aboveground harvestable biomass without altering root systems. The truncated green tissue promoters are very short and should be useful for targeted expression in a number of monocots to improve shoot traits while restricting gene expression from roots. Green tissue-specific expression of PvMYB4 is an effective strategy for improvement of transgenic feedstocks.
Collapse
Affiliation(s)
- Wusheng Liu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Rongjian Ye
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
| | - Yanhui Peng
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
| | - Yuanhua Shao
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
| | - Holly L. Baxter
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Robert W. Sykes
- National Renewable Energy Laboratory, Golden, CO USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Geoffrey B. Turner
- National Renewable Energy Laboratory, Golden, CO USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Mark F. Davis
- National Renewable Energy Laboratory, Golden, CO USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Zeng-Yu Wang
- Noble Research Institute, Ardmore, OK USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN USA
| |
Collapse
|
20
|
Huang Y, Cui X, Cen H, Wang K, Zhang Y. Transcriptomic analysis reveals vacuolar Na + (K +)/H + antiporter gene contributing to growth, development, and defense in switchgrass (Panicum virgatum L.). BMC PLANT BIOLOGY 2018; 18:57. [PMID: 29631566 PMCID: PMC5892015 DOI: 10.1186/s12870-018-1278-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 03/29/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Intracellular Na+ (K+)/H+ antiporters (NHXs) have pivotal functions in regulating plant growth, development, and resistance to a range of stresses. To gain insight into the molecular events underlying their actions in switchgrass (Panicum virgatum L.), we analyzed transcriptomic changes between PvNHX1-overexpression transgenic lines and wild-type (WT) plants using RNA sequencing (RNA-seq) technology. RESULTS The comparison of transcriptomic data from the WT and transgenic plants revealed a large number of differentially expressed genes (DEGs) in the latter. Gene ontology (GO) and KEGG pathway analyses showed that these DEGs were associated with a wide range of functions, and participated in many biological processes. For example, we found that PvNHX1 had an important role in plant growth through its regulation of photosynthetic activity and cell expansion. In addition, PvNHX1 regulated K+ homeostasis, cell expansion and pollen development, indicating that it has unique and specific roles in flower development. We also found that transgenic switchgrass exhibited a higher level of transcription of defense-related genes, especially those involved in disease resistance. CONCLUSION We showed that PvNHX1 had an important role in plant growth and development through its regulation of photosynthetic activity, cell expansion, K+ homeostasis, and pollen development. Additionally, PvNHX1 overexpression activated a complex signal transduction network in response to various biotic and abiotic stresses. In relation to plant growth, development, and defense responses, PvNHX1 also had a vital regulatory role in the formation of a series of plant hormones and transcription factors (TFs). The reliability of the RNA-seq data was confirmed by quantitative real-time PCR. Our data provide a valuable foundation for further research into the molecular mechanisms and physiological roles of NHXs in plants.
Collapse
Affiliation(s)
- Yanhua Huang
- College of Agriculture, China Agricultural University, Beijing, People’s Republic of China
- College of Animal Science and Technology, China Agricultural University, Beijing, People’s Republic of China
| | - Xin Cui
- College of Animal Science and Technology, China Agricultural University, Beijing, People’s Republic of China
| | - Huifang Cen
- College of Animal Science and Technology, China Agricultural University, Beijing, People’s Republic of China
| | - Kehua Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, People’s Republic of China
| | - Yunwei Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, People’s Republic of China
- National Energy R&D Center for Biomass (NECB), Beijing Sure Academy of Biosciences, Beijing, People’s Republic of China
| |
Collapse
|
21
|
Xu W, Liu W, Ye R, Mazarei M, Huang D, Zhang X, Stewart CN. A profilin gene promoter from switchgrass (Panicum virgatum L.) directs strong and specific transgene expression to vascular bundles in rice. PLANT CELL REPORTS 2018; 37:587-597. [PMID: 29340787 DOI: 10.1007/s00299-018-2253-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/05/2018] [Indexed: 05/25/2023]
Abstract
A switchgrass vascular tissue-specific promoter (PvPfn2) and its 5'-end serial deletions drive high levels of vascular bundle transgene expression in transgenic rice. Constitutive promoters are widely used for crop genetic engineering, which can result in multiple off-target effects, including suboptimal growth and epigenetic gene silencing. These problems can be potentially avoided using tissue-specific promoters for targeted transgene expression. One particularly urgent need for targeted cell wall modification in bioenergy crops, such as switchgrass (Panicum virgatum L.), is the development of vasculature-active promoters to express cell wall-affective genes only in the specific tissues, i.e., xylem and phloem. From a switchgrass expression atlas we identified promoter sequence upstream of a vasculature-specific switchgrass profilin gene (PvPfn2), especially in roots, nodes and inflorescences. When the putative full-length (1715 bp) and 5'-end serial deletions of the PvPfn2 promoter (shortest was 413 bp) were used to drive the GUS reporter expression in stably transformed rice (Oryza sativa L.), strong vasculature-specificity was observed in various tissues including leaves, leaf sheaths, stems, and flowers. The promoters were active in both phloem and xylem. It is interesting to note that the promoter was active in many more tissues in the heterologous rice system than in switchgrass. Surprisingly, all four 5'-end promoter deletions, including the shortest fragment, had the same expression patterns as the full-length promoter and with no attenuation in GUS expression in rice. These results indicated that the PvPfn2 promoter variants are new tools to direct transgene expression specifically to vascular tissues in monocots. Of special interest is the very compact version of the promoter, which could be of use for vasculature-specific genetic engineering in monocots.
