1
|
Peng Y, Chen B. Role of cell membrane homeostasis in the pathogenicity of pathogenic filamentous fungi. Virulence 2024; 15:2299183. [PMID: 38156783 PMCID: PMC10761126 DOI: 10.1080/21505594.2023.2299183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024] Open
Abstract
The cell membrane forms a fundamental part of all living cells and participates in a variety of physiological processes, such as material exchange, stress response, cell recognition, signal transduction, cellular immunity, apoptosis, and pathogenicity. Here, we review the mechanisms and functions of the membrane structure (lipid components of the membrane and the biosynthesis of unsaturated fatty acids), membrane proteins (transmembrane proteins and proteins contributing to membrane curvature), transcriptional regulation, and cell wall components that influence the virulence and pathogenicity of filamentous fungi.
Collapse
Affiliation(s)
- Yuejin Peng
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Bin Chen
- Yunnan State Key Laboratory of Conservation and Utilization of Biological Resources, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Hamilton GE, Wadkovsky KN, Gladfelter AS. A single septin from a polyextremotolerant yeast recapitulates many canonical functions of septin hetero-oligomers. Mol Biol Cell 2024; 35:ar132. [PMID: 39196657 PMCID: PMC11481698 DOI: 10.1091/mbc.e24-05-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 08/30/2024] Open
Abstract
Morphological complexity and plasticity are hallmarks of polyextremotolerant fungi. Septins are conserved cytoskeletal proteins and key contributors to cell polarity and morphogenesis. They sense membrane curvature, coordinate cell division, and influence diffusion at the plasma membrane. Four septin homologues are conserved from yeasts to humans, the systems in which septins have been most studied. But there is also a fifth family of opisthokont septins that remain biochemically mysterious. Members of this family, Group 5 septins, appear in the genomes of filamentous fungi, but are understudied due to their absence from ascomycete yeasts. Knufia petricola is an emerging model polyextremotolerant black fungus that can also serve as a model system for Group 5 septins. We have recombinantly expressed and biochemically characterized KpAspE, a Group 5 septin from K. petricola. This septin--by itself in vitro--recapitulates many functions of canonical septin hetero-octamers. KpAspE is an active GTPase that forms diverse homo-oligomers, binds shallow membrane curvatures, and interacts with the terminal subunit of canonical septin hetero-octamers. These findings raise the possibility that Group 5 septins govern the higher-order structures formed by canonical septins, which in K. petricola cells form extended filaments, and provide insight into how septin hetero-oligomers evolved from ancient homomers.
Collapse
Affiliation(s)
- Grace E. Hamilton
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | | | - Amy S. Gladfelter
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27708
| |
Collapse
|
3
|
Santos TG, Silva KS, Lima RM, Silva LC, Pereira M. State of the art in protein-protein interactions within the fungi kingdom. Future Microbiol 2023; 18:1119-1131. [PMID: 37540069 DOI: 10.2217/fmb-2022-0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Proteins rarely exert their function by themselves. Protein-protein interactions (PPIs) regulate virtually every biological process that takes place in a cell. Such interactions are targets for new therapeutic agents against all sorts of diseases, through the screening and design of a variety of inhibitors. Here we discuss several aspects of PPIs that contribute to prediction of protein function and drug discovery. As the high-throughput techniques continue to release biological data, targets for fungal therapeutics that rely on PPIs are being proposed worldwide. Computational approaches have reduced the time taken to develop new therapeutic approaches. The near future brings the possibility of developing new PPI and interaction network inhibitors and a revolution in the way we treat fungal diseases.
Collapse
Affiliation(s)
- Thaynara G Santos
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74 000, Brazil
| | - Kleber Sf Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74 000, Brazil
| | - Raisa M Lima
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74 000, Brazil
| | - Lívia C Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74 000, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, 74 000, Brazil
| |
Collapse
|
4
|
Yang X, Hu Z, Yuan J, Zou R, Wang Y, Peng X, Xu S, Xie C. Functional Role of RING Ubiquitin E3 Ligase VdBre1 and VdHrd1 in the Pathogenicity and Penetration Structure Formation of Verticillium dahliae. J Fungi (Basel) 2023; 9:1037. [PMID: 37888293 PMCID: PMC10608160 DOI: 10.3390/jof9101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
Verticillium dahliae, a virulent soil-borne fungus, elicits Verticillium wilt in numerous dicotyledonous plants through intricate pathogenic mechanisms. Ubiquitination, an evolutionarily conserved post-translational modification, marks and labels proteins for degradation, thereby maintaining cellular homeostasis. Within the ubiquitination cascade, ubiquitin ligase E3 demonstrates a unique capability for target protein recognition, a function often implicated in phytopathogenic virulence. Our research indicates that two ubiquitin ligase E3s, VdBre1 and VdHrd1, are intrinsically associated with virulence. Our findings demonstrate that the deletion of these two genes significantly impairs the ability of V. dahliae to colonize the vascular bundles of plants and to form typical penetration pegs. Furthermore, transcriptomic analysis suggests that VdBre1 governs the lipid metabolism pathway, while VdHrd1 participates in endoplasmic-reticulum-related processes. Western blot analyses reveal a significant decrease in histone ubiquitination and histone H3K4 trimethylation levels in the ΔVdBre1 mutant. This research illuminates the function of ubiquitin ligase E3 in V. dahliae and offers fresh theoretical perspectives. Our research identifies two novel virulence-related genes and partially explicates their roles in virulence-associated structures and gene regulatory pathways. These findings augment our understanding of the molecular mechanisms inherent to V. dahliae.
Collapse
Affiliation(s)
- Xing Yang
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; (X.Y.); (J.Y.); (S.X.)
