1
|
Nallakumarasamy A, Shrivastava S, Rangarajan RV, Jeyaraman N, Devadas AG, Ramasubramanian S, Jeyaraman M. Optimizing bone marrow harvesting sites for enhanced mesenchymal stem cell yield and efficacy in knee osteoarthritis treatment. World J Methodol 2025; 15:101458. [DOI: 10.5662/wjm.v15.i2.101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024] Open
Abstract
Knee osteoarthritis (OA) is a debilitating condition with limited long-term treatment options. The therapeutic potential of mesenchymal stem cells (MSCs), particularly those derived from bone marrow aspirate concentrate, has garnered attention for cartilage repair in OA. While the iliac crest is the traditional site for bone marrow harvesting (BMH), associated morbidity has prompted the exploration of alternative sites such as the proximal tibia, distal femur, and proximal humerus. This paper reviews the impact of different harvesting sites on mesenchymal stem cell (MSC) yield, viability, and regenerative potential, emphasizing their relevance in knee OA treatment. The iliac crest consistently offers the highest MSC yield, but alternative sites within the surgical field of knee procedures offer comparable MSC characteristics with reduced morbidity. The integration of harvesting techniques into existing knee surgeries, such as total knee arthroplasty, provides a less invasive approach while maintaining therapeutic efficacy. However, variability in MSC yield from these alternative sites underscores the need for further research to standardize techniques and optimize clinical outcomes. Future directions include large-scale comparative studies, advanced characterization of MSCs, and the development of personalized harvesting strategies. Ultimately, the findings suggest that optimizing the site of BMH can significantly influence the quality of MSC-based therapies for knee OA, enhancing their clinical utility and patient outcomes.
Collapse
Affiliation(s)
- Arulkumar Nallakumarasamy
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Sandeep Shrivastava
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
| | - Ravi Velamoor Rangarajan
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, Datta Meghe Institute of Higher Education and Research, Wardha 442004, Maharashtra, India
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Avinash Gandi Devadas
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Regenerative Medicine, Mother Cell Regenerative Centre, Tiruchirappalli 620017, Tamil Nadu, India
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
2
|
Naranđa J, Bračič M, Maver U, Trojner T. Recent Advancements in Smart Hydrogel-Based Materials in Cartilage Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2025; 18:2576. [PMID: 40508573 PMCID: PMC12155638 DOI: 10.3390/ma18112576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/22/2025] [Accepted: 05/27/2025] [Indexed: 06/16/2025]
Abstract
Cartilage tissue engineering (CTE) is an advancing field focused on developing biomimetic scaffolds to overcome cartilage's inherently limited self-repair capacity. Smart hydrogels (SHs) have gained prominence among the various scaffold materials due to their ability to modulate cellular behavior through tunable mechanical and biochemical properties. These hydrogels respond dynamically to external stimuli, offering precise control over biological processes and facilitating targeted tissue regeneration. Recent advances in fabrication technologies have enabled the design of SHs with sophisticated architecture, improved mechanical strength, and enhanced biointegration. Key features such as injectability, controlled biodegradability, and stimulus-dependent release of biomolecules make them particularly suitable for regenerative applications. The incorporation of nanoparticles further improves mechanical performance and delivery capability. In addition, shape memory and self-healing properties contribute to the scaffolds' resilience and adaptability in dynamic physiological environments. An emerging innovation in this area is integrating artificial intelligence (AI) and omics-based approaches that enable high-resolution profiling of cellular responses to engineered hydrogels. These data-driven tools support the rational design and optimization of hydrogel systems and allow the development of more effective and personalized scaffolds. The convergence of smart hydrogel technologies with omics insights represents a transformative step in regenerative medicine and offers promising strategies for restoring cartilage function.
Collapse
Affiliation(s)
- Jakob Naranđa
- Department of Orthopaedics, University Medical Centre Maribor, SI-2000 Maribor, Slovenia;
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Matej Bračič
- Faculty of Mechanical Engineering, University of Maribor, SI-2000 Maribor, Slovenia;
| | - Uroš Maver
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Teodor Trojner
- Department of Orthopaedics, University Medical Centre Maribor, SI-2000 Maribor, Slovenia;
| |
Collapse
|
3
|
Fareed MM, Shityakov S. Next-Generation Hydrogel Design: Computational Advances in Synthesis, Characterization, and Biomedical Applications. Polymers (Basel) 2025; 17:1373. [PMID: 40430669 PMCID: PMC12115241 DOI: 10.3390/polym17101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Hydrogels are pivotal in advanced materials, driving innovations in medical fields, such as targeted drug delivery, regenerative medicine, and skin repair. This systematic review explores the transformative impact of in-silico design on hydrogel development, leveraging computational tools such as molecular dynamics, finite element modeling, and artificial intelligence to optimize synthesis, characterization, and performance. We analyze cutting-edge strategies for tailoring the physicochemical properties of hydrogels, including their mechanical strength, biocompatibility, and stimulus responsiveness, to meet the needs of next-generation biomedical applications. By integrating machine learning and computational modeling with experimental validation, this review highlights how in silico approaches accelerate material innovation, addressing challenges and outlining future directions for scalable, personalized hydrogel solutions in regenerative medicine and beyond.
Collapse
Affiliation(s)
- Muhammad Mazhar Fareed
- Department of Computer Science, School of Science and Engineering, Università Degli Studi di Verona, 37134 Verona, Italy;
| | - Sergey Shityakov
- Laboratory of Bioinformatics, Department of Bioinformatics, Biocenter, Würzburg University, 97080 Würzburg, Germany
| |
Collapse
|
4
|
Pompa-Monroy DA, Vera-Graziano R, Dastager SG, Pérez-González GL, Bogdanchikova N, Iglesias AL, Villarreal-Gómez LJ. Low-cost gelatin/collagen scaffolds for bacterial growth in bioreactors for biotechnology. Appl Microbiol Biotechnol 2025; 109:113. [PMID: 40338308 PMCID: PMC12062099 DOI: 10.1007/s00253-025-13491-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/25/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025]
Abstract
A wide array of pharmaceutical and industrial products available in today's market stems from bioreactors. Meeting the escalating demand for these products necessitates significant enhancements in biotechnological processes. This study focuses on developing cost-effective scaffolds designed explicitly for use within bioreactors, employing commonly used polymers such as gelatin and collagen. Bacterial proliferation assays involving Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa were conducted to assess the effectiveness of these scaffolds. The scaffolds were produced by electrospinning polymeric solutions with varying concentrations of gelatin and collagen and were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Results revealed that scaffolds with 15% gelatin increased the 24-h proliferation of S. aureus, P. aeruginosa, and E. coli by 52%, 35%, and 20%, respectively. In the case of E. coli, scaffolds with lower gelatin concentrations (1-10%) were more effective, leading to 35-55% proliferation growth. These findings highlight the potential application of gelatin/collagen scaffolds in fabricating industrial products derived from these bacteria. KEY POINTS: • GEL/COL fibers boost S. aureus growth by 128% • Offers scalable biotech applications.
Collapse
Affiliation(s)
| | - Ricardo Vera-Graziano
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CDMX, México
| | - Syed G Dastager
- National Collection of Industrial Microorganisms (NCIM), CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Graciela Lizeth Pérez-González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Nina Bogdanchikova
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada, Baja California, México.
| | - Ana Leticia Iglesias
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana, Baja California, México.
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana, Baja California, México.
| |
Collapse
|
5
|
Pueyo Moliner A, Ito K, Zaucke F, Kelly DJ, de Ruijter M, Malda J. Restoring articular cartilage: insights from structure, composition and development. Nat Rev Rheumatol 2025; 21:291-308. [PMID: 40155694 DOI: 10.1038/s41584-025-01236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 04/01/2025]
Abstract
Articular cartilage can withstand substantial compressive and shear forces within the joint and also reduces friction during motion. The exceptional mechanical properties of articular cartilage stem from its highly organized extracellular matrix (ECM). The ECM is composed mainly of collagen type II and is pivotal in conferring mechanical durability to the tissue within its proteoglycan-rich matrix. Articular cartilage is prone to injury and degeneration, and current treatments often fail to restore the mechanical function of this tissue. A key challenge is replicating the intricate collagen-proteoglycan network, which is essential for the long-lasting restoration and mechanical durability of the tissue. Understanding articular cartilage development, which arises between late embryonic and early juvenile development, is vital for the creation of durable therapeutic strategies. The development of the articular ECM involves the biosynthesis, fibrillogenesis and self-assembly of the collagen type II network, which, along with proteoglycans and minor ECM components, shapes the architecture of adult articular cartilage. A deeper understanding of these processes could inform biomaterial-based therapies aimed at improving therapeutic outcomes. Emerging biofabrication technologies offer new opportunities to integrate developmental principles into the creation of durable articular cartilage implants. Bridging fundamental biology with innovative engineering offers novel approaches to generating more-durable 3D implants for articular cartilage restoration.
Collapse
Affiliation(s)
- Alba Pueyo Moliner
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Keita Ito
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Frank Zaucke
- Department of Trauma Surgery and Orthopedics, Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mylène de Ruijter
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, the Netherlands.
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands.
- Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Ghahramanzadeh Asl H, Çelik Uzuner S, Çam S, Uzuner U. Evaluation of the mechanical properties and cell cultural behavior of diamond lattice scaffolds with different porosities. Proc Inst Mech Eng H 2025; 239:388-397. [PMID: 40152121 DOI: 10.1177/09544119251328434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Metal porous structures are a common treatment for bone tissue loss when the loss exceeds the self-repair capacity of the human body. The structural characteristics, mechanical properties, and biological behavior of scaffold biomaterials exert a significant influence on the formation of new bone cells. The objective of this study was to ascertain the mechanical and cell biological behavior of scaffold structures with four distinct porosities (60%, 70%, 80%, and 90%). Scaffold structures with a diamond lattice unit cell were manufactured by the selective laser melting method using a CoCr alloy powder with a diameter of 4 mm and a height of 5 mm and were then subjected to a static compression test. Subsequently, human gingival fibroblast cells were seeded into each sample via the cell culture process, and cell formation was observed. According to the results obtained from the compression test, the sample with 60% porosity demonstrated optimal mechanical performance and effective modulus of elasticity. In the cell culture process, the sample with 60% porosity exhibited the highest adherence rate.
Collapse
Affiliation(s)
- Hojjat Ghahramanzadeh Asl
- Department of Mechanical Engineering, Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey
| | - Selcen Çelik Uzuner
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Salim Çam
- Department of Mechanical Engineering, Faculty of Engineering, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Uğur Uzuner
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
7
|
Zhu Y, Liu Q, Yu C, Zhang H, Zhong J, Wang Y, Mei O, Gerhard E, You W, Shen G, Luo C, Wu X, Li J, Shu Y, Wen Y, Zeb U, Luu HH, Lee MJ, Shi LL, Bi Y, Yang J, Fan J, Reid RR, He T, Wen L. An Intervertebral Disc (IVD) Regeneration Model Using Human Nucleus Pulposus Cells (iHNPCs) and Annulus Fibrosus Cells (iHAFCs). Adv Healthc Mater 2025; 14:e2403742. [PMID: 40052622 PMCID: PMC12004445 DOI: 10.1002/adhm.202403742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Indexed: 04/18/2025]
Abstract
Intervertebral disc (IVD) degeneration (IVDD), primarily caused by nucleus pulposus (NP) dehydration, leads to low back pain. While current treatments focus on symptom management or surgical intervention, tissue engineering using IVD-derived cells, biofactors, and scaffolds offers a promising regenerative approach. Here, human NP cells (NPCs) and annulus fibrosus cells (AFCs) are immortalized with human telomerase reverse transcriptase (hTERT), generating immortalized NPCs (iHNPCs) and AFCs (iHAFCs). These cells express NP and AF-specific markers, are reversible via FLP recombinase, and are non-tumorigenic. iHAFCs exhibit osteogenic potential, while iHNPCs show chondrogenic differentiation. A 3D-printed citrate-based scaffold was employed to develop an IVD regeneration model, with BMP9-stimulated iHAFCs in the peripheral region and BMP2-stimulated iHNPCs in the central region. Histological analysis revealed bone formation in the iHAFC region and cartilage formation in the iHNPC region, mimicking the natural IVD structure. Additionally, an ex vivo spine fusion model demonstrated robust bone formation in iHAFC-treated segments. These findings highlight the potential of iHAFCs and iHNPCs as valuable tools for IVD tissue engineering and regeneration.