Collapse
Affiliation(s)
- Wenzhi Xu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wusheng Liu
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Rongjian Ye
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Debao Huang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Xinquan Zhang
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
22
|
Dubois M, Van den Broeck L, Inzé D. The Pivotal Role of Ethylene in Plant Growth. TRENDS IN PLANT SCIENCE 2018; 23:311-323. [PMID: 29428350 DOI: 10.1016/j.tplants.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 05/27/2023]
Abstract
Being continuously exposed to variable environmental conditions, plants produce phytohormones to react quickly and specifically to these changes. The phytohormone ethylene is produced in response to multiple stresses. While the role of ethylene in defense responses to pathogens is widely recognized, recent studies in arabidopsis and crop species highlight an emerging key role for ethylene in the regulation of organ growth and yield under abiotic stress. Molecular connections between ethylene and growth-regulatory pathways have been uncovered, and altering the expression of ethylene response factors (ERFs) provides a new strategy for targeted ethylene-response engineering. Crops with optimized ethylene responses show improved growth in the field, opening new windows for future crop improvement. This review focuses on how ethylene regulates shoot growth, with an emphasis on leaves.
Collapse
Affiliation(s)
- Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; Present address: Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, 67000 Strasbourg, France
| | - Lisa Van den Broeck
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium. https://twitter.com/@InzeDirk
| |
Collapse
|
23
|
Dubois M, Van den Broeck L, Inzé D. The Pivotal Role of Ethylene in Plant Growth. TRENDS IN PLANT SCIENCE 2018; 23:311-323. [PMID: 29428350 PMCID: PMC5890734 DOI: 10.1016/j.tplants.2018.01.003] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 05/18/2023]
Abstract
Being continuously exposed to variable environmental conditions, plants produce phytohormones to react quickly and specifically to these changes. The phytohormone ethylene is produced in response to multiple stresses. While the role of ethylene in defense responses to pathogens is widely recognized, recent studies in arabidopsis and crop species highlight an emerging key role for ethylene in the regulation of organ growth and yield under abiotic stress. Molecular connections between ethylene and growth-regulatory pathways have been uncovered, and altering the expression of ethylene response factors (ERFs) provides a new strategy for targeted ethylene-response engineering. Crops with optimized ethylene responses show improved growth in the field, opening new windows for future crop improvement. This review focuses on how ethylene regulates shoot growth, with an emphasis on leaves.
Collapse
Affiliation(s)
- Marieke Dubois
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Present address: Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, 67000 Strasbourg, France
| | - Lisa Van den Broeck
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
- Correspondence: @InzeDirk
| |
Collapse
|
24
|
Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis. Nat Biotechnol 2018; 36:249-257. [DOI: 10.1038/nbt.4067] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/02/2018] [Indexed: 01/17/2023]
|
25
|
Wei Y, Chang Y, Zeng H, Liu G, He C, Shi H. RAV transcription factors are essential for disease resistance against cassava bacterial blight via activation of melatonin biosynthesis genes. J Pineal Res 2018; 64. [PMID: 29151275 DOI: 10.1111/jpi.12454] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/30/2017] [Indexed: 12/24/2022]
Abstract
With 1 AP2 domain and 1 B3 domain, 7 MeRAVs in apetala2/ethylene response factor (AP2/ERF) gene family have been identified in cassava. However, the in vivo roles of these remain unknown. Gene expression assays showed that the transcripts of MeRAVs were commonly regulated after Xanthomonas axonopodis pv manihotis (Xam) and MeRAVs were specifically located in plant cell nuclei. Through virus-induced gene silencing (VIGS) in cassava, we found that MeRAV1 and MeRAV2 are essential for plant disease resistance against cassava bacterial blight, as shown by the bacterial propagation of Xam in plant leaves. Through VIGS in cassava leaves and overexpression in cassava leave protoplasts, we found that MeRAV1 and MeRAV2 positively regulated melatonin biosynthesis genes and the endogenous melatonin level. Further investigation showed that MeRAV1 and MeRAV2 are direct transcriptional activators of 3 melatonin biosynthesis genes in cassava, as evidenced by chromatin immunoprecipitation-PCR in cassava leaf protoplasts and electrophoretic mobility shift assay. Moreover, cassava melatonin biosynthesis genes also positively regulated plant disease resistance. Taken together, this study identified MeRAV1 and MeRAV2 as common and upstream transcription factors of melatonin synthesis genes in cassava and revealed a model of MeRAV1 and MeRAV2-melatonin biosynthesis genes-melatonin level in plant disease resistance against cassava bacterial blight.
Collapse
Affiliation(s)
- Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan province, China
| | - Yanli Chang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan province, China
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan province, China
| | - Guoyin Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan province, China
| | - Chaozu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan province, China
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan province, China
| |
Collapse
|
26
|
Baxter HL, Mazarei M, Dumitrache A, Natzke JM, Rodriguez M, Gou J, Fu C, Sykes RW, Turner GB, Davis MF, Brown SD, Davison BH, Wang Z, Stewart CN. Transgenic miR156 switchgrass in the field: growth, recalcitrance and rust susceptibility. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:39-49. [PMID: 28436149 PMCID: PMC5785337 DOI: 10.1111/pbi.12747] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/16/2017] [Accepted: 04/10/2017] [Indexed: 05/02/2023]
Abstract
Sustainable utilization of lignocellulosic perennial grass feedstocks will be enabled by high biomass production and optimized cell wall chemistry for efficient conversion into biofuels. MicroRNAs are regulatory elements that modulate the expression of genes involved in various biological functions in plants, including growth and development. In greenhouse studies, overexpressing a microRNA (miR156) gene in switchgrass had dramatic effects on plant architecture and flowering, which appeared to be driven by transgene expression levels. High expressing lines were extremely dwarfed, whereas low and moderate-expressing lines had higher biomass yields, improved sugar release and delayed flowering. Four lines with moderate or low miR156 overexpression from the prior greenhouse study were selected for a field experiment to assess the relationship between miR156 expression and biomass production over three years. We also analysed important bioenergy feedstock traits such as flowering, disease resistance, cell wall chemistry and biofuel production. Phenotypes of the transgenic lines were inconsistent between the greenhouse and the field as well as among different field growing seasons. One low expressing transgenic line consistently produced more biomass (25%-56%) than the control across all three seasons, which translated to the production of 30% more biofuel per plant during the final season. The other three transgenic lines produced less biomass than the control by the final season, and the two lines with moderate expression levels also exhibited altered disease susceptibilities. Results of this study emphasize the importance of performing multiyear field studies for plants with altered regulatory transgenes that target plant growth and development.