- Chongqing Engineering Research Center of Specialty Crop Resources, The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Zhijuan Hu
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; (X.Y.); (J.Y.); (S.X.)
- Chongqing Engineering Research Center of Specialty Crop Resources, The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Jingjie Yuan
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; (X.Y.); (J.Y.); (S.X.)
- Chongqing Engineering Research Center of Specialty Crop Resources, The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Run Zou
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; (X.Y.); (J.Y.); (S.X.)
- Chongqing Engineering Research Center of Specialty Crop Resources, The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Yilan Wang
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; (X.Y.); (J.Y.); (S.X.)
- Chongqing Engineering Research Center of Specialty Crop Resources, The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Xuan Peng
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; (X.Y.); (J.Y.); (S.X.)
- Chongqing Engineering Research Center of Specialty Crop Resources, The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Shan Xu
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; (X.Y.); (J.Y.); (S.X.)
- Chongqing Engineering Research Center of Specialty Crop Resources, The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Chengjian Xie
- The Chongqing Key Laboratory of Molecular Biology of Plant Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China; (X.Y.); (J.Y.); (S.X.)
- Chongqing Engineering Research Center of Specialty Crop Resources, The College of Life Science, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
5
|
Som S, Paul R. Mechanistic model for nuclear migration in hyphae during mitosis. Phys Rev E 2023; 108:014401. [PMID: 37583222 DOI: 10.1103/physreve.108.014401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/13/2023] [Indexed: 08/17/2023]
Abstract
Saccharomyces cerevisiae and Candida albicans, the two well-known human pathogens, can be found in all three morphologies, i.e., yeast, pseudohyphae, and true hyphae. The cylindrical daughter-bud (germ tube) grows very long for true hyphae, and the cell cycle is delayed compared to the other two morphologies. The place of the nuclear division is specific for true hyphae determined by the position of the septin ring. However, the septin ring can localize anywhere inside the germ tube, unlike the mother-bud junction in budding yeast. Since the nucleus often migrates a long path in the hyphae, the underlying mechanism must be robust for executing mitosis in a timely manner. We explore the mechanism of nuclear migration through hyphae in light of mechanical interactions between astral microtubules and the cell cortex. We report that proper migration through constricted hyphae requires a large dynein pull applied on the astral microtubules from the hyphal cortex. This is achieved when the microtubules frequently slide along the hyphal cortex so that a large population of dyneins actively participate, pulling on them. Simulation shows timely migration when the dyneins from the mother cortex do not participate in pulling on the microtubules. These findings are robust for long migration and positioning of the nucleus in the germ tube at the septin ring.
Collapse
Affiliation(s)
- Subhendu Som
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Raja Paul
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
6
|
Shi W, Cannon KS, Curtis BN, Edelmaier C, Gladfelter AS, Nazockdast E. Curvature sensing as an emergent property of multiscale assembly of septins. Proc Natl Acad Sci U S A 2023; 120:e2208253120. [PMID: 36716363 PMCID: PMC9963131 DOI: 10.1073/pnas.2208253120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/15/2022] [Indexed: 02/01/2023] Open
Abstract
The ability of cells to sense and communicate their shape is central to many of their functions. Much is known about how cells generate complex shapes, yet how they sense and respond to geometric cues remains poorly understood. Septins are GTP-binding proteins that localize to sites of micrometer-scale membrane curvature. Assembly of septins is a multistep and multiscale process, but it is unknown how these discrete steps lead to curvature sensing. Here, we experimentally examine the time-dependent binding of septins at different curvatures and septin bulk concentrations. These experiments unexpectedly indicated that septins' curvature preference is not absolute but rather is sensitive to the combinations of membrane curvatures present in a reaction, suggesting that there is competition between different curvatures for septin binding. To understand the physical underpinning of this result, we developed a kinetic model that connects septins' self-assembly and curvature-sensing properties. Our experimental and modeling results are consistent with curvature-sensitive assembly being driven by cooperative associations of septin oligomers in solution with the bound septins. When combined, the work indicates that septin curvature sensing is an emergent property of the multistep, multiscale assembly of membrane-bound septins. As a result, curvature preference is not absolute and can be modulated by changing the physicochemical and geometric parameters involved in septin assembly, including bulk concentration, and the available membrane curvatures. While much geometry-sensitive assembly in biology is thought to be guided by intrinsic material properties of molecules, this is an important example of how curvature sensing can arise from multiscale assembly of polymers.
Collapse
Affiliation(s)
- Wenzheng Shi
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Kevin S. Cannon
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Brandy N. Curtis
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Christopher Edelmaier
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Amy S. Gladfelter
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Marine Biology Laboratory, Woods Hole, MA02543
| | - Ehssan Nazockdast
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
7
|
The Fungal Protein Mes1 Is Required for Morphogenesis and Virulence in the Dimorphic Phytopathogen Ustilago maydis. J Fungi (Basel) 2022; 8:jof8080759. [PMID: 35893127 PMCID: PMC9331856 DOI: 10.3390/jof8080759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 02/05/2023] Open
Abstract
Polarized growth is a defining property of filamentous fungi, which plays an important role in different aspects of their biology, including virulence. However, little information is available about the determinants of cell surface organization and their role in polarized growth. The fungal protein MesA was identified in a genetic screen in Aspergillus nidulans and is involved in the stabilization of the polarity axes, but it has no evident role in budding yeast. In this work, I present evidence that in the dimorphic fungal phytopathogen Ustilago maydis MesA/Mes1 is involved in cell wall stability and polarized growth. mes1 mutants were more sensitive to drugs provoking cell wall stress, and they displayed a temperature-sensitive phenotype. Actin cytoskeleton was disorganized in a mes1 mutant, suggesting that there is a connection between Mes1, the actin cytoskeleton and polarized morphogenesis. The septin ring was also absent from the bud tip, but not the bud neck. Deletion of mes1 provoked defects in endocytosis and vacuolar organization in the cells. Mes1 was essential for strong polarized growth in the hyphal form, but it was dispensable during low or moderate polarized growth in the yeast form in U. maydis at a permissive temperature. Consistently, mes1 mutants showed delayed mating and they were avirulent.
