1
|
Sarkar P, Bandyopadhyay TK, Gopikrishna K, Nath Tiwari O, Bhunia B, Muthuraj M. Algal carbohydrates: Sources, biosynthetic pathway, production, and applications. BIORESOURCE TECHNOLOGY 2024; 413:131489. [PMID: 39278363 DOI: 10.1016/j.biortech.2024.131489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Algae play a significant role in the global carbon cycle by utilizing photosynthesis to efficiently convert solar energy and atmospheric carbon dioxide into various chemical compounds, notably carbohydrates, pigments, lipids, and released oxygen, making them a unique sustainable cellular factory. Algae mostly consist of carbohydrates, which include a broad variety of structures that contribute to their distinct physical and chemical properties such as degree of polymerization, side chain, branching, degree of sulfation, hydrogen bond etc., these features play a crucial role in regulating many biological activity, nutritional and pharmaceutical properties. Algal carbohydrates have not received enough attention in spite of their distinctive structural traits linked to certain biological and physicochemical properties. Nevertheless, it is anticipated that there will be a significant increase in the near future due to increasing demand, sustainable source, biofuel generation and their bioactivity. This is facilitated by the abundance of easily accessible information on the structural data and distinctive characteristics of these biopolymers. This review delves into the different types of saccharides such as agar, alginate, fucoidan, carrageenan, ulvan, EPS and glucans synthesized by various macroalgal and microalgal systems, which include intracellular, extracellular and cell wall saccharides. Their structure, biosynthetic pathway, sources, production strategies and their applications in various field such as nutraceuticals, pharmaceuticals, biomedicine, food and feed, cosmetics, and bioenergy are also elaborately discussed. Algal polysaccharide has huge a scope for exploitation in future due to their application in food and pharmaceutical industry and it can become a huge source of capital and income.
Collapse
Affiliation(s)
- Pradip Sarkar
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India
| | | | - Konga Gopikrishna
- SEED Division, Department of Science and Technology, Government of India, New Delhi 110 016, India.
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Biswanath Bhunia
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India.
| | - Muthusivaramapandian Muthuraj
- Bioproducts Processing Research Laboratory (BPRL), Department of Bioengineering, National Institute of Technology, Agartala 799046, India.
| |
Collapse
|
2
|
Lee A, Lan JCW, Jambrak AR, Chang JS, Lim JW, Khoo KS. Upcycling fruit waste into microalgae biotechnology: Perspective views and way forward. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100203. [PMID: 38633725 PMCID: PMC11021955 DOI: 10.1016/j.fochms.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Fruit and vegetable wastes are linked to the depletion of natural resources and can pose serious health and environmental risks (e.g. eutrophication, water and soil pollution, and GHG emissions) if improperly managed. Current waste management practices often fail to recover high-value compounds from fruit wastes. Among emerging valorization methods, the utilization of fruit wastes as a feedstock for microalgal biorefineries is a promising approach for achieving net zero waste and sustainable development goals. This is due to the ability of microalgae to efficiently sequester carbon dioxide through photosynthesis, utilize nutrients in wastewater, grow in facilities located on non-arable land, and produce several commercially valuable compounds with applications in food, biofuels, bioplastics, cosmetics, nutraceuticals, pharmaceutics, and various other industries. However, the application of microalgal biotechnology towards upcycling fruit wastes has yet to be implemented on the industrial scale due to several economic, technical, operational, and regulatory challenges. Here, we identify sources of fruit waste along the food supply chain, evaluate current and emerging fruit waste management practices, describe value-added compounds in fruit wastes, and review current methods of microalgal cultivation using fruit wastes as a fermentation medium. We also propose some novel strategies for the practical implementation of industrial microalgal biorefineries for upcycling fruit waste in the future.
Collapse
Affiliation(s)
- Alicia Lee
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Kuan Shiong Khoo
- Algae Bioseparation Research Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| |
Collapse
|
3
|
Cicci A, Scarponi P, Cavinato C, Bravi M. Microalgae production in olive mill wastewater fractions and cattle digestate slurry: Bioremediation effects and suitability for energy and feed uses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172773. [PMID: 38685426 DOI: 10.1016/j.scitotenv.2024.172773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
The possibility of obtaining energy or nutritive streams and bioremediation as an add-on opens new perspectives for the massive culturing of microalgal biomass on waste waters generated by the agro-food sector. Ordinary revenue streams are fully preserved, or even boosted, if they are used in microalgal cultivation; however, the suitability of wastewaters depends on multiple nutritional and toxic factors. Here, the effect of modulating the Olive Mill Wastewater (OMW) and cattle digestate (CD) fraction in the formulation of a growth medium on biomass accumulation and productivity of selected biomass fractions and their relevance for biofuel and/or feed production were tested for the microalga Scenedesmus dimorphus and for the cyanobacterium Arthrospira platensis (Spirulina). Tests highlighted the strong S. dimorphus adaptability to digestate, as on OMW, compared to A. platensis, with the maximum lipid storage (48 %) when culture medium was composed by 50 % of cattle digestate.