Collapse
|
8
|
Watcharajittanont N, Jatuworapruk K, Prarokijjak W, Sangsuwan P, Meesane J. Mimicking bone remodeling scaffolds of polyvinylalcohol/silk fibroin with phytoactive compound of soy protein isolate as surgical supporting biomaterials for tissue formation at defect area in osteoporosis; characterization, morphology, and in-vitrotesting. Biomed Mater 2025; 20:025046. [PMID: 39951896 DOI: 10.1088/1748-605x/adb66f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/14/2025] [Indexed: 02/17/2025]
Abstract
Mimicking bone remodeling scaffolds were developed as supportive biomaterials to promote tissue formation at defect sites in osteoporosis. Scaffolds made of polyvinyl alcohol (PVA) were mixed with varying weight ratios of silk fibroin (SF) and a phytoactive compound-based soy protein isolate (SPI); PVA30SF, PVA20SF10SPI, PVA15SF15SPI, PVA10SF20SPI, PVA30SPI. PVA was used as control. These components were mixed into aqueous solution and crosslinking with EDC before freeze thawing and freeze drying, respectively. Then, the scaffolds were characterized at the molecular level using Fourier transform infrared spectroscopy and their morphology was observed using scanning electron microscopy. Physical properties including swelling and degradation were tested, as well as mechanical properties like stress-strain behavior and modulus. The biological performance of the scaffolds was evaluated through osteoblast cell culturing, assessing cell viability, proliferation, alkaline phosphatase (ALP) activity, calcium content, and calcium deposition. The results demonstrate that the scaffolds with both SF and SPI had greater molecular mobility of -OH, amide I, II, and III groups, compared to the scaffold with only SF or SPI. These scaffolds also displayed larger pore sizes. Scaffolds with both SF and SPI showed higher swelling and degradation rates than those with only SF or SPI. Additionally, they exhibited better cell viability and calcium deposition, along with increased cell proliferation, ALP activity, and calcium content. Notably, the scaffold with a higher amount of SPI, PVA10SF20SPI, exhibited the most suitable performance for enhancing cell response, thereby promoting bone formation. This scaffold is proposed as a supportive biomaterial to be incorporated with plates and screws for bone fixation at defect sites in osteoporosis.
Collapse
Affiliation(s)
| | - Kanon Jatuworapruk
- Department of Medicine, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
| | - Worasak Prarokijjak
- Faculty of Learning Sciences and Education, Thammasat University, Pathumthani, Thailand
| | - Prawichaya Sangsuwan
- Molecular Biology and Bioinformatics Program, Biological Science Division, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Jirut Meesane
- Institute of Biomedical Engineering, Department of Biomedical Science and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
9
|
Patel K, Ozhava D, Mao Y. Expansion and Delivery of Human Chondrocytes on Gelatin-Based Cell Carriers. Gels 2025; 11:199. [PMID: 40136904 PMCID: PMC11942066 DOI: 10.3390/gels11030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Cartilage damage is common in sports injuries and cartilage-related diseases, such as degenerative joint and rheumatic disorders. Autologous chondrocyte implantation (ACI) is a widely used cell-based therapy for repairing cartilage damage in clinical practice. In this procedure, a patient's chondrocytes are isolated, cultured in vitro to expand the cell population, and then implanted into the damaged site. However, in vitro expansion of chondrocytes on standard 2D culture surfaces leads to dedifferentiation (loss of the chondrocyte phenotype), and the delivery of detached cells has proven to be ineffective. To overcome these limitations, the matrix-assisted ACI (MACI) procedure was developed. In MACI, matrices such as hydrogels and microspheres are used as cell carriers or scaffolds to deliver expanded chondrocytes, enhancing cell viability and precision delivery. To streamline the two key steps of MACI-cell expansion and delivery-this study aims to investigate various configurations of gelatin-based hydrogels for their potential to support both cell expansion and delivery as a single step. This study evaluated gelatin microspheres (Gel MS), micronized photo-crosslinked GelMA microparticles (GelMA MP), and bulky GelMA hydrogels containing cells (GelMA HG). Cell growth, maintenance of the chondrocyte phenotype, and cartilage extracellular matrix (ECM) production were assessed in pellet cultures for cells grown on/in these carriers, compared with cells cultured on tissue culture-treated polystyrene (TCP). Our results demonstrate that normal human knee articular chondrocytes exhibit robust growth on Gel MS and form aggregates enriched with glycosaminoglycan-rich ECM. Gel MS outperformed both GelMA MP and GelMA HG as a cell carrier by both supporting long-term cell growth with reduced dedifferentiation and precision delivery.
Collapse
Affiliation(s)
| | | | - Yong Mao
- Laboratory for Biomaterials Research, Department of Chemistry and Chemical Biology, Rutgers University, 145 Bevier Rd., Piscataway, NJ 08854, USA; (K.P.); (D.O.)
| |
Collapse
|
10
|
Athiviraham A. Editorial Commentary: Three-Dimensional-Printed Biphasic (Osteochondral) Scaffolds Delivering Autologous Chondrocytes Hold Clinical Promise. Arthroscopy 2025; 41:700-702. [PMID: 38866377 DOI: 10.1016/j.arthro.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Three-dimensional-printed biphasic scaffolds combine autologous chondrocytes for effective cartilage repair. A recent study demonstrated promising short-term outcomes for biphasic scaffolds compared with traditional marrow-stimulation techniques, although long-term durability and appropriate control comparisons remain concerns. Scaffold materials can include polysaccharides (e.g., alginate, hyaluronic acid, and chitosan) and proteins (e.g., collagen, gelatin, and fibronectin). They also may be combined with other classes of materials to improve their mechanical properties and bioactivity. Synthetic polymers include polyethylene glycol and poly(lactic-co-glycolic acid), among many others. Challenges of these scaffold materials include biocompatibility, inadequate integration, and variability in clinical outcomes. Delivering autologous minced chondrocytes via a biphasic scaffold consisting of poly(lactic-co-glycolic acid) for the chondral phase and β-tricalcium phosphate for the osseous phase is a promising technology.
Collapse
|
11
|
Saiz Culma JJ, Guevara Morales JM, Hata Uribe YA, Garzón-Alvarado DA, Leal-Marin S, Glasmacher B, Vaca-González JJ. Effects of electric fields on the modulation of chondrocytes dynamics in gelatin scaffolds: a novel approach to optimize cartilage tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-20. [PMID: 39998819 DOI: 10.1080/09205063.2025.2466971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
The treatment of degenerative pathologies affecting articular cartilage remains a significant clinical challenge. Non-invasive biophysical stimuli, such as electric fields, have demonstrated potential as therapeutic tools for cartilage tissue restoration. Previous studies have reported that electric fields enhance chondrocyte proliferation and the synthesis of key extracellular matrix components, such as glycosaminoglycans. However, inconsistencies in experimental designs have led to variable findings. This study examines the effects of capacitively coupled electric fields on chondrocytes cultured in gelatin hydrogels. Alternating voltages of 50 V (7.7 mV/cm) and 100 V (8.7 mV/cm) at a frequency of 60 kHz were applied for 21 days. Cell quantification and glycosaminoglycan analysis were performed on both stimulated and control samples. On day 7, exposure to the electric field resulted in a significant reduction in cell proliferation by 24.7% and 39.2% at 7.7 mV/cm and 8.7 mV/cm, respectively (p < 0.05). However, stimulation at 8.7 mV/cm led to a 35.7% increase in glycosaminoglycan synthesis compared to the control group (p < 0.05). These findings indicate that electric field stimulation can modulate the synthesis of essential extracellular matrix components, such as glycosaminoglycans, in hyaline cartilage. This highlights the potential of electric fields as a promising strategy to enhance outcomes in articular cartilage tissue engineering, particularly in hydrogel-based therapeutic approaches.
Collapse
Affiliation(s)
- Juan José Saiz Culma
- Biomimetics Laboratory, Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Yoshie Adriana Hata Uribe
- Biomimetics Laboratory, Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diego Alexander Garzón-Alvarado
- Biomimetics Laboratory, Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sara Leal-Marin
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Juan Jairo Vaca-González
- Biomimetics Laboratory, Biotechnology Institute, Universidad Nacional de Colombia, Bogotá, Colombia
- Numerical Methods and Modeling Research Group (GNUM), Universidad Nacional de Colombia, Bogotá, Colombia
- Grupo de investigación Biodiversidad para la Sociedad, Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, Cesar, Colombia
| |
Collapse
|
12
|
Bunin A, Harari-Steinberg O, Kam D, Kuperman T, Friedman-Gohas M, Shalmon B, Larush L, Duvdevani SI, Magdassi S. Digital light processing printing of non-modified protein-only compositions. Mater Today Bio 2025; 30:101384. [PMID: 39790486 PMCID: PMC11714671 DOI: 10.1016/j.mtbio.2024.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
This study explores the utilization of digital light processing (DLP) printing to fabricate complex structures using native gelatin as the sole structural component for applications in biological implants. Unlike approaches relying on synthetic materials or chemically modified biopolymers, this research harnesses the inherent properties of gelatin to create biocompatible structures. The printing process is based on a crosslinking mechanism using a di-tyrosine formation initiated by visible light irradiation. Formulations containing gelatin were found to be printable at the maximum documented concentration of 30 wt%, thus allowing the fabrication of overhanging objects and open embedded. Cell adhesion and growth onto and within the gelatin-based 3D constructs were evaluated by examining two implant fabrication techniques: (1) cell seeding onto the printed scaffold and (2) printing compositions that contain cells (cell-laden). The preliminary biological experiments indicate that both the cell-seeding and cell-laden strategies enable making 3D cultures of chondrocytes within the gelatin constructs. The mechanical properties of the gelatin scaffolds have a compressive modulus akin to soft tissues, thus enabling the growth and proliferation of cells, and later degrade as the cells differentiate and form a grown cartilage. This study underscores the potential of utilizing non-modified protein-only bioinks in DLP printing to produce intricate 3D objects with high fidelity, paving the way for advancements in regenerative tissue engineering.
Collapse
Affiliation(s)
- Ayelet Bunin
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Orit Harari-Steinberg
- Tissue Engineering Research Laboratory, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
| | - Doron Kam
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Tatyana Kuperman
- Tissue Engineering Research Laboratory, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
| | - Moran Friedman-Gohas
- Tissue Engineering Research Laboratory, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
| | - Bruria Shalmon
- Tissue Engineering Research Laboratory, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
- Department of pathology, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Liraz Larush
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Shay I. Duvdevani
- Tissue Engineering Research Laboratory, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel
- Department of Otorhinolaryngology, Head and Neck Surgery, Sheba Medical Center, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Shlomo Magdassi
- Institute of Chemistry and Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
13
|
Shen C, Zhou Z, Li R, Yang S, Zhou D, Zhou F, Geng Z, Su J. Silk fibroin-based hydrogels for cartilage organoids in osteoarthritis treatment. Theranostics 2025; 15:560-584. [PMID: 39744693 PMCID: PMC11671376 DOI: 10.7150/thno.103491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/06/2024] [Indexed: 01/11/2025] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by cartilage degeneration. It can cause severe pain, deformity and even amputation risk. However, existing clinical treatment methods for cartilage repair present certain deficiencies. Meanwhile, the repair effect of cartilage tissue engineering is also unsatisfactory. Cartilage organoids are multicellular aggregates with cartilage-like three-dimensional structure and function. On the one hand, cartilage organoids can be used to explore the pathogenesis of OA by constructing disease models. On the other hand, it can be used as filler for rapid cartilage repair. Extracellular matrix (ECM)-like three-dimensional environment is the key to construct cartilage organoids. Silk fibroin (SF)-based hydrogels not only have ECM-like structure, but also have unique mechanical properties and remarkable biocompatibility. Therefore, SF-based hydrogels are considered as ideal biomaterials for constructing cartilage organoids. In this review, we reviewed the studies of cartilage organoids and SF-based hydrogels. The advantages of SF-based hydrogels in constructing cartilage organoids and the iterative optimization of cartilage organoids through designing hydrogels by using artificial intelligence (AI) calculation are also discussed. This review aims to provide a theoretical basis for the treatment of OA using SF-based biomaterials and cartilage organoids.