Collapse
|
8
|
Shuman B, Momany M. Septins From Protists to People. Front Cell Dev Biol 2022; 9:824850. [PMID: 35111763 PMCID: PMC8801916 DOI: 10.3389/fcell.2021.824850] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Septin GTPases form nonpolar heteropolymers that play important roles in cytokinesis and other cellular processes. The ability to form heteropolymers appears to be critical to many septin functions and to have been a major driver of the high conservation of many septin domains. Septins fall into five orthologous groups. Members of Groups 1–4 interact with each other to form heterooligomers and are known as the “core septins.” Representative core septins are present in all fungi and animals so far examined and show positional orthology with monomer location in the heteropolymer conserved within groups. In contrast, members of Group 5 are not part of canonical heteropolymers and appear to interact only transiently, if at all, with core septins. Group 5 septins have a spotty distribution, having been identified in specific fungi, ciliates, chlorophyte algae, and brown algae. In this review we compare the septins from nine well-studied model organisms that span the tree of life (Homo sapiens, Drosophila melanogaster, Schistosoma mansoni, Caenorhabditis elegans, Saccharomyces cerevisiae, Aspergillus nidulans, Magnaporthe oryzae, Tetrahymena thermophila, and Chlamydomonas reinhardtii). We focus on classification, evolutionary relationships, conserved motifs, interfaces between monomers, and positional orthology within heteropolymers. Understanding the relationships of septins across kingdoms can give new insight into their functions.
Collapse
|
9
|
Meng Y, Zeng F, Hu J, Li P, Xiao S, Zhou L, Gong J, Liu Y, Hao Z, Cao Z, Dong J. Novel factors contributing to fungal pathogenicity at early stages of Setosphaeria turcica infection. MOLECULAR PLANT PATHOLOGY 2022; 23:32-44. [PMID: 34628700 PMCID: PMC8659557 DOI: 10.1111/mpp.13140] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 05/06/2023]
Abstract
The fungal pathogen Setosphaeria turcica causes leaf blight on maize, which leads to considerable crop losses. However, how S. turcica establishes sustained systemic infection is largely unknown. Here, we report several novel factors contributing to S. turcica pathogenicity, identified using a genomic and transcriptional screen at different stages of S. turcica appressorium development. We identified two cytoskeleton regulators, SLM1 and SLM2, that are crucial for hypha and appressorium development. The SLM1 and SLM2 transcripts accumulated during germling stage but their levels were notably reduced at the appressorium stage. Deletion of SLM2 dramatically affected cell morphology, penetration ability, and pathogenicity. We also identified three different types of S. turcica glycosyl hydrolases that are critical for plant cell wall degradation. Their transcripts accumulated during the appressorium infection stage induced by cellophane and maize leaf. Most importantly, we characterized a novel and specific S. turcica effector, appressorium-coupled effector 1 (StACE1), whose expression is coupled to appressorium formation in S. turcica. This protein is required for maize infection and induces cell death on expression in Nicotiana benthamiana. These observations suggest that the phytopathogen S. turcica is primed in advance with multiple strategies for maize infection, which are coupled to appressorium formation at the early infection stages.
Collapse
Affiliation(s)
- Yanan Meng
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Jingjing Hu
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Pan Li
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Shenglin Xiao
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Lihong Zhou
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Jiangang Gong
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Yuwei Liu
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Zhimin Hao
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
| | - Zhiyan Cao
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
- College of Plant ProtectionHebei Agricultural UniversityBaodingChina
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyHebeiChina
- College of Plant ProtectionHebei Agricultural UniversityBaodingChina
| |
Collapse
|
10
|
Comparative Transcriptomics and Gene Knockout Reveal Virulence Factors of Arthrinium phaeospermum in Bambusa pervariabilis × Dendrocalamopsis grandis. J Fungi (Basel) 2021; 7:jof7121001. [PMID: 34946984 PMCID: PMC8705590 DOI: 10.3390/jof7121001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Arthrinium phaeospermum can cause branch wilting of Bambusa pervariabilis × Dendrocalamopsis grandis, causing great economic losses and ecological damage. A. phaeospermum was sequenced in sterile deionized water (CK), rice tissue (T1) and B. pervariabilis × D. grandis (T2) fluid by RNA-Seq, and the function of Ctf1β 1 and Ctf1β 2 was verified by gene knockout. There were 424, 471 and 396 differentially expressed genes between the T2 and CK, T2 and T1, and CK and T1 groups, respectively. Thirty DEGs had verified the change in expression by fluorescent quantitative PCR. Twenty-nine DEGs were the same as the expression level in RNA-Seq. In addition, ΔApCtf1β 1 and ΔApCtf1β 2 showed weaker virulence by gene knockout, and the complementary strains Ctf1β 1 and Ctf1β 2 showed the same virulence as the wild-type strains. Relative growth inhibition of ΔApCtf1β 1 and ΔApCtf1β was significantly decreased by 21.4% and 19.2%, respectively, by adding H2O2 compared to the estimates from the wild-type strain and decreased by 25% and 19.4%, respectively, by adding Congo red. The disease index of B. pervariabilis × D. grandis infected by two mutants was significantly lower than that of wild type. This suggested that Ctf1β genes are required for the stress response and virulence of A. phaeospermum.