Collapse
Affiliation(s)
- Holly L. Baxter
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
| | - Mitra Mazarei
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
| | - Alexandru Dumitrache
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jace M. Natzke
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Miguel Rodriguez
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Jiqing Gou
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- Samuel Roberts Noble FoundationArdmoreOKUSA
| | - Chunxiang Fu
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- Samuel Roberts Noble FoundationArdmoreOKUSA
| | - Robert W. Sykes
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- National Renewable Energy LaboratoryGoldenCOUSA
| | - Geoffrey B. Turner
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- National Renewable Energy LaboratoryGoldenCOUSA
| | - Mark F. Davis
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- National Renewable Energy LaboratoryGoldenCOUSA
| | - Steven D. Brown
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Brian H. Davison
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Zeng‐Yu Wang
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
- Samuel Roberts Noble FoundationArdmoreOKUSA
| | - C. Neal Stewart
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
- BioEnergy Science Center (BESC)Oak Ridge National LaboratoryOak RidgeTNUSA
| |
Collapse
|
27
|
Rao X, Dixon RA. Current Models for Transcriptional Regulation of Secondary Cell Wall Biosynthesis in Grasses. FRONTIERS IN PLANT SCIENCE 2018; 9:399. [PMID: 29670638 PMCID: PMC5893761 DOI: 10.3389/fpls.2018.00399] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/13/2018] [Indexed: 05/17/2023]
Abstract
Secondary cell walls mediate many crucial biological processes in plants including mechanical support, water and nutrient transport and stress management. They also provide an abundant resource of renewable feed, fiber, and fuel. The grass family contains the most important food, forage, and biofuel crops. Understanding the regulatory mechanism of secondary wall formation in grasses is necessary for exploiting these plants for agriculture and industry. Previous research has established a detailed model of the secondary wall regulatory network in the dicot model species Arabidopsis thaliana. Grasses, branching off from the dicot ancestor 140-150 million years ago, display distinct cell wall morphology and composition, suggesting potential for a different secondary wall regulation program from that established for dicots. Recently, combined application of molecular, genetic and bioinformatics approaches have revealed more transcription factors involved in secondary cell wall biosynthesis in grasses. Compared with the dicots, grasses exhibit a relatively conserved but nevertheless divergent transcriptional regulatory program to activate their secondary cell wall development and to coordinate secondary wall biosynthesis with other physiological processes.
Collapse
Affiliation(s)
- Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN, United States
- *Correspondence: Xiaolan Rao,
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN, United States
| |
Collapse
|
28
|
Bhatia R, Gallagher JA, Gomez LD, Bosch M. Genetic engineering of grass cell wall polysaccharides for biorefining. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1071-1092. [PMID: 28557198 PMCID: PMC5552484 DOI: 10.1111/pbi.12764] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 05/10/2023]
Abstract
Grasses represent an abundant and widespread source of lignocellulosic biomass, which has yet to fulfil its potential as a feedstock for biorefining into renewable and sustainable biofuels and commodity chemicals. The inherent recalcitrance of lignocellulosic materials to deconstruction is the most crucial limitation for the commercial viability and economic feasibility of biomass biorefining. Over the last decade, the targeted genetic engineering of grasses has become more proficient, enabling rational approaches to modify lignocellulose with the aim of making it more amenable to bioconversion. In this review, we provide an overview of transgenic strategies and targets to tailor grass cell wall polysaccharides for biorefining applications. The bioengineering efforts and opportunities summarized here rely primarily on (A) reprogramming gene regulatory networks responsible for the biosynthesis of lignocellulose, (B) remodelling the chemical structure and substitution patterns of cell wall polysaccharides and (C) expressing lignocellulose degrading and/or modifying enzymes in planta. It is anticipated that outputs from the rational engineering of grass cell wall polysaccharides by such strategies could help in realizing an economically sustainable, grass-derived lignocellulose processing industry.
Collapse
Affiliation(s)
- Rakesh Bhatia
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Joe A. Gallagher
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | | | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| |
Collapse
|
29
|
Biotechnological Strategies to Improve Plant Biomass Quality for Bioethanol Production. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7824076. [PMID: 28951875 PMCID: PMC5603102 DOI: 10.1155/2017/7824076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 11/17/2022]
Abstract
The transition from an economy dependent on nonrenewable energy sources to one with higher diversity of renewables will not be a simple process. It requires an important research effort to adapt to the dynamics of the changing energy market, sort costly processes, and avoid overlapping with social interest markets such as food and livestock production. In this review, we analyze the desirable traits of raw plant materials for the bioethanol industry and the molecular biotechnology strategies employed to improve them, in either plants already under use (as maize) or proposed species (large grass families). The fundamentals of these applications can be found in the mechanisms by which plants have evolved different pathways to manage carbon resources for reproduction or survival in unexpected conditions. Here, we review the means by which this information can be used to manipulate these mechanisms for commercial uses, including saccharification improvement of starch and cellulose, decrease in cell wall recalcitrance through lignin modification, and increase in plant biomass.
