1
|
Storer NP, Simmons AR, Sottosanto J, Anderson JA, Huang MH, Mahadeo D, Mathesius CA, Sanches da Rocha M, Song S, Urbanczyk-Wochniak E. Modernizing and harmonizing regulatory data requirements for genetically modified crops-perspectives from a workshop. Front Bioeng Biotechnol 2024; 12:1394704. [PMID: 38798956 PMCID: PMC11117168 DOI: 10.3389/fbioe.2024.1394704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024] Open
Abstract
Genetically modified (GM) crops that have been engineered to express transgenes have been in commercial use since 1995 and are annually grown on 200 million hectares globally. These crops have provided documented benefits to food security, rural economies, and the environment, with no substantiated case of food, feed, or environmental harm attributable to cultivation or consumption. Despite this extensive history of advantages and safety, the level of regulatory scrutiny has continually increased, placing undue burdens on regulators, developers, and society, while reinforcing consumer distrust of the technology. CropLife International held a workshop at the 16th International Society of Biosafety Research (ISBR) Symposium to examine the scientific basis for modernizing global regulatory frameworks for GM crops. Participants represented a spectrum of global stakeholders, including academic researchers, GM crop developers, regulatory consultants, and regulators. Concurrently examining the considerations of food and feed safety, along with environmental safety, for GM crops, the workshop presented recommendations for a core set of data that should always be considered, and supplementary (i.e., conditional) data that would be warranted only on a case-by-case basis to address specific plausible hypotheses of harm. Then, using a case-study involving a hypothetical GM maize event expressing two familiar traits (insect protection and herbicide tolerance), participants were asked to consider these recommendations and discuss if any additional data might be warranted to support a science-based risk assessment or for regulatory decision-making. The discussions during the workshop highlighted that the set of data to address the food, feed, and environmental safety of the hypothetical GM maize, in relation to a conventional comparator, could be modernized compared to current global regulatory requirements. If these scientific approaches to modernize data packages for GM crop regulation were adopted globally, GM crops could be commercialized in a more timely manner, thereby enabling development of more diverse GM traits to benefit growers, consumers, and the environment.
Collapse
Affiliation(s)
| | | | | | | | - Ming Hua Huang
- Syngenta Seeds LLC, Research Triangle Park, NC, United States
| | | | | | | | - Shuang Song
- Syngenta Seeds LLC, Research Triangle Park, NC, United States
| | | |
Collapse
|
2
|
Bedrossiantz J, Goyenechea J, Prats E, Gómez-Canela C, Barata C, Raldúa D, Cachot J. Cardiac and neurobehavioral impairments in three phylogenetically distant aquatic model organisms exposed to environmentally relevant concentrations of boscalid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123685. [PMID: 38460591 DOI: 10.1016/j.envpol.2024.123685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
Boscalid (2-Chloro-N-(4'-chlorobiphenyl-2-yl) nicotinamide), a pyridine carboxamide fungicide, is an inhibitor of the complex II of the respiration chain in fungal mitochondria. As boscalid is only moderately toxic for aquatic organisms (LC50 > 1-10 mg/L), current environmental levels of this compound in aquatic ecosystems, in the range of ng/L-μg/L, are considered safe for aquatic organisms. In this study, we have exposed zebrafish (Danio rerio), Japanese medaka (Oryzias latipes) and Daphnia magna to a range of concentrations of boscalid (1-1000 μg/L) for 24 h, and the effects on heart rate (HR), basal locomotor activity (BLA), visual motor response (VMR), startle response (SR), and habituation (HB) to a series of vibrational or light stimuli have been evaluated. Moreover, changes in the profile of the main neurotransmitters have been determined. Boscalid altered HR in a concentration-dependent manner, leading to a positive or negative chronotropic effect in fish and D. magna, respectively. While boscalid decreased BLA and increased VMR in Daphnia, these behaviors were not altered in fish. For SR and HB, the response was more species- and concentration-specific, with Daphnia exhibiting the highest sensitivity. At the neurotransmission level, boscalid exposure decreased the levels of L-aspartic acid in fish larvae and increased the levels of dopaminergic metabolites in D. magna. Our study demonstrates that exposure to environmental levels of boscalid alters cardiac activity, impairs ecologically relevant behaviors, and leads to changes in different neurotransmitter systems in phylogenetically distinct vertebrate and invertebrate models. Thus, the results presented emphasize the need to review the current regulation of this fungicide.
