1
|
Zehtabian A, Fuchs J, Eickholt BJ, Ewers H. Automated Analysis of Neuronal Morphology in 2D Fluorescence Micrographs through an Unsupervised Semantic Segmentation of Neurons. Neuroscience 2024; 551:333-344. [PMID: 38838980 DOI: 10.1016/j.neuroscience.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
Brain function emerges from a highly complex network of specialized cells that are interlinked by billions of synapses. The synaptic connectivity between neurons is established between the elongated processes of their axons and dendrites or, together, neurites. To establish these connections, cellular neurites have to grow in highly specialized, cell-type dependent patterns covering extensive distances and connecting with thousands of other neurons. The outgrowth and branching of neurites are tightly controlled during development and are a commonly used functional readout of imaging in the neurosciences. Manual analysis of neuronal morphology from microscopy images, however, is very time intensive and prone to bias. Most automated analyses of neurons rely on reconstruction of the neuron as a whole without a semantic analysis of each neurite. A fully-automated classification of all neurites still remains unavailable in open-source software. Here we present a standalone, GUI-based software for batch-quantification of neuronal morphology in two-dimensional fluorescence micrographs of cultured neurons with minimal requirements for user interaction. Single neurons are first reconstructed into binarized images using a Hessian-based segmentation algorithm to detect thin neurite structures combined with intensity- and shape-based reconstruction of the cell body. Neurites are then classified into axon, dendrites and their branches of increasing order using a geodesic distance transform of the cell skeleton. The software was benchmarked against a published dataset and reproduced the phenotype observed after manual annotation. Our tool promises accelerated and improved morphometric studies of neuronal morphology by allowing for consistent and automated analysis of large datasets.
Collapse
Affiliation(s)
- Amin Zehtabian
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany.
| | - Joachim Fuchs
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Molecular Biology and Biochemistry, Virchowweg 6, 10117 Berlin, Germany
| | - Britta J Eickholt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Molecular Biology and Biochemistry, Virchowweg 6, 10117 Berlin, Germany
| | - Helge Ewers
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| |
Collapse
|
2
|
Marrett K, Moradi K, Park CS, Yan M, Choi C, Zhu M, Akram M, Nanda S, Xue Q, Mun HS, Gutierrez AE, Rudd M, Zingg B, Magat G, Wijaya K, Dong H, Yang XW, Cong J. Gossamer: Scaling Image Processing and Reconstruction to Whole Brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.07.588466. [PMID: 38645196 PMCID: PMC11030332 DOI: 10.1101/2024.04.07.588466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Neuronal reconstruction-a process that transforms image volumes into 3D geometries and skeletons of cells- bottlenecks the study of brain function, connectomics and pathology. Domain scientists need exact and complete segmentations to study subtle topological differences. Existing methods are diskbound, dense-access, coupled, single-threaded, algorithmically unscalable and require manual cropping of small windows and proofreading of skeletons due to low topological accuracy. Designing a data-intensive parallel solution suited to a neurons' shape, topology and far-ranging connectivity is particularly challenging due to I/O and load-balance, yet by abstracting these vision tasks into strategically ordered specializations of search, we progressively lower memory by 4 orders of magnitude. This enables 1 mouse brain to be fully processed in-memory on a single server, at 67× the scale with 870× less memory while having 78% higher automated yield than APP2, the previous state of the art in performant reconstruction.
Collapse
|
3
|
Leite J, Nhoatto F, Jacob A, Santana R, Lobato F. Computational Tools for Neuronal Morphometric Analysis: A Systematic Search and Review. Neuroinformatics 2024; 22:353-377. [PMID: 38922389 DOI: 10.1007/s12021-024-09674-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2024] [Indexed: 06/27/2024]
Abstract
Morphometry is fundamental for studying and correlating neuronal morphology with brain functions. With increasing computational power, it is possible to extract morphometric characteristics automatically, including features such as length, volume, and number of neuron branches. However, to the best of our knowledge, there is no mapping of morphometric tools yet. In this context, we conducted a systematic search and review to identify and analyze tools within the scope of neuron analysis. Thus, the work followed a well-defined protocol and sought to answer the following research questions: What open-source tools are available for neuronal morphometric analysis? What morphometric characteristics are extracted by these tools? For this, aiming for greater robustness and coverage, the study was based on the paper analysis as well as the study of documentation and tests with the tools available in repositories. We analyzed 1,586 papers and mapped 23 tools, where NeuroM, L-Measure, and NeuroMorphoVis extract the most features. Furthermore, we contribute to the body of knowledge with the unprecedented presentation of 150 unique morphometric features whose terminologies were categorized and standardized. Overall, the study contributes to advancing the understanding of the complex mechanisms underlying the brain.