Collapse
|
30
|
Li H, Zhang Y, Guo Q, Yao W. Molecular characterisation of a DREB gene from Sophora moorcroftiana, an endemic species of plateau. PROTOPLASMA 2017; 254:1735-1741. [PMID: 28050661 DOI: 10.1007/s00709-016-1065-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/14/2016] [Indexed: 06/06/2023]
Abstract
Various plant species in the Qinghai-Tibet Plateau exposed to harsh conditions, such as low oxygen, drought, extremely low temperatures and salinity, have evolved both molecular and physiological adaptation strategies to deal with these multiple stresses. Sophora moorcroftiana (Benth.) Baker (Fabaceae) is a highly drought-resistant endemic Sophora shrub species in the Qinghai-Tibet Plateau. In our previous study, a drought-induced DREB transcription factor gene was identified and was designated as SmDREB1. SmDREB1-GFP fusion construct was introduced into Arabidopsis protoplast to characterise the function of SmDREB1 in drought resistance. The results showed that SmDREB1 targets the nucleus of Arabidopsis protoplast. Ectopic expression of SmDREB1 in model plant species Arabidopsis was performed. The transgenic lines showed increasing expressions of drought marker genes including AtDHN, AtLEA, AtPIP2 ;2, AtPIP2;3 and AtRD29, increasing activities of antioxidant enzymes and proline contents and increasing light-use efficiency under drought stress as compared with the wild-type plants; SmDREB1 transgenic lines are more resistant to drought than wild-type plants. Therefore, the SmDREB1 is a drought-resistant transcription factor gene of S. moorcroftiana and could be a candidate in genetic engineering to improve drought resistance of plateau plant species.
Collapse
Affiliation(s)
- Huie Li
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China.
- Agricultural and Animal Husbandry College, Tibet University, Nyingchi, 860000, People's Republic of China.
| | - Yanfu Zhang
- Agricultural and Animal Husbandry College, Tibet University, Nyingchi, 860000, People's Republic of China
| | - Qiqiang Guo
- College of Forestry, Guizhou University, Guiyang, 550025, People's Republic of China
- Agricultural and Animal Husbandry College, Tibet University, Nyingchi, 860000, People's Republic of China
| | - Weijie Yao
- Agricultural and Animal Husbandry College, Tibet University, Nyingchi, 860000, People's Republic of China
- Forest Inventory and Planning Institute of Tibet Autonomous Region, Lhasa, 850000, People's Republic of China
| |
Collapse
|
31
|
Overexpression of the WOX gene STENOFOLIA improves biomass yield and sugar release in transgenic grasses and display altered cytokinin homeostasis. PLoS Genet 2017; 13:e1006649. [PMID: 28264034 PMCID: PMC5358894 DOI: 10.1371/journal.pgen.1006649] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 03/20/2017] [Accepted: 02/22/2017] [Indexed: 11/19/2022] Open
Abstract
Lignocellulosic biomass can be a significant source of renewable clean energy with continued improvement in biomass yield and bioconversion strategies. In higher plants, the leaf blade is the central energy convertor where solar energy and CO2 are assimilated to make the building blocks for biomass production. Here we report that introducing the leaf blade development regulator STENOFOLIA (STF), a WOX family transcription factor, into the biofuel crop switchgrass, significantly improves both biomass yield and sugar release. We found that STF overexpressing switchgrass plants produced approximately 2-fold more dry biomass and release approximately 1.8-fold more solubilized sugars without pretreatment compared to controls. The biomass increase was attributed mainly to increased leaf width and stem thickness, which was also consistent in STF transgenic rice and Brachypodium, and appeared to be caused by enhanced cell proliferation. STF directly binds to multiple regions in the promoters of some cytokinin oxidase/dehydrogenase (CKX) genes and represses their expression in all three transgenic grasses. This repression was accompanied by a significant increase in active cytokinin content in transgenic rice leaves, suggesting that the increase in biomass productivity and sugar release could at least in part be associated with improved cytokinin levels caused by repression of cytokinin degrading enzymes. Our study provides a new tool for improving biomass feedstock yield in bioenergy crops, and uncovers a novel mechanistic insight in the function of STF, which may also apply to other repressive WOX genes that are master regulators of several key plant developmental programs.
Collapse
|
32
|
Yang G, Zhang W, Liu Z, Yi-Maer AY, Zhai M, Xu Z. Both JrWRKY2 and JrWRKY7 of Juglans regia mediate responses to abiotic stresses and abscisic acid through formation of homodimers and interaction. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:268-278. [PMID: 27860167 DOI: 10.1111/plb.12524] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/08/2016] [Indexed: 05/11/2023]
Abstract
WRKY transcription factors belong to a large protein family that is involved in diverse developmental processes and abiotic stress responses. Currently, there is little understanding of the role of WRKY transcription factors in regulatory mechanisms in plants, especially in the protein-protein interactions that are essential for biological regulatory functions and networks. In the present study, yeast one-hybrid, yeast two-hybrid, transient expression and quantitative RT-PCR were applied to investigate the potential characteristics of two WRKY proteins from Juglans regia, JrWRKY2 (GenBank Accession No. KU057089) and JrWRKY7 (GenBank Accession No. KP784651). JrWRKY2 and JrWRKY7 can form homodimers and interact with each other. JrWRKY2 and JrWRKY7 can bind to W-box motifs. Similarly high levels of transcription were found for JrWRKY2 and JrWRKY7 under NaCl and polyethylene glycol (PEG) stresses, as well as at different developmental stages, e.g., the pistil or terminal leaf. JrWRKY2 and JrWRKY7 were transiently overexpressed in an independent manner in the terminal leaf. Analyses of superoxide dismutase (SOD) and peroxidase (POD) activities, proline and malondialdehyde (MDA) contents, and electrolyte leakage rate showed that JrWRKY2 and JrWRKY7 overexpression improved plant tolerance to NaCl, PEG, abscisic acid, and cold stress. Additionally, JrWRKY2 and JrWRKY7 overexpression elevated transcription of SOD, POD, glutathione peroxidase (GPX), catalase (CAT), ascorbate peroxidase (APX), and MYB genes, but downregulated the expression of NAC. Overall, the results demonstrate that JrWRKY2 and JrWRKY7 are dimeric proteins that can form functional homodimers and interact with each other and that they are involved in abiotic stress responses.