Collapse
Affiliation(s)
- A Cicci
- Department of Chemical Engineering Materials Environment, Sapienza University of Roma, via Eudossiana, 18, 00184 Roma, Italy
| | - P Scarponi
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy.
| | - C Cavinato
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, via Torino 155, 30172 Venice, Italy
| | - M Bravi
- Department of Chemical Engineering Materials Environment, Sapienza University of Roma, via Eudossiana, 18, 00184 Roma, Italy
| |
Collapse
|
4
|
Arruda GL, Raymundo MTFR, Cruz-Santos MM, Shibukawa VP, Jofre FM, Prado CA, da Silva SS, Mussatto SI, Santos JC. Lignocellulosic materials valorization in second generation biorefineries: an opportunity to produce fungal biopigments. Crit Rev Biotechnol 2024:1-20. [PMID: 38817002 DOI: 10.1080/07388551.2024.2349581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/13/2024] [Indexed: 06/01/2024]
Abstract
Second generation biorefineries play an important role in the production of renewable energy and fuels, utilizing forest and agro-industrial residues and by-products as raw materials. The integration of novel bioproducts, such as: xylitol, β-carotene, xylooligosaccharides, and biopigments into the biorefinery's portfolio can offer economic benefits in the valorization of lignocellulosic materials, particularly cellulosic and hemicellulosic fractions. Fungal biopigments, known for their additional antioxidant and antimicrobial properties, are appealing to consumers and can have applications in various industrial sectors, including food and pharmaceuticals. The use of lignocellulosic materials as carbon and nutrient sources for the growth medium helps to reduce production costs, increasing the competitiveness of fungal biopigments in the market. In addition, the implementation of biopigment production in biorefineries allows the utilization of underutilized fractions, such as hemicellulose, for value-added bioproducts. This study deals with the potential of fungal biopigments production in second generation biorefineries in order to diversify the produced biomolecules together with energy generation. A comprehensive and critical review of the recent literature on this topic has been conducted, covering the major possible raw materials, general aspects of second generation biorefineries, the fungal biopigments and their potential for incorporation into biorefineries.
Collapse
Affiliation(s)
- Gabriel L Arruda
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | | | - Mónica M Cruz-Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Vinícius P Shibukawa
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Fanny M Jofre
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Carina A Prado
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Silvio S da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| | - Solange I Mussatto
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Júlio C Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, Brazil
| |
Collapse
|
5
|
Alavianghavanini A, Moheimani NR, Bahri PA. Process design and economic analysis for the production of microalgae from anaerobic digestates in open raceway ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171554. [PMID: 38458470 DOI: 10.1016/j.scitotenv.2024.171554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
A model based framework was established for large scale assessment of microalgae production using anaerobically digested effluent considering varied climatic parameters such as solar irradiance and air temperature. The aim of this research was to identify the optimum monthly average culture depth operation to minimize the cost of producing microalgae grown on anaerobic digestion effluents rich in ammoniacal nitrogen with concentration of 248 mg L-1. First, a productivity model combined with a thermal model was developed to simulate microalgae productivity in open raceway ponds as a function of climatic variables. Second, by combining the comprehensive open pond model with other harvesting equipment, the final techno economic model was developed to produce a microalgae product with 20 wt% biomass content and treated water with <1 mg L-1 ammoniacal nitrogen. The optimization approach on culture depth for outdoor open raceway ponds managed to reduce the cost of microalgae production grown in anaerobic digested wastewater up to 16 %, being a suitable solution for the production of low cost microalgae (1.7 AUD kg-1 dry weight) at possible scale of 1300 t dry weight microalgae yr-1.