Collapse
Affiliation(s)
- Jéssica Leite
- Institute of Engineering and Geosciences, Federal University of Western Pará, Santarém, Pará, Brazil
| | - Fabiano Nhoatto
- Institute of Engineering and Geosciences, Federal University of Western Pará, Santarém, Pará, Brazil
| | - Antonio Jacob
- Department of Computer Engineering, State University of Maranhão, São Luís, Maranhão, Brazil
| | - Roberto Santana
- Department of Computer Science and Artificial Intelligence, University of the Basque Country, Donostia/San Sebastián, Guipúzcoa, Spain
| | - Fábio Lobato
- Institute of Engineering and Geosciences, Federal University of Western Pará, Santarém, Pará, Brazil.
| |
Collapse
|
4
|
Cauzzo S, Bruno E, Boulet D, Nazac P, Basile M, Callara AL, Tozzi F, Ahluwalia A, Magliaro C, Danglot L, Vanello N. A modular framework for multi-scale tissue imaging and neuronal segmentation. Nat Commun 2024; 15:4102. [PMID: 38778027 PMCID: PMC11111705 DOI: 10.1038/s41467-024-48146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The development of robust tools for segmenting cellular and sub-cellular neuronal structures lags behind the massive production of high-resolution 3D images of neurons in brain tissue. The challenges are principally related to high neuronal density and low signal-to-noise characteristics in thick samples, as well as the heterogeneity of data acquired with different imaging methods. To address this issue, we design a framework which includes sample preparation for high resolution imaging and image analysis. Specifically, we set up a method for labeling thick samples and develop SENPAI, a scalable algorithm for segmenting neurons at cellular and sub-cellular scales in conventional and super-resolution STimulated Emission Depletion (STED) microscopy images of brain tissues. Further, we propose a validation paradigm for testing segmentation performance when a manual ground-truth may not exhaustively describe neuronal arborization. We show that SENPAI provides accurate multi-scale segmentation, from entire neurons down to spines, outperforming state-of-the-art tools. The framework will empower image processing of complex neuronal circuitries.
Collapse
Affiliation(s)
- Simone Cauzzo
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy.
- Parkinson's Disease and Movement Disorders Unit, Center for Rare Neurological Diseases (ERN-RND), Department of Neurosciences, University of Padova, Padova, Italy.
| | - Ester Bruno
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - David Boulet
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Core Facility, 75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane traffic and diseased brain, 75014, Paris, France
| | - Paul Nazac
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane traffic and diseased brain, 75014, Paris, France
| | - Miriam Basile
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Alejandro Luis Callara
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Federico Tozzi
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Arti Ahluwalia
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Chiara Magliaro
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy
| | - Lydia Danglot
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Core Facility, 75014, Paris, France.
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Membrane traffic and diseased brain, 75014, Paris, France.
| | - Nicola Vanello
- Research Center "E. Piaggio", University of Pisa, Pisa, Italy.
- Dipartimento di Ingegneria dell'Informazione, University of Pisa, Pisa, Italy.
| |
Collapse
|
5
|
Hoffmann C, Cho E, Zalesky A, Di Biase MA. From pixels to connections: exploring in vitro neuron reconstruction software for network graph generation. Commun Biol 2024; 7:571. [PMID: 38750282 PMCID: PMC11096190 DOI: 10.1038/s42003-024-06264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Digital reconstruction has been instrumental in deciphering how in vitro neuron architecture shapes information flow. Emerging approaches reconstruct neural systems as networks with the aim of understanding their organization through graph theory. Computational tools dedicated to this objective build models of nodes and edges based on key cellular features such as somata, axons, and dendrites. Fully automatic implementations of these tools are readily available, but they may also be purpose-built from specialized algorithms in the form of multi-step pipelines. Here we review software tools informing the construction of network models, spanning from noise reduction and segmentation to full network reconstruction. The scope and core specifications of each tool are explicitly defined to assist bench scientists in selecting the most suitable option for their microscopy dataset. Existing tools provide a foundation for complete network reconstruction, however more progress is needed in establishing morphological bases for directed/weighted connectivity and in software validation.