Collapse
Affiliation(s)
- Congyi Shen
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ziyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ruiyang Li
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shike Yang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Anesthesiology, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Dongyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
14
|
Lin X, Zhang Y, Li J, Oliver BG, Wang B, Li H, Yong KT, Li JJ. Biomimetic multizonal scaffolds for the reconstruction of zonal articular cartilage in chondral and osteochondral defects. Bioact Mater 2025; 43:510-549. [PMID: 40115881 PMCID: PMC11923379 DOI: 10.1016/j.bioactmat.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 03/23/2025] Open
Abstract
Chondral and osteochondral injuries are frequently encountered in clinical practice. However, articular cartilage has limited self-healing capacity due to its sophisticated zonal structure and avascular nature, introducing significant challenges to the restoration of chondral and osteochondral tissues after injury. Improperly repaired articular cartilage can lead to irreversible joint damage and increase the risk of osteoarthritis progression. Cartilage tissue engineering using stratified scaffolds with multizonal design to match the zonal structure of articular cartilage may help to meet the complex regeneration requirements of chondral and osteochondral tissues, and address the drawbacks experienced with single-phase scaffolds. Navigating the heterogeneity in matrix organisation and cellular composition across cartilage zones is a central consideration in multizonal scaffold design. With emphasis on recent advances in scaffold design and fabrication strategies, this review captures emerging approaches on biomimetic multizonal scaffolds for the reconstruction of zonal articular cartilage, including strategies on replicating native tissue structure through variations in fibre orientation, porous structure, and cell types. Exciting progress in this dynamic field has highlighted the tremendous potential of multizonal scaffolding strategies for regenerative medicine in the recreation of functional tissues.
Collapse
Affiliation(s)
- Xiaoqi Lin
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Ye Zhang
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, 2007, Australia
| | - Jiarong Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Macquarie Park, NSW, 2113, Australia
| | - Bin Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Haiyan Li
- Chemical and Environmental Engineering Department, School of Engineering, STEM College, RMIT University, Melbourne, VIC, 3000, Australia
| | - Ken-Tye Yong
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Macquarie Park, NSW, 2113, Australia
| |
Collapse
|
15
|
Sawyer M, Semodji A, Nielson O, Rektor A, Burgoyne H, Eppel M, Eixenberger J, Montenegro-Brown R, Nelson ML, Lujan T, Estrada D. Direct Scaffold-Coupled Electrical Stimulation of Chondrogenic Progenitor Cells through Graphene Foam Bioscaffolds to Control Mechanical Properties of Graphene Foam - Cell Composites. RESEARCH SQUARE 2024:rs.3.rs-5589589. [PMID: 39764126 PMCID: PMC11703340 DOI: 10.21203/rs.3.rs-5589589/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Osteoarthritis, a major global cause of pain and disability, is driven by the irreversible degradation of hyaline cartilage in joints. Cartilage tissue engineering presents a promising therapeutic avenue, but success hinges on replicating the native physiological environment to guide cellular behavior and generate tissue constructs that mimic natural cartilage. Although electrical stimulation has been shown to enhance chondrogenesis and extracellular matrix production in 2D cultures, the mechanisms underlying these effects remain poorly understood, particularly in 3D models. Here, we report that direct scaffold-coupled electrical stimulation applied to 3D graphene foam bioscaffolds significantly enhances the mechanical properties of the resulting graphene foam - cell constructs. Using custom 3D-printed electrical stimulus chambers, we applied biphasic square impulses (20, 40, 60 mVpp at 1 kHz) for 5 minutes daily over 7 days. Stimulation at 60 mVpp increased the steady-state energy dissipation and equilibrium modulus by approximately 65% and 25%, respectively, compared to unstimulated controls, while also yielding the highest cell density among stimulated samples. In addition, our custom chambers facilitated full submersion of the hydrophobic graphene foam in media, leading to enhanced cell attachment and integration across the scaffold surface and within its hollow branches. To assess this cellular integration, we employed co-localized confocal fluorescence microscopy and X-ray microCT imaging enabled by colloidal gold nanoparticle and fluorophore staining, which allowed visualization of cell distribution within the opaque scaffold's internal structure. These findings highlight the potential of direct scaffold-coupled electrical stimulus to modulate the mechanical properties of engineered tissues and offer new insights into the emergent behavior of cells within conductive 3D bioscaffolds.
Collapse
|
16
|
Gull A, Hussain T, Islam A, Ara C. Copper functionalized, pro-angiogenic, and skin regenerative scaffolds based on novel chitosan/APDEMS modified sepiolite-based formulation. Int J Biol Macromol 2024; 283:137538. [PMID: 39542317 DOI: 10.1016/j.ijbiomac.2024.137538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Biomaterials-based scaffolds are extensively explored for their proangiogenic and tissue regenerative abilities. The present study aimed to develop wound healing scaffolds based on chitosan/aminopropyldiethoxymethylsilane (APDEMS) modified sepiolite, loaded with copper (0-0.25 g), characterized by FTIR, SEM, mechanical, TGA and analyzed biomedically. The FTIR and SEM confirmed the silane-induced cross-linking and incorporation of copper leading to better dispersion of individual components in the scaffolds. Based on other physicochemical observations, the best scaffold was CS/MS/Cu0.1 (99.5 % increased Young's modulus compared to chitosan, maximum swelling = 900 %, equilibrium time = 70 min); So, CS/MS/Cu0.1 and 0.25 were chosen for further analysis. The CAM assay showed significantly increased angiogenesis in CS/MS/Cu0.1 and 0.25 groups, lacking any developmental anomalies in chick embryos, at lower copper concentrations. The scaffolds' wound healing potential and in-vivo toxicity were assessed by wound excision and histopathology of various organs in mice, respectively. The rate of wound contraction in the CS/MS/Cu0.1 group was significantly (P < 0.05) greater than the control. The abovementioned results corroborated the histological and biochemical findings regarding more collagen deposition in regenerated skin sections and insignificant deviations in biochemical parameters of treated mice, respectively. The formulated biomaterials have proven promising materials for promoting angiogenesis in chick models and accelerating regeneration in mice skin.
Collapse
Affiliation(s)
- Aysha Gull
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Tajamal Hussain
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Atif Islam
- School of Chemistry, University of the Punjab, Lahore, Pakistan; Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, Pakistan.
| | - Chaman Ara
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
17
|
Wu KC, Chang YH, Ding DC, Lin SZ. Mesenchymal Stromal Cells for Aging Cartilage Regeneration: A Review. Int J Mol Sci 2024; 25:12911. [PMID: 39684619 PMCID: PMC11641625 DOI: 10.3390/ijms252312911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cartilage degeneration is a key feature of aging and osteoarthritis, characterized by the progressive deterioration of joint function, pain, and limited mobility. Current treatments focus on symptom relief, not cartilage regeneration. Mesenchymal stromal cells (MSCs) offer a promising therapeutic option due to their capability to differentiate into chondrocytes, modulate inflammation, and promote tissue regeneration. This review explores the potential of MSCs for cartilage regeneration, examining their biological properties, action mechanisms, and applications in preclinical and clinical settings. MSCs derived from bone marrow, adipose tissue, and other sources can self-renew and differentiate into multiple cell types. In aging cartilage, they aid in tissue regeneration by secreting growth factors and cytokines that enhance repair and modulate immune responses. Recent preclinical studies show that MSCs can restore cartilage integrity, reduce inflammation, and improve joint function, although clinical translation remains challenging due to limitations such as cell viability, scalability, and regulatory concerns. Advancements in MSC delivery, including scaffold-based approaches and engineered exosomes, may improve therapeutic effectiveness. Potential risks, such as tumorigenicity and immune rejection, are also discussed, emphasizing the need for optimized treatment protocols and large-scale clinical trials to develop effective, minimally invasive therapies for cartilage regeneration.
Collapse
Affiliation(s)
- Kun-Chi Wu
- Department of Orthopedics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Yu-Hsun Chang
- Department of Pediatrics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan;
| | - Dah-Ching Ding
- Department of Obstetrics and Gynecology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
- Institute of Medical Sciences, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Shinn-Zong Lin
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
18
|
Galocha-León C, Antich C, Clares-Naveros B, Voltes-Martínez A, Marchal JA, Gálvez-Martín P. Design and Characterization of Biomimetic Hybrid Construct Based on Hyaluronic Acid and Alginate Bioink for Regeneration of Articular Cartilage. Pharmaceutics 2024; 16:1422. [PMID: 39598545 PMCID: PMC11597687 DOI: 10.3390/pharmaceutics16111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Three-dimensional bioprinting technology has enabled great advances in the treatment of articular cartilage (AC) defects by the biofabrication of biomimetic constructs that restore and/or regenerate damaged tissue. In this sense, the selection of suitable cells and biomaterials to bioprint constructs that mimic the architecture, composition, and functionality of the natural extracellular matrix (ECM) of the native tissue is crucial. In the present study, a novel cartilage-like biomimetic hybrid construct (CBC) was developed by 3D bioprinting to facilitate and promote AC regeneration. Methods: The CBC was biofabricated by the co-bioprinting of a bioink based on hyaluronic acid (HA) and alginate (AL) loaded with human mesenchymal stromal cells (hMSCs), with polylactic acid supporting the biomaterial, in order to mimic the microenvironment and structural properties of native AC, respectively. The CBC was biologically in vitro characterized. In addition, its physiochemical characteristics were evaluated in order to determine if the presence of hMSCs modified its properties. Results: Results from biological analysis demonstrated that CBC supported the high viability and proliferation of hMSCs, facilitating chondrogenesis after 5 weeks in vitro. The evaluation of physicochemical properties in the CBCs confirmed that the CBC developed could be suitable for use in cartilage tissue engineering. Conclusions: The results demonstrated that the use of bioprinted CBCs based on hMSC-AL/HA-bioink for AC repair could enhance the regeneration and/or formation of hyaline cartilaginous tissue.
Collapse
Affiliation(s)
- Cristina Galocha-León
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain; (C.G.-L.); (B.C.-N.)
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (C.A.); (A.V.-M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital of Granada, University of Granada, E-18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18071 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio) Printing Laboratory, University of Granada, E-18100 Granada, Spain
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain; (C.G.-L.); (B.C.-N.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital of Granada, University of Granada, E-18100 Granada, Spain
| | - Ana Voltes-Martínez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (C.A.); (A.V.-M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital of Granada, University of Granada, E-18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18071 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio) Printing Laboratory, University of Granada, E-18100 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain; (C.A.); (A.V.-M.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospital of Granada, University of Granada, E-18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18071 Granada, Spain
- BioFab i3D—Biofabrication and 3D (Bio) Printing Laboratory, University of Granada, E-18100 Granada, Spain
| | | |
Collapse
|
19
|
Mikaeeli Kangarshahi B, Naghib SM, Rabiee N. 3D printing and computer-aided design techniques for drug delivery scaffolds in tissue engineering. Expert Opin Drug Deliv 2024; 21:1615-1636. [PMID: 39323396 DOI: 10.1080/17425247.2024.2409913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION The challenge in tissue engineering lies in replicating the intricate structure of the native extracellular matrix. Recent advancements in AM, notably 3D printing, offer unprecedented capabilities to tailor scaffolds precisely, controlling properties like structure and bioactivity. CAD tools complement this by facilitating design using patient-specific data. AREA’S COVERED This review introduces additive manufacturing (AM) and computer-aided design (CAD) as pivotal tools in advancing tissue engineering, particularly cartilage regeneration. This article explores various materials utilized in AM, focusing on polymers and hydrogels for their advantageous properties in tissue engineering applications. Integrating bioactive molecules, including growth factors, into scaffolds to promote tissue regeneration is discussed alongside strategies involving different cell sources, such as stem cells, to enhance tissue development within scaffold matrices. EXPERT OPINION Applications of AM and CAD in addressing specific challenges like osteochondral defects and osteoarthritis in cartilage tissue engineering are highlighted. This review consolidates current research findings, offering expert insights into the evolving landscape of AM and CAD technologies in advancing tissue engineering, particularly in cartilage regeneration.
Collapse
Affiliation(s)
- Babak Mikaeeli Kangarshahi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
20
|
Park S, Rahaman KA, Kim YC, Jeon H, Han HS. Fostering tissue engineering and regenerative medicine to treat musculoskeletal disorders in bone and muscle. Bioact Mater 2024; 40:345-365. [PMID: 38978804 PMCID: PMC11228556 DOI: 10.1016/j.bioactmat.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
The musculoskeletal system, which is vital for movement, support, and protection, can be impaired by disorders such as osteoporosis, osteoarthritis, and muscular dystrophy. This review focuses on the advances in tissue engineering and regenerative medicine, specifically aimed at alleviating these disorders. It explores the roles of cell therapy, particularly Mesenchymal Stem Cells (MSCs) and Adipose-Derived Stem Cells (ADSCs), biomaterials, and biomolecules/external stimulations in fostering bone and muscle regeneration. The current research underscores the potential of MSCs and ADSCs despite the persistent challenges of cell scarcity, inconsistent outcomes, and safety concerns. Moreover, integrating exogenous materials such as scaffolds and external stimuli like electrical stimulation and growth factors shows promise in enhancing musculoskeletal regeneration. This review emphasizes the need for comprehensive studies and adopting innovative techniques together to refine and advance these multi-therapeutic strategies, ultimately benefiting patients with musculoskeletal disorders.