Collapse
|
11
|
Chethana KWT, Jayawardena RS, Chen YJ, Konta S, Tibpromma S, Abeywickrama PD, Gomdola D, Balasuriya A, Xu J, Lumyong S, Hyde KD. Diversity and Function of Appressoria. Pathogens 2021; 10:pathogens10060746. [PMID: 34204815 PMCID: PMC8231555 DOI: 10.3390/pathogens10060746] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Endophytic, saprobic, and pathogenic fungi have evolved elaborate strategies to obtain nutrients from plants. Among the diverse plant-fungi interactions, the most crucial event is the attachment and penetration of the plant surface. Appressoria, specialized infection structures, have been evolved to facilitate this purpose. In this review, we describe the diversity of these appressoria and classify them into two main groups: single-celled appressoria (proto-appressoria, hyaline appressoria, melanized (dark) appressoria) and compound appressoria. The ultrastructure of appressoria, their initiation, their formation, and their function in fungi are discussed. We reviewed the molecular mechanisms regulating the formation and function of appressoria, their strategies to evade host defenses, and the related genomics and transcriptomics. The current review provides a foundation for comprehensive studies regarding their evolution and diversity in different fungal groups.
Collapse
Affiliation(s)
- K. W. Thilini Chethana
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.S.J.); (Y.-J.C.); (S.K.); (P.D.A.); (D.G.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.S.J.); (Y.-J.C.); (S.K.); (P.D.A.); (D.G.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Yi-Jyun Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.S.J.); (Y.-J.C.); (S.K.); (P.D.A.); (D.G.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Sirinapa Konta
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.S.J.); (Y.-J.C.); (S.K.); (P.D.A.); (D.G.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Saowaluck Tibpromma
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Pranami D. Abeywickrama
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.S.J.); (Y.-J.C.); (S.K.); (P.D.A.); (D.G.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Beijing Key Laboratory of Environment Friendly Management on Diseases and Pests of North China Fruits, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Deecksha Gomdola
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.S.J.); (Y.-J.C.); (S.K.); (P.D.A.); (D.G.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Abhaya Balasuriya
- Department of Plant Sciences, Faculty of Agriculture, Rajarata University of Sri Lanka, Mihintale 50300, Sri Lanka;
| | - Jianping Xu
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada;
| | - Saisamorn Lumyong
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Kevin D. Hyde
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (R.S.J.); (Y.-J.C.); (S.K.); (P.D.A.); (D.G.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Correspondence:
| |
Collapse
|
12
|
Abstract
Septins, a conserved family of GTP-binding proteins, are widely recognized as an essential cytoskeletal component, playing important roles in a variety of biological processes, including division, polarity, and membrane remodeling, in different eukaryotes. Although the roles played by septins were identified in the model organism Saccharomyces cerevisiae, their importance in other fungi, especially pathogenic fungi, have recently been determined. In this review, we summarize the functions of septins in pathogenic fungi in the cell cycle, autophagy, endocytosis and invasion host-microbe interactions that were reported in the last two years in the field of septin cell biology. These new discoveries may be expanded to investigate the functions of septin proteins in fungal pathogenesis and may be of wide interest to the readers of Microbiology and Molecular Pathology.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.,State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhen-Zhu Su
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA.,Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, USA.,Veterans Affairs Medical Center, Northport, New York, USA
| | - Xiao-Hong Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.,State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
13
|
Spiliotis ET, McMurray MA. Masters of asymmetry - lessons and perspectives from 50 years of septins. Mol Biol Cell 2021; 31:2289-2297. [PMID: 32991244 PMCID: PMC7851956 DOI: 10.1091/mbc.e19-11-0648] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Septins are a unique family of GTPases, which were discovered 50 years ago as essential genes for the asymmetric cell shape and division of budding yeast. Septins assemble into filamentous nonpolar polymers, which associate with distinct membrane macrodomains and subpopulations of actin filaments and microtubules. While structurally a cytoskeleton-like element, septins function predominantly as spatial regulators of protein localization and interactions. Septin scaffolds and barriers have provided a long-standing paradigm for the generation and maintenance of asymmetry in cell membranes. Septins also promote asymmetry by regulating the spatial organization of the actin and microtubule cytoskeleton, and biasing the directionality of membrane traffic. In this 50th anniversary perspective, we highlight how septins have conserved and adapted their roles as effectors of membrane and cytoplasmic asymmetry across fungi and animals. We conclude by outlining principles of septin function as a module of symmetry breaking, which alongside the monomeric small GTPases provides a core mechanism for the biogenesis of molecular asymmetry and cell polarity.
Collapse
Affiliation(s)
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
14
|
Discovery of broad-spectrum fungicides that block septin-dependent infection processes of pathogenic fungi. Nat Microbiol 2020; 5:1565-1575. [PMID: 32958858 DOI: 10.1038/s41564-020-00790-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 11/09/2022]
Abstract
Many pathogenic fungi depend on the development of specialized infection structures called appressoria to invade their hosts and cause disease. Impairing the function of fungal infection structures therefore provides a potential means by which diseases could be prevented. In spite of this extraordinary potential, however, relatively few anti-penetrant drugs have been developed to control fungal diseases, of either plants or animals. In the present study, we report the identification of compounds that act specifically to prevent fungal infection. We found that the organization of septin GTPases, which are essential for appressorium-mediated infection in the rice blast fungus Magnaporthe oryzae, requires very-long-chain fatty acids (VLCFAs), which act as mediators of septin organization at membrane interfaces. VLCFAs promote septin recruitment to curved plasma membranes and depletion of VLCFAs prevents septin assembly and host penetration by M. oryzae. We observed that VLCFA biosynthesis inhibitors not only prevent rice blast disease, but also show effective, broad-spectrum fungicidal activity against a wide range of fungal pathogens of maize, wheat and locusts, without affecting their respective hosts. Our findings reveal a mechanism underlying septin-mediated infection structure formation in fungi and provide a class of fungicides to control diverse diseases of plants and animals.