Collapse
Affiliation(s)
- Cassandra Hoffmann
- Systems Neuroscience Lab, Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Australia.
| | - Ellie Cho
- Biological Optical Microscopy Platform, University of Melbourne, Parkville, Australia
| | - Andrew Zalesky
- Systems Neuroscience Lab, Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Australia
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
| | - Maria A Di Biase
- Systems Neuroscience Lab, Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Parkville, Australia
- Stem Cell Disease Modelling Lab, Department of Anatomy and Physiology, The University of Melbourne, Parkville, Australia
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
6
|
Caznok Silveira AC, Antunes ASLM, Athié MCP, da Silva BF, Ribeiro dos Santos JV, Canateli C, Fontoura MA, Pinto A, Pimentel-Silva LR, Avansini SH, de Carvalho M. Between neurons and networks: investigating mesoscale brain connectivity in neurological and psychiatric disorders. Front Neurosci 2024; 18:1340345. [PMID: 38445254 PMCID: PMC10912403 DOI: 10.3389/fnins.2024.1340345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/07/2024] Open
Abstract
The study of brain connectivity has been a cornerstone in understanding the complexities of neurological and psychiatric disorders. It has provided invaluable insights into the functional architecture of the brain and how it is perturbed in disorders. However, a persistent challenge has been achieving the proper spatial resolution, and developing computational algorithms to address biological questions at the multi-cellular level, a scale often referred to as the mesoscale. Historically, neuroimaging studies of brain connectivity have predominantly focused on the macroscale, providing insights into inter-regional brain connections but often falling short of resolving the intricacies of neural circuitry at the cellular or mesoscale level. This limitation has hindered our ability to fully comprehend the underlying mechanisms of neurological and psychiatric disorders and to develop targeted interventions. In light of this issue, our review manuscript seeks to bridge this critical gap by delving into the domain of mesoscale neuroimaging. We aim to provide a comprehensive overview of conditions affected by aberrant neural connections, image acquisition techniques, feature extraction, and data analysis methods that are specifically tailored to the mesoscale. We further delineate the potential of brain connectivity research to elucidate complex biological questions, with a particular focus on schizophrenia and epilepsy. This review encompasses topics such as dendritic spine quantification, single neuron morphology, and brain region connectivity. We aim to showcase the applicability and significance of mesoscale neuroimaging techniques in the field of neuroscience, highlighting their potential for gaining insights into the complexities of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ana Clara Caznok Silveira
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- School of Electrical and Computer Engineering, University of Campinas, Campinas, Brazil
| | | | - Maria Carolina Pedro Athié
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Bárbara Filomena da Silva
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Camila Canateli
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Marina Alves Fontoura
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Allan Pinto
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | | | - Simoni Helena Avansini
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Murilo de Carvalho
- National Laboratory of Biosciences, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
7
|
Breton V, Nazac P, Boulet D, Danglot L. Molecular mapping of neuronal architecture using STORM microscopy and new fluorescent probes for SMLM imaging. NEUROPHOTONICS 2024; 11:014414. [PMID: 38464866 PMCID: PMC10923464 DOI: 10.1117/1.nph.11.1.014414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
Imaging neuronal architecture has been a recurrent challenge over the years, and the localization of synaptic proteins is a frequent challenge in neuroscience. To quantitatively detect and analyze the structure of synapses, we recently developed free SODA software to detect the association of pre and postsynaptic proteins. To fully take advantage of spatial distribution analysis in complex cells, such as neurons, we also selected some new dyes for plasma membrane labeling. Using Icy SODA plugin, we could detect and analyze synaptic association in both conventional and single molecule localization microscopy, giving access to a molecular map at the nanoscale level. To replace those molecular distributions within the neuronal three-dimensional (3D) shape, we used MemBright probes and 3D STORM analysis to decipher the entire 3D shape of various dendritic spine types at the single-molecule resolution level. We report here the example of synaptic proteins within neuronal mask, but these tools have a broader spectrum of interest since they can be used whatever the proteins or the cellular type. Altogether with SODA plugin, MemBright probes thus provide the perfect toolkit to decipher a nanometric molecular map of proteins within a 3D cellular context.