Collapse
Affiliation(s)
- G Yang
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - W Zhang
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Z Liu
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - A-Y Yi-Maer
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - M Zhai
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Z Xu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
33
|
Nelson RS, Stewart CN, Gou J, Holladay S, Gallego-Giraldo L, Flanagan A, Mann DGJ, Hisano H, Wuddineh WA, Poovaiah CR, Srivastava A, Biswal AK, Shen H, Escamilla-Treviño LL, Yang J, Hardin CF, Nandakumar R, Fu C, Zhang J, Xiao X, Percifield R, Chen F, Bennetzen JL, Udvardi M, Mazarei M, Dixon RA, Wang ZY, Tang Y, Mohnen D, Davison BH. Development and use of a switchgrass ( Panicum virgatum L.) transformation pipeline by the BioEnergy Science Center to evaluate plants for reduced cell wall recalcitrance. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:309. [PMID: 29299059 PMCID: PMC5740764 DOI: 10.1186/s13068-017-0991-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/05/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND The mission of the BioEnergy Science Center (BESC) was to enable efficient lignocellulosic-based biofuel production. One BESC goal was to decrease poplar and switchgrass biomass recalcitrance to biofuel conversion while not affecting plant growth. A transformation pipeline (TP), to express transgenes or transgene fragments (constructs) in these feedstocks with the goal of understanding and decreasing recalcitrance, was considered essential for this goal. Centralized data storage for access by BESC members and later the public also was essential. RESULTS A BESC committee was established to codify procedures to evaluate and accept genes into the TP. A laboratory information management system (LIMS) was organized to catalog constructs, plant lines and results from their analyses. One hundred twenty-eight constructs were accepted into the TP for expression in switchgrass in the first 5 years of BESC. Here we provide information on 53 of these constructs and the BESC TP process. Eleven of the constructs could not be cloned into an expression vector for transformation. Of the remaining constructs, 22 modified expression of the gene target. Transgenic lines representing some constructs displayed decreased recalcitrance in the field and publications describing these results are tabulated here. Transcript levels of target genes and detailed wall analyses from transgenic lines expressing six additional tabulated constructs aimed toward modifying expression of genes associated with wall structure (xyloglucan and lignin components) are provided. Altered expression of xyloglucan endotransglucosylase/hydrolases did not modify lignin content in transgenic plants. Simultaneous silencing of two hydroxycinnamoyl CoA:shikimate hydroxycinnamoyl transferases was necessary to decrease G and S lignin monomer and total lignin contents, but this reduced plant growth. CONCLUSIONS A TP to produce plants with decreased recalcitrance and a LIMS for data compilation from these plants were created. While many genes accepted into the TP resulted in transgenic switchgrass without modified lignin or biomass content, a group of genes with potential to improve lignocellulosic biofuel yields was identified. Results from transgenic lines targeting xyloglucan and lignin structure provide examples of the types of information available on switchgrass lines produced within BESC. This report supplies useful information when developing coordinated, large-scale, multi-institutional reverse genetic pipelines to improve crop traits.