Collapse
|
15
|
Tang W, Jiang H, Aron O, Wang M, Wang X, Chen J, Lin B, Chen X, Zheng Q, Gao X, He D, Wang A, Wang Z. Endoplasmic reticulum-associated degradation mediated by MoHrd1 and MoDer1 is pivotal for appressorium development and pathogenicity of Magnaporthe oryzae. Environ Microbiol 2020; 22:4953-4973. [PMID: 32410295 DOI: 10.1111/1462-2920.15069] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
Most secretory proteins are folded and modified in the endoplasmic reticulum (ER); however, protein folding is error-prone, resulting in toxic protein aggregation and cause ER stress. Irreversibly misfolded proteins are subjected to ER-associated degradation (ERAD), modified by ubiquitination, and degraded by the 26S proteasome. The yeast ERAD ubiquitin ligase Hrd1p and multispanning membrane protein Der1p are involved in ubiquitination and transportation of the folding-defective proteins. Here, we performed functional characterization of MoHrd1 and MoDer1 and revealed that both of them are localized to the ER and are pivotal for ERAD substrate degradation and the ER stress response. MoHrd1 and MoDer1 are involved in hyphal growth, asexual reproduction, infection-related morphogenesis, protein secretion and pathogenicity of M. oryzae. Importantly, MoHrd1 and MoDer1 mediated conidial autophagic cell death and subsequent septin ring assembly at the appressorium pore, leading to abnormal appressorium development and loss of pathogenicity. In addition, deletion of MoHrd1 and MoDer1 activated the basal unfolded protein response (UPR) and autophagy, suggesting that crosstalk between ERAD and two other closely related mechanisms in ER quality control system (UPR and autophagy) governs the ER stress response. Our study indicates the importance of ERAD function in fungal development and pathogenesis of M. oryzae.
Collapse
Affiliation(s)
- Wei Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Haolang Jiang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Osakina Aron
- Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Min Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xueyu Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiangfeng Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Birong Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xuehang Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiaojia Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiuqin Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dou He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Airong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Fujian University Key Laboratory for Plant-Microbe Interaction, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| |
Collapse
|
16
|
Bieger BD, Rogers AM, Bates S, Egan MJ. Long-distance early endosome motility in Aspergillus fumigatus promotes normal hyphal growth behaviors in controlled microenvironments but is dispensable for virulence. Traffic 2020; 21:479-487. [PMID: 32378777 DOI: 10.1111/tra.12735] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
In filamentous fungi, early endosomes are continuously trafficked to, and from, the growing hyphal tip by microtubule-based motor proteins, serving as platforms for the long-distance transport of diverse cargos including mRNA, signaling molecules, and other organelles which hitchhike on them. While the cellular machinery for early endosome motility in filamentous fungi is fairly well characterized, the broader physiological significance of this process remains less well understood. We set out to determine the importance of long-distance early endosome trafficking in Aspergillus fumigatus, an opportunistic human pathogenic fungus that can cause devastating pulmonary infections in immunocompromised individuals. We first characterized normal early endosome motile behavior in A. fumigatus, then generated a mutant in which early endosome motility is severely perturbed through targeted deletion of the gene encoding for FtsA, one of a complex of proteins that links early endosomes to their motor proteins. Using a microfluidics-based approach we show that contact-induced hyphal branching behaviors are impaired in ΔftsA mutants, but that FtsA-mediated early endosome motility is dispensable for virulence in an invertebrate infection model. Overall, our study provides new insight into early endosome motility in an important human pathogenic fungus.
Collapse
Affiliation(s)
- Baronger Dowell Bieger
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| | - Audra Mae Rogers
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, Arkansas, USA
| | - Steven Bates
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, UK
| | - Martin John Egan
- Department of Entomology and Plant Pathology, University of Arkansas Systems Division of Agriculture, Fayetteville, Arkansas, USA.,Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
17
|
Abstract
Appressoria are specialised infection structures used by many disease-causing microorganisms to breach the outer surface of a host. Nick Talbot tells us about these small but incredibly powerful structures.
Collapse
|
18
|
Colou J, N'Guyen GQ, Dubreu O, Fontaine K, Kwasiborski A, Bastide F, Manero F, Hamon B, Aligon S, Simoneau P, Guillemette T. Role of membrane compartment occupied by Can1 (MCC) and eisosome subdomains in plant pathogenicity of the necrotrophic fungus Alternaria brassicicola. BMC Microbiol 2019; 19:295. [PMID: 31842747 PMCID: PMC6916069 DOI: 10.1186/s12866-019-1667-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/28/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND MCC/eisosomes are membrane microdomains that have been proposed to participate in the plasma membrane function in particular by regulating the homeostasis of lipids, promoting the recruitment of specific proteins and acting as provider of membrane reservoirs. RESULTS Here we showed that several potential MCC/eisosomal protein encoding genes in the necrotrophic fungus A. brassicicola were overexpressed when germinated spores were exposed to antimicrobial defence compounds, osmotic and hydric stresses, which are major constraints encountered by the fungus during the plant colonization process. Mutants deficient for key MCC/eisosome components did not exhibit any enhanced susceptibility to phytoalexins and to applied stress conditions compared to the reference strain, except for a slight hypersensitivity of the ∆∆abpil1a-abpil1b strain to 2 M sorbitol. Depending on the considered mutants, we showed that the leaf and silique colonization processes were impaired by comparison to the wild-type, and assumed that these defects in aggressiveness were probably caused by a reduced appressorium formation rate. CONCLUSIONS This is the first study on the role of MCC/eisosomes in the pathogenic process of a plant pathogenic fungus. A link between these membrane domains and the fungus ability to form functional penetration structures was shown, providing new potential directions for plant disease control strategies.