Collapse
Affiliation(s)
- Juliette Bedrossiantz
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain.
| | - Júlia Goyenechea
- Department of Analytical Chemistry and Applied (Chromatography Section), IQS School of Engineering, Ramon Llull University, Via Augusta 390, 08017, Barcelona, Spain
| | - Eva Prats
- Research and Development Center (CID-CSIC), Jordi Girona 18, 08034, Barcelona, Spain
| | - Cristián Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), IQS School of Engineering, Ramon Llull University, Via Augusta 390, 08017, Barcelona, Spain
| | - Carlos Barata
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain
| | - Jérôme Cachot
- University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600, Pessac, France
| |
Collapse
|
3
|
Rishan ST, Kline RJ, Rahman MS. Exploitation of environmental DNA (eDNA) for ecotoxicological research: A critical review on eDNA metabarcoding in assessing marine pollution. CHEMOSPHERE 2024; 351:141238. [PMID: 38242519 DOI: 10.1016/j.chemosphere.2024.141238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
The rise in worldwide population has led to a noticeable spike in the production, consumption, and transportation of energy and food, contributing to elevated environmental pollution. Marine pollution is a significant global environmental issue with ongoing challenges, including plastic waste, oil spills, chemical pollutants, and nutrient runoff, threatening marine ecosystems, biodiversity, and human health. Pollution detection and assessment are crucial to understanding the state of marine ecosystems. Conventional approaches to pollution evaluation usually represent laborious and prolonged physical and chemical assessments, constraining their efficacy and expansion. The latest advances in environmental DNA (eDNA) are valuable methods for the detection and surveillance of pollution in the environment, offering enhanced sensibility, efficacy, and involvement. Molecular approaches allow genetic information extraction from natural resources like water, soil, or air. The application of eDNA enables an expanded evaluation of the environmental condition by detecting both identified and unidentified organisms and contaminants. eDNA methods are valuable for assessing community compositions, providing indirect insights into the intensity and quality of marine pollution through their effects on ecological communities. While eDNA itself is not direct evidence of pollution, its analysis offers a sensitive tool for monitoring changes in biodiversity, serving as an indicator of environmental health and allowing for the indirect estimation of the impact and extent of marine pollution on ecosystems. This review explores the potential of eDNA metabarcoding techniques for detecting and identifying marine pollutants. This review also provides evidence for the efficacy of eDNA assessment in identifying a diverse array of marine pollution caused by oil spills, harmful algal blooms, heavy metals, ballast water, and microplastics. In this report, scientists can expand their knowledge and incorporate eDNA methodologies into ecotoxicological research.
Collapse
Affiliation(s)
- Sakib Tahmid Rishan
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Richard J Kline
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Md Saydur Rahman
- Biochemistry and Molecular Biology Program, School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA; School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA.