Collapse
Affiliation(s)
- Richard S. Nelson
- Noble Research Institute, LLC, Ardmore, OK 73401 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Jiqing Gou
- Noble Research Institute, LLC, Ardmore, OK 73401 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Susan Holladay
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Lina Gallego-Giraldo
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203 USA
| | - Amy Flanagan
- Noble Research Institute, LLC, Ardmore, OK 73401 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - David G. J. Mann
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Hiroshi Hisano
- Noble Research Institute, LLC, Ardmore, OK 73401 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Wegi A. Wuddineh
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Charleson R. Poovaiah
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Avinash Srivastava
- Noble Research Institute, LLC, Ardmore, OK 73401 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Ajaya K. Biswal
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
| | - Hui Shen
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203 USA
| | - Luis L. Escamilla-Treviño
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203 USA
| | - Jiading Yang
- Noble Research Institute, LLC, Ardmore, OK 73401 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - C. Frank Hardin
- Noble Research Institute, LLC, Ardmore, OK 73401 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Rangaraj Nandakumar
- Noble Research Institute, LLC, Ardmore, OK 73401 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Chunxiang Fu
- Noble Research Institute, LLC, Ardmore, OK 73401 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Jiyi Zhang
- Noble Research Institute, LLC, Ardmore, OK 73401 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Xirong Xiao
- Noble Research Institute, LLC, Ardmore, OK 73401 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Ryan Percifield
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Fang Chen
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203 USA
| | - Jeffrey L. Bennetzen
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Michael Udvardi
- Noble Research Institute, LLC, Ardmore, OK 73401 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Richard A. Dixon
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203 USA
| | - Zeng-Yu Wang
- Noble Research Institute, LLC, Ardmore, OK 73401 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Yuhong Tang
- Noble Research Institute, LLC, Ardmore, OK 73401 USA
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | - Debra Mohnen
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 USA
| | - Brian H. Davison
- BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| |
Collapse
|
34
|
Li H, Wang Y, Wu M, Li L, Li C, Han Z, Yuan J, Chen C, Song W, Wang C. Genome-Wide Identification of AP2/ERF Transcription Factors in Cauliflower and Expression Profiling of the ERF Family under Salt and Drought Stresses. FRONTIERS IN PLANT SCIENCE 2017; 8:946. [PMID: 28642765 PMCID: PMC5462956 DOI: 10.3389/fpls.2017.00946] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/22/2017] [Indexed: 05/18/2023]
Abstract
The AP2/ERF transcription factors (TFs) comprise one of the largest gene superfamilies in plants. These TFs perform vital roles in plant growth, development, and responses to biotic and abiotic stresses. In this study, 171 AP2/ERF TFs were identified in cauliflower (Brassica oleracea L. var. botrytis), one of the most important horticultural crops in Brassica. Among these TFs, 15, 9, and 1 TFs were classified into the AP2, RAV, and Soloist family, respectively. The other 146 TFs belong to ERF family, which were further divided into the ERF and DREB subfamilies. The ERF subfamily contained 91 TFs, while the DREB subfamily contained 55 TFs. Phylogenetic analysis results indicated that the AP2/ERF TFs can be classified into 13 groups, in which 25 conserved motifs were confirmed. Some motifs were group- or subgroup- specific, implying that they are significant to the functions of the AP2/ERF TFs of these clades. In addition, 35 AP2/ERF TFs from the 13 groups were selected randomly and then used for expression pattern analysis under salt and drought stresses. The majority of these AP2/ERF TFs exhibited positive responses to these stress conditions. In specific, Bra-botrytis-ERF054a, Bra-botrytis-ERF056, and Bra-botrytis-CRF2a demonstrated rapid responses. By contrast, six AP2/ERF TFs were showed to delay responses to both stresses. The AP2/ERF TFs exhibiting specific expression patterns under salt or drought stresses were also confirmed. Further functional analysis indicated that ectopic overexpression of Bra-botrytis-ERF056 could increase tolerance to both salt and drought treatments. These findings provide new insights into the AP2/ERF TFs present in cauliflower, and offer candidate AP2/ERF TFs for further studies on their roles in salt and drought stress tolerance.
Collapse
Affiliation(s)
- Hui Li
- College of Life Sciences, Nankai UniversityTianjin, China
- College of Horticulture and Landscape, Tianjin Agricultural UniversityTianjin, China
| | - Yu Wang
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Mei Wu
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Lihong Li
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Cong Li
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Zhanpin Han
- College of Horticulture and Landscape, Tianjin Agricultural UniversityTianjin, China
| | - Jiye Yuan
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Chengbin Chen
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Wenqin Song
- College of Life Sciences, Nankai UniversityTianjin, China
| | - Chunguo Wang
- College of Life Sciences, Nankai UniversityTianjin, China
- *Correspondence: Chunguo Wang
| |
Collapse
|
35
|
Ayyappan V, Saha MC, Thimmapuram J, Sripathi VR, Bhide KP, Fiedler E, Hayford RK, Kalavacharla VK. Comparative transcriptome profiling of upland (VS16) and lowland (AP13) ecotypes of switchgrass. PLANT CELL REPORTS 2017; 36:129-150. [PMID: 27812750 PMCID: PMC5206262 DOI: 10.1007/s00299-016-2065-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/18/2016] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Transcriptomes of two switchgrass genotypes representing the upland and lowland ecotypes will be key tools in switchgrass genome annotation and biotic and abiotic stress functional genomics. Switchgrass (Panicum virgatum L.) is an important bioenergy feedstock for cellulosic ethanol production. We report genome-wide transcriptome profiling of two contrasting tetraploid switchgrass genotypes, VS16 and AP13, representing the upland and lowland ecotypes, respectively. A total of 268 million Illumina short reads (50 nt) were generated, of which, 133 million were obtained in AP13 and the rest 135 million in VS16. More than 90% of these reads were mapped to the switchgrass reference genome (V1.1). We identified 6619 and 5369 differentially expressed genes in VS16 and AP13, respectively. Gene ontology and KEGG pathway analysis identified key genes that regulate important pathways including C4 photosynthesis, photorespiration and phenylpropanoid metabolism. A series of genes (33) involved in photosynthetic pathway were up-regulated in AP13 but only two genes showed higher expression in VS16. We identified three dicarboxylate transporter homologs that were highly expressed in AP13. Additionally, genes that mediate drought, heat, and salinity tolerance were also identified. Vesicular transport proteins, syntaxin and signal recognition particles were seen to be up-regulated in VS16. Analyses of selected genes involved in biosynthesis of secondary metabolites, plant-pathogen interaction, membrane transporters, heat, drought and salinity stress responses confirmed significant variation in the relative expression reflected in RNA-Seq data between VS16 and AP13 genotypes. The phenylpropanoid pathway genes identified here are potential targets for biofuel conversion.