Collapse
Affiliation(s)
- Justine Colou
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Guillaume Quang N'Guyen
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France.,Institut de Biologie Intégrative et des Systèmes, Département de Biologie, PROTEO, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, QC, Québec, G1V 0A6, Canada
| | - Ophélie Dubreu
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Kévin Fontaine
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France.,ANSES, Laboratoire de la Santé des Végétaux, Unité de Mycologie, Domaine de Pixérécourt, 54220, Malzéville, France
| | - Anthony Kwasiborski
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Franck Bastide
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Florence Manero
- Plateforme SCIAM, Institut de Biologie en Santé, CHU, Université d'Angers, 4, Rue Larrey, 49933, Angers Cedex, France
| | - Bruno Hamon
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Sophie Aligon
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Philippe Simoneau
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France
| | - Thomas Guillemette
- Institut de Recherche en Horticulture et Semences - UMR 1345, INRA, Université d'Angers, Agrocampus-Ouest, SFR 4207 QuaSaV, 42 rue Georges Morel, 49071 Beaucouzé Cedex, Angers, France.
| |
Collapse
|
19
|
Zhang X, González JB, Turgeon BG. Septins are required for reproductive propagule development and virulence of the maize pathogen Cochliobolus heterostrophus. Fungal Genet Biol 2019; 135:103291. [PMID: 31698077 DOI: 10.1016/j.fgb.2019.103291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/12/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023]
Abstract
Septins are highly conserved GTP-binding proteins that function in cell cytokinesis, polarity and morphogenesis. To evaluate the roles of these proteins in inoculum health and disease, mutants deleted for each of five septin proteins (Cdc3, Cdc10, Cdc11, Cdc12, and Cdc100) were characterized in the ascomycete Cochliobolus heterostrophus for ability to develop asexual and sexual spores and for virulence to the host maize. Strains deleted for CDC3, CDC10, CDC11, and CDC12 genes showed significant changes in hyphal growth, and in development of conidia and ascospores compared to the wild-type strain. Conidia had dramatically reduced numbers of septa and rates of germination, while ascospore development was blocked in the meiotic process. Although asci were produced, wild-type ascospores were not. When equal numbers of conidia from wild type and mutants were used to inoculate maize, cdc10 mutants showed reduced virulence compared to the wild-type strain and other mutants. This reduced virulence was demonstrated to be correlated with lower germination rate of cdc10 mutant conidia. When adjusted for germination rate, virulence was equivalent to the wild-type strain. Double mutants (cdc3cdc10, cdc3cdc11) showed augmented reduced growth phenotypes. cdc100 mutants were wild type in all assays. Taken together, these findings indicate that all four conserved septin proteins play a major role in reproductive propagule formation and that mutants with deletions of CDC10 are reduced in virulence to the host maize.
Collapse
Affiliation(s)
- Xianghui Zhang
- College of Plant Science, Jilin University, Changchun, Jilin, China; Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States.
| | - Jonathan B González
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| | - B Gillian Turgeon
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
20
|
Liu F, Chen J, Dang X, Meng X, Wang R, Bao J, Long M, Li T, Ma Q, Huang J, Pan G, Zhou Z. Nbseptin2 Expression Pattern and Its Interaction with Nb
PTP
1 during Microsporidia
Nosema bombycis
Polar Tube Extrusion. J Eukaryot Microbiol 2019; 67:45-53. [DOI: 10.1111/jeu.12752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 07/10/2019] [Indexed: 01/16/2023]
Affiliation(s)
- Fangyan Liu
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Jie Chen
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Xiaoqun Dang
- Laboratory of Animal Biology Chongqing Normal University Chongqing 400047 China
| | - Xianzhi Meng
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Rong Wang
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Jialing Bao
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Mengxian Long
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Tian Li
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Qiang Ma
- Research Laboratory Center Chongqing Three Gorges Medical College Chongqing 404120 China
| | - Jun Huang
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology Southwest University Chongqing 400716 China
- Chongqing Key Laboratory of Microsporidia Infection and Control Southwest University Chongqing 400716 China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agricultural Southwest University Chongqing 400716 China
- Laboratory of Animal Biology Chongqing Normal University Chongqing 400047 China
| |
Collapse
|
21
|
Auxier B, Dee J, Berbee ML, Momany M. Diversity of opisthokont septin proteins reveals structural constraints and conserved motifs. BMC Evol Biol 2019; 19:4. [PMID: 30616529 PMCID: PMC6323724 DOI: 10.1186/s12862-018-1297-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 11/19/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Septins are cytoskeletal proteins important in cell division and in establishing and maintaining cell polarity. Although septins are found in various eukaryotes, septin genes had the richest history of duplication and diversification in the animals, fungi and protists that comprise opisthokonts. Opisthokont septin paralogs encode modular proteins that assemble into heteropolymeric higher order structures. The heteropolymers can create physical barriers to diffusion or serve as scaffolds organizing other morphogenetic proteins. How the paralogous septin modules interact to form heteropolymers is still unclear. Through comparative analyses, we hoped to clarify the evolutionary origin of septin diversity and to suggest which amino acid residues were responsible for subunit binding specificity. RESULTS Here we take advantage of newly sequenced genomes to reconcile septin gene trees with a species phylogeny from 22 animals, fungi and protists. Our phylogenetic analysis divided 120 septins representing the 22 taxa into seven clades (Groups) of paralogs. Suggesting that septin genes duplicated early in opisthokont evolution, animal and fungal lineages share septin Groups 1A, 4 and possibly also 1B and 2. Group 5 septins were present in fungi but not in animals and whether they were present in the opisthokont ancestor was unclear. Protein homology folding showed that previously identified conserved septin motifs were all located near interface regions between the adjacent septin monomers. We found specific interface residues associated with each septin Group that are candidates for providing subunit binding specificity. CONCLUSIONS This work reveals that duplication of septin genes began in an ancestral opisthokont more than a billion years ago and continued through the diversification of animals and fungi. Evidence for evolutionary conservation of ~ 49 interface residues will inform mutagenesis experiments and lead to improved understanding of the rules guiding septin heteropolymer formation and from there, to improved understanding of development of form in animals and fungi.