Collapse
Affiliation(s)
- Victor Breton
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Paris, France
| | - Paul Nazac
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Paris, France
| | - David Boulet
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, NeurImag Core Facility, Paris, France
| | - Lydia Danglot
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy and Diseased Brain, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, NeurImag Core Facility, Paris, France
| |
Collapse
|
8
|
Phan MS, Matho K, Beaurepaire E, Livet J, Chessel A. nAdder: A scale-space approach for the 3D analysis of neuronal traces. PLoS Comput Biol 2022; 18:e1010211. [PMID: 35789212 PMCID: PMC9286273 DOI: 10.1371/journal.pcbi.1010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/15/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022] Open
Abstract
Tridimensional microscopy and algorithms for automated segmentation and tracing are revolutionizing neuroscience through the generation of growing libraries of neuron reconstructions. Innovative computational methods are needed to analyze these neuronal traces. In particular, means to characterize the geometric properties of traced neurites along their trajectory have been lacking. Here, we propose a local tridimensional (3D) scale metric derived from differential geometry, measuring for each point of a curve the characteristic length where it is fully 3D as opposed to being embedded in a 2D plane or 1D line. The larger this metric is and the more complex the local 3D loops and turns of the curve are. Available through the GeNePy3D open-source Python quantitative geometry library (https://genepy3d.gitlab.io), this approach termed nAdder offers new means of describing and comparing axonal and dendritic arbors. We validate this metric on simulated and real traces. By reanalysing a published zebrafish larva whole brain dataset, we show its ability to characterize different population of commissural axons, distinguish afferent connections to a target region and differentiate portions of axons and dendrites according to their behavior, shedding new light on the stereotypical nature of neurites' local geometry.
Collapse
Affiliation(s)
- Minh Son Phan
- Laboratory for Optics and Biosciences, CNRS, INSERM, Ecole Polytechnique, IP Paris, Palaiseau, France
- Institut Pasteur, Université de Paris Cité, Image Analysis Hub,Paris, France
| | - Katherine Matho
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, CNRS, INSERM, Ecole Polytechnique, IP Paris, Palaiseau, France
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Anatole Chessel
- Laboratory for Optics and Biosciences, CNRS, INSERM, Ecole Polytechnique, IP Paris, Palaiseau, France
| |
Collapse
|
9
|
Chen S, Loper J, Zhou P, Paninski L. Blind demixing methods for recovering dense neuronal morphology from barcode imaging data. PLoS Comput Biol 2022; 18:e1009991. [PMID: 35395020 PMCID: PMC9020678 DOI: 10.1371/journal.pcbi.1009991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 04/20/2022] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
Cellular barcoding methods offer the exciting possibility of 'infinite-pseudocolor' anatomical reconstruction-i.e., assigning each neuron its own random unique barcoded 'pseudocolor,' and then using these pseudocolors to trace the microanatomy of each neuron. Here we use simulations, based on densely-reconstructed electron microscopy microanatomy, with signal structure matched to real barcoding data, to quantify the feasibility of this procedure. We develop a new blind demixing approach to recover the barcodes that label each neuron, and validate this method on real data with known barcodes. We also develop a neural network which uses the recovered barcodes to reconstruct the neuronal morphology from the observed fluorescence imaging data, 'connecting the dots' between discontiguous barcode amplicon signals. We find that accurate recovery should be feasible, provided that the barcode signal density is sufficiently high. This study suggests the possibility of mapping the morphology and projection pattern of many individual neurons simultaneously, at high resolution and at large scale, via conventional light microscopy.