Collapse
Affiliation(s)
- Vasudevan Ayyappan
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture and Related Sciences, Delaware State University, Dover, DE, USA
| | - Malay C Saha
- Forage Improvement Division, The Samuel Roberts Noble Foundation, Ardmore, OK, USA
| | | | - Venkateswara R Sripathi
- Plant Molecular Biology and Bioinformatics Laboratory, College of Agricultural, Life and Natural Sciences, Alabama A&M University, Normal, AL, USA
| | - Ketaki P Bhide
- Bioinformatics Core, Purdue University, West Lafayette, IN, USA
| | - Elizabeth Fiedler
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture and Related Sciences, Delaware State University, Dover, DE, USA
| | - Rita K Hayford
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture and Related Sciences, Delaware State University, Dover, DE, USA
| | - Venu Kal Kalavacharla
- Molecular Genetics and Epigenomics Laboratory, College of Agriculture and Related Sciences, Delaware State University, Dover, DE, USA.
- Center for Integrated Biological and Environmental Research, Delaware State University, Dover, DE, USA.
| |
Collapse
|
36
|
Cui L, Feng K, Wang M, Wang M, Deng P, Song W, Nie X. Genome-wide identification, phylogeny and expression analysis of AP2/ERF transcription factors family in Brachypodium distachyon. BMC Genomics 2016; 17:636. [PMID: 27527343 PMCID: PMC4986339 DOI: 10.1186/s12864-016-2968-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/26/2016] [Indexed: 11/20/2022] Open
Abstract
Background The AP2/ERF transcription factor is one of the most important gene families in plants, which plays the vital role in regulating plant growth and development as well as in response to diverse stresses. Although AP2/ERFs have been thoroughly characterized in many plant species, little is known about this family in the model plant Brachypodium distachyon, especially those involved in the regulatory network of stress processes. Results In this study, a comprehensive genome-wide search was performed to identify AP2/ERF gene family in Brachypodium and a total of 141 BdAP2/ERFs were obtained. Phylogenetic analysis classified them into four subfamilies, of which 112 belonged to ERF, four to RAV and 24 to AP2 as well as one to soloist subfamily respectively, which was in accordance with the number of AP2 domains and gene structure analysis. Chromosomal localization, gene structure, conserved protein motif and cis-regulatory elements as well as gene duplication events analysis were further performed to systematically investigate the evolutionary features of these BdAP2/ERF genes. Furthermore, the regulatory network between BdAP2/ERF and other genes were constructed using the orthology-based method, and 39 BdAP2/ERFs were found to be involved in the regulatory network and 517 network branches were identified. The expression profiles of BdAP2/ERF during development and under diverse stresses were investigated using the available RNA-seq and microarray data and ten tissue-specific and several stress-responsive BdAP2/ERF genes were identified. Finally, 11 AP2/ERF genes were selected to validate their expressions in different tissues and under different stress treatments using RT-PCR method and results verified that these AP2/ERFs were involved in various developmental and physiological processes. Conclusions This study for the first time reported the characteristics of the BdAP2/ERF family, which will provide the invaluable information for further evolutionary and functional studies of AP2/ERF in Brachypodium, and also contribute to better understanding the molecular basis for development and stresses tolerance in this model species and beyond. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2968-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Licao Cui
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kewei Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengxing Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Meng Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Australia-China Joint Research Centre for Abiotic and Biotic Stress Management in Agriculture, Horticulture and Forestry, Yangling, 712100, Shaanxi, China.
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
37
|
Dossa K, Wei X, Li D, Fonceka D, Zhang Y, Wang L, Yu J, Boshou L, Diouf D, Cissé N, Zhang X. Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress. BMC PLANT BIOLOGY 2016; 16:171. [PMID: 27475988 PMCID: PMC4967514 DOI: 10.1186/s12870-016-0859-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/21/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Sesame is an important oilseed crop mainly grown in inclement areas with high temperatures and frequent drought. Thus, drought constitutes one of the major constraints of its production. The AP2/ERF is a large family of transcription factors known to play significant roles in various plant processes including biotic and abiotic stress responses. Despite their importance, little is known about sesame AP2/ERF genes. This constitutes a limitation for drought-tolerance candidate genes discovery and breeding for tolerance to water deficit. RESULTS One hundred thirty-two AP2/ERF genes were identified in the sesame genome. Based on the number of domains, conserved motifs, genes structure and phylogenetic analysis including 5 relatives species, they were classified into 24 AP2, 41 DREB, 61 ERF, 4 RAV and 2 Soloist. The number of sesame AP2/ERF genes was relatively few compared to that of other relatives, probably due to gene loss in ERF and DREB subfamilies during evolutionary process. In general, the AP2/ERF genes were expressed differently in different tissues but exhibited the highest expression levels in the root. Mostly all DREB genes were responsive to drought stress. Regulation by drought is not specific to one DREB group but depends on the genes and the group A6 and A1 appeared to be more actively expressed to cope with drought. CONCLUSIONS This study provides insights into the classification, evolution and basic functional analysis of AP2/ERF genes in sesame which revealed their putative involvement in multiple tissue-/developmental stages. Out of 20 genes which were significantly up- /down-regulated under drought stress, the gene AP2si16 may be considered as potential candidate gene for further functional validation as well for utilization in sesame improvement programs for drought stress tolerance.