| |
Collapse
|
4
|
Yang J, Zhang Y, Zhao J, Gao Y, Liu Z, Zhang P, Fan R, Xing S, Zhou X. Target gene selection for RNAi-based biopesticides against the hawthorn spider mite, Amphitetranychus viennensis (Acari: Tetranychidae). PEST MANAGEMENT SCIENCE 2023; 79:2482-2492. [PMID: 36866409 DOI: 10.1002/ps.7437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/27/2023] [Accepted: 03/02/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Recently, RNA interference (RNAi)-based biopesticide, a species-specific pest control alternative, has been deregulated and commercialized in the US and Canada. The hawthorn spider mite, Amphitetranychus viennensis Zacher, is a major pest for rosaceous plants, which has been controlled primarily by synthetic pesticides. To address the emerging resistance issues in A. viennensis, we initiated a project to develop RNAi-based biopesticides. RESULTS In this study, we (i) developed a dietary RNAi system for A. viennensis using leaf disc, (ii) assessed the suitability of multiple control genes to distinguish sequence-specific silencing from non-specific effects within this RNAi system, and (iii) screened for the target gene candidates. As a result, β-Glucuronidase (GUS), an enzyme derived from E. coli and a broadly used reporter for plants is the appropriate control for A. viennensis RNAi, while green fluorescent protein (GFP), is not suitable due to its significantly higher mortality than the other controls. For target gene screening, suppression was confirmed for all the candidates, including two housekeeping genes (Vacuolar-type H + -ATPase subunit A (V-ATPase A) and Glyceraldehyde 3-phosphate dehydrogenase, (GAPDH)), and three genes associated with development (ATP-dependent RNA Helicase DDX3Y (Belle), CREB-binding protein (CBP), and Farnesoic acid O-methyltransferase (FaMet)). Knocking down of V-ATPase A resulted in the highest mortality (~ 90%) and reduced fecundity (over 90%) than other candidates. As for the genes associated with development, suppression of Belle and CBP, led to approximately 65% mortality, as well as 86% and 40% reduction in fecundity, respectively. Silencing of FaMet, however, had negligible biological impacts on A. viennensis. CONCLUSION The combined efforts not only establish an effective dsRNA delivery method, but also provide potential target genes for RNAi-based biopesticides against A. viennensis, a devastating invasive pest for fruit trees and woody ornamental plants throughout Asia and Europe. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Yang
- College of Plant Protection, Shanxi Agricultural University/Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Yuying Zhang
- College of Plant Protection, Shanxi Agricultural University/Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Jin Zhao
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Yue Gao
- College of Plant Protection, Shanxi Agricultural University/Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Zhongfang Liu
- College of Plant Protection, Shanxi Agricultural University/Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Pengjiu Zhang
- College of Plant Protection, Shanxi Agricultural University/Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Renjun Fan
- College of Plant Protection, Shanxi Agricultural University/Shanxi Key Laboratory of Integrated Pest Management in Agriculture, Taiyuan, China
| | - Shuping Xing
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
5
|
Abdul Aziz M, Brini F, Rouached H, Masmoudi K. Genetically engineered crops for sustainably enhanced food production systems. FRONTIERS IN PLANT SCIENCE 2022; 13:1027828. [PMID: 36426158 PMCID: PMC9680014 DOI: 10.3389/fpls.2022.1027828] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Genetic modification of crops has substantially focused on improving traits for desirable outcomes. It has resulted in the development of crops with enhanced yields, quality, and tolerance to biotic and abiotic stresses. With the advent of introducing favorable traits into crops, biotechnology has created a path for the involvement of genetically modified (GM) crops into sustainable food production systems. Although these plants heralded a new era of crop production, their widespread adoption faces diverse challenges due to concerns about the environment, human health, and moral issues. Mitigating these concerns with scientific investigations is vital. Hence, the purpose of the present review is to discuss the deployment of GM crops and their effects on sustainable food production systems. It provides a comprehensive overview of the cultivation of GM crops and the issues preventing their widespread adoption, with appropriate strategies to overcome them. This review also presents recent tools for genome editing, with a special focus on the CRISPR/Cas9 platform. An outline of the role of crops developed through CRSIPR/Cas9 in achieving sustainable development goals (SDGs) by 2030 is discussed in detail. Some perspectives on the approval of GM crops are also laid out for the new age of sustainability. The advancement in molecular tools through plant genome editing addresses many of the GM crop issues and facilitates their development without incorporating transgenic modifications. It will allow for a higher acceptance rate of GM crops in sustainable agriculture with rapid approval for commercialization. The current genetic modification of crops forecasts to increase productivity and prosperity in sustainable agricultural practices. The right use of GM crops has the potential to offer more benefit than harm, with its ability to alleviate food crises around the world.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Hatem Rouached