Collapse
Affiliation(s)
- Soyeon Park
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Khandoker Asiqur Rahaman
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yu-Chan Kim
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Hojeong Jeon
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyung-Seop Han
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
21
|
Rathod V, Shrivastav S, Gharpinde MR. Knee Arthroscopy in the Era of Precision Medicine: A Comprehensive Review of Tailored Approaches and Emerging Technologies. Cureus 2024; 16:e70932. [PMID: 39502973 PMCID: PMC11537776 DOI: 10.7759/cureus.70932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 10/06/2024] [Indexed: 11/08/2024] Open
Abstract
Knee arthroscopy, a minimally invasive procedure, has transformed the treatment of knee pathologies by enabling direct visualization and management with minimal tissue disruption. Recent advances in precision medicine have introduced a new dimension to this field, allowing for highly individualized surgical approaches considering each patient's unique genetic, environmental, and biomechanical characteristics. This review explores the integration of precision medicine into knee arthroscopy, focusing on tailored approaches and emerging technologies. Key innovations such as robotic-assisted surgery, advanced imaging, and patient-specific instrumentation have enhanced surgical accuracy and patient outcomes, reduced recovery times, and minimized postoperative complications. The review also examines the role of biomarkers in guiding personalized treatment strategies, including ligament reconstructions, meniscal repairs, and cartilage restoration, which are now being refined to cater to the specific needs of individual patients. While the benefits of these innovations are clear, there are challenges to widespread adoption, including cost, resource allocation, and the need for further research to validate the efficacy of precision-driven approaches in knee arthroscopy. Moreover, the ethical considerations surrounding personalized medicine, such as patient privacy and genetic data usage, must also be addressed. Despite these barriers, the future of knee arthroscopy in the era of precision medicine holds great promise, with ongoing developments in artificial intelligence, genomics, and biomarker discovery poised to further refine patient-centered care. This comprehensive review provides valuable insights into how precision medicine reshapes knee arthroscopy, offering a glimpse into the future of more targeted and effective orthopedic interventions. By embracing these advancements, surgeons and healthcare providers can ensure optimal outcomes for patients undergoing knee arthroscopy.
Collapse
Affiliation(s)
- Vinit Rathod
- Department of Orthopedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sandeep Shrivastav
- Department of Orthopedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Milind R Gharpinde
- Department of Orthopedics, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
22
|
Nayak VV, Costello JP, Ehlen QT, Slavin BV, Mirsky NA, Kelly S, Suarez C, Daunert S, Witek L, Coelho PG. A rhPDGF-BB/bovine type I collagen/β-TCP mixture for the treatment of critically sized non-union tibial defects: An in vivo study in rabbits. J Orthop Res 2024; 42:1998-2006. [PMID: 38598203 DOI: 10.1002/jor.25847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024]
Abstract
Non-union during healing of bone fractures affects up to ~5% of patients worldwide. Given the success of recombinant human platelet-derived growth factor-B chain homodimer (rhPDGF-BB) in promoting angiogenesis and bone fusion in the hindfoot and ankle, rhPDGF-BB combined with bovine type I collagen/β-TCP matrix (AIBG) could serve as a viable alternative to autografts in the treatment of non-unions. Defects (~2 mm gaps) were surgically induced in tibiae of skeletally mature New Zealand white rabbits. Animals were allocated to one of four groups-(1) negative control (empty defect, healing for 8 weeks), (2 and 3) acute treatment with AIBG (healing for 4 or 8 weeks), and (4) chronic treatment with AIBG (injection 4 weeks post defect creation and then healing for 8 weeks). Bone formation was analyzed qualitatively and semi-quantitatively through histology. Samples were imaged using dual-energy X-ray absorptiometry and computed tomography for defect visualization and volumetric reconstruction, respectively. Delayed healing or non-healing was observed in the negative control group, whereas defects treated with AIBG in an acute setting yielded bone formation as early as 4 weeks with bone growth appearing discontinuous. At 8 weeks (acute setting), substantial remodeling was observed with higher degrees of bone organization characterized by appositional bone growth. The chronic healing, experimental, group yielded bone formation and remodeling, with no indication of non-union after treatment with AIBG. Furthermore, bone growth in the chronic healing group was accompanied by an increased presence of osteons, osteonal canals, and interstitial lamellae. Qualitatively and semiquantitatively, chronic application of AI facilitated complete bridging of the induced non-union defects, while untreated defects or defects treated acutely with AIBG demonstrated a lack of complete bridging at 8 weeks.
Collapse
Affiliation(s)
- Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Quinn T Ehlen
- University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Blaire V Slavin
- University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | - Sophie Kelly
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA
| | - Camila Suarez
- Trinity College of Arts and Sciences, Duke University, Durham, North Carolina, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, New York, New York, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, New York, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, New York, USA
| | - Paulo G Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
23
|
Abd Halim NFA, Ab Aziz A, Tan SL, Selvaratnam V, Kamarul T. A Systematic Review of Human Amnion Enhanced Cartilage Regeneration in Full-Thickness Cartilage Defects. Biomimetics (Basel) 2024; 9:383. [PMID: 39056824 PMCID: PMC11274359 DOI: 10.3390/biomimetics9070383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
Cartilage defects present a significant challenge in orthopedic medicine, often leading to pain and functional impairment. To address this, human amnion, a naturally derived biomaterial, has gained attention for its potential in enhancing cartilage regeneration. This systematic review aims to evaluate the efficacy of human amnion in enhancing cartilage regeneration for full-thickness cartilage defects. An electronic search was conducted on MEDLINE-PubMed, Web of Science (WoS), and the Scopus database up to 27 December 2023 from 2007. A total of 401 articles were identified. After removing 125 duplicates and excluding 271 articles based on predetermined criteria, only 5 articles remained eligible for inclusion in this systematic review. All five eligible articles conducted in vivo studies utilizing rabbits as subjects. Furthermore, analysis of the literature reveals an increasing trend in the frequency of utilizing human amnion for the treatment of cartilage defects. Various forms of human amnion were utilized either alone or seeded with cells prior to implantation. Histological assessments and macroscopic observations indicated usage of human amnion improved cartilage repair outcomes. All studies highlighted the positive results despite using different forms of amnion tissues. This systematic review underscores the promising role of human amnion as a viable option for enhancing cartilage regeneration in full-thickness cartilage defects, thus offering valuable insights for future research and clinical applications in orthopedic tissue engineering.
Collapse
Affiliation(s)
- Nur Farah Anis Abd Halim
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.A.A.); (S.-L.T.)
| | - Atiqah Ab Aziz
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.A.A.); (S.-L.T.)
| | - Sik-Loo Tan
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.A.A.); (S.-L.T.)
| | - Veenesh Selvaratnam
- Joint Reconstruction Unit (JRU), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Tunku Kamarul
- Tissue Engineering Group (TEG), National Orthopaedic Centre of Excellence for Research and Learning (NOCERAL), Department of Orthopaedic Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia; (A.A.A.); (S.-L.T.)
| |
Collapse
|
24
|
Shao Z, Wang B, Gao H, Zhang S. Microenvironmental interference with intra-articular stem cell regeneration influences the onset and progression of arthritis. Front Genet 2024; 15:1380696. [PMID: 38841721 PMCID: PMC11150611 DOI: 10.3389/fgene.2024.1380696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Studies have indicated that the preservation of joint health and the facilitation of damage recovery are predominantly contingent upon the joint's microenvironment, including cell-cell interactions, the extracellular matrix's composition, and the existence of local growth factors. Mesenchymal stem cells (MSCs), which possess the capacity to self-renew and specialize in many directions, respond to cues from the microenvironment, and aid in the regeneration of bone and cartilage, are crucial to this process. Changes in the microenvironment (such as an increase in inflammatory mediators or the breakdown of the extracellular matrix) in the pathological context of arthritis might interfere with stem cell activation and reduce their ability to regenerate. This paper investigates the potential role of joint microenvironmental variables in promoting or inhibiting the development of arthritis by influencing stem cells' ability to regenerate. The present status of research on stem cell activity in the joint microenvironment is also outlined, and potential directions for developing new treatments for arthritis that make use of these intervention techniques to boost stem cell regenerative potential through altering the intra-articular environment are also investigated. This review's objectives are to investigate these processes, offer fresh perspectives, and offer a solid scientific foundation for the creation of arthritic treatment plans in the future.
Collapse
Affiliation(s)
| | | | | | - Shenqi Zhang
- Department of Joint and Sports Medicine, Zaozhuang Municipal Hospital Affiliated to Jining Medical University, Zaozhuang, Shandong, China
| |
Collapse
|
25
|
Jiang Y, Lv H, Shen F, Fan L, Zhang H, Huang Y, Liu J, Wang D, Pan H, Yang J. Strategies in product engineering of mesenchymal stem cell-derived exosomes: unveiling the mechanisms underpinning the promotive effects of mesenchymal stem cell-derived exosomes. Front Bioeng Biotechnol 2024; 12:1363780. [PMID: 38756412 PMCID: PMC11096451 DOI: 10.3389/fbioe.2024.1363780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
Articular cartilage injuries present a significant global challenge, particularly in the aging population. These injuries not only restrict movement due to primary damage but also exacerbate elderly degenerative lesions, leading to secondary cartilage injury and osteoarthritis. Addressing osteoarthritis and cartilage damage involves overcoming several technical challenges in biological treatment. The use of induced mesenchymal stem cells (iMSCs) with functional gene modifications emerges as a solution, providing a more stable and controllable source of Mesenchymal Stem Cells (MSCs) with reduced heterogeneity. Furthermore, In addition, this review encompasses strategies aimed at enhancing exosome efficacy, comprising the cultivation of MSCs in three-dimensional matrices, augmentation of functional constituents within MSC-derived exosomes, and modification of their surface characteristics. Finally, we delve into the mechanisms through which MSC-exosomes, sourced from diverse tissues, thwart osteoarthritis (OA) progression and facilitate cartilage repair. This review lays a foundational framework for engineering iMSC-exosomes treatment of patients suffering from osteoarthritis and articular cartilage injuries, highlighting cutting-edge research and potential therapeutic pathways.
Collapse
Affiliation(s)
- Yudong Jiang
- Orthopedics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hanning Lv
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuguo Shen
- Orthopedics Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Lei Fan
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Hongjun Zhang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Yong Huang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Jia Liu
- Central Laboratory, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| | - Dong Wang
- The Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
- Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter, Exeter, United Kingdom
| | - Haile Pan
- Orthopedics Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianhua Yang
- Orthopedics Department, Longgang District People’s Hospital of Shenzhen and the Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
26
|
Ramzan F, Khalid S, Ekram S, Salim A, Frazier T, Begum S, Mohiuddin OA, Khan I. 3D bio scaffold support osteogenic differentiation of mesenchymal stem cells. Cell Biol Int 2024; 48:594-609. [PMID: 38321826 DOI: 10.1002/cbin.12131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
The regeneration of osteochondral lesions by tissue engineering techniques is challenging due to the lack of physicochemical characteristics and dual-lineage (osteogenesis and chondrogenesis). A scaffold with better mechanical properties and dual lineage capability is required for the regeneration of osteochondral defects. In this study, a hydrogel prepared from decellularized human umbilical cord tissue was developed and evaluated for osteochondral regeneration. Mesenchymal stem cells (MSCs) isolated from the umbilical cord were seeded with hydrogel for 28 days, and cell-hydrogel composites were cultured in basal and osteogenic media. Alizarin red staining, quantitative polymerase chain reaction, and immunofluorescent staining were used to confirm that the hydrogel was biocompatible and capable of inducing osteogenic differentiation in umbilical cord-derived MSCs. The findings demonstrate that human MSCs differentiated into an osteogenic lineage following 28 days of cultivation in basal and osteoinductive media. The expression was higher in the cell-hydrogel composites cultured in osteoinductive media, as evidenced by increased levels of messenger RNA and protein expression of osteogenic markers as compared to basal media cultured cell-hydrogel composites. Additionally, calcium deposits were also observed, which provide additional evidence of osteogenic differentiation. The findings demonstrate that the hydrogel is biocompatible with MSCs and possesses osteoinductive capability in vitro. It may be potentially useful for osteochondral regeneration.