Collapse
Affiliation(s)
- Shuonan Chen
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Statistics, Columbia University, New York, New York, United States of America
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- Grossman Center for the Statistics of Mind, Columbia University, New York, New York, United States of America
- Department of Neuroscience, Columbia University, New York, New York, United States of America
- Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - Jackson Loper
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Statistics, Columbia University, New York, New York, United States of America
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- Grossman Center for the Statistics of Mind, Columbia University, New York, New York, United States of America
- Department of Neuroscience, Columbia University, New York, New York, United States of America
- Data Science Institute, Columbia University, New York, New York, United States of America
| | - Pengcheng Zhou
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liam Paninski
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Statistics, Columbia University, New York, New York, United States of America
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- Grossman Center for the Statistics of Mind, Columbia University, New York, New York, United States of America
- Department of Neuroscience, Columbia University, New York, New York, United States of America
- Data Science Institute, Columbia University, New York, New York, United States of America
| |
Collapse
|
10
|
Windoffer R, Schwarz N, Yoon S, Piskova T, Scholkemper M, Stegmaier J, Bönsch A, Di Russo J, Leube R. Quantitative mapping of keratin networks in 3D. eLife 2022; 11:75894. [PMID: 35179484 PMCID: PMC8979588 DOI: 10.7554/elife.75894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/15/2022] [Indexed: 11/26/2022] Open
Abstract
Mechanobiology requires precise quantitative information on processes taking place in specific 3D microenvironments. Connecting the abundance of microscopical, molecular, biochemical, and cell mechanical data with defined topologies has turned out to be extremely difficult. Establishing such structural and functional 3D maps needed for biophysical modeling is a particular challenge for the cytoskeleton, which consists of long and interwoven filamentous polymers coordinating subcellular processes and interactions of cells with their environment. To date, useful tools are available for the segmentation and modeling of actin filaments and microtubules but comprehensive tools for the mapping of intermediate filament organization are still lacking. In this work, we describe a workflow to model and examine the complete 3D arrangement of the keratin intermediate filament cytoskeleton in canine, murine, and human epithelial cells both, in vitro and in vivo. Numerical models are derived from confocal airyscan high-resolution 3D imaging of fluorescence-tagged keratin filaments. They are interrogated and annotated at different length scales using different modes of visualization including immersive virtual reality. In this way, information is provided on network organization at the subcellular level including mesh arrangement, density and isotropic configuration as well as details on filament morphology such as bundling, curvature, and orientation. We show that the comparison of these parameters helps to identify, in quantitative terms, similarities and differences of keratin network organization in epithelial cell types defining subcellular domains, notably basal, apical, lateral, and perinuclear systems. The described approach and the presented data are pivotal for generating mechanobiological models that can be experimentally tested.
Collapse
Affiliation(s)
- Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Sungjun Yoon
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Teodora Piskova
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | | | - Johannes Stegmaier
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Andrea Bönsch
- Visual Computing Institute, RWTH Aachen University, Aachen, Germany
| | - Jacopo Di Russo
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
| | - Rudolf Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Liu Y, Foustoukos G, Crochet S, Petersen CC. Axonal and Dendritic Morphology of Excitatory Neurons in Layer 2/3 Mouse Barrel Cortex Imaged Through Whole-Brain Two-Photon Tomography and Registered to a Digital Brain Atlas. Front Neuroanat 2022; 15:791015. [PMID: 35145380 PMCID: PMC8821665 DOI: 10.3389/fnana.2021.791015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/22/2021] [Indexed: 11/17/2022] Open
Abstract
Communication between cortical areas contributes importantly to sensory perception and cognition. On the millisecond time scale, information is signaled from one brain area to another by action potentials propagating across long-range axonal arborizations. Here, we develop and test methodology for imaging and annotating the brain-wide axonal arborizations of individual excitatory layer 2/3 neurons in mouse barrel cortex through single-cell electroporation and two-photon serial section tomography followed by registration to a digital brain atlas. Each neuron had an extensive local axon within the barrel cortex. In addition, individual neurons innervated subsets of secondary somatosensory cortex; primary somatosensory cortex for upper limb, trunk, and lower limb; primary and secondary motor cortex; visual and auditory cortical regions; dorsolateral striatum; and various fiber bundles. In the future, it will be important to assess if the diversity of axonal projections across individual layer 2/3 mouse barrel cortex neurons is accompanied by functional differences in their activity patterns.