- Michigan State University, Plant and Soil Science Building, East Lansing, MI, United States
| | - Khaled Masmoudi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al−Ain, Abu−Dhabi, United Arab Emirates
| |
Collapse
|
6
|
Boeckman CJ, Ballou S, Gunderson T, Huang E, Linderblood C, Olson T, Stolte B, LeRoy K, Walker C, Wang Y, Woods R, Zhang J. Characterization of the Spectrum of Activity of IPD079Ea: A Protein Derived From Ophioglossum pendulum (Ophioglossales: Ophioglossaceae) With Activity Against Western Corn Rootworm [Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae)]. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1531-1538. [PMID: 35640234 PMCID: PMC9554786 DOI: 10.1093/jee/toac079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 06/15/2023]
Abstract
Western corn rootworm (Diabrotica virgifera virgifera LeConte) is a major pest of corn in both North America and Europe and as such presents significant challenges for farmers. IPD079Ea protein is encoded by the ipd079Ea gene from Ophioglossum pendulum (a species of fern) and was found to have activity against western corn rootworm in multiple corn events transformed to express the IPD079Ea protein. In chronic laboratory hazard studies, IPD079Ea protein was fed to eleven species in the order Coleoptera and four species in the order Lepidoptera to assess the spectrum of activity. Activity was observed on certain species of the Chrysomelidae and Coccinellidae families, with western corn rootworm as the most sensitive insect tested. No adverse effects on mortality or other sublethal endpoints were observed on any species within Lepidoptera. Overall, IPD079Ea protein appears not to have broad insecticidal properties and has potential value as an effective trait to control western corn rootworm in agricultural systems.
Collapse
Affiliation(s)
| | - Stephan Ballou
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Tim Gunderson
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Emily Huang
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | | | - Taylor Olson
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Brian Stolte
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Kristine LeRoy
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Carl Walker
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Yiwei Wang
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - Rachel Woods
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| | - John Zhang
- Corteva Agriscience, 8325 NW 62nd Ave., Johnston, IA 50131, USA
| |
Collapse
|
7
|
Darlington M, Reinders JD, Sethi A, Lu AL, Ramaseshadri P, Fischer JR, Boeckman CJ, Petrick JS, Roper JM, Narva KE, Vélez AM. RNAi for Western Corn Rootworm Management: Lessons Learned, Challenges, and Future Directions. INSECTS 2022; 13:57. [PMID: 35055900 PMCID: PMC8779393 DOI: 10.3390/insects13010057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023]
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is considered one of the most economically important pests of maize (Zea mays L.) in the United States (U.S.) Corn Belt with costs of management and yield losses exceeding USD ~1-2 billion annually. WCR management has proven challenging given the ability of this insect to evolve resistance to multiple management strategies including synthetic insecticides, cultural practices, and plant-incorporated protectants, generating a constant need to develop new management tools. One of the most recent developments is maize expressing double-stranded hairpin RNA structures targeting housekeeping genes, which triggers an RNA interference (RNAi) response and eventually leads to insect death. Following the first description of in planta RNAi in 2007, traits targeting multiple genes have been explored. In June 2017, the U.S. Environmental Protection Agency approved the first in planta RNAi product against insects for commercial use. This product expresses a dsRNA targeting the WCR snf7 gene in combination with Bt proteins (Cry3Bb1 and Cry34Ab1/Cry35Ab1) to improve trait durability and will be introduced for commercial use in 2022.
Collapse
Affiliation(s)
- Molly Darlington
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| | - Jordan D. Reinders
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| | - Amit Sethi
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | - Albert L. Lu
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | | | - Joshua R. Fischer
- Bayer Crop Science, Chesterfield, MO 63017, USA; (P.R.); (J.R.F.); (J.S.P.)
| | - Chad J. Boeckman
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | - Jay S. Petrick
- Bayer Crop Science, Chesterfield, MO 63017, USA; (P.R.); (J.R.F.); (J.S.P.)
| | - Jason M. Roper
- Corteva Agriscience, Johnston, IA 50131, USA; (A.S.); (A.L.L.); (C.J.B.); (J.M.R.)
| | | | - Ana M. Vélez
- Department of Entomology, University of Nebraska, Lincoln, NE 68583, USA; (M.D.); (J.D.R.)