Collapse
Affiliation(s)
- Faiza Ramzan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shumaila Khalid
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sobia Ekram
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asmat Salim
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | - Sumreen Begum
- Stem Cell Research Laboratory (SCRL), Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| | - Omair A Mohiuddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Irfan Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
27
|
Zahedi Tehrani T, Irani S, Ardeshirylajimi A, Seyedjafari E. Natural based hydrogels promote chondrogenic differentiation of human mesenchymal stem cells. Front Bioeng Biotechnol 2024; 12:1363241. [PMID: 38567084 PMCID: PMC10985146 DOI: 10.3389/fbioe.2024.1363241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Background: The cartilage tissue lacks blood vessels, which is composed of chondrocytes and ECM. Due to this vessel-less structure, it is difficult to repair cartilage tissue damages. One of the new methods to repair cartilage damage is to use tissue engineering. In the present study, it was attempted to simulate a three-dimensional environment similar to the natural ECM of cartilage tissue by using hydrogels made of natural materials, including Chitosan and different ratios of Alginate. Material and methods: Chitosan, alginate and Chitosan/Alginate hydrogels were fabricated. Fourier Transform Infrared, XRD, swelling ratio, porosity measurement and degradation tests were applied to scaffolds characterization. After that, human adipose derived-mesenchymal stem cells (hADMSCs) were cultured on the hydrogels and then their viability and chondrogenic differentiation capacity were studied. Safranin O and Alcian blue staining, immunofluorescence staining and real time RT-PCR were used as analytical methods for chondrogenic differentiation potential evaluation of hADMSCs when cultured on the hydrogels. Results: The highest degradation rate was detected in Chitosan/Alginate (1:0.5) group The scaffold biocompatibility results revealed that the viability of the cells cultured on the hydrogels groups was not significantly different with the cells cultured in the control group. Safranin O staining, Alcian blue staining, immunofluorescence staining and real time PCR results revealed that the chondrogenic differentiation potential of the hADMSCs when grown on the Chitosan/Alginate hydrogel (1:0.5) was significantly higher than those cell grown on the other groups. Conclusion: Taken together, these results suggest that Chitosan/Alginate hydrogel (1:0.5) could be a promising candidate for cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Tina Zahedi Tehrani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
28
|
Zhou Z, Song P, Wu Y, Wang M, Shen C, Ma Z, Ren X, Wang X, Chen X, Hu Y, Li Z, Zhang Q, Li M, Geng Z, Su J. Dual-network DNA-silk fibroin hydrogels with controllable surface rigidity for regulating chondrogenic differentiation. MATERIALS HORIZONS 2024; 11:1465-1483. [PMID: 38221872 DOI: 10.1039/d3mh01581e] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Osteoarthritis (OA) is a common joint disease known for cartilage degeneration, leading to a substantial burden on individuals and society due to its high disability rate. However, current clinical treatments for cartilage defects remain unsatisfactory due to the unclear mechanisms underlying cartilage regeneration. Tissue engineering hydrogels have emerged as an attractive approach in cartilage repair. Recent research studies have indicated that stem cells can sense the mechanical strength of hydrogels, thereby regulating their differentiation fate. In this study, we present the groundbreaking construction of dual-network DNA-silk fibroin (SF) hydrogels with controllable surface rigidity. The supramolecular networks, formed through DNA base-pairing, induce the development of β-sheet structures by constraining and aggregating SF molecules. Subsequently, SF was cross-linked via horseradish peroxidase (HRP)-mediated enzyme reactions to form the second network. Experimental results demonstrated a positive correlation between the surface rigidity of dual-network DNA-SF hydrogels and the DNA content. Interestingly, it was observed that dual-network DNA-SF hydrogels with moderate surface rigidity exhibited the highest effectiveness in facilitating the migration of bone marrow mesenchymal stem cells (BMSCs) and their chondrogenic differentiation. Transcriptome sequencing further confirmed that dual-network DNA-SF hydrogels primarily enhanced chondrogenic differentiation of BMSCs by upregulating the Wnt and TGF-β signaling pathways while accelerating collagen II synthesis. Furthermore, in vivo studies revealed that dual-network DNA-SF hydrogels with moderate surface rigidity significantly accelerated cartilage regeneration. In summary, the dual-network DNA-SF hydrogels represent a promising and novel therapeutic strategy for cartilage regeneration.
Collapse
Affiliation(s)
- Ziyang Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Peiran Song
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Miaomiao Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Congyi Shen
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhixin Ma
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Xiuhui Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Xiao Chen
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yan Hu
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Zuhao Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Mengmeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Zhen Geng
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
29
|
Shim HE, Kim YJ, Park KH, Park H, Huh KM, Kang SW. Enhancing cartilage regeneration through spheroid culture and hyaluronic acid microparticles: A promising approach for tissue engineering. Carbohydr Polym 2024; 328:121734. [PMID: 38220328 DOI: 10.1016/j.carbpol.2023.121734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/20/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Cell therapy using chondrocytes has shown promise for cartilage regeneration, but maintaining functional characteristics during in vitro culture and ensuring survival after transplantation are challenges. Three-dimensional (3D) cell culture methods, such as spheroid culture, and hydrogels can improve cell survival and functionality. In this study, a new method of culturing spheroids using hyaluronic acid (HA) microparticles was developed. The spheroids mixed with HA microparticles effectively maintained the functional characteristics of chondrocytes during in vitro culture, resulting in improved cell survival and successful cartilage formation in vivo following transplantation. This new method has the potential to improve cell therapy production for cartilage regeneration.
Collapse
Affiliation(s)
- Hye-Eun Shim
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | | | - Kyoung Hwan Park
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Honghyun Park
- Department of Advanced Biomaterials Research, Ceramics Materials Division, Korea Institute of Materials Science, Changwon 51508, Republic of Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Sun-Woong Kang
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Republic of Korea.
| |
Collapse
|
30
|
Jeyaraman M, Nallakumarasamy A, Jeyaraman N, Ramasubramanian S. Tissue engineering in chondral defect. COMPUTATIONAL BIOLOGY FOR STEM CELL RESEARCH 2024:361-378. [DOI: 10.1016/b978-0-443-13222-3.00033-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
31
|
Gupta P, Sharma S, Jabin S, Jadoun S. Chitosan nanocomposite for tissue engineering and regenerative medicine: A review. Int J Biol Macromol 2024; 254:127660. [PMID: 37907176 DOI: 10.1016/j.ijbiomac.2023.127660] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
Regenerative medicine and tissue engineering have emerged as a multidisciplinary promising field in the quest to address the limitations of traditional medical approaches. One of the key aspects of these fields is the development of such types of biomaterials that can mimic the extracellular matrix and provide a conducive environment for tissue regeneration. In this regard, chitosan has played a vital role which is a naturally derived linear bi-poly-aminosaccharide, and has gained significant attention due to its biocompatibility and unique properties. Chitosan possesses many unique physicochemical properties, making it a significant polysaccharide for different applications such as agriculture, nutraceutical, biomedical, food, nutraceutical, packaging, etc. as well as significant material for developing next-generation hydrogel and bio-scaffolds for regenerative medicinal applications. Moreover, chitosan can be easily modified to incorporate desirable properties, such as improved mechanical strength, enhanced biodegradability, and controlled release of bioactive molecules. Blending chitosan with other polymers or incorporating nanoparticles into its matrix further expands its potential in tissue engineering applications. This review summarizes the most recent studies of the last 10 years based on chitosan, blends, and nanocomposites and their application in bone tissue engineering, hard tissue engineering, dental implants, dental tissue engineering, dental fillers, and cartilage tissue engineering.
Collapse
Affiliation(s)
- Priti Gupta
- Department of Chemistry, Manav Rachna University, Faridabad, Haryana 121001, India.
| | - Shilpa Sharma
- Department of Chemistry, Manav Rachna University, Faridabad, Haryana 121001, India.
| | - Shagufta Jabin
- Department of Chemistry, Faculty of Engineering, Manav Rachna International Institute of Research & Studies, Faridabad, India.
| | - Sapana Jadoun
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avda. General Velásquez, 1775 Arica, Chile.
| |
Collapse
|
32
|
Al Maruf DSA, Xin H, Cheng K, Garcia AG, Mohseni-Dargah M, Ben-Sefer E, Tomaskovic-Crook E, Crook JM, Clark JR. Bioengineered cartilaginous grafts for repairing segmental mandibular defects. J Tissue Eng 2024; 15. [DOI: 10.1177/20417314241267017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
Reconstructing critical-sized craniofacial bone defects is a global healthcare challenge. Current methods, like autologous bone transplantation, face limitations. Bone tissue engineering offers an alternative to autologous bone, with traditional approaches focusing on stimulating osteogenesis via the intramembranous ossification (IMO) pathway. However, IMO falls short in addressing larger defects, particularly in clinical scenarios where there is insufficient vascularisation. This review explores redirecting bone regeneration through endochondral ossification (ECO), a process observed in long bone healing stimulated by hypoxic conditions. Despite its promise, gaps exist in applying ECO to bone tissue engineering experiments, requiring the elucidation of key aspects such as cell sources, biomaterials and priming protocols. This review discusses various scaffold biomaterials and cellular sources for chondrogenesis and hypertrophic chondrocyte priming, mirroring the ECO pathway. The review highlights challenges in current endochondral priming and proposes alternative approaches. Emphasis is on segmental mandibular defect repair, offering insights for future research and clinical application. This concise review aims to advance bone tissue engineering by addressing critical gaps in ECO strategies.
Collapse
Affiliation(s)
- D S Abdullah Al Maruf
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Hai Xin
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Kai Cheng
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW, Australia
| | - Alejandro Garcia Garcia
- Cell, Tissue and Organ Engineering Laboratory, Biomedical Centre (BMC), Department of Clinical Sciences Lund, Stem Cell Centre, Lund University, Lund, Sweden
| | - Masoud Mohseni-Dargah
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
| | - Eitan Ben-Sefer
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Eva Tomaskovic-Crook
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong, NSW, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy Micah Crook
- Arto Hardy Biomedical Innovation Hub, Chris O`Brien Lifehouse, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong, NSW, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong, NSW, Australia
| | - Jonathan Robert Clark
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local Health District, Camperdown, NSW, Australia
| |
Collapse
|
33
|
Kalvand E, Bakhshandeh H, Nadri S, Habibizadeh M, Rostamizadeh K. Poly-ε-caprolactone (PCL)/poly-l-lactic acid (PLLA) nanofibers loaded by nanoparticles-containing TGF-β1 with linearly arranged transforming structure as a scaffold in cartilage tissue engineering. J Biomed Mater Res A 2023; 111:1838-1849. [PMID: 37395312 DOI: 10.1002/jbm.a.37574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/24/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023]
Abstract
This study aimed to present a novel three-dimensional nanocomposite scaffold using poly-ε-caprolactone (PCL), containing transforming growth factor-beta 1 (TGF-β1)-loaded chitosan-dextran nanoparticles and poly-l-lactic acid (PLLA), to make use of nanofibers and nanoparticles simultaneously. The electrospinning method fabricated a bead-free semi-aligned nanofiber composed of PLLA, PCL, and chitosan-dextran nanoparticles containing TGF-β1. A biomimetic scaffold was constructed with the desired mechanical properties, high hydrophilicity, and high porosity. Transmission electron microscopy findings showed a linear arrangement of nanoparticles along the core of fibers. Based on the results, burst release was not observed. The maximum release was achieved within 4 days, and sustained release was up to 21 days. The qRT-PCR results indicated an increase in the expression of aggrecan and collagen type Ι genes compared to the tissue culture polystyrene group. The results indicated the importance of topography and the sustained release of TGF-β1 from bifunctional scaffolds in directing the stem cell fate in cartilage tissue engineering.