Collapse
Affiliation(s)
- Arsalan Alavianghavanini
- Engineering and Energy, College of Science, Technology, Engineering and Mathematics, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia
| | - Navid R Moheimani
- Algae R & D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Parisa A Bahri
- Engineering and Energy, College of Science, Technology, Engineering and Mathematics, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia.
| |
Collapse
|
6
|
Morgado D, Fanesi A, Martin T, Tebbani S, Bernard O, Lopes F. Non-destructive monitoring of microalgae biofilms. BIORESOURCE TECHNOLOGY 2024; 398:130520. [PMID: 38432541 DOI: 10.1016/j.biortech.2024.130520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Biofilm-based cultivation systems are emerging as a promising technology for microalgae production. However, efficient and non-invasive monitoring routines are still lacking. Here, a protocol to monitor microalgae biofilms based on reflectance indices (RIs) is proposed. This framework was developed using a rotating biofilm system for astaxanthin production by cultivating Haematococcus pluvialis on cotton carriers. Biofilm traits such as biomass, astaxanthin, and chlorophyll were characterized under different light and nutrient regimes. Reflectance spectra were collected to identify the spectral bands and the RIs that correlated the most with those biofilm traits. Robust linear models built on more than 170 spectra were selected and validated on an independent dataset. Astaxanthin content could be precisely predicted over a dynamic range from 0 to 4% of dry weight, regardless of the cultivation conditions. This study demonstrates the strength of reflectance spectroscopy as a non-invasive tool to improve the operational efficiency of microalgae biofilm-based technology.
Collapse
Affiliation(s)
- David Morgado
- Université Paris-Saclay, CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Gif-sur-Yvette, France
| | - Andrea Fanesi
- Université Paris-Saclay, CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Gif-sur-Yvette, France.
| | - Thierry Martin
- Université Paris-Saclay, CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Gif-sur-Yvette, France
| | - Sihem Tebbani
- Université Paris-Saclay, CentraleSupélec, CNRS, Laboratoire des Signaux et Systèmes (L2S), Gif sur Yvette, France
| | - Olivier Bernard
- INRIA, Centre d'Université Côte d'Azur, Biocore, Sorbonne Université, CNRS, Sophia-Antipolis, France
| | - Filipa Lopes
- Université Paris-Saclay, CentraleSupélec, Laboratoire Génie des Procédés et Matériaux (LGPM), Gif-sur-Yvette, France
| |
Collapse
|
7
|
Wagner H, Schad A, Höhmann S, Briol TA, Wilhelm C. Carbon and energy balance of biotechnological glycolate production from microalgae in a pre-industrial scale flat panel photobioreactor. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:42. [PMID: 38486283 PMCID: PMC10941469 DOI: 10.1186/s13068-024-02479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
Glycolate is produced by microalgae under photorespiratory conditions and has the potential for sustainable organic carbon production in biotechnology. This study explores the glycolate production balance in Chlamydomonas reinhardtii, using a custom-built 10-L flat panel bioreactor with sophisticated measurements of process factors such as nutrient supply, gassing, light absorption and mass balances. As a result, detailed information regarding carbon and energy balance is obtained to support techno-economic analyses. It is shown how nitrogen is a crucial element in the biotechnological process and monitoring nitrogen content is vital for optimum performance. Moreover, the suitable reactor design is advantageous to efficiently adjust the gas composition. The oxygen content has to be slightly above 30% to induce photorespiration while maintaining photosynthetic efficiency. The final volume productivity reached 27.7 mg of glycolate per litre per hour, thus, the total process capacity can be calculated to 13 tonnes of glycolate per hectare per annum. The exceptional volume productivity of both biomass and glycolate production is demonstrated, and consequently can achieve a yearly CO2 sequestration rate of 35 tonnes per hectare. Although the system shows such high productivity, there are still opportunities to enhance the achieved volume productivity and thus exploit the biotechnological potential of glycolate production from microalgae.
Collapse
Affiliation(s)
- Heiko Wagner
- Department of Algal Biotechnology, Institute for Biology, University of Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany.
| | - Antonia Schad
- Department of Algal Biotechnology, Institute for Biology, University of Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Sonja Höhmann
- Department of Solar Materials, Helmholtz Center for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Tim Arik Briol
- Department of Solar Materials, Helmholtz Center for Environmental Research-UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Christian Wilhelm
- Department of Algal Biotechnology, Institute for Biology, University of Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany
| |
Collapse
|
8
|
Alavianghavanini A, Shayesteh H, Bahri PA, Vadiveloo A, Moheimani NR. Microalgae cultivation for treating agricultural effluent and producing value-added products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169369. [PMID: 38104821 DOI: 10.1016/j.scitotenv.2023.169369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Wastewater generated within agricultural sectors such as dairies, piggeries, poultry farms, and cattle meat processing plants is expected to reach 600 million m3 yr-1 globally. Currently, the wastewater produced by these industries are primarily treated by aerobic and anaerobic methods. However, the treated effluent maintains a significant concentration of nutrients, particularly nitrogen and phosphorus. On the other hand, the valorisation of conventional microalgae biomass into bioproducts with high market value still requires expensive processing pathways such as dewatering and extraction. Consequently, cultivating microalgae using agricultural effluents shows the potential as a future technology for producing value-added products and treated water with low nutrient content. This review explores the feasibility of growing microalgae on agricultural effluents and their ability to remove nutrients, specifically nitrogen and phosphorus. In addition to evaluating the market size and value of products from wastewater-grown microalgae, we also analysed their biochemical characteristics including protein, carbohydrate, lipid, and pigment content. Furthermore, we assessed the costs of both upstream and downstream processing of biomass to gain a comprehensive understanding of the economic potential of the process. The findings from this study are expected to facilitate further techno-economic and feasibility assessments by providing insights into optimized processing pathways and ultimately leading to the reduction of costs.