Collapse
Affiliation(s)
| | | | | | - Carl C.H. Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
12
|
Chen X, Zhang C, Zhao J, Xiong Z, Zha ZJ, Wu F. Weakly Supervised Neuron Reconstruction From Optical Microscopy Images With Morphological Priors. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3205-3216. [PMID: 33999814 DOI: 10.1109/tmi.2021.3080695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Manually labeling neurons from high-resolution but noisy and low-contrast optical microscopy (OM) images is tedious. As a result, the lack of annotated data poses a key challenge when applying deep learning techniques for reconstructing neurons from noisy and low-contrast OM images. While traditional tracing methods provide a possible way to efficiently generate labels for supervised network training, the generated pseudo-labels contain many noisy and incorrect labels, which lead to severe performance degradation. On the other hand, the publicly available dataset, BigNeuron, provides a large number of single 3D neurons that are reconstructed using various imaging paradigms and tracing methods. Though the raw OM images are not fully available for these neurons, they convey essential morphological priors for complex 3D neuron structures. In this paper, we propose a new approach to exploit morphological priors from neurons that have been reconstructed for training a deep neural network to extract neuron signals from OM images. We integrate a deep segmentation network in a generative adversarial network (GAN), expecting the segmentation network to be weakly supervised by pseudo-labels at the pixel level while utilizing the supervision of previously reconstructed neurons at the morphology level. In our morphological-prior-guided neuron reconstruction GAN, named MP-NRGAN, the segmentation network extracts neuron signals from raw images, and the discriminator network encourages the extracted neurons to follow the morphology distribution of reconstructed neurons. Comprehensive experiments on the public VISoR-40 dataset and BigNeuron dataset demonstrate that our proposed MP-NRGAN outperforms state-of-the-art approaches with less training effort.
Collapse
|
13
|
Shih CT, Chen NY, Wang TY, He GW, Wang GT, Lin YJ, Lee TK, Chiang AS. NeuroRetriever: Automatic Neuron Segmentation for Connectome Assembly. Front Syst Neurosci 2021; 15:687182. [PMID: 34366800 PMCID: PMC8342815 DOI: 10.3389/fnsys.2021.687182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
Segmenting individual neurons from a large number of noisy raw images is the first step in building a comprehensive map of neuron-to-neuron connections for predicting information flow in the brain. Thousands of fluorescence-labeled brain neurons have been imaged. However, mapping a complete connectome remains challenging because imaged neurons are often entangled and manual segmentation of a large population of single neurons is laborious and prone to bias. In this study, we report an automatic algorithm, NeuroRetriever, for unbiased large-scale segmentation of confocal fluorescence images of single neurons in the adult Drosophila brain. NeuroRetriever uses a high-dynamic-range thresholding method to segment three-dimensional morphology of single neurons based on branch-specific structural features. Applying NeuroRetriever to automatically segment single neurons in 22,037 raw brain images, we successfully retrieved 28,125 individual neurons validated by human segmentation. Thus, automated NeuroRetriever will greatly accelerate 3D reconstruction of the single neurons for constructing the complete connectomes.
Collapse
Affiliation(s)
- Chi-Tin Shih
- Department of Applied Physics, Tunghai University, Taichung, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Nan-Yow Chen
- National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Ting-Yuan Wang
- Institute of Biotechnology and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Guan-Wei He
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Guo-Tzau Wang
- National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Yen-Jen Lin
- National Center for High-Performance Computing, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Ting-Kuo Lee
- Institute of Physics, Academia Sinica, Taipei, Taiwan.,Department of Physics, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ann-Shyn Chiang
- Department of Applied Physics, Tunghai University, Taichung, Taiwan.,Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Physics, Academia Sinica, Taipei, Taiwan.,Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Kavli Institute for Brain and Mind, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
14
|
Özdemir B, Reski R. Automated and semi-automated enhancement, segmentation and tracing of cytoskeletal networks in microscopic images: A review. Comput Struct Biotechnol J 2021; 19:2106-2120. [PMID: 33995906 PMCID: PMC8085673 DOI: 10.1016/j.csbj.2021.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 11/28/2022] Open
Abstract
Cytoskeletal filaments are structures of utmost importance to biological cells and organisms due to their versatility and the significant functions they perform. These biopolymers are most often organised into network-like scaffolds with a complex morphology. Understanding the geometrical and topological organisation of these networks provides key insights into their functional roles. However, this non-trivial task requires a combination of high-resolution microscopy and sophisticated image processing/analysis software. The correct analysis of the network structure and connectivity needs precise segmentation of microscopic images. While segmentation of filament-like objects is a well-studied concept in biomedical imaging, where tracing of neurons and blood vessels is routine, there are comparatively fewer studies focusing on the segmentation of cytoskeletal filaments and networks from microscopic images. The developments in the fields of microscopy, computer vision and deep learning, however, began to facilitate the task, as reflected by an increase in the recent literature on the topic. Here, we aim to provide a short summary of the research on the (semi-)automated enhancement, segmentation and tracing methods that are particularly designed and developed for microscopic images of cytoskeletal networks. In addition to providing an overview of the conventional methods, we cover the recently introduced, deep-learning-assisted methods alongside the advantages they offer over classical methods.
Collapse
Affiliation(s)
- Bugra Özdemir
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany.,Cluster of Excellence livMatS @ FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, Freiburg, Germany
| |
Collapse
|
15
|
McDonald T, Usher W, Morrical N, Gyulassy A, Petruzza S, Federer F, Angelucci A, Pascucci V. Improving the Usability of Virtual Reality Neuron Tracing with Topological Elements. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2021; 27:744-754. [PMID: 33055032 PMCID: PMC7891492 DOI: 10.1109/tvcg.2020.3030363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Researchers in the field of connectomics are working to reconstruct a map of neural connections in the brain in order to understand at a fundamental level how the brain processes information. Constructing this wiring diagram is done by tracing neurons through high-resolution image stacks acquired with fluorescence microscopy imaging techniques. While a large number of automatic tracing algorithms have been proposed, these frequently rely on local features in the data and fail on noisy data or ambiguous cases, requiring time-consuming manual correction. As a result, manual and semi-automatic tracing methods remain the state-of-the-art for creating accurate neuron reconstructions. We propose a new semi-automatic method that uses topological features to guide users in tracing neurons and integrate this method within a virtual reality (VR) framework previously used for manual tracing. Our approach augments both visualization and interaction with topological elements, allowing rapid understanding and tracing of complex morphologies. In our pilot study, neuroscientists demonstrated a strong preference for using our tool over prior approaches, reported less fatigue during tracing, and commended the ability to better understand possible paths and alternatives. Quantitative evaluation of the traces reveals that users' tracing speed increased, while retaining similar accuracy compared to a fully manual approach.
Collapse
|
16
|
Franceschini A, Costantini I, Pavone FS, Silvestri L. Dissecting Neuronal Activation on a Brain-Wide Scale With Immediate Early Genes. Front Neurosci 2020; 14:569517. [PMID: 33192255 PMCID: PMC7645181 DOI: 10.3389/fnins.2020.569517] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/28/2020] [Indexed: 11/13/2022] Open
Abstract
Visualizing neuronal activation on a brain-wide scale yet with cellular resolution is a fundamental technical challenge for neuroscience. This would enable analyzing how different neuronal circuits are disrupted in pathology and how they could be rescued by pharmacological treatments. Although this goal would have appeared visionary a decade ago, recent technological advances make it eventually feasible. Here, we review the latest developments in the fields of genetics, sample preparation, imaging, and image analysis that could be combined to afford whole-brain cell-resolution activation mapping. We show how the different biochemical and optical methods have been coupled to study neuronal circuits at different spatial and temporal scales, and with cell-type specificity. The inventory of techniques presented here could be useful to find the tools best suited for a specific experiment. We envision that in the next years, mapping of neuronal activation could become routine in many laboratories, allowing dissecting the neuronal counterpart of behavior.
Collapse
Affiliation(s)
| | - Irene Costantini
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy
| | - Francesco S Pavone
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Florence, Italy
| | - Ludovico Silvestri
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.,National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Florence, Italy
| |
Collapse
|
17
|
Huang Q, Chen Y, Liu S, Xu C, Cao T, Xu Y, Wang X, Rao G, Li A, Zeng S, Quan T. Weakly Supervised Learning of 3D Deep Network for Neuron Reconstruction. Front Neuroanat 2020; 14:38. [PMID: 32848636 PMCID: PMC7399060 DOI: 10.3389/fnana.2020.00038] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/05/2020] [Indexed: 11/13/2022] Open
Abstract
Digital reconstruction or tracing of 3D tree-like neuronal structures from optical microscopy images is essential for understanding the functionality of neurons and reveal the connectivity of neuronal networks. Despite the existence of numerous tracing methods, reconstructing a neuron from highly noisy images remains challenging, particularly for neurites with low and inhomogeneous intensities. Conducting deep convolutional neural network (CNN)-based segmentation prior to neuron tracing facilitates an approach to solving this problem via separation of weak neurites from a noisy background. However, large manual annotations are needed in deep learning-based methods, which is labor-intensive and limits the algorithm's generalization for different datasets. In this study, we present a weakly supervised learning method of a deep CNN for neuron reconstruction without manual annotations. Specifically, we apply a 3D residual CNN as the architecture for discriminative neuronal feature extraction. We construct the initial pseudo-labels (without manual segmentation) of the neuronal images on the basis of an existing automatic tracing method. A weakly supervised learning framework is proposed via iterative training of the CNN model for improved prediction and refining of the pseudo-labels to update training samples. The pseudo-label was iteratively modified via mining and addition of weak neurites from the CNN predicted probability map on the basis of their tubularity and continuity. The proposed method was evaluated on several challenging images from the public BigNeuron and Diadem datasets, to fMOST datasets. Owing to the adaption of 3D deep CNNs and weakly supervised learning, the presented method demonstrates effective detection of weak neurites from noisy images and achieves results similar to those of the CNN model with manual annotations. The tracing performance was significantly improved by the proposed method on both small and large datasets (>100 GB). Moreover, the proposed method proved to be superior to several novel tracing methods on original images. The results obtained on various large-scale datasets demonstrated the generalization and high precision achieved by the proposed method for neuron reconstruction.
Collapse
Affiliation(s)
- Qing Huang
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, University of Science and Technology, Wuhan, China
- Ministry of Education (MoE) Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yijun Chen
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, University of Science and Technology, Wuhan, China
- Ministry of Education (MoE) Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Shijie Liu
- School of Mathematics and Physics, China University of Geosciences, Wuhan, China
| | - Cheng Xu
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, University of Science and Technology, Wuhan, China
- Ministry of Education (MoE) Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Cao
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, University of Science and Technology, Wuhan, China
- Ministry of Education (MoE) Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yongchao Xu
- School of Electronics Information and Communications, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojun Wang
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, University of Science and Technology, Wuhan, China
- Ministry of Education (MoE) Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Gong Rao
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, University of Science and Technology, Wuhan, China
- Ministry of Education (MoE) Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Anan Li
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, University of Science and Technology, Wuhan, China
- Ministry of Education (MoE) Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoqun Zeng
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, University of Science and Technology, Wuhan, China
- Ministry of Education (MoE) Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Tingwei Quan
- Wuhan National Laboratory for Optoelectronics-Huazhong, Britton Chance Center for Biomedical Photonics, University of Science and Technology, Wuhan, China
- Ministry of Education (MoE) Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Callara AL, Magliaro C, Ahluwalia A, Vanello N. A Smart Region-Growing Algorithm for Single-Neuron Segmentation From Confocal and 2-Photon Datasets. Front Neuroinform 2020; 14:9. [PMID: 32256332 PMCID: PMC7090132 DOI: 10.3389/fninf.2020.00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Accurately digitizing the brain at the micro-scale is crucial for investigating brain structure-function relationships and documenting morphological alterations due to neuropathies. Here we present a new Smart Region Growing algorithm (SmRG) for the segmentation of single neurons in their intricate 3D arrangement within the brain. Its Region Growing procedure is based on a homogeneity predicate determined by describing the pixel intensity statistics of confocal acquisitions with a mixture model, enabling an accurate reconstruction of complex 3D cellular structures from high-resolution images of neural tissue. The algorithm's outcome is a 3D matrix of logical values identifying the voxels belonging to the segmented structure, thus providing additional useful volumetric information on neurons. To highlight the algorithm's full potential, we compared its performance in terms of accuracy, reproducibility, precision and robustness of 3D neuron reconstructions based on microscopic data from different brain locations and imaging protocols against both manual and state-of-the-art reconstruction tools.
Collapse
Affiliation(s)
| | - Chiara Magliaro
- Research Center “E. Piaggio” - University of Pisa, Pisa, Italy
| | - Arti Ahluwalia
- Research Center “E. Piaggio” - University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
| | - Nicola Vanello
- Research Center “E. Piaggio” - University of Pisa, Pisa, Italy
- Dipartimento di Ingegneria dell’Informazione, University of Pisa, Pisa, Italy
| |
Collapse
|