Collapse
Affiliation(s)
- Elham Kalvand
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Nanobiotechnology, Pasteur Institute of Tehran, Tehran, Iran
- Department of Nanotechnology and Tissue Engineering, Stem Cell Technology Research of Tehran, Tehran, Iran
| | - Haleh Bakhshandeh
- Department of Nanobiotechnology, Pasteur Institute of Tehran, Tehran, Iran
- New Technologies Research Group, Department of Nanobiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Samad Nadri
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mina Habibizadeh
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kobra Rostamizadeh
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Pharmaceutical Biomaterials Department, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
34
|
Thomas V, Mercuri J. In vitro and in vivo efficacy of naturally derived scaffolds for cartilage repair and regeneration. Acta Biomater 2023; 171:1-18. [PMID: 37708926 DOI: 10.1016/j.actbio.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/13/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Intrinsically present bioactive cues allow naturally derived materials to mimic important characteristics of cartilage while also facilitating cellular recruitment, infiltration, and differentiation. Such traits are often what tissue engineers desire when they fabricate scaffolds, and yet, literature from the past decade is replete with examples of how most natural constructs with native biomolecules have only offered sub-optimal results in the treatment of cartilage defects. This paper provides an in-depth investigation of the performance of such scaffolds through a review of a collection of natural materials that have been used so far in repairing/regenerating articular cartilage. Although in vivo and clinical studies are the best indicators of scaffold efficacy, it was, however, observed that a large number of natural constructs had very promising scaffold characteristics to begin with, and would often show good in vitro/in vivo results. Finally, an examination of the biochemistry and biomechanics of repair tissues in studies that reported positive outcomes showed that these attributes often approached target cartilage values. The paper concludes with an outline of current trends as well as future directions for the field. STATEMENT OF SIGNIFICANCE: This review offers an exclusive focus on natural scaffold materials for cartilage repair and regeneration and provides a quantitative and qualitative analysis of their performance under a variety of in vitro and in vivo conditions. Readers can learn about environments where natural scaffolds have had the most success and tailor strategies to optimize their own work. Furthermore, given how the glycosaminoglycan (GAG) to hydroxyproline (HYP) ratio and moduli are fundamental attributes of hyaline cartilage, this paper adds to the body of knowledge by exploring how these characteristics reflect in preclinical outcomes. Such perspectives can greatly aid researchers better utilize natural materials for Cartilage Tissue Engineering (CTE).
Collapse
Affiliation(s)
- Vishal Thomas
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, 401-5 Rhodes Engineering Research Center, Clemson, SC 29631, USA
| | - Jeremy Mercuri
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, 401-5 Rhodes Engineering Research Center, Clemson, SC 29631, USA.
| |
Collapse
|
35
|
Nayak VV, Tovar N, Khan D, Pereira AC, Mijares DQ, Weck M, Durand A, Smay JE, Torroni A, Coelho PG, Witek L. 3D Printing Type 1 Bovine Collagen Scaffolds for Tissue Engineering Applications-Physicochemical Characterization and In Vitro Evaluation. Gels 2023; 9:637. [PMID: 37623094 PMCID: PMC10454336 DOI: 10.3390/gels9080637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Collagen, an abundant extracellular matrix protein, has shown hemostatic, chemotactic, and cell adhesive characteristics, making it an attractive choice for the fabrication of tissue engineering scaffolds. The aim of this study was to synthesize a fibrillar colloidal gel from Type 1 bovine collagen, as well as three dimensionally (3D) print scaffolds with engineered pore architectures. 3D-printed scaffolds were also subjected to post-processing through chemical crosslinking (in N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide) and lyophilization. The scaffolds were physicochemically characterized through Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis, Differential Scanning Calorimetry, and mechanical (tensile) testing. In vitro experiments using Presto Blue and Alkaline Phosphatase assays were conducted to assess cellular viability and the scaffolds' ability to promote cellular proliferation and differentiation. Rheological analysis indicated shear thinning capabilities in the collagen gels. Crosslinked and lyophilized 3D-printed scaffolds were thermally stable at 37 °C and did not show signs of denaturation, although crosslinking resulted in poor mechanical strength. PB and ALP assays showed no signs of cytotoxicity as a result of crosslinking. Fibrillar collagen was successfully formulated into a colloidal gel for extrusion through a direct inkjet writing printer. 3D-printed scaffolds promoted cellular attachment and proliferation, making them a promising material for customized, patient-specific tissue regenerative applications.
Collapse
Affiliation(s)
- Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (V.V.N.); (P.G.C.)
| | - Nick Tovar
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
- Department of Oral and Maxillofacial Surgery, New York University, Langone Medical Center and Bellevue Hospital Center, New York, NY 10016, USA
| | - Doha Khan
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
| | - Angel Cabrera Pereira
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
| | - Dindo Q. Mijares
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
| | - Marcus Weck
- Department of Chemistry and Molecular Design Institute, New York University, New York, NY 10003, USA;
| | - Alejandro Durand
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA;
| | - James E. Smay
- School of Materials Science and Engineering, Oklahoma State University, Tulsa, OK 74106, USA;
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA;
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (V.V.N.); (P.G.C.)
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukasz Witek
- Biomaterials Division, NYU College of Dentistry, New York, NY 10010, USA; (N.T.); (D.K.); (A.C.P.); (D.Q.M.)
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA;
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
36
|
Muthu S, Korpershoek JV, Novais EJ, Tawy GF, Hollander AP, Martin I. Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies. Nat Rev Rheumatol 2023; 19:403-416. [PMID: 37296196 DOI: 10.1038/s41584-023-00979-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 06/12/2023]
Abstract
Osteoarthritis (OA) is a disabling condition that affects billions of people worldwide and places a considerable burden on patients and on society owing to its prevalence and economic cost. As cartilage injuries are generally associated with the progressive onset of OA, robustly effective approaches for cartilage regeneration are necessary. Despite extensive research, technical development and clinical experimentation, no current surgery-based, material-based, cell-based or drug-based treatment can reliably restore the structure and function of hyaline cartilage. This paucity of effective treatment is partly caused by a lack of fundamental understanding of why articular cartilage fails to spontaneously regenerate. Thus, research studies that investigate the mechanisms behind the cartilage regeneration processes and the failure of these processes are critical to instruct decisions about patient treatment or to support the development of next-generation therapies for cartilage repair and OA prevention. This Review provides a synoptic and structured analysis of the current hypotheses about failure in cartilage regeneration, and the accompanying therapeutic strategies to overcome these hurdles, including some current or potential approaches to OA therapy.
Collapse
Affiliation(s)
- Sathish Muthu
- Orthopaedic Research Group, Coimbatore, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, New Delhi, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Jasmijn V Korpershoek
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Emanuel J Novais
- Unidade Local de Saúde do Litoral Alentejano, Orthopedic Department, Santiago do Cacém, Portugal
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gwenllian F Tawy
- Division of Cell Matrix Biology & Regenerative Medicine, University of Manchester, Manchester, UK
| | - Anthony P Hollander
- Institute of Lifecourse and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
37
|
Hunziker EB, Shintani N, Lippuner K, Vögelin E, Keel MJB. In major joint diseases the human synovium retains its potential to form repair cartilage. Sci Rep 2023; 13:10375. [PMID: 37365169 DOI: 10.1038/s41598-023-34841-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
The inner surface layer of human joints, the synovium, is a source of stem cells for the repair of articular cartilage defects. We investigated the potential of the normal human synovium to form novel cartilage and compared its chondrogenic capacity with that of two patient groups suffering from major joint diseases: young adults with femoro-acetabular impingement syndromes of the hip (FAI), and elderly individuals with osteoarthritic degeneration of the knee (OA). Synovial membrane explants of these three patient groups were induced in vitro to undergo chondrogenesis by growth factors: bone morphogenetic protein-2 (BMP-2) alone, transforming growth factor-β1 (TGF-β1) alone, or a combination of these two. Quantitative evaluations of the newly formed cartilages were performed respecting their gene activities, as well as the histochemical, immunhistochemical, morphological and histomorphometrical characteristics. Formation of adult articular-like cartilage was induced by the BMP-2/TGF-β1 combination within all three groups, and was confirmed by adequate gene-expression levels of the anabolic chondrogenic markers; the levels of the catabolic markers remained low. Our data reveal that the chondrogenic potential of the normal human synovium remains uncompromised, both in FAI and OA. The potential of synovium-based clinical repair of joint cartilage may thus not be impaired by age-related joint pathologies.
Collapse
Affiliation(s)
- Ernst B Hunziker
- Departments of Osteoporosis and Orthopaedic Surgery, Inselspital Bern University Hospital, Freiburgstrasse 3, 3010, Bern, Switzerland.
| | - Nahoko Shintani
- Department of Osteoporosis, Inselspital Bern University Hospital, Bern, Switzerland
| | - Kurt Lippuner
- Department of Osteoporosis, Inselspital Bern University Hospital, Bern, Switzerland
| | - Esther Vögelin
- Departments of Plastic and Hand Surgery, Inselspital Bern University Hospital, Bern, Switzerland
| | - Marius J B Keel
- Trauma Center Hirslanden, Clinic Hirslanden, Zurich, Switzerland
- Medical School, University of Zurich, Zurich, Switzerland
- Department of Orthopaedic Surgery, Inselspital Bern University Hospital, Bern, Switzerland
| |
Collapse
|
38
|
Sevastianov VI, Basok YB, Grigoriev AM, Nemets EA, Kirillova AD, Kirsanova LA, Lazhko AE, Subbot A, Kravchik MV, Khesuani YD, Koudan EV, Gautier SV. Decellularization of cartilage microparticles: Effects of temperature, supercritical carbon dioxide and ultrasound on biochemical, mechanical, and biological properties. J Biomed Mater Res A 2023; 111:543-555. [PMID: 36478378 DOI: 10.1002/jbm.a.37474] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022]
Abstract
One of the approaches to restoring the structure of damaged cartilage tissue is an intra-articular injection of tissue-engineered medical products (TEMPs) consisting of biocompatible matrices loaded with cells. The most interesting are the absorbable matrices from decellularized tissues, provided that the cellular material is completely removed from them with the maximum possible preservation of the structure and composition of the natural extracellular matrix. The present study investigated the mechanical, biochemical, and biological properties of decellularized porcine cartilage microparticles (DCMps) obtained by techniques, differing only in physical treatments, such as freeze-thaw cycling (Protocol 1), supercritical carbon dioxide fluid (Protocol 2) and ultrasound (Protocol 3). Full tissue decellularization was achieved, as confirmed by the histological analysis and DNA quantification, though all the resultant DCMps had reduced glycosaminoglycans (GAGs) and collagen. The elastic modulus of all DCMp samples was also significantly reduced. Most notably, DCMps prepared with Protocol 3 significantly outperformed other samples in viability and the chondroinduction of the human adipose-derived stem cells (hADSCs), with a higher GAG production per DNA content. A positive ECM staining for type II collagen was also detected only in cartilage-like structures based on ultrasound-treated DCMps. The biocompatibility of a xenogenic DCMps obtained with Protocol 3 has been confirmed for a 6-month implantation in the thigh muscle tissue of mature rats (n = 18). Overall, the results showed that the porcine cartilage microparticles decellularized by a combination of detergents, ultrasound and DNase could be a promising source of scaffolds for TEMPs for cartilage reconstruction.