Collapse
Affiliation(s)
- Arsalan Alavianghavanini
- Engineering and Energy, College of Science, Technology, Engineering and Mathematics, Murdoch University, 90 South street, Murdoch, WA 6150, Australia
| | - Hajar Shayesteh
- Algae R & D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Parisa A Bahri
- Engineering and Energy, College of Science, Technology, Engineering and Mathematics, Murdoch University, 90 South street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Ashiwin Vadiveloo
- Algae R & D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Navid R Moheimani
- Algae R & D Centre, Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia; Centre for Water, Energy and Waste, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia.
| |
Collapse
|
9
|
Makay K, Griehl C, Grewe C. Development of a high-performance thin-layer chromatography-based method for targeted glycerolipidome profiling of microalgae. Anal Bioanal Chem 2024; 416:1149-1164. [PMID: 38172195 PMCID: PMC10850188 DOI: 10.1007/s00216-023-05101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024]
Abstract
The conditionally essential very-long-chain polyunsaturated fatty acids (VLC-PUFAs), such as eicosapentaenoic acid (EPA, C20:5 n-3), play a vital role in human nutrition. Their biological activity is thereby greatly influenced by the distinct glycerolipid molecule that they are esterified to. Here, microalgae differ from the conventional source, fish oil, both in quantity and distribution of VLC-PUFAs among the glycerolipidome. Therefore, the aim of this study was to develop a fast and reliable one-dimensional high-performance thin-layer chromatography (HPTLC)-based method that allows the separation and quantification of the main microalgal glycerolipid classes (e.g., monogalactosyldiacylglycerol (MGDG), sulfoquinovosyl diacylglycerol (SQDG), phosphatidylglycerol (PG)), as well as the subsequent analysis of their respective fatty acid distribution via gas chromatography (GC) coupled to mass spectrometry (MS). Following optimization, method validation was carried out for 13 different lipid classes, based on the International Conference on Harmonization (ICH) guidelines. In HPTLC, linearity was effective between 100 and 2100 ng, with a limit of quantification between 62.99 and 90.09 ng depending on the glycerolipid class, with strong correlation coefficients (R2 > 0.995). The recovery varied between 93.17 and 108.12%, while the inter-day precision measurements showed coefficients of variation of less than 8.85%, close to the limit of detection. Applying this method to crude lipid extracts of four EPA producing microalgae of commercial interest, the content of different glycerolipid classes was assessed together with the respective FA distribution subsequent to band elution. The results showed that the described precise and accurate HPTLC method offers the possibility to be used routinely to follow variations in the glycerolipid class levels throughout strain screening, cultivation, or bioprocessing. Thus, additional quantitative analytical information on the complex lipidome of microalgae can be obtained, especially for n-3 and n-6 enriched lipid fractions.
Collapse
Affiliation(s)
- Kolos Makay
- Research Group of Bioprocess Engineering, Center of Life Sciences of Anhalt University of Applied Sciences, Bernburger Str. 55, 06366, Köthen, Germany
| | - Carola Griehl
- Competence Center Algal Biotechnology, Anhalt University of Applied Sciences, Bernburger Str. 55, 06366, Köthen, Germany
| | - Claudia Grewe
- Research Group of Bioprocess Engineering, Center of Life Sciences of Anhalt University of Applied Sciences, Bernburger Str. 55, 06366, Köthen, Germany.