Collapse
Affiliation(s)
- Benjamin Auxier
- Department of Botany, University of British Columbia, Vancouver, Canada
- current address: Laboratory of Genetics, Wageningen University and Research, P.O. Box 16, 6700AA, Wageningen, The Netherlands
| | - Jaclyn Dee
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Mary L. Berbee
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, Athens, USA
| |
Collapse
|
22
|
Marquardt J, Chen X, Bi E. Architecture, remodeling, and functions of the septin cytoskeleton. Cytoskeleton (Hoboken) 2018; 76:7-14. [PMID: 29979831 DOI: 10.1002/cm.21475] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/05/2018] [Accepted: 06/22/2018] [Indexed: 01/22/2023]
Abstract
The septin family of proteins has fascinated cell biologists for decades due to the elaborate architecture they adopt in different eukaryotic cells. Whether they exist as rings, collars, or gauzes in different cell types and at different times in the cell cycle illustrates a complex series of regulation in structure. While the organization of different septin structures at the cortex of different cell types during the cell cycle has been described to various degrees, the exact structure and regulation at the filament level are still largely unknown. Recent advances in fluorescent and electron microscopy, as well as work in septin biochemistry, have allowed new insights into the aspects of septin architecture, remodeling, and function in many cell types. This mini-review highlights many of the recent findings with an emphasis on the budding yeast model.
Collapse
Affiliation(s)
- Joseph Marquardt
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xi Chen
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Secretory Vesicle Polar Sorting, Endosome Recycling and Cytoskeleton Organization Require the AP-1 Complex in Aspergillus nidulans. Genetics 2018; 209:1121-1138. [PMID: 29925567 DOI: 10.1534/genetics.118.301240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/19/2018] [Indexed: 11/18/2022] Open
Abstract
The AP-1 complex is essential for membrane protein traffic via its role in the pinching-off and sorting of secretory vesicles (SVs) from the trans-Golgi and/or endosomes. While its essentiality is undisputed in metazoa, its role in simpler eukaryotes seems less clear. Here, we dissect the role of AP-1 in the filamentous fungus Aspergillus nidulans and show that it is absolutely essential for growth due to its role in clathrin-dependent maintenance of polar traffic of specific membrane cargoes toward the apex of growing hyphae. We provide evidence that AP-1 is involved in both anterograde sorting of RabERab11-labeled SVs and RabA/BRab5-dependent endosome recycling. Additionally, AP-1 is shown to be critical for microtubule and septin organization, further rationalizing its essentiality in cells that face the challenge of cytoskeleton-dependent polarized cargo traffic. This work also opens a novel issue on how nonpolar cargoes, such as transporters, are sorted to the eukaryotic plasma membrane.
Collapse
|
24
|
Masuo S, Komatsuzaki A, Takeshita N, Itoh E, Takaaki O, Zhou S, Takaya N. Spatial heterogeneity of glycogen and its metabolizing enzymes in Aspergillus nidulans hyphal tip cells. Fungal Genet Biol 2017; 110:48-55. [PMID: 29175367 DOI: 10.1016/j.fgb.2017.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 01/13/2023]
Abstract
Glycogen is a homopolymer of glucose and a ubiquitous cellular-storage carbon. This study investigated which Aspergillus nidulans genes are involved in glycogen metabolism. Gene disruptants of predicted glycogen synthase (gsyA) and glycogenin (glgA) genes accumulated less cellular glycogen than the wild type strain, indicating that GsyA and GlgA synthesize glycogen similarly to other eukaryotes. Meanwhile, gene disruption of gphA encoding glycogen phosphorylase increased the amount of glycogen to a higher degree than wild type during the stationary phase that accompanies carbon-source limitation. GFP-tagged GsyA and GphA were distributed in the cytosol and formed punctate and filamentous structures, respectively. Carbon starvation resulted in elongated GphA-GFP filaments and increased numbers of filaments. These structures were more frequently located in the basal regions of tip cells and adjacent cells than in the apical regions of tip cells. Cellular glycogen visualized by incorporation of a fluorescent glucose analog accumulated in cytoplasmic puncta that were more prevalent in the basal regions, a pattern similar to that seen for GsyA. The colocalization of glycogen and GsyA at punctate structures in tip and sub-apical cells likely represents the cellular machinery for synthesizing glycogen. More frequent colocalization in the basal, rather than tip cell apical regions indicated that tip cells have differentiated subcellular regions for glycogen synthesis. Our findings regarding glycogen, GsyA and GphA distribution evoke the spatial heterogeneity of glycogen metabolism in fungal hyphae.