Collapse
Affiliation(s)
- Komivi Dossa
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, 430062, Wuhan, Hubei, China
- Centre d'Etudes Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS), BP 3320 Route de Khombole, Thiès, Sénégal
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, Code postal 107000, Dakar, Sénégal
| | - Xin Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, 430062, Wuhan, Hubei, China
| | - Donghua Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, 430062, Wuhan, Hubei, China
| | - Daniel Fonceka
- Centre d'Etudes Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS), BP 3320 Route de Khombole, Thiès, Sénégal
- CIRAD, UMR AGAP, F-34398, Montpellier, France
| | - Yanxin Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, 430062, Wuhan, Hubei, China
| | - Linhai Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, 430062, Wuhan, Hubei, China
| | - Jingyin Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, 430062, Wuhan, Hubei, China
| | - Liao Boshou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, 430062, Wuhan, Hubei, China
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, Code postal 107000, Dakar, Sénégal
| | - Ndiaga Cissé
- Centre d'Etudes Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS), BP 3320 Route de Khombole, Thiès, Sénégal
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, 430062, Wuhan, Hubei, China.
| |
Collapse
|
38
|
Yuan S, Huang Y, Liu S, Guan C, Cui X, Tian D, Zhang Y, Yang F. RNA-seq Analysis of Overexpressing Ovine AANAT Gene of Melatonin Biosynthesis in Switchgrass. FRONTIERS IN PLANT SCIENCE 2016; 7:1289. [PMID: 27656186 PMCID: PMC5026198 DOI: 10.3389/fpls.2016.01289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/12/2016] [Indexed: 05/12/2023]
Abstract
Melatonin serves important functions in the promotion of growth and anti-stress regulation by efficient radical scavenging and regulation of antioxidant enzyme activity in various plants. To investigate its regulatory roles and metabolism pathways, the transcriptomic profile of overexpressing the ovine arylalkylamine N-acetyltransferase (oAANAT) gene, encoding the penultimate enzyme in melatonin biosynthesis, was compared with empty vector control using RNA-seq in switchgrass, a model plant of cellulosic ethanol conversion. The 85.22 million high quality reads that were assembled into 135,684 unigenes were generated by Illumina sequencing for transgenic oAANAT switchgrass with an average sequence length of 716 bp. A total of 946 differentially expression genes in transgenic line comparing to control switchgrass, including 737 up-regulated and 209 down-regulated genes, were mainly enriched with two main functional patterns of melatonin identifying by gene ontology analysis: the growth regulator and stress tolerance. Furthermore, KEGG maps indicated that the biosynthetic pathways of secondary metabolite (phenylpropanoids, flavonoids, steroids, stilbenoid, diarylheptanoid, and gingerol) and signaling pathways (MAPK signaling pathway, estrogen signaling pathway) were involved in melatonin metabolism. This study substantially expands the transcriptome information for switchgrass and provides valuable clues for identifying candidate genes involved in melatonin biosynthesis and elucidating the mechanism of melatonin metabolism.
Collapse
Affiliation(s)
- Shan Yuan
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Yanhua Huang
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
- College of Agriculture, China Agricultural UniversityBeijing, China
| | - Sijia Liu
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Cong Guan
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Xin Cui
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Danyang Tian
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Yunwei Zhang
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
- Beijing Key Laboratory for Grassland Science, China Agricultural UniversityBeijing, China
- National Energy R&D Center for BiomassBeijing, China
- *Correspondence: Yunwei Zhang, Fuyu Yang,
| | - Fuyu Yang
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
- Beijing Sure Academy of BiosciencesBeijing, China
- *Correspondence: Yunwei Zhang, Fuyu Yang,
| |
Collapse
|
39
|
Yuan S, Guan C, Liu S, Huang Y, Tian D, Cui X, Zhang Y, Yang F. Comparative Transcriptomic Analyses of Differentially Expressed Genes in Transgenic Melatonin Biosynthesis Ovine HIOMT Gene in Switchgrass. FRONTIERS IN PLANT SCIENCE 2016; 7:1613. [PMID: 27877177 PMCID: PMC5099686 DOI: 10.3389/fpls.2016.01613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/12/2016] [Indexed: 05/02/2023]
Abstract
Melatonin serves pleiotropic functions in prompting plant growth and resistance to various stresses. The accurate biosynthetic pathway of melatonin remains elusive in plant species, while the N-acetyltransferase and O-methyltransferase were considered to be the last two key enzymes during its biosynthesis. To investigate the biosynthesis and metabolic pathway of melatonin in plants, the RNA-seq profile of overexpression of the ovine HIOMT was analyzed and compared with the previous transcriptome of transgenic oAANAT gene in switchgrass, a model plant for cellulosic ethanol production. A total of 946, 405, and 807 differentially expressed unigenes were observed in AANAT vs. control, HIOMT vs. control, and AANAT vs. HIOMT, respectively. Two hundred and seventy-five upregulated and 130 downregulated unigenes were detected in transgenic oHIOMT line comparing with control, including the significantly upregulated (F-box/kelch-repeat protein, zinc finger BED domain-containing protein-3) genes, which were potentially correlated with enhanced phenotypes of shoot, stem and root growth in transgenic oHIOMT switchgrass. Several stress resistant related genes (SPX domain-containing membrane protein, copper transporter 1, late blight resistance protein homolog R1A-6 OS etc.) were specifically and significantly upregulated in transgenic oHIOMT only, while metabolism-related genes (phenylalanine-4-hydroxylase, tyrosine decarboxylase 1, protein disulfide-isomerase and galactinol synthase 2 etc.) were significantly upregulated in transgenic oAANAT only. These results provide new sights into the biosynthetic and physiological functional networks of melatonin in plants.
Collapse
Affiliation(s)
- Shan Yuan
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Cong Guan
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Sijia Liu
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Yanhua Huang
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
- College of Agriculture, China Agricultural UniversityBeijing, China
| | - Danyang Tian
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Xin Cui
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
| | - Yunwei Zhang
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
- Beijing Key Laboratory for Grassland Science, China Agricultural UniversityBeijing, China
- National Energy R&D Center for BiomassBeijing, China
- *Correspondence: Yunwei Zhang
| | - Fuyu Yang
- College of Animal Science and Technology, China Agricultural UniversityBeijing, China
- Beijing Sure Academy of BiosciencesBeijing, China
- Fuyu Yang
| |
Collapse
|