| |
Collapse
|
10
|
Bader AN, Sanchez Rizza L, Consolo VF, Curatti L. Bioprospecting for fungal enzymes for applications in microalgal biomass biorefineries. Appl Microbiol Biotechnol 2023; 107:591-607. [PMID: 36527478 DOI: 10.1007/s00253-022-12328-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
Microalgal biomass is a promising feedstock for biofuels, feed/food, and biomaterials. However, while production and commercialization of single-product commodities are still not economically viable, obtaining multiple products in a biomass biorefinery faces several techno-economic challenges. The aim of this study was to identify a suitable source of hydrolytic enzymes for algal biomass saccharification. Screening of twenty-six fungal isolates for secreted enzymes activity on Chlamydomonas reinhardtii biomass resulted in the identification of Aspergillus niger IB-34 as a candidate strain. Solid-state fermentation on wheat bran produced the most active enzyme preparations. From sixty-five proteins identified by liquid chromatography coupled to mass spectrometry (LC-MS) (ProteomeXchange, identifier PXD034998) from A. niger IB-34, the majority corresponded to predicted secreted proteins belonging to the Gene Ontology categories of catalytic activity/hydrolase activity on glycosyl and O-glycosyl compounds. Skimmed biomass of biotechnologically relevant strains towards the production of commodities, Chlorella sorokiniana and Scenedesmus obliquus, was fully saccharified after a mild pretreatment at 80 °C for 10 min, at a high biomass load of 10% (w/v). The soluble liquid stream, after skimming and saccharification of biomass of both strains, was further converted into ethanol by fermentation with Saccharomyces cerevisiae at a theoretical maximum efficiency, in a separated saccharification and fermentation assays. The resulting insoluble protein, after biomass skimming with an organic solvent and enzymatic saccharification, was highly digestible in an in vitro digestion assay. Proof of concept is presented for an enzyme-assisted biomass biorefinery recovering 81% of the main biomass fractions in a likely suitable form for the conversion of lipids and carbohydrates into biofuels and proteins into feed/food. KEY POINTS: • Twenty-six fungal extracts were analyzed for saccharification of microalgal biomass. • Skimmed biomass was fully enzymatically saccharified and fermented into ethanol. • Up to 81% recovery of biomass fractions suitable for biofuels and feed/food.
Collapse
Affiliation(s)
- Araceli Natalia Bader
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina
| | - Lara Sanchez Rizza
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina
| | - Verónica Fabiana Consolo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina
| | - Leonardo Curatti
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), and Fundación para Investigaciones Biológicas Aplicadas (FIBA), 7600, Mar del Plata, Argentina.
| |
Collapse
|
11
|
Nishshanka GKSH, Anthonio RADP, Nimarshana PHV, Ariyadasa TU, Chang JS. Marine microalgae as sustainable feedstock for multi-product biorefineries. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Wood EE, Ross ME, Jubeau S, Montalescot V, Stanley MS. Progress towards a targeted biorefinery of Chromochloris zofingiensis: a review. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:8127-8152. [PMID: 38510795 PMCID: PMC10948469 DOI: 10.1007/s13399-022-02955-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 03/22/2024]
Abstract
Biorefinery approaches offer the potential to improve the economics of the microalgae industry by producing multiple products from a single source of biomass. Chromochloris zofingiensis shows great promise for biorefinery due to high biomass productivity and a diverse range of products including secondary carotenoids, predominantly astaxanthin; lipids such as TAGs; carbohydrates including starch; and proteins and essential amino acids. Whilst this species has been demonstrated to accumulate multiple products, the development of an integrated downstream process to obtain these is lacking. The objective of this review paper is to assess the research that has taken place and to identify the steps that must be taken to establish a biorefinery approach for C. zofingiensis. In particular, the reasons why C. zofingiensis is a promising species to target for biorefinery are discussed in terms of cellular structure, potential products, and means to accumulate desirable components via the alteration of culture conditions. Future advances and the challenges that lie ahead for successful biorefinery of this species are also reviewed along with potential solutions to address them. Supplementary Information The online version contains supplementary material available at 10.1007/s13399-022-02955-7.
Collapse
Affiliation(s)
- Eleanor E. Wood
- University of the Highlands and Islands (UHI); Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA UK
- Xanthella Ltd, Malin House, European Marine Science Park, Dunstaffnage, Argyll, Oban PA37 1SZ Scotland, UK
| | - Michael E. Ross
- University of the Highlands and Islands (UHI); Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA UK
| | - Sébastien Jubeau
- Xanthella Ltd, Malin House, European Marine Science Park, Dunstaffnage, Argyll, Oban PA37 1SZ Scotland, UK
| | | | - Michele S. Stanley
- University of the Highlands and Islands (UHI); Scottish Association for Marine Science (SAMS), Scottish Marine Institute, Oban, PA37 1QA UK
| |
Collapse
|
13
|
Microalgae based production of single-cell protein. Curr Opin Biotechnol 2022; 75:102705. [DOI: 10.1016/j.copbio.2022.102705] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/03/2022] [Accepted: 02/13/2022] [Indexed: 01/04/2023]
|
14
|
Cascading Crypthecodinium cohnii Biorefinery: Global Warming Potential and Techno-Economic Assessment. ENERGIES 2022. [DOI: 10.3390/en15103784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Prior to the commissioning of a new industrial biorefinery it is deemed necessary to evaluate if the new project will be beneficial or detrimental to climate change, one of the main drivers for the sustainable development goals (SDG) of the United Nations. In particular, how SDG 7, Clean and Efficient Energy, SDG 3, Good Health and Well Being, SDG 9, Industry Innovation and Infrastructure, and SDG 12, Responsible Production and Consumption, would engage in a new biorefinery design, beneficial to climate change, i.e., fostering SDG 13, Climate Action. This study uses life cycle assessment methodology (LCA) to delve in detail into the Global Warming Impact category, project scenario GHG savings, using a conventional and a dynamic emission flux approach until 2060 (30-year lifetime). Water, heat and electricity circularity are in place by using a water recirculation process and a combined heat and power unit (CHP). A new historical approach to derive low and higher-end commodity prices (chemicals, electricity, heat, jet/maritime fuel, DHA, N-fertilizer) is used for the calculation of the economic indicators: Return of investment (ROI) and inflation-adjusted return (IAR), based upon the consumer price index (CPI). Main conclusions are: supercritical fluid extraction is the hotspot of energy consumption; C. cohnii bio-oil without DHA has higher sulfur concentration than crude oil based jet fuel requiring desulfurization, however the sulfur levels are compatible with maritime fuels; starting its operation in 2030, by 2100 an overall GHG savings of 73% (conventional LCA approach) or 85% (dynamic LCA approach) is projected; economic feasibility for oil productivity and content of 0.14 g/L/h and 27% (w/w) oil content, respectively (of which 31% is DHA), occurs for DHA-cost 100 times higher than reference fish oil based DHA; however future genetic engineering achieving 0.4 g/L/h and 70% (w/w) oil content (of which 31% is DHA), reduces the threshold to 20 times higher cost than reference fish oil based DHA; N-fertilizer, district heating and jet fuel may have similar values then their fossil counterparts.
Collapse
|
15
|
Behera B, Selvam S M, Paramasivan B. Research trends and market opportunities of microalgal biorefinery technologies from circular bioeconomy perspectives. BIORESOURCE TECHNOLOGY 2022; 351:127038. [PMID: 35331886 DOI: 10.1016/j.biortech.2022.127038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 05/16/2023]
Abstract
Microalgae as an alternative feedstock for sustainable bio-products have gained significant interest over years. Even though scientific productivity related to microalgae-based research has increased in recent decades, translation to industrial scale is still lacking. Therefore, it is essential to understand the current state-of-art and, identify research gaps and hotspots driving industrial scale up. The present review through scientometric analysis attempted to delineate the research evolution contributing to this emerging field. The research trends were analysed over the last decade globally highlighting the collaborative network between the countries. The comprehensive knowledge map generated confirmed microalgal biorefinery as a scientifically active field, where the present research interest is focussed on synergistically integrating the unit processes involved to make it enviro-economically feasible. Market opportunities and regulatory policy requirements along with the consensus need to adopt circular bio-economy perspectives were highlighted to facilitate real-time implementation of microalgal biorefinery.
Collapse
Affiliation(s)
- Bunushree Behera
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India.
| | - Mari Selvam S
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Balasubramanian Paramasivan
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| |
Collapse
|
16
|
Ben Hamouda M, Kacem A, Achour L, Krichen Y, Legrand J, Grizeau D, Dupre C. Comparative study on photosynthetic and antioxidant activities of Haematococcus pluvialis vegetative and resting cells; UVA light-induced stimulation. J Appl Microbiol 2022; 132:4338-4348. [PMID: 35332635 DOI: 10.1111/jam.15540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/27/2022]
Abstract
AIM This study aims to determine how photosynthetic and antioxidant activities vary in vegetative and dormant cells of Haematococcus pluvialis subjected to stresses in conditions representative of industrial productions of microalgae under solar light. METHODS AND RESULTS The effects of short-term oxidative treatments were examined on photosynthetic and antioxidant activities of Haematococcus pluvialis vegetative and resting cells. The vegetative cells have 1.6 times higher levels of phenolic compounds, but 1.7 times less catalase, ascorbate peroxidase, and superoxide dismutase activities than the astaxanthin-enriched resting cells. Mainly, a UVA dose of 4 J cm-2 induced increases in photosystem II electron transport rates (ETRmax) (+15%), phenolic compounds (+15%), astaxanthin (+ 48%), catalase (+45%), and superoxide dismutase (+30%) activities in vegetative cells. CONCLUSION The UVA-dose strongly stimulates the photosynthetic and antioxidant activities of vegetative cells, but only the accumulation of astaxanthin in resting cells. SIGNIFICANCE AND IMPACT OF THE STUDY These preliminary results show that oxidative stresses at sub-lethal levels can stimulate the activities of microalgae. Further investigations are needed to estimate the real influence on metabolite productivities in industrial production conditions.
Collapse
Affiliation(s)
- Meriem Ben Hamouda
- Nantes University, Oniris, CNRS, GEPEA, UMR 6144, Saint-Nazaire, France.,Research Laboratory LR14ES06: Integrative Biology and Bioresources Valorization BIOLIVAL, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia.,BioAlguesTunisie, El Alia, Ksour Essef, Mahdia, Tunisia
| | - Adnane Kacem
- Research Laboratory LR14ES06: Integrative Biology and Bioresources Valorization BIOLIVAL, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Lotfi Achour
- Research Laboratory LR14ES06: Integrative Biology and Bioresources Valorization BIOLIVAL, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | | | - Jack Legrand
- Nantes University, Oniris, CNRS, GEPEA, UMR 6144, Saint-Nazaire, France
| | - Dominique Grizeau
- Nantes University, Oniris, CNRS, GEPEA, UMR 6144, Saint-Nazaire, France
| | - Catherine Dupre
- Nantes University, Oniris, CNRS, GEPEA, UMR 6144, Saint-Nazaire, France
| |
Collapse
|
17
|
Mazzelli A, Valentini M, Cicci A, Iaquaniello G, Bravi M. Industrial bio-fractionation process of microalgae valuable products using supercritical CO2. A techno-economical evaluation. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Software tools for microalgae biorefineries: Cultivation, separation, conversion process integration, modeling, and optimization. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Venkata Subhash G, Rajvanshi M, Raja Krishna Kumar G, Shankar Sagaram U, Prasad V, Govindachary S, Dasgupta S. Challenges in microalgal biofuel production: A perspective on techno economic feasibility under biorefinery stratagem. BIORESOURCE TECHNOLOGY 2022; 343:126155. [PMID: 34673195 DOI: 10.1016/j.biortech.2021.126155] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Rapidly exhausting fossil fuels combined with the ever-increasing demand for energy led to an ongoing search for alternative energy sources to meet the transportation, manufacturing, domestic and other energy demands of the grown population. Microalgae are at the forefront of alternative energy research due to their significant potential as a renewable feedstock for biofuels. However, microalgae platforms have not found a way into industrial-scale bioenergy production due to various technical and economic constraints. The present review provides a detailed overview of the challenges in microalgae production processes for bioenergy purposes with supporting techno-economic assessments related to microalgae cultivation, harvesting and downstream processes required for crude oil or biofuel production. In addition, biorefinery approaches that can valorize the by-products or co-products in microalgae production and enhance the techno-economics of the production process are discussed.
Collapse
Affiliation(s)
- G Venkata Subhash
- Reliance Research and Development Centre, Reliance Corporate Park, Thane-Belapur Road, NaviMumbai 400701, India.
| | - Meghna Rajvanshi
- Reliance Research and Development Centre, Reliance Corporate Park, Thane-Belapur Road, NaviMumbai 400701, India
| | - G Raja Krishna Kumar
- Reliance Research and Development Centre, Reliance Corporate Park, Thane-Belapur Road, NaviMumbai 400701, India
| | - Uma Shankar Sagaram
- Reliance Research and Development Centre, Reliance Corporate Park, Thane-Belapur Road, NaviMumbai 400701, India
| | - Venkatesh Prasad
- Reliance Research and Development Centre, Reliance Corporate Park, Thane-Belapur Road, NaviMumbai 400701, India
| | - Sridharan Govindachary
- Reliance Research and Development Centre, Reliance Corporate Park, Thane-Belapur Road, NaviMumbai 400701, India
| | - Santanu Dasgupta
- Reliance Research and Development Centre, Reliance Corporate Park, Thane-Belapur Road, NaviMumbai 400701, India
| |
Collapse
|
20
|
D'Elia L, Imbimbo P, Liberti D, Bolinesi F, Mangoni O, Pollio A, Olivieri G, Monti DM. Thermo resistant antioxidants from photoautotrophic microorganisms: screening and characterization. World J Microbiol Biotechnol 2021; 37:215. [PMID: 34762205 DOI: 10.1007/s11274-021-03180-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
The demand for natural antioxidants to be used in food industry is increasing, as synthetic antioxidants are toxic and have high production costs. Specifically, food processing and preservation require antioxidants resistant to thermal sterilization processes. In this study, twenty-five strains among microalgae and cyanobacteria were screened as antioxidants producers. The species Enallax sp., Synechococcus bigranulatus and Galdieria sulphuraria showed the highest content of chlorophyll a and total carotenoids. In vitro stability and antioxidant activity of the ethanolic extracts were performed. The results revealed that pigments present in the extracts, obtained from the previously mentioned species, were stable at room temperature and exhibited in vitro free radical scavenging potential with IC50 values of 0.099 ± 0.001, 0.048 ± 0.001 and 0.13 ± 0.02 mg mL-1, respectively. Biocompatibility assay showed that the extracts were not toxic on immortalized cell lines. The antioxidant activity was also tested on a cell-based model by measuring intracellular ROS levels after sodium arsenite treatment. Noteworthy, extracts were able to exert the same protective effect, before and after the pasteurization process. Results clearly indicate the feasibility of obtaining biologically active and thermostable antioxidants from microalgae. Green solvents can be used to obtain thermo-resistant antioxidants from cyanobacteria and microalgae which can be used in the food industry. Thus, the substitution of synthetic pigments with natural ones is now practicable.