Collapse
Affiliation(s)
- Shunsuke Masuo
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Airi Komatsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Norio Takeshita
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Eriko Itoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Okazoe Takaaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Shengmin Zhou
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Naoki Takaya
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
25
|
Sephton-Clark PCS, Voelz K. Spore Germination of Pathogenic Filamentous Fungi. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:117-157. [PMID: 29680124 DOI: 10.1016/bs.aambs.2017.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fungi, algae, plants, protozoa, and bacteria are all known to form spores, especially hardy and ubiquitous propagation structures that are also often the infectious agents of diseases. Spores can survive for thousands of years, frozen in the permafrost (Kochkina et al., 2012), with the oldest viable spores extracted after 250 million years from salt crystals (Vreeland, Rosenzweig, & Powers, 2000). Their resistance to high levels of UV, desiccation, pressure, heat, and cold enables the survival of spores in the harshest conditions (Setlow, 2016). For example, Bacillus subtilis spores can survive and remain viable after experiencing conditions similar to those on Mars (Horneck et al., 2012). Spores are disseminated through environmental factors. Wind, water, or animal carriage allow spores to be spread ubiquitously throughout the environment. Spores will break dormancy and begin to germinate once exposed to favorable conditions. Germination is the mechanism that converts the spore from a dormant biological organism to one that grows vegetatively and is capable of either sexual or asexual reproduction. The process of germination has been well studied in plants, moss, bacteria, and many fungi (Hohe & Reski, 2005; Huang & Hull, 2017; Vesty et al., 2016). Unfortunately, information on the complex signaling involved in the regulation of germination, particularly in fungi remains lacking. This chapter will discuss germination of fungal spores covering our current understanding of the regulation, signaling, outcomes, and implications of germination of pathogenic fungal spores. Owing to the morphological similarities between the spore-hyphal and yeast-hyphal transition and their relevance for disease progression, relevant aspects of fungal dimorphism will be discussed alongside spore germination in this chapter.
Collapse
Affiliation(s)
- Poppy C S Sephton-Clark
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Kerstin Voelz
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
26
|
MCC/Eisosomes Regulate Cell Wall Synthesis and Stress Responses in Fungi. J Fungi (Basel) 2017; 3:jof3040061. [PMID: 29371577 PMCID: PMC5753163 DOI: 10.3390/jof3040061] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 12/20/2022] Open
Abstract
The fungal plasma membrane is critical for cell wall synthesis and other important processes including nutrient uptake, secretion, endocytosis, morphogenesis, and response to stress. To coordinate these diverse functions, the plasma membrane is organized into specialized compartments that vary in size, stability, and composition. One recently identified domain known as the Membrane Compartment of Can1 (MCC)/eisosome is distinctive in that it corresponds to a furrow-like invagination in the plasma membrane. MCC/eisosomes have been shown to be formed by the Bin/Amphiphysin/Rvs (BAR) domain proteins Lsp1 and Pil1 in a range of fungi. MCC/eisosome domains influence multiple cellular functions; but a very pronounced defect in cell wall synthesis has been observed for mutants with defects in MCC/eisosomes in some yeast species. For example, Candida albicans MCC/eisosome mutants display abnormal spatial regulation of cell wall synthesis, including large invaginations and altered chemical composition of the walls. Recent studies indicate that MCC/eisosomes affect cell wall synthesis in part by regulating the levels of the key regulatory lipid phosphatidylinositol 4,5-bisphosphate (PI4,5P2) in the plasma membrane. One general way MCC/eisosomes function is by acting as protected islands in the plasma membrane, since these domains are very stable. They also act as scaffolds to recruit >20 proteins. Genetic studies aimed at defining the function of the MCC/eisosome proteins have identified important roles in resistance to stress, such as resistance to oxidative stress mediated by the flavodoxin-like proteins Pst1, Pst2, Pst3 and Ycp4. Thus, MCC/eisosomes play multiple roles in plasma membrane organization that protect fungal cells from the environment.
Collapse
|
27
|
Niessing D, Jansen RP, Pohlmann T, Feldbrügge M. mRNA transport in fungal top models. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 28994236 DOI: 10.1002/wrna.1453] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/28/2017] [Accepted: 09/05/2017] [Indexed: 01/13/2023]
Abstract
Eukaryotic cells rely on the precise determination of when and where proteins are synthesized. Spatiotemporal expression is supported by localization of mRNAs to specific subcellular sites and their subsequent local translation. This holds true for somatic cells as well as for oocytes and embryos. Most commonly, mRNA localization is achieved by active transport of the molecules along the actin or microtubule cytoskeleton. Key factors are molecular motors, adaptors, and RNA-binding proteins that recognize defined sequences or structures in cargo mRNAs. A deep understanding of this process has been gained from research on fungal model systems such as Saccharomyces cerevisiae and Ustilago maydis. Recent highlights of these studies are the following: (1) synergistic binding of two RNA-binding proteins is needed for high affinity recognition; (2) RNA sequences undergo profound structural rearrangements upon recognition; (3) mRNA transport is tightly linked to membrane trafficking; (4) mRNAs and ribosomes are transported on the cytoplasmic surface of endosomes; and (5) heteromeric protein complexes are, most likely, assembled co-translationally during endosomal transport. Thus, the study of simple fungal model organisms provides valuable insights into fundamental mechanisms of mRNA transport boosting the understanding of similar events in higher eukaryotes. WIREs RNA 2018, 9:e1453. doi: 10.1002/wrna.1453 This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Dierk Niessing
- Department of Cell Biology, Biomedical Center, Ludwig-Maximilians-University München, Planegg-Martinsried, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ralf-Peter Jansen
- Interfaculty Institute of Biochemistry, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Thomas Pohlmann
- Centre of Excellence on Plant Sciences, Institute for Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Feldbrügge
- Centre of Excellence on Plant Sciences, Institute for Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|