Collapse
Affiliation(s)
- Victor I Sevastianov
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia.,The Institute of Biomedical Research and Technology, Moscow, Russia
| | - Yulia B Basok
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - Alexey M Grigoriev
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - Evgeny A Nemets
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - Alexandra D Kirillova
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - Liudmila A Kirsanova
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | - Aleksey E Lazhko
- Chemical Department, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia Subbot
- Laboratory of Fundamental Research in Ophtalmology, The Research Institute of Eye Diseases, Moscow, Russia
| | - Marina V Kravchik
- Laboratory of Fundamental Research in Ophtalmology, The Research Institute of Eye Diseases, Moscow, Russia
| | - Yusef D Khesuani
- Laboratory for Biotechnological Research "3D Bioprinting Solutions", Moscow, Russia
| | - Elizaveta V Koudan
- Center for Biomedical Engineering, National University of Science and Technology "MISIS", Moscow, Russia
| | - Sergey V Gautier
- Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia.,The Department of Transplantology and Artificial Organs, Faculty of Medicine, The Sechenov University, Moscow, Russia
| |
Collapse
|
39
|
Talouki PY, Tackallou SH, Shojaei S, Benisi SZ, Goodarzi V. The role of three-dimensional scaffolds based on polyglycerol sebacate/ polycaprolactone/ gelatin in the presence of Nanohydroxyapatite in promoting chondrogenic differentiation of human adipose-derived mesenchymal stem cells. Biol Proced Online 2023; 25:9. [PMID: 36964481 PMCID: PMC10039520 DOI: 10.1186/s12575-023-00197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Tissue engineering for cartilage regeneration has made great advances in recent years, although there are still challenges to overcome. This study aimed to evaluate the chondrogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs) on three-dimensional scaffolds based on polyglycerol sebacate (PGS) / polycaprolactone (PCL) / gelatin(Gel) in the presence of Nanohydroxyapatite (nHA). MATERIALS AND METHODS In this study, a series of nHA-nanocomposite scaffolds were fabricated using 100:0:0, 60:40:0, and 60:20:20 weight ratios of PGS to PCL: Gel copolymers through salt leaching method. The morphology and porosity of prepared samples was characterized by SEM and EDX mapping analysis. Also, the dynamic contact angle and PBS adsorption tests are used to identify the effect of copolymerization and nanoparticles on scaffolds' hydrophilicity. The hydrolytic degradation properties were also analyzed. Furthermore, cell viability and proliferation as well as cell adhesion are evaluated to find out the biocompatibility. To determine the potential ability of nHA-nanocomposite scaffolds in chondrogenic differentiation, RT-PCR assay was performed to monitor the expression of collagen II, aggrecan, and Sox9 genes as markers of cartilage differentiation. RESULTS The nanocomposites had an elastic modulus within a range of 0.71-1.30 MPa and 0.65-0.43 MPa, in dry and wet states, respectively. The PGS/PCL sample showed a water contact angle of 72.44 ± 2.2°, while the hydrophilicity significantly improved by adding HA nanoparticles. It was found from the hydrolytic degradation study that HA incorporation can accelerate the degradation rate compared with PGS and PGS/PCL samples. Furthermore, the in vitro biocompatibility tests showed significant cell attachment, proliferation, and viability of adipose-derived mesenchymal stem cells (ADMSCs). RT-PCR also indicated a significant increase in collagen II, aggrecan and Sox9 mRNA levels. CONCLUSIONS Our findings demonstrated that these nanocomposite scaffolds promote the differentiation of hADSCs into chondrocytes possibly by the increase in mRNA levels of collagen II, aggrecan, and Sox9 as markers of chondrogenic differentiation. In conclusion, the addition of PCL, Gelatin, and HA into PGS is a practical approach to adjust the general features of PGS to prepare a promising scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Pardis Yousefi Talouki
- Department of Biomedical Engineering, Central Branch, Islamic Azad University, Tehran, Iran
| | - Saeed Hesami Tackallou
- Department of Biology, Central Branch, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran.
| | - Shahrokh Shojaei
- Department of Biomedical Engineering, Central Branch, Islamic Azad University, Tehran, Iran
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Branch, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Department of Biomedical Engineering, Central Branch, Islamic Azad University, Tehran, Iran
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Branch, Tehran, Iran
| | - Vahabodin Goodarzi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Bakhori NM, Ismail Z, Hassan MZ, Dolah R. Emerging Trends in Nanotechnology: Aerogel-Based Materials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1063. [PMID: 36985957 PMCID: PMC10058649 DOI: 10.3390/nano13061063] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
At present, aerogel is one of the most interesting materials globally. The network of aerogel consists of pores with nanometer widths, which leads to a variety of functional properties and broad applications. Aerogel is categorized as inorganic, organic, carbon, and biopolymers, and can be modified by the addition of advanced materials and nanofillers. Herein, this review critically discusses the basic preparation of aerogel from the sol-gel reaction with derivation and modification of a standard method to produce various aerogels for diverse functionalities. In addition, the biocompatibility of various types of aerogels were elaborated. Then, biomedical applications of aerogel were focused on this review as a drug delivery carrier, wound healing agent, antioxidant, anti-toxicity, bone regenerative, cartilage tissue activities and in dental fields. The clinical status of aerogel in the biomedical sector is shown to be similarly far from adequate. Moreover, due to their remarkable properties, aerogels are found to be preferably used as tissue scaffolds and drug delivery systems. The advanced studies in areas including self-healing, additive manufacturing (AM) technology, toxicity, and fluorescent-based aerogel are crucially important and are further addressed.
Collapse
Affiliation(s)
- Noremylia Mohd Bakhori
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran Ilmu, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Zarini Ismail
- Faculty of Medicine and Health Sciences, Universiti Sains Islam Malaysia, Persiaran Ilmu, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Mohamad Zaki Hassan
- Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Selangor, Malaysia
| | - Rozzeta Dolah
- Department of Chemical Engineering, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Selangor, Malaysia
| |
Collapse
|
41
|
Williams DF. The plasticity of biocompatibility. Biomaterials 2023; 296:122077. [PMID: 36907003 DOI: 10.1016/j.biomaterials.2023.122077] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023]
Abstract
Biocompatibility concerns the phenomena that occur within the interactions between biomaterials and human patients, which ultimately control the performance of many facets of medical technology. It involves aspects of materials science, many different forms of engineering and nanotechnology, chemistry, biophysics, molecular and cellular biology, immunology, pathology and a myriad of clinical applications. It is not surprising that an overarching framework of mechanisms of biocompatibility has been difficult to elucidate and validate. This essay discusses one fundamental reason for this; we have tended to consider biocompatibility pathways as essentially linear sequences of events which follow well-understood processes of materials science and biology. The reality, however, is that the pathways may involve a great deal of plasticity, in which many additional idiosyncratic factors, including those of genetic, epigenetic and viral origin, exert influence, as do complex mechanical, physical and pharmacological variables. Plasticity is an inherent core feature of the performance of synthetic materials; here we follow the more recent biological applications of plasticity concepts into the sphere of biocompatibility pathways. A straightforward linear pathway may result in successful outcomes for many patients; we may describe this in terms of classic biocompatibility pathways. In other situations, which usually command much more attention because of their unsuccessful outcomes, these plasticity-driven processes follow alternative biocompatibility pathways; often, the variability in outcomes with identical technologies is due to biological plasticity rather than material or device deficiency.
Collapse
Affiliation(s)
- David F Williams
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, North Carolina, USA.
| |
Collapse
|
42
|
Cordeiro R, Alvites RD, Sousa AC, Lopes B, Sousa P, Maurício AC, Alves N, Moura C. Cellulose-Based Scaffolds: A Comparative Study for Potential Application in Articular Cartilage. Polymers (Basel) 2023; 15:781. [PMID: 36772083 PMCID: PMC9919712 DOI: 10.3390/polym15030781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Osteoarthritis is a highly prevalent disease worldwide that leads to cartilage loss. Tissue engineering, involving scaffolds, cells, and stimuli, has shown to be a promising strategy for its repair. Thus, this study aims to manufacture and characterise different scaffolds with poly(ε-caprolactone) (PCL) with commercial cellulose (microcrystalline (McC) and methyl cellulose (MC) or cellulose from agro-industrial residues (corncob (CcC)) and at different percentages, 1%, 2%, and 3%. PCL scaffolds were used as a control. Morphologically, the produced scaffolds presented porosities within the desired for cell incorporation (57% to 65%). When submitted to mechanical tests, the incorporation of cellulose affects the compression resistance of the majority of scaffolds. Regarding tensile strength, McC2% showed the highest values. It was proven that all manufactured scaffolds suffered degradation after 7 days of testing because of enzymatic reactions. This degradation may be due to the dissolution of PCL in the organic solvent. Biological tests revealed that PCL, CcC1%, and McC3% are the best materials to combine with human dental pulp stem/stromal cells. Overall, results suggest that cellulose incorporation in PCL scaffolds promotes cellular adhesion/proliferation. Methyl cellulose scaffolds demonstrated some advantageous compressive properties (closer to native cartilaginous tissue) to proceed to further studies for application in cartilage repair.
Collapse
Affiliation(s)
- Rachel Cordeiro
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Rui D. Alvites
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Ana C. Sousa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Bruna Lopes
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Patrícia Sousa
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Ana C. Maurício
- Veterinary Clinics Department, Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto (UP), Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
- Animal Science Studies Centre (CECA), Agroenvironment, Technologies and Sciences Institute (ICETA), University of Porto, Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
| | - Carla Moura
- Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, 2430-028 Marinha Grande, Portugal
- Associate Laboratory for Advanced Production and Intelligent Systems (ARISE), 4050-313 Porto, Portugal
- Applied Research Institute (i2A), Polytechnic Institute of Coimbra, Rua da Misericórdia, Lagar dos Cortiços–S. Martinho do Bispo, 3045-093 Coimbra, Portugal
| |
Collapse
|
43
|
Shabbirahmed AM, Sekar R, Gomez LA, Sekhar MR, Hiruthyaswamy SP, Basavegowda N, Somu P. Recent Developments of Silk-Based Scaffolds for Tissue Engineering and Regenerative Medicine Applications: A Special Focus on the Advancement of 3D Printing. Biomimetics (Basel) 2023; 8:16. [PMID: 36648802 PMCID: PMC9844467 DOI: 10.3390/biomimetics8010016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Regenerative medicine has received potential attention around the globe, with improving cell performances, one of the necessary ideas for the advancements of regenerative medicine. It is crucial to enhance cell performances in the physiological system for drug release studies because the variation in cell environments between in vitro and in vivo develops a loop in drug estimation. On the other hand, tissue engineering is a potential path to integrate cells with scaffold biomaterials and produce growth factors to regenerate organs. Scaffold biomaterials are a prototype for tissue production and perform vital functions in tissue engineering. Silk fibroin is a natural fibrous polymer with significant usage in regenerative medicine because of the growing interest in leftovers for silk biomaterials in tissue engineering. Among various natural biopolymer-based biomaterials, silk fibroin-based biomaterials have attracted significant attention due to their outstanding mechanical properties, biocompatibility, hemocompatibility, and biodegradability for regenerative medicine and scaffold applications. This review article focused on highlighting the recent advancements of 3D printing in silk fibroin scaffold technologies for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Asma Musfira Shabbirahmed
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, Tamil Nadu, India
| | - Rajkumar Sekar
- Department of Chemistry, Karpaga Vinayaga College of Engineering and Technology, GST Road, Chinna Kolambakkam, Chengalpattu 603308, Tamil Nadu, India
| | - Levin Anbu Gomez
- Department of Biotechnology, School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, Tamil Nadu, India
| | - Medidi Raja Sekhar
- Department of Chemistry, College of Natural Sciences, Kebri Dehar University, Korahe Zone, Somali Region, Kebri Dehar 3060, Ethiopia
| | | | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Prathap Somu
- Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (Deemed to be University), Chennai 600124, Tamil Nadu, India
| |
Collapse
|
44
|
Frerker N, Karlsen TA, Stensland M, Nyman TA, Rayner S, Brinchmann JE. Comparison between articular chondrocytes and mesenchymal stromal cells for the production of articular cartilage implants. Front Bioeng Biotechnol 2023; 11:1116513. [PMID: 36896010 PMCID: PMC9989206 DOI: 10.3389/fbioe.2023.1116513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Focal lesions of articular cartilage give rise to pain and reduced joint function and may, if left untreated, lead to osteoarthritis. Implantation of in vitro generated, scaffold-free autologous cartilage discs may represent the best treatment option. Here we compare articular chondrocytes (ACs) and bone marrow-derived mesenchymal stromal cells (MSCs) for their ability to make scaffold-free cartilage discs. Articular chondrocytes produced more extracellular matrix per seeded cell than mesenchymal stromal cells. Quantitative proteomics analysis showed that articular chondrocyte discs contained more articular cartilage proteins, while mesenchymal stromal cell discs had more proteins associated with cartilage hypertrophy and bone formation. Sequencing analysis revealed more microRNAs associated with normal cartilage in articular chondrocyte discs, and large-scale target predictions, performed for the first time for in vitro chondrogenesis, suggested that differential expression of microRNAs in the two disc types were important mechanisms behind differential synthesis of proteins. We conclude that articular chondrocytes should be preferred over mesenchymal stromal cells for tissue engineering of articular cartilage.
Collapse
Affiliation(s)
- Nadine Frerker
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Tommy A Karlsen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Maria Stensland
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Simon Rayner
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jan E Brinchmann
- Department of Immunology, Oslo University Hospital, Oslo, Norway.,Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
45
|
Chiesa-Estomba CM, Hernáez-Moya R, Rodiño C, Delgado A, Fernández-Blanco G, Aldazabal J, Paredes J, Izeta A, Aiastui A. Ex Vivo Maturation of 3D-Printed, Chondrocyte-Laden, Polycaprolactone-Based Scaffolds Prior to Transplantation Improves Engineered Cartilage Substitute Properties and Integration. Cartilage 2022; 13:105-118. [PMID: 36250422 PMCID: PMC9924975 DOI: 10.1177/19476035221127638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE The surgical management of nasal septal defects due to perforations, malformations, congenital cartilage absence, traumatic defects, or tumors would benefit from availability of optimally matured septal cartilage substitutes. Here, we aimed to improve in vitro maturation of 3-dimensional (3D)-printed, cell-laden polycaprolactone (PCL)-based scaffolds and test their in vivo performance in a rabbit auricular cartilage model. DESIGN Rabbit auricular chondrocytes were isolated, cultured, and seeded on 3D-printed PCL scaffolds. The scaffolds were cultured for 21 days in vitro under standard culture media and normoxia or in prochondrogenic and hypoxia conditions, respectively. Cell-laden scaffolds (as well as acellular controls) were implanted into perichondrium pockets of New Zealand white rabbit ears (N = 5 per group) and followed up for 12 weeks. At study end point, the tissue-engineered scaffolds were extracted and tested by histological, immunohistochemical, mechanical, and biochemical assays. RESULTS Scaffolds previously matured in vitro under prochondrogenic hypoxic conditions showed superior mechanical properties as well as improved patterns of cartilage matrix deposition, chondrogenic gene expression (COL1A1, COL2A1, ACAN, SOX9, COL10A1), and proteoglycan production in vivo, compared with scaffolds cultured in standard conditions. CONCLUSIONS In vitro maturation of engineered cartilage scaffolds under prochondrogenic conditions that better mimic the in vivo environment may be beneficial to improve functional properties of the engineered grafts. The proposed maturation strategy may also be of use for other tissue-engineered constructs and may ultimately impact survival and integration of the grafts in the damaged tissue microenvironment.
Collapse
Affiliation(s)
- Carlos M. Chiesa-Estomba
- Department of Otorhinolaryngology-Head
and Neck Surgery, Osakidetza, Donostia University Hospital, San Sebastián,
Spain,Otorhinolaryngology and Head and Neck
Surgery Group, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Raquel Hernáez-Moya
- Multidisciplinary 3D Printing Platform,
Biodonostia Health Research Institute, San Sebastián, Spain,ISCIII Platform of Biobanks and
Biomodels, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Claudia Rodiño
- Histology Platform, Biodonostia Health
Research Institute, San Sebastián, Spain
| | - Alba Delgado
- Histology Platform, Biodonostia Health
Research Institute, San Sebastián, Spain
| | - Gonzalo Fernández-Blanco
- Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain
| | - Javier Aldazabal
- Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain
| | - Jacobo Paredes
- Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain
| | - Ander Izeta
- Multidisciplinary 3D Printing Platform,
Biodonostia Health Research Institute, San Sebastián, Spain,ISCIII Platform of Biobanks and
Biomodels, Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Department of Biomedical Engineering
and Sciences, School of Engineering, Tecnun-University of Navarra, San Sebastián,
Spain,Tissue Engineering Group, Biodonostia
Health Research Institute, San Sebastián, Spain,Ander Izeta, Tissue Engineering Group,
Biodonostia Health Research Institute, Paseo Doctor Begiristain s/n, 20014 San
Sebastián, Spain.
| | - Ana Aiastui
- Multidisciplinary 3D Printing Platform,
Biodonostia Health Research Institute, San Sebastián, Spain,ISCIII Platform of Biobanks and
Biomodels, Instituto de Salud Carlos III (ISCIII), Madrid, Spain,Histology Platform, Biodonostia Health
Research Institute, San Sebastián, Spain
| |
Collapse
|
46
|
Zhang HJ, Li FS, Wang F, Wang H, He TC, Reid RR, He BC, Xia Q. Transgenic PDGF-BB sericin hydrogel potentiates bone regeneration of BMP9-stimulated mesenchymal stem cells through a crosstalk of the Smad-STAT pathways. Regen Biomater 2022; 10:rbac095. [PMID: 36683747 PMCID: PMC9847547 DOI: 10.1093/rb/rbac095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/08/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Silk as a natural biomaterial is considered as a promising bone substitute in tissue regeneration. Sericin and fibroin are the main components of silk and display unique features for their programmable mechanical properties, biocompatibility, biodegradability and morphological plasticity. It has been reported that sericin recombinant growth factors (GFs) can support cell proliferation and induce stem cell differentiation through cross-talk of signaling pathways during tissue regeneration. The transgenic technology allows the productions of bioactive heterologous GFs as fusion proteins with sericin, which are then fabricated into solid matrix or hydrogel format. Herein, using an injectable hydrogel derived from transgenic platelet-derived GF (PDGF)-BB silk sericin, we demonstrated that the PDGF-BB sericin hydrogel effectively augmented osteogenesis induced by bone morphogenetic protein (BMP9)-stimulated mesenchymal stem cells (MSCs) in vivo and in vitro, while inhibiting adipogenic differentiation. Further gene expression and protein-protein interactions studies demonstrated that BMP9 and PDGF-BB synergistically induced osteogenic differentiation through the cross-talk between Smad and Stat3 pathways in MSCs. Thus, our results provide a novel strategy to encapsulate osteogenic factors and osteoblastic progenitors in transgenic sericin-based hydrogel for robust bone tissue engineering.
Collapse
Affiliation(s)
- Hui-Jie Zhang
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
| | - Fu-Shu Li
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Department of Pharmacy, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing 400014, China
| | - Feng Wang
- Biological Science Research Center, Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Han Wang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
- Department of Pharmacy, Panzhou People’s Hospital, Guizhou 553599, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bai-Cheng He
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Qingyou Xia
- Biological Science Research Center, Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
47
|
Revia RA, Wagner B, James M, Zhang M. High-Throughput Dispensing of Viscous Solutions for Biomedical Applications. MICROMACHINES 2022; 13:1730. [PMID: 36296083 PMCID: PMC9609595 DOI: 10.3390/mi13101730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Cells cultured in three-dimensional scaffolds express a phenotype closer to in vivo cells than cells cultured in two-dimensional containers. Natural polymers are suitable materials to make three-dimensional scaffolds to develop disease models for high-throughput drug screening owing to their excellent biocompatibility. However, natural polymer solutions have a range of viscosities, and none of the currently available liquid dispensers are capable of dispensing highly viscous polymer solutions. Here, we report the development of an automated scaffold dispensing system for rapid, reliable, and homogeneous creation of scaffolds in well-plate formats. We employ computer-controlled solenoid valves to regulate air pressure impinging upon a syringe barrel filled with scaffold solution to be dispensed. Automated dispensing of scaffold solution is achieved via a programmable software interface that coordinates solution extrusion and the movement of a dispensing head. We show that our pneumatically actuated dispensing system can evenly distribute high-viscosity, chitosan-based polymer solutions into 96- and 384-well plates to yield highly uniform three-dimensional scaffolds after lyophilization. We provide a proof-of-concept demonstration of high-throughput drug screening by culturing glioblastoma cells in scaffolds and exposing them to temozolomide. This work introduces a device that can hasten the creation of three-dimensional cell scaffolds and their application to high-throughput testing.
Collapse
Affiliation(s)
- Richard A. Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Brandon Wagner
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Matthew James
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
48
|
3D-Printing Graphene Scaffolds for Bone Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14091834. [PMID: 36145582 PMCID: PMC9503344 DOI: 10.3390/pharmaceutics14091834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Graphene-based materials have recently gained attention for regenerating various tissue defects including bone, nerve, cartilage, and muscle. Even though the potential of graphene-based biomaterials has been realized in tissue engineering, there are significantly many more studies reporting in vitro and in vivo data in bone tissue engineering. Graphene constructs have mainly been studied as two-dimensional (2D) substrates when biological organs are within a three-dimensional (3D) environment. Therefore, developing 3D graphene scaffolds is the next clinical standard, yet most have been fabricated as foams which limit control of consistent morphology and porosity. To overcome this issue, 3D-printing technology is revolutionizing tissue engineering, due to its speed, accuracy, reproducibility, and overall ability to personalize treatment whereby scaffolds are printed to the exact dimensions of a tissue defect. Even though various 3D-printing techniques are available, practical applications of 3D-printed graphene scaffolds are still limited. This can be attributed to variations associated with fabrication of graphene derivatives, leading to variations in cell response. This review summarizes selected works describing the different fabrication techniques for 3D scaffolds, the novelty of graphene materials, and the use of 3D-printed scaffolds of graphene-based nanoparticles for bone tissue engineering.
Collapse
|
49
|
Rojas-Murillo JA, Simental-Mendía MA, Moncada-Saucedo NK, Delgado-Gonzalez P, Islas JF, Roacho-Pérez JA, Garza-Treviño EN. Physical, Mechanical, and Biological Properties of Fibrin Scaffolds for Cartilage Repair. Int J Mol Sci 2022; 23:ijms23179879. [PMID: 36077276 PMCID: PMC9456199 DOI: 10.3390/ijms23179879] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Articular cartilage is a highly organized tissue that provides remarkable load-bearing and low friction properties, allowing for smooth movement of diarthrodial joints; however, due to the avascular, aneural, and non-lymphatic characteristics of cartilage, joint cartilage has self-regeneration and repair limitations. Cartilage tissue engineering is a promising alternative for chondral defect repair. It proposes models that mimic natural tissue structure through the use of cells, scaffolds, and signaling factors to repair, replace, maintain, or improve the specific function of the tissue. In chondral tissue engineering, fibrin is a biocompatible biomaterial suitable for cell growth and differentiation with adequate properties to regenerate damaged cartilage. Additionally, its mechanical, biological, and physical properties can be enhanced by combining it with other materials or biological components. This review addresses the biological, physical, and mechanical properties of fibrin as a biomaterial for cartilage tissue engineering and as an element to enhance the regeneration or repair of chondral lesions.
Collapse
Affiliation(s)
- Juan Antonio Rojas-Murillo
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Mario A. Simental-Mendía
- Servicio de Ortopedia y Traumatología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Nidia K. Moncada-Saucedo
- Departamento de Hematología, Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Paulina Delgado-Gonzalez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - José Francisco Islas
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Jorge A. Roacho-Pérez
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
| | - Elsa N. Garza-Treviño
- Laboratorio de Terapia Celular, Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, NL, Mexico
- Correspondence: ; Tel.: +52-81-83294173
| |
Collapse
|
50
|
Lamparelli EP, Casagranda V, Pressato D, Maffulli N, Della Porta G, Bellini D. Synthesis and Characterization of a Novel Composite Scaffold Based on Hyaluronic Acid and Equine Type I Collagen. Pharmaceutics 2022; 14:pharmaceutics14091752. [PMID: 36145500 PMCID: PMC9505875 DOI: 10.3390/pharmaceutics14091752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, the synthesis and characterization of a novel composite biopolymer scaffold—based on equine type I collagen and hyaluronic acid—were described by using a reaction in heterogeneous phase. The resulting biomimetic structure was characterized in terms of chemical, physical, and cytotoxicity properties using human-derived lymphocytes and chondrocytes. Firstly, FT-IR data proved a successful reticulation of hyaluronic acid within collagen structure with the appearance of a new peak at a wavenumber of 1735 cm−1 associated with ester carbonyl stretch. TGA and DSC characterizations confirmed different thermal stability of cross-linked scaffolds while morphological analysis by scanning electron microscopy (SEM) suggested the presence of a highly porous structure with open and interconnected void areas suitable for hosting cells. The enzymatic degradation profile confirmed scaffold higher endurance with collagenase as compared with collagen alone. However, it was particularly interesting that the mechanical behavior of the composite scaffold showed an excellent shape memory, especially when it was hydrated, with an improved Young’s modulus of 9.96 ± 0.53 kPa (p ≤ 0.001) as well as a maximum load at 97.36 ± 3.58 kPa compared to the simple collagen scaffold that had a modulus of 1.57 ± 0.08 kPa and a maximum load of 36.91 ± 0.24 kPa. Finally, in vitro cytotoxicity confirmed good product safety with human lymphocytes (viability of 81.92 ± 1.9 and 76.37 ± 1.2 after 24 and 48 h, respectively), whereas excellent gene expression profiles of chondrocytes with a significant upregulation of SOX9 and ACAN after 10 days of culture indicated our scaffold’s ability of preserving chondrogenic phenotype. The described material could be considered a potential tool to be implanted in patients with cartilage defects.
Collapse
Affiliation(s)
- Erwin Pavel Lamparelli
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
| | | | | | - Nicola Maffulli
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Centre for Sport and Exercise Medicine, Barts and The London School of Medicine, Queen Mary University of London, London E1 4NL, UK
| | - Giovanna Della Porta
- Laboratory of Translational Medicine, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Research Centre for Biomaterials BIONAM, Università di Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
- Correspondence: ; Tel./Fax: +39-089965234
| | - Davide Bellini
- Novagenit Srl, Viale Trento 115/117, 38017 Mezzolombardo, Italy
| |
Collapse
|