| |
Collapse
|
8
|
Guo W, Guo M, Yang C, Liu Z, Chen S, Lü J, Qiu B, Zhang Y, Zhou X, Pan H. RNA interference-mediated silencing of vATPase subunits A and E affect survival and development of the 28-spotted ladybeetle, Henosepilachna vigintioctopunctata. INSECT SCIENCE 2021; 28:1664-1676. [PMID: 33421334 DOI: 10.1111/1744-7917.12899] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
RNA interference (RNAi) has emerged as a powerful tool for developing novel management strategies for controlling insect pests. The 28-spotted ladybeetle, Henosepilachna vigintioctopunctata is one of the most important pests attacking solanaceous plants in Asia. In this study, the potential of dietary RNAi to manage H. vigintioctopunctata was investigated using both in vitro synthesized and bacterially expressed double-stranded RNAs (dsRNAs) of HvvATPase A and HvvATPase E. The expression levels of HvvATPase A and HvvATPase E were higher in Malpighian tubules than in other tissue types. The silencing of HvvATPase A and HvvATPase E led to significant mortality in H. vigintioctopunctata larvae. In addition, the ingestion of HvvATPase A and HvvATPase E significantly deterred feeding behavior and subsequently arrested the development of H. vigintioctopunctata. Notably, the bacterially expressed dsRNAs consistently caused higher mortality in larvae and adults. Finally, the nontarget effects of the dsRNAs of H. vigintioctopunctata on the predatory ladybeetle Propylaea japonica were evaluated. P. japonica 1st instar larvae were administered vATPase A and vATPase E dsRNAs from H. vigintioctopunctata and P. japonica under the worst-case scenario, in which dsGFP served as negative control. There were significant effects of dsHvvATPase A on P. japonica at the transcriptional level but not at the organismal level, whereas dsHvvATPase E did not effect P. japonica at either the transcriptional or the organismal level. Collectively, the results of the study suggest that HvvATPase A and HvvATPase E can act as novel molecular targets for the control of H. vigintioctopunctata.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510642, China
| | - Mujuan Guo
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510642, China
| | - Chunxiao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhuoqi Liu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510642, China
| | - Shimin Chen
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Lü
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510642, China
| | - Baoli Qiu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510642, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA
| | - Huipeng Pan
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
9
|
Romeis J, Widmer F. Assessing the Risks of Topically Applied dsRNA-Based Products to Non-target Arthropods. FRONTIERS IN PLANT SCIENCE 2020; 11:679. [PMID: 32582240 PMCID: PMC7289159 DOI: 10.3389/fpls.2020.00679] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 04/30/2020] [Indexed: 05/17/2023]
Abstract
RNA interference (RNAi) is a powerful technology that offers new opportunities for pest control through silencing of genes that are essential for the survival of arthropod pests. The approach relies on sequence-specificity of applied double-stranded (ds) RNA that can be designed to have a very narrow spectrum of both the target gene product (RNA) as well as the target organism, and thus allowing highly targeted pest control. Successful RNAi has been reported from a number of arthropod species belonging to various orders. Pest control may be achieved by applying dsRNA as foliar sprays. One of the main concerns related to the use of dsRNA is adverse environmental effects particularly on valued non-target species. Arthropods form an important part of the biodiversity in agricultural landscapes and contribute important ecosystem services. Consequently, environmental risk assessment (ERA) for potential impacts that plant protection products may have on valued non-target arthropods is legally required prior to their placement on the market. We describe how problem formulation can be used to set the context and to develop plausible pathways on how the application of dsRNA-based products could harm valued non-target arthropod species, such as those contributing to biological pest control. The current knowledge regarding the exposure to and the hazard posed by dsRNA in spray products for non-target arthropods is reviewed and suggestions are provided on how to select the most suitable test species and to conduct laboratory-based toxicity studies that provide robust, reliable and interpretable results to support the ERA.
Collapse
Affiliation(s)
- Jörg Romeis
- Research Division Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Franco Widmer
- Competence Division Method Development and Analytics, Agroscope, Zurich, Switzerland
| |
Collapse
|