Collapse
Affiliation(s)
- Luigi D'Elia
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Davide Liberti
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Francesco Bolinesi
- Department of Biology, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Olga Mangoni
- Department of Biology, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Antonino Pollio
- Department of Biology, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Giuseppe Olivieri
- Bioprocess Engineering Group, Wageningen University and Research, Droevendaalsesteeg 1, 6700AA, Wageningen, The Netherlands. .,Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, Piazzale Tecchio 80, 80125, Naples, Italy.
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy.
| |
Collapse
|
21
|
Mehariya S, Goswami RK, Karthikeysan OP, Verma P. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. CHEMOSPHERE 2021; 280:130553. [PMID: 33940454 DOI: 10.1016/j.chemosphere.2021.130553] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Microalgae is a renewable bioresource with the potential to replace the conventional fossil-based industrial production of organic chemicals and pharmaceuticals. Moreover, the microalgal biomass contains carotenoids, vitamins, and other biomolecules that are widely used as food supplements. However, the microalgal biomass production, their composition variations, energy-intensive harvesting methods, optimized bio-refinery routes, and lack of techno-economic analysis are the major bottleneck for the life-sized commercialization of this nascent bio-industry. This review discusses the microalgae-derived key bioactive compounds and their applications in different sectors for human health. Furthermore, this review proposes advanced strategies to enhance the productivity of bioactive compounds and highlight the key challenges associated with a safety issue for use of microalgae biomass. It also provides a detailed global scenario and market demand of microalgal bioproducts. In conclusion, this review will provide the concept of microalgal biorefinery to produce bioactive compounds at industrial scale platform for their application in the nutraceutical and pharmaceutical sector considering their current and future market trends.
Collapse
Affiliation(s)
- Sanjeet Mehariya
- Department of Engineering, University of Campania "Luigi Vanvitelli", Real Casa Dell'Annunziata, Via Roma 29, 81031, Aversa, CE, Italy; Department of Chemistry, Umeå University, 90187, Umeå, Sweden
| | - Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Obulisamy Parthiba Karthikeysan
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA; Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA.
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
22
|
Eppink MHM, Ventura SPM, Coutinho JAP, Wijffels RH. Multiproduct Microalgae Biorefineries Mediated by Ionic Liquids. Trends Biotechnol 2021; 39:1131-1143. [PMID: 33726917 DOI: 10.1016/j.tibtech.2021.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/30/2022]
Abstract
Ionic liquids (ILs) are salts with low melting points that can be used as solvents for mild extraction and selective fractionation of biomolecules (e.g., proteins, carbohydrates, lipids, and pigments), enabling the valorisation of microalgal biomass in a multiproduct biorefinery concept, while maintaining the biomolecules' structural integrity and activity. Aqueous biphasic systems and emulsions stabilised by core-shell particles have been used to fractionate disrupted microalgal biomass into hydrophobic (lipids and pigments) and hydrophilic (proteins and carbohydrates) components. From nondisrupted biomass, the hydrophobic components can be directly extracted using ILs from intact cells, while the most fragile hydrophilic components can be obtained upon further mechanical cell disruption. These multiproduct biorefinery concepts will be discussed in an outlook on future separations using IL-based systems.
Collapse
Affiliation(s)
- Michel H M Eppink
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16 6700, AA, Wageningen, The Netherlands.
| | - Sónia P M Ventura
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Portugal
| | - João A P Coutinho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Portugal
| | - Rene H Wijffels
- Bioprocess Engineering, AlgaePARC, Wageningen University, P.O. Box 16 6700, AA, Wageningen, The Netherlands; Nord University, Faculty of Biosciences and Aquaculture, N-8049, Bodø, Norway
| |
Collapse
|