1
|
Schwartzman JD, McCall M, Ghattas Y, Pugazhendhi AS, Wei F, Ngo C, Ruiz J, Seal S, Coathup MJ. Multifunctional scaffolds for bone repair following age-related biological decline: Promising prospects for smart biomaterial-driven technologies. Biomaterials 2024; 311:122683. [PMID: 38954959 DOI: 10.1016/j.biomaterials.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The repair of large bone defects due to trauma, disease, and infection can be exceptionally challenging in the elderly. Despite best clinical practice, bone regeneration within contemporary, surgically implanted synthetic scaffolds is often problematic, inconsistent, and insufficient where additional osteobiological support is required to restore bone. Emergent smart multifunctional biomaterials may drive important and dynamic cellular crosstalk that directly targets, signals, stimulates, and promotes an innate bone repair response following age-related biological decline and when in the presence of disease or infection. However, their role remains largely undetermined. By highlighting their mechanism/s and mode/s of action, this review spotlights smart technologies that favorably align in their conceivable ability to directly target and enhance bone repair and thus are highly promising for future discovery for use in the elderly. The four degrees of interactive scaffold smartness are presented, with a focus on bioactive, bioresponsive, and the yet-to-be-developed autonomous scaffold activity. Further, cell- and biomolecular-assisted approaches were excluded, allowing for contemporary examination of the capabilities, demands, vision, and future requisites of next-generation biomaterial-induced technologies only. Data strongly supports that smart scaffolds hold significant promise in the promotion of bone repair in patients with a reduced osteobiological response. Importantly, many techniques have yet to be tested in preclinical models of aging. Thus, greater clarity on their proficiency to counteract the many unresolved challenges within the scope of aging bone is highly warranted and is arguably the next frontier in the field. This review demonstrates that the use of multifunctional smart synthetic scaffolds with an engineered strategy to circumvent the biological insufficiencies associated with aging bone is a viable route for achieving next-generation therapeutic success in the elderly population.
Collapse
Affiliation(s)
| | - Max McCall
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yasmine Ghattas
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Fei Wei
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA
| | - Jonathan Ruiz
- College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA; Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, USA, Orlando, FL
| | - Melanie J Coathup
- College of Medicine, University of Central Florida, Orlando, FL, USA; Biionix Cluster, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
2
|
Sheth M, Sharma M, Lehn M, Reza H, Takebe T, Takiar V, Wise-Draper T, Esfandiari L. Three-dimensional matrix stiffness modulates mechanosensitive and phenotypic alterations in oral squamous cell carcinoma spheroids. APL Bioeng 2024; 8:036106. [PMID: 39092008 PMCID: PMC11293878 DOI: 10.1063/5.0210134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Extracellular biophysical cues such as matrix stiffness are key stimuli tuning cell fate and affecting tumor progression in vivo. However, it remains unclear how cancer spheroids in a 3D microenvironment perceive matrix mechanical stiffness stimuli and translate them into intracellular signals driving progression. Mechanosensitive Piezo1 and TRPV4 ion channels, upregulated in many malignancies, are major transducers of such physical stimuli into biochemical responses. Most mechanotransduction studies probing the reception of changing stiffness cues by cells are, however, still limited to 2D culture systems or cell-extracellular matrix models, which lack the major cell-cell interactions prevalent in 3D cancer tumors. Here, we engineered a 3D spheroid culture environment with varying mechanobiological properties to study the effect of static matrix stiffness stimuli on mechanosensitive and malignant phenotypes in oral squamous cell carcinoma spheroids. We find that spheroid growth is enhanced when cultured in stiff extracellular matrix. We show that the protein expression of mechanoreceptor Piezo1 and stemness marker CD44 is upregulated in stiff matrix. We also report the upregulation of a selection of genes with associations to mechanoreception, ion channel transport, extracellular matrix organization, and tumorigenic phenotypes in stiff matrix spheroids. Together, our results indicate that cancer cells in 3D spheroids utilize mechanosensitive ion channels Piezo1 and TRPV4 as means to sense changes in static extracellular matrix stiffness, and that stiffness drives pro-tumorigenic phenotypes in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Maulee Sheth
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Manju Sharma
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA
| | - Maria Lehn
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio 45219, USA
| | - HasanAl Reza
- Division of Gastroenterology, Hepatology and Nutrition and Division of Developmental Biology, and Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
3
|
Mamaghaniyeh R, Zandieh A, Goliaei B, Nezamtaheri MS, Shariatpanahi SP. Effects of exposure to alternating low-intensity, intermediate-frequency electric fields on the differentiation of human leukemic cell line U937. Bioelectromagnetics 2024; 45:48-57. [PMID: 37870254 DOI: 10.1002/bem.22487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/20/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023]
Abstract
Studying the bioeffects of electric fields have been the subject of ongoing research which led to promising therapeutic effect, particularly in cancer treatment. Here, we investigated the impact of low-intensity, intermediate-frequency alternating electric fields on the differentiation of human myeloid leukemia cell line U937. The results showed a near twofold increase in differentiation of U937 cells treated for 24 h by alternating 600 kHz, 150 V/m electric fields, in comparison to their control groups. This measure was evaluated by latex bead phagocytosis assay, nitro blue tetrazolium test, and cell cycle analysis which revealed a significant shift in the number of cells from G2 +M to G0 +G1 phases. The simulation result for the intracellular field intensity showed around 50% attenuation with respect to the applied external field for our setup which ruled out masking of the applied field by the internal electric noise of the cell. Based on previous studies we postulate a possible calcium-related effect for the observed differentiation, yet the exact underlying mechanism requires further investigation. Finally, our results may offer a potential therapeutic method for leukemia in the future.
Collapse
Affiliation(s)
- Rayehe Mamaghaniyeh
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Amirali Zandieh
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Maryam S Nezamtaheri
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Seyed P Shariatpanahi
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Wang Y, Huang W, Zheng S, Wang L, Zhang L, Pei X. Construction of an immune-related risk score signature for gastric cancer based on multi-omics data. Sci Rep 2024; 14:1422. [PMID: 38228846 PMCID: PMC10791612 DOI: 10.1038/s41598-024-52087-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/13/2024] [Indexed: 01/18/2024] Open
Abstract
Early identification of gastric cancer (GC) is associated with a superior survival rate compared to advanced GC. However, the poor specificity and sensitivity of traditional biomarkers suggest the importance of identifying more effective biomarkers. This study aimed to identify novel biomarkers for the prognosis of GC and construct a risk score (RS) signature based on these biomarkers, with to validation of its predictive performance. We used multi-omics data from The Cancer Genome Atlas to analyze the significance of differences in each omics data and combined the data using Fisher's method. Hub genes were subsequently subjected to univariate Cox and LASSO regression analyses and used to construct the RS signature. The RS of each patient was calculated, and the patients were divided into two subgroups according to the RS. The RS signature was validated in two independent datasets from the Gene Expression Omnibus and subsequent analyses were subsequently conducted. Five immune-related genes strongly linked to the prognosis of GC patients were obtained, namely CGB5, SLC10A2, THPO, PDGFRB, and APOD. The results revealed significant differences in overall survival between the two subgroups (p < 0.001) and indicated the high accuracy of the RS signature. When validated in two independent datasets, the results were consistent with those in the training dataset (p = 0.003 and p = 0.001). Subsequent analyses revealed that the RS signature is independent and has broad applicability among various GC subtypes. In conclusion, we used multi-omics data to obtain five immune-related genes comprising the RS signature, which can independently and effectively predict the prognosis of GC patients with high accuracy.
Collapse
Affiliation(s)
- Ying Wang
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shenzhen, Guangdong, China.
| | - Wenting Huang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Shanshan Zheng
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Liming Wang
- Department of Gastrointestinal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Lili Zhang
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiaojuan Pei
- Department of Pathology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.
| |
Collapse
|
5
|
Moreddu R. Nanotechnology and Cancer Bioelectricity: Bridging the Gap Between Biology and Translational Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304110. [PMID: 37984883 PMCID: PMC10767462 DOI: 10.1002/advs.202304110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/25/2023] [Indexed: 11/22/2023]
Abstract
Bioelectricity is the electrical activity that occurs within living cells and tissues. This activity is critical for regulating homeostatic cellular function and communication, and disruptions of the same can lead to a variety of conditions, including cancer. Cancer cells are known to exhibit abnormal electrical properties compared to their healthy counterparts, and this has driven researchers to investigate the potential of harnessing bioelectricity as a tool in cancer diagnosis, prognosis, and treatment. In parallel, bioelectricity represents one of the means to gain fundamental insights on how electrical signals and charges play a role in cancer insurgence, growth, and progression. This review provides a comprehensive analysis of the literature in this field, addressing the fundamentals of bioelectricity in single cancer cells, cancer cell cohorts, and cancerous tissues. The emerging role of bioelectricity in cancer proliferation and metastasis is introduced. Based on the acknowledgement that this biological information is still hard to access due to the existing gap between biological findings and translational medicine, the latest advancements in the field of nanotechnologies for cellular electrophysiology are examined, as well as the most recent developments in micro- and nano-devices for cancer diagnostics and therapy targeting bioelectricity.
Collapse
|
6
|
Matarèse BFE, Rusin A, Seymour C, Mothersill C. Quantum Biology and the Potential Role of Entanglement and Tunneling in Non-Targeted Effects of Ionizing Radiation: A Review and Proposed Model. Int J Mol Sci 2023; 24:16464. [PMID: 38003655 PMCID: PMC10671017 DOI: 10.3390/ijms242216464] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
It is well established that cells, tissues, and organisms exposed to low doses of ionizing radiation can induce effects in non-irradiated neighbors (non-targeted effects or NTE), but the mechanisms remain unclear. This is especially true of the initial steps leading to the release of signaling molecules contained in exosomes. Voltage-gated ion channels, photon emissions, and calcium fluxes are all involved but the precise sequence of events is not yet known. We identified what may be a quantum entanglement type of effect and this prompted us to consider whether aspects of quantum biology such as tunneling and entanglement may underlie the initial events leading to NTE. We review the field where it may be relevant to ionizing radiation processes. These include NTE, low-dose hyper-radiosensitivity, hormesis, and the adaptive response. Finally, we present a possible quantum biological-based model for NTE.
Collapse
Affiliation(s)
- Bruno F. E. Matarèse
- Department of Haematology, University of Cambridge, Cambridge CB2 1TN, UK;
- Department of Physics, University of Cambridge, Cambridge CB2 1TN, UK
| | - Andrej Rusin
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| | - Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4L8, Canada; (A.R.); (C.S.)
| |
Collapse
|
7
|
Moharamipour S, Aminifar M, Foroughi-Gilvaee MR, Faranoush P, Mahdavi R, Abadijoo H, Parniani M, Abbasvandi F, Mansouri S, Abdolahad M. Hydroelectric actuator for 3-dimensional analysis of electrophoretic and dielectrophoretic behavior of cancer cells; suitable in diagnosis and invasion studies. BIOMATERIALS ADVANCES 2023; 151:213476. [PMID: 37276690 DOI: 10.1016/j.bioadv.2023.213476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/29/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023]
Abstract
Cancer is a cellular-based disease, so cytological diagnosis is one of the main challenges for its early detection. An extensive number of diagnostic methods have been developed to separate cancerous cells from normal ones, in electrical methods attract progressive attention. Identifying and specifying different cells requires understanding their dielectric and electric properties. This study evaluated MDA-MB-231, HUVEC, and MCF-10A cell lines, WBCs isolated from blood, and patient-derived cell samples with a cylindrical body with two transparent FTO (fluorine-doped tin oxide) plate electrodes. Cell mobility rates were recorded in response to these stimuli. It was observed that cancer cells demonstrate drastic changes in their motility in the presence and absence of an electric field (DC/AC). Also, solution viscosity's effect on cancer cells' capturing efficacy was evaluated. This research's main distinguished specification uses a non-microfluidic platform to detect and pathologically evaluate cytological samples with a simple, cheap, and repeatable platform. The capturing procedure was carried out on a cytological slide without any complicated electrode patterning with the ability of cytological staining. Moreover, this platform successfully designed and experimented with the invasion assay (the ability of captured cancer cells to invade normal cells).
Collapse
Affiliation(s)
- Shima Moharamipour
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mina Aminifar
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Reza Foroughi-Gilvaee
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Pooya Faranoush
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Reihane Mahdavi
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamed Abadijoo
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Parniani
- Pathology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fereshteh Abbasvandi
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran
| | - Sepideh Mansouri
- Radiation Oncology Research Center (RORC), Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cancer Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Fontani V, Cruciani S, Santaniello S, Rinaldi S, Maioli M. Impact of REAC Regenerative Endogenous Bioelectrical Cell Reprogramming on MCF7 Breast Cancer Cells. J Pers Med 2023; 13:1019. [PMID: 37374009 DOI: 10.3390/jpm13061019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Human breast adenocarcinoma is a form of cancer which has the tendency to metastasize to other tissues, including bones, lungs, brain, and liver. Several chemotherapeutic drugs are used to treat breast tumors. Their combination is used to simultaneously target different mechanisms involved in cell replication. Radio electric asymmetric conveyer (REAC) technology is an innovative technology, used both in vitro and in vivo, to induce cell reprogramming and counteract senescence processes. Within this context, we treated MCF-7 cells with a regenerative (RGN) REAC treatment for a period ranging between 3 and 7 days. We then analyzed cell viability by trypan blue assays and gene and protein expression by real time-qPCR and confocal microscope, respectively. We also detected the levels of the main proteins involved in tumor progression, DKK1 and SFRP1, by ELISA and cell senescence by β-galactosidase tests. Our results showed the ability of REAC RGN to counteract MCF-7 proliferation, probably inducing autophagy via the upregulation of Beclin-1 and LC3-I, and the modulation of specific tumorigenic biomarkers, such as DKK1 and SPFR1. Our results could suggest the application of the REAC RGN in future in vivo experiments, as an aid for the therapeutic strategies usually applied for breast cancer treatment.
Collapse
Affiliation(s)
- Vania Fontani
- Department of Regenerative Medicine, Rinaldi Fontani Institute, 50144 Florence, Italy
- Department of Adaptive Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, 50144 Florence, Italy
| | - Sara Cruciani
- Research Department, Rinaldi Fontani Foundation, 50144 Florence, Italy
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Sara Santaniello
- Research Department, Rinaldi Fontani Foundation, 50144 Florence, Italy
| | - Salvatore Rinaldi
- Department of Regenerative Medicine, Rinaldi Fontani Institute, 50144 Florence, Italy
- Department of Adaptive Neuro Psycho Physio Pathology and Neuro Psycho Physical Optimization, Rinaldi Fontani Institute, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, 50144 Florence, Italy
| | - Margherita Maioli
- Research Department, Rinaldi Fontani Foundation, 50144 Florence, Italy
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
9
|
Silic MR, Zhang G. Bioelectricity in Developmental Patterning and Size Control: Evidence and Genetically Encoded Tools in the Zebrafish Model. Cells 2023; 12:cells12081148. [PMID: 37190057 DOI: 10.3390/cells12081148] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Developmental patterning is essential for regulating cellular events such as axial patterning, segmentation, tissue formation, and organ size determination during embryogenesis. Understanding the patterning mechanisms remains a central challenge and fundamental interest in developmental biology. Ion-channel-regulated bioelectric signals have emerged as a player of the patterning mechanism, which may interact with morphogens. Evidence from multiple model organisms reveals the roles of bioelectricity in embryonic development, regeneration, and cancers. The Zebrafish model is the second most used vertebrate model, next to the mouse model. The zebrafish model has great potential for elucidating the functions of bioelectricity due to many advantages such as external development, transparent early embryogenesis, and tractable genetics. Here, we review genetic evidence from zebrafish mutants with fin-size and pigment changes related to ion channels and bioelectricity. In addition, we review the cell membrane voltage reporting and chemogenetic tools that have already been used or have great potential to be implemented in zebrafish models. Finally, new perspectives and opportunities for bioelectricity research with zebrafish are discussed.
Collapse
Affiliation(s)
- Martin R Silic
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Carvalho J. A computational model of cell membrane bioelectric polarization and depolarization, connected with cell proliferation, in different tissue geometries. J Theor Biol 2023; 557:111338. [PMID: 36343668 DOI: 10.1016/j.jtbi.2022.111338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
A reliable theory of biological tissues growth and organization, a fundamental tool for a comprehensive interpretation of experimental observations and a guide to progress in life sciences, is definitively missing. This would support the advancement of knowledge for both normal and pathological expansion and regulation of tissues and organisms. In this work is presented a computational model of cell culture that describes its growth and organization using cell proliferation as its default state, constrained by contact inhibition, closely connected to the cell bioelectric state. The model results describe in a correct way the reported experimental results, involving contact inhibition due to the presence of other cells, and gap junctions for signaling, molecules exchange and extracellular environment sensing. Starting from depolarized cells (in this model considered tantamount to proliferative), the cell culture grows until it fills the available domain and, due to the contact inhibition constraint, it turns into quiescence (a consequence of cell polarization), except on the periphery. Using drugs or via protein expression manipulation, it is possible to change the final tissue state, to fully polarized or depolarized. Other experimental tests are proposed and the expected results simulated. This model can be extended to pathological events, such as carcinogenesis, with cells homeostasis perturbed by a cell depolarizing (carcinogenic) event and express its default proliferative state without adequate control. This simplified model of tissue organization, regulated by the cell's bioelectric state and their interaction with vicinity, is an alternative to the description of the experimental results by mechanical stress, and can be further tested and extended in dedicated experiments.
Collapse
Affiliation(s)
- Joao Carvalho
- CFisUC, Department of Physics, University of Coimbra, Portugal.
| |
Collapse
|
11
|
Bory Prevez H, Soutelo Jimenez AA, Roca Oria EJ, Heredia Kindelán JA, Morales González M, Villar Goris NA, Hernández Mesa N, Sierra González VG, Infantes Frometa Y, Montijano JI, Cabrales LEB. Simulations of surface charge density changes during the untreated solid tumour growth. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220552. [PMID: 36465673 PMCID: PMC9709566 DOI: 10.1098/rsos.220552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Understanding untreated tumour growth kinetics and its intrinsic behaviour is interesting and intriguing. The aim of this study is to propose an approximate analytical expression that allows us to simulate changes in surface charge density at the cancer-surrounding healthy tissue interface during the untreated solid tumour growth. For this, the Gompertz and Poisson equations are used. Simulations reveal that the unperturbed solid tumour growth is closely related to changes in the surface charge density over time between the tumour and the surrounding healthy tissue. Furthermore, the unperturbed solid tumour growth is governed by temporal changes in this surface charge density. It is concluded that results corroborate the correspondence between the electrical and physiological parameters in the untreated cancer, which may have an essential role in its growth, progression, metastasis and protection against immune system attack and anti-cancer therapies. In addition, the knowledge of surface charge density changes at the cancer-surrounding healthy tissue interface may be relevant when redesigning the molecules in chemotherapy and immunotherapy taking into account their polarities. This can also be true in the design of completely novel therapies.
Collapse
Affiliation(s)
- Henry Bory Prevez
- Departamento de Control Automático, Facultad de Ingeniería Eléctrica, Universidad de Oriente, Santiago de Cuba, Cuba
| | | | - Eduardo José Roca Oria
- Departamento de Física, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
| | | | - Maraelys Morales González
- Departamento de Farmacia, Facultad de Ciencias Naturales y Exactas, Universidad de Oriente, Santiago de Cuba, Cuba
| | - Narciso Antonio Villar Goris
- Departamento de Ciencia e Innovación, Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
- Universidad Autónoma de Santo Domingo, Santo Domingo, República Dominicana
| | | | | | | | - Juan Ignacio Montijano
- Departamento de Matemática Aplicada, Instituto Universitario de Matemática y Aplicaciones, Universidad de Zaragoza, Zaragoza, España
| | - Luis Enrique Bergues Cabrales
- Departamento de Ciencia e Innovación, Centro Nacional de Electromagnetismo Aplicado, Universidad de Oriente, Santiago de Cuba, Cuba
- Departamento de Matemática Aplicada, Instituto Universitario de Matemática y Aplicaciones, Universidad de Zaragoza, Zaragoza, España
| |
Collapse
|
12
|
Pirini F, Vergara D, Parrella P. Editorial: Tumor microenvironment signaling networks in pathophysiology and therapeutics. Front Oncol 2022; 12:1009187. [PMID: 36158695 PMCID: PMC9494029 DOI: 10.3389/fonc.2022.1009187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Francesca Pirini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento (DiSTeBA), Lecce, Italy
- *Correspondence: Daniele Vergara, daniele.
| | - Paola Parrella
- Laboratory of Oncology, IRCCS ’Casa Sollievo della Sofferenza’, San Giovanni Rotondo, Italy
| |
Collapse
|
13
|
Maioli M, Rinaldi S, Cruciani S, Necas A, Fontani V, Corda G, Santaniello S, Rinaldi A, Pinheiro Barcessat AR, Necasova A, Castagna A, Filipejova Z, Ventura C, Fozza C. Antisenescence Effect of REAC Biomodulation to Counteract the Evolution of Myelodysplastic Syndrome. Physiol Res 2022. [PMID: 35899943 DOI: 10.33549/physiolres.934903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
About 30 percent of patients diagnosed with myelodysplastic syndromes (MDS) progress to acute myeloid leukemia (AML). The senescence of bone marrow‐derived mesenchymal stem cells (BMSCs) seems to be one of the determining factors in inducing this drift. Research is continuously looking for new methodologies and technologies that can use bioelectric signals to act on senescence and cell differentiation towards the phenotype of interest. The Radio Electric Asymmetric Conveyer (REAC) technology, aimed at reorganizing the endogenous bioelectric activity, has already shown to be able to determine direct cell reprogramming effects and counteract the senescence mechanisms in stem cells. Aim of the present study was to prove if the anti-senescence results previously obtained in different kind of stem cells with the REAC Tissue optimization – regenerative (TO-RGN) treatment, could also be observed in BMSCs, evaluating cell viability, telomerase activity, p19ARF, P21, P53, and hTERT gene expression. The results show that the REAC TO-RGN treatment may be a useful tool to counteract the BMSCs senescence which can be the basis of AML drift. Nevertheless, further clinical studies on humans are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- M Maioli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari (SS) Italy. E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pai VP, Levin M. HCN2 Channel-induced Rescue of Brain, Eye, Heart, and Gut Teratogenesis Caused by Nicotine, Ethanol, and Aberrant Notch Signaling. Wound Repair Regen 2022; 30:681-706. [PMID: 35662339 DOI: 10.1111/wrr.13032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022]
Abstract
Organogenesis is a complex process that can be disrupted by embryonic exposure to teratogens or mutation-induced alterations in signaling pathways, both of which result in organ mispatterning. Building on prior work in Xenopus laevis that showed that increased HCN2 ion channel activity rescues nicotine-induced brain & eye morphogenesis, we demonstrate much broader HCN2-based rescue of organ patterning defects. Induced HCN2 expression in both local or distant tissues can rescue CNS (brain & eye) as well as non-CNS (heart, & gut) organ defects induced by three different teratogenic conditions: nicotine exposure, ethanol exposure, or aberrant Notch protein. Rescue can also be induced by small-molecule HCN2 channel activators, even with delayed treatment initiation. Our results suggest that HCN2 (likely mediated by bioelectric signals) can be an effective regulator of organogenesis from all three germ layers (ectoderm, mesoderm, and endoderm) and reveal non-cell-autonomous influences on organ formation that work at considerable distance during embryonic development. These results suggest molecular bioelectric strategies for repair that could be explored in the future for regenerative medicine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Vaibhav P Pai
- Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
15
|
Sheth M, Esfandiari L. Bioelectric Dysregulation in Cancer Initiation, Promotion, and Progression. Front Oncol 2022; 12:846917. [PMID: 35359398 PMCID: PMC8964134 DOI: 10.3389/fonc.2022.846917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is primarily a disease of dysregulation – both at the genetic level and at the tissue organization level. One way that tissue organization is dysregulated is by changes in the bioelectric regulation of cell signaling pathways. At the basis of bioelectricity lies the cellular membrane potential or Vmem, an intrinsic property associated with any cell. The bioelectric state of cancer cells is different from that of healthy cells, causing a disruption in the cellular signaling pathways. This disruption or dysregulation affects all three processes of carcinogenesis – initiation, promotion, and progression. Another mechanism that facilitates the homeostasis of cell signaling pathways is the production of extracellular vesicles (EVs) by cells. EVs also play a role in carcinogenesis by mediating cellular communication within the tumor microenvironment (TME). Furthermore, the production and release of EVs is altered in cancer. To this end, the change in cell electrical state and in EV production are responsible for the bioelectric dysregulation which occurs during cancer. This paper reviews the bioelectric dysregulation associated with carcinogenesis, including the TME and metastasis. We also look at the major ion channels associated with cancer and current technologies and tools used to detect and manipulate bioelectric properties of cells.
Collapse
Affiliation(s)
- Maulee Sheth
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Leyla Esfandiari,
| |
Collapse
|
16
|
Tassinari R, Cavallini C, Olivi E, Taglioli V, Zannini C, Ventura C. Unveiling the morphogenetic code: A new path at the intersection of physical energies and chemical signaling. World J Stem Cells 2021; 13:1382-1393. [PMID: 34786150 PMCID: PMC8567452 DOI: 10.4252/wjsc.v13.i10.1382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/16/2021] [Accepted: 09/10/2021] [Indexed: 02/06/2023] Open
Abstract
In this editorial, we discuss the remarkable role of physical energies in the control of cell signaling networks and in the specification of the architectural plan of both somatic and stem cells. In particular, we focus on the biological relevance of bioelectricity in the pattern control that orchestrates both developmental and regenerative pathways. To this end, the narrative starts from the dawn of the first studies on animal electricity, reconsidering the pioneer work of Harold Saxton Burr in the light of the current achievements. We finally discuss the most recent evidence showing that bioelectric signaling is an essential component of the informational processes that control pattern specification during embryogenesis, regeneration, or even malignant transformation. We conclude that there is now mounting evidence for the existence of a Morphogenetic Code, and that deciphering this code may lead to unprecedented opportunities for the development of novel paradigms of cure in regenerative and precision medicine.
Collapse
Affiliation(s)
- Riccardo Tassinari
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Claudia Cavallini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Elena Olivi
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Valentina Taglioli
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Chiara Zannini
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| | - Carlo Ventura
- National Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems – ELDOR LAB, Bologna 40129, Italy
| |
Collapse
|
17
|
de Souza-Guerreiro TC, Asally M. Seeking Insights into Aging Through Yeast Mitochondrial Electrophysiology. Bioelectricity 2021; 3:111-115. [PMID: 34476385 DOI: 10.1089/bioe.2021.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During aging, mitochondrial membrane potential, a key indicator for bioenergetics of cells, depolarizes in a wide range of species-from yeasts, plants to animals. In humans, the decline of mitochondrial activities can impact the high-energy-consuming organs, such as the brain and heart, and increase the risks of age-linked diseases. Intriguingly, a mild depolarization of mitochondria has lifespan-extending effects, suggesting an important role played by bioelectricity during aging. However, the underpinning biophysical mechanism is not very well understood due in part to the difficulties associated with a multiscale process. Budding yeast Saccharomyces cerevisiae could provide a model system to bridge this knowledge gap and provide insights into aging. In this perspective, we overview recent studies on the yeast mitochondrial membrane electrophysiology and aging and call for more electrochemical and biophysical studies on aging.
Collapse
Affiliation(s)
- Tailise Carolina de Souza-Guerreiro
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom.,School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Munehiro Asally
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom.,School of Life Sciences, University of Warwick, Coventry, United Kingdom.,Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
18
|
Abstract
Increased control of biological growth and form is an essential gateway to transformative medical advances. Repairing of birth defects, restoring lost or damaged organs, normalizing tumors, all depend on understanding how cells cooperate to make specific, functional large-scale structures. Despite advances in molecular genetics, significant gaps remain in our understanding of the meso-scale rules of morphogenesis. An engineering approach to this problem is the creation of novel synthetic living forms, greatly extending available model systems beyond evolved plant and animal lineages. Here, we review recent advances in the emerging field of synthetic morphogenesis, the bioengineering of novel multicellular living bodies. Emphasizing emergent self-organization, tissue-level guided self-assembly, and active functionality, this work is the essential next generation of synthetic biology. Aside from useful living machines for specific functions, the rational design and analysis of new, coherent anatomies will greatly increase our understanding of foundational questions in evolutionary developmental and cell biology.
Collapse
Affiliation(s)
- Mo R. Ebrahimkhani
- Department of Pathology, School of Medicine, University of Pittsburgh, A809B Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
19
|
Duclut C, Prost J, Jülicher F. Hydraulic and electric control of cell spheroids. Proc Natl Acad Sci U S A 2021; 118:e2021972118. [PMID: 33947815 PMCID: PMC8126836 DOI: 10.1073/pnas.2021972118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We use a theoretical approach to examine the effect of a radial fluid flow or electric current on the growth and homeostasis of a cell spheroid. Such conditions may be generated by a drain of micrometric diameter. To perform this analysis, we describe the tissue as a continuum. We include active mechanical, electric, and hydraulic components in the tissue material properties. We consider a spherical geometry and study the effect of the drain on the dynamics of the cell aggregate. We show that a steady fluid flow or electric current imposed by the drain could be able to significantly change the spheroid long-time state. In particular, our work suggests that a growing spheroid can systematically be driven to a shrinking state if an appropriate external field is applied. Order-of-magnitude estimates suggest that such fields are of the order of the indigenous ones. Similarities and differences with the case of tumors and embryo development are briefly discussed.
Collapse
Affiliation(s)
- Charlie Duclut
- Max-Planck-Institut für Physik Komplexer Systeme, 01187 Dresden, Germany
| | - Jacques Prost
- Laboratoire Physico Chimie Curie, UMR 168, Institut Curie, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
- Mechanobiology Institute, National University of Singapore, 117411 Singapore, Singapore
| | - Frank Jülicher
- Max-Planck-Institut für Physik Komplexer Systeme, 01187 Dresden, Germany;
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
20
|
Levin M. Bioelectrical approaches to cancer as a problem of the scaling of the cellular self. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:102-113. [PMID: 33961843 DOI: 10.1016/j.pbiomolbio.2021.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
One lens with which to understand the complex phenomenon of cancer is that of developmental biology. Cancer is the inevitable consequence of a breakdown of the communication that enables individual cells to join into computational networks that work towards large-scale, morphogenetic goals instead of more primitive, unicellular objectives. This perspective suggests that cancer may be a physiological disorder, not necessarily due to problems with the genetically-specified protein hardware. One aspect of morphogenetic coordination is bioelectric signaling, and indeed an abnormal bioelectric signature non-invasively reveals the site of incipient tumors in amphibian models. Functionally, a disruption of resting potential states triggers metastatic melanoma phenotypes in embryos with no genetic defects or carcinogen exposure. Conversely, optogenetic or molecular-biological modulation of bioelectric states can override powerful oncogenic mutations and prevent or normalize tumors. The bioelectrically-mediated information flows that harness cells toward body-level anatomical outcomes represent a very attractive and tractable endogenous control system, which is being targeted by emerging approaches to cancer.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, 200 Boston Ave., Suite 4600, Medford, MA, 02155, USA.
| |
Collapse
|
21
|
Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer. Cell 2021; 184:1971-1989. [PMID: 33826908 DOI: 10.1016/j.cell.2021.02.034] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Abstract
How are individual cell behaviors coordinated toward invariant large-scale anatomical outcomes in development and regeneration despite unpredictable perturbations? Endogenous distributions of membrane potentials, produced by ion channels and gap junctions, are present across all tissues. These bioelectrical networks process morphogenetic information that controls gene expression, enabling cell collectives to make decisions about large-scale growth and form. Recent progress in the analysis and computational modeling of developmental bioelectric circuits and channelopathies reveals how cellular collectives cooperate toward organ-level structural order. These advances suggest a roadmap for exploiting bioelectric signaling for interventions addressing developmental disorders, regenerative medicine, cancer reprogramming, and synthetic bioengineering.
Collapse
|
22
|
Modeling the mechanobioelectricity of cell clusters. Biomech Model Mechanobiol 2020; 20:535-554. [PMID: 33145723 PMCID: PMC7979637 DOI: 10.1007/s10237-020-01399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/16/2020] [Indexed: 10/31/2022]
Abstract
We propose a continuum finite strain theory for the interplay between the bioelectricity and the poromechanics of a cell cluster. Specifically, we refer to a cluster of closely packed cells, whose mechanics is governed by a polymer network of cytoskeletal filaments joined by anchoring junctions, modeled through compressible hyperelasticity. The cluster is saturated with a solution of water and ions. We account for water and ion transport in the intercellular spaces, between cells through gap junctions, and across cell membranes through aquaporins and ion channels. Water fluxes result from the contributions due to osmosis, electro-osmosis, and water pressure, while ion fluxes encompass electro-diffusive and convective terms. We consider both the cases of permeable and impermeable cluster boundary, the latter simulating the presence of sealing tight junctions. We solve the coupled governing equations for a one-dimensional axisymmetric benchmark through finite elements, thus determining the spatiotemporal evolution of the intracellular and extracellular ion concentrations, setting the membrane potential, and water concentrations, establishing the cluster deformation. When suitably complemented with genetic, biochemical, and growth dynamics, we expect this model to become a useful instrument for investigating specific aspects of developmental mechanobioelectricity.
Collapse
|
23
|
Cervera J, Levin M, Mafe S. Bioelectrical Coupling of Single-Cell States in Multicellular Systems. J Phys Chem Lett 2020; 11:3234-3241. [PMID: 32243754 DOI: 10.1021/acs.jpclett.0c00641] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The spatiotemporal distributions of signaling ions and molecules that modulate biochemical pathways in nonexcitable cells are influenced by multicellular electric potentials. These potentials act as distributed controllers encoding instructive spatial patterns in development and regeneration. We review experimental facts and discuss recent bioelectrical models that provide new physical insights and complement biochemical approaches. Single-cell states are modulated at the multicellular level because of the coupling between neighboring cells, thus allowing memories and multicellular patterns. The model is based on (i) two generic voltage-gated ion channels that promote the polarized and depolarized cell states, (ii) a feedback mechanism for the transcriptional and bioelectrical regulations, and (iii) voltage-gated intercellular conductances that allow a dynamic intercellular connectivity. The simulations provide steady-state and oscillatory multicellular states that help explain aspects of development and guide experimental procedures attempting to establish instructive bioelectrical patterns based on electric potentials and currents to regulate cell behavior and morphogenesis.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| | - Michael Levin
- Dept. of Biology and Allen Discovery Center at Tufts University, Medford, Massachusetts 02155-4243, United States
| | - Salvador Mafe
- Dept. Termodinàmica, Facultat de Física, Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
24
|
Li X, Yang F, Rubinsky B. A Theoretical Study on the Biophysical Mechanisms by Which Tumor Treating Fields Affect Tumor Cells During Mitosis. IEEE Trans Biomed Eng 2020; 67:2594-2602. [PMID: 31940516 DOI: 10.1109/tbme.2020.2965883] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE A theoretical study on the mechanisms through which Tumor Treating Fields (TTFields) affect dividing tumor cells. METHODS Numerical analysis was used to revisit two previously proposed mechanisms and introduce a third. We examine the previous hypotheses that: a) TTFields generate a moment that affects microtubule assembly during early mitosis, and b) dielectrophoretic (DEP) forces cause neutral particles to move toward the cleavage furrow during the telophase stage. We further introduce a new hypothesis that TTFields modify cell membrane potential in dividing tumor cells. RESULTS a) The Brownian energy is several orders of magnitude larger than the moment induced by TTFields on tubulin dimers. b) Adding Stokes drag forces to DEP forces shows that the motion of the particles in the cytoplasm is very slow, approximately 0.003 µm/s, and therefore, unless the duration of the telophase is long enough there will be no substantial effect from the DEP forces. c) The Schwan equation shows that electric fields at the frequencies of clinical TTFields can cause a 10%-17% change in tumor cell membrane potential. CONCLUSION Our studies find limited support for the previously suggested hypotheses and suggest that the TTFields affect ion channels by inducing cell membrane potential change could be a mechanism of tumor cell death. SIGNIFICANCE Previously suggested mechanisms of tumor cell death from TTFields are found lacking. The effect of TTFields on the tumor cell membrane potential warrants further research.
Collapse
|
25
|
Electric-Induced Reversal of Morphogenesis in Hydra. Biophys J 2019; 117:1514-1523. [PMID: 31570230 PMCID: PMC6817546 DOI: 10.1016/j.bpj.2019.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
Morphogenesis involves the dynamic interplay of biochemical, mechanical, and electrical processes. Here, we ask to what extent can the course of morphogenesis be modulated and controlled by an external electric field? We show that at a critical amplitude, an external electric field can halt morphogenesis in Hydra regeneration. Moreover, above this critical amplitude, the electric field can lead to reversal dynamics: a fully developed Hydra folds back into its incipient spheroid morphology. The potential to renew morphogenesis is reexposed when the field is reduced back to amplitudes below criticality. These dynamics are accompanied by modulations of the Wnt3 activity, a central component of the head organizer in Hydra. The controlled backward-forward cycle of morphogenesis can be repeated several times, showing that the reversal trajectory maintains the integrity of the tissue and its regeneration capability. Each cycle of morphogenesis leads to a newly emerged body plan in the redeveloped folded tissue, which is not necessarily similar to the one before the reversal process. Reversal of morphogenesis is shown to be triggered by enhanced electrical excitations in the Hydra tissue, leading to intensified calcium activity. Folding back of the body-plan morphology together with the decay of a central biosignaling system, indicate that electrical processes are tightly integrated with biochemical and mechanical-structural processes in morphogenesis and play an instructive role to a level that can direct developmental trajectories. Reversal of morphogenesis by external fields calls for extending its framework beyond program-like, forward-driven, hierarchical processes based on reaction diffusion and positional information.
Collapse
|
26
|
Cervera J, Manzanares JA, Mafe S, Levin M. Synchronization of Bioelectric Oscillations in Networks of Nonexcitable Cells: From Single-Cell to Multicellular States. J Phys Chem B 2019; 123:3924-3934. [PMID: 31003574 DOI: 10.1021/acs.jpcb.9b01717] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological networks use collective oscillations for information processing tasks. In particular, oscillatory membrane potentials have been observed in nonexcitable cells and bacterial communities where specific ion channel proteins contribute to the bioelectric coordination of large populations. We aim at describing theoretically the oscillatory spatiotemporal patterns that emerge at the multicellular level from the single-cell bioelectric dynamics. To this end, we focus on two key questions: (i) What single-cell properties are relevant to multicellular behavior? (ii) What properties defined at the multicellular level can allow an external control of the bioelectric dynamics? In particular, we explore the interplay between transcriptional and translational dynamics and membrane potential dynamics in a model multicellular ensemble, describe the spatiotemporal patterns that arise when the average electric potential allows groups of cells to act as a coordinated multicellular patch, and characterize the resulting synchronization phenomena. The simulations concern bioelectric networks and collective communication across different scales based on oscillatory and synchronization phenomena, thus shedding light on the physiological dynamics of a wide range of endogenous contexts across embryogenesis and regeneration.
Collapse
Affiliation(s)
- Javier Cervera
- Departament de Termodinàmica, Facultat de Física , Universitat de València , E-46100 Burjassot , Spain
| | - José Antonio Manzanares
- Departament de Termodinàmica, Facultat de Física , Universitat de València , E-46100 Burjassot , Spain
| | - Salvador Mafe
- Departament de Termodinàmica, Facultat de Física , Universitat de València , E-46100 Burjassot , Spain
| | - Michael Levin
- Allen Discovery Center at Tufts University, Department of Biology , Tufts University Medford , Massachusetts 02155-4243 , United States
| |
Collapse
|
27
|
Hardwick LJA, Philpott A. Xenopus Models of Cancer: Expanding the Oncologist's Toolbox. Front Physiol 2018; 9:1660. [PMID: 30538639 PMCID: PMC6277521 DOI: 10.3389/fphys.2018.01660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/02/2018] [Indexed: 01/06/2023] Open
Abstract
The use of the Xenopus model system has provided diverse contributions to cancer research, not least because of the striking parallels between tumour pathogenesis and early embryo development. Cell cycle regulation, signalling pathways, and cell behaviours such as migration are frequently perturbed in cancers; all have been investigated using Xenopus, and these developmental events can additionally act as an assay for drug development studies. In this mini-review, we focus our discussion primarily on whole embryo Xenopus models informing cancer biology; the contributions to date and future potential. Insights into tumour immunity, oncogene function, and visualisation of vascular responses during tumour formation have all been achieved with naturally occurring tumours and induced-tumour-like-structures in Xenopus. Finally, as we are now entering the era of genetically modified Xenopus models, we can harness genome editing techniques to recapitulate human disease through creating embryos with analogous genetic abnormalities. With the speed, versatility and accessibility that epitomise the Xenopus system, this new range of pre-clinical Xenopus models has great potential to advance our mechanistic understanding of oncogenesis and provide an early in vivo model for chemotherapeutic development.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Philpott Lab, Hutchison/MRC Research Centre, Department of Oncology, University of Cambridge, Cambridge, United Kingdom.,Wellcome MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom.,Peterhouse, University of Cambridge, Cambridge, United Kingdom
| | - Anna Philpott
- Philpott Lab, Hutchison/MRC Research Centre, Department of Oncology, University of Cambridge, Cambridge, United Kingdom.,Wellcome MRC Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
28
|
Cervera J, Meseguer S, Mafe S. Intercellular Connectivity and Multicellular Bioelectric Oscillations in Nonexcitable Cells: A Biophysical Model. ACS OMEGA 2018; 3:13567-13575. [PMID: 30411043 PMCID: PMC6217649 DOI: 10.1021/acsomega.8b01514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 05/28/2023]
Abstract
Bioelectricity is emerging as a crucial mechanism for signal transmission and processing from the single-cell level to multicellular domains. We explore theoretically the oscillatory dynamics that result from the coupling between the genetic and bioelectric descriptions of nonexcitable cells in multicellular ensembles, connecting the genetic prepatterns defined over the ensemble with the resulting spatio-temporal map of cell potentials. These prepatterns assume the existence of a small patch in the ensemble with locally low values of the genetic rate constants that produce a specific ion channel protein whose conductance promotes the cell-polarized state (inward-rectifying channel). In this way, the short-range interactions of the cells within the patch favor the depolarized membrane potential state, whereas the long-range interaction of the patch with the rest of the ensemble promotes the polarized state. The coupling between the local and long-range bioelectric signals allows a binary control of the patch membrane potentials, and alternating cell polarization and depolarization states can be maintained for optimal windows of the number of cells and the intercellular connectivity in the patch. The oscillatory phenomena emerge when the feedback between the single-cell bioelectric and genetic dynamics is coupled at the multicellular level. In this way, the intercellular connectivity acts as a regulatory mechanism for the bioelectrical oscillations. The simulation results are qualitatively discussed in the context of recent experimental studies.
Collapse
Affiliation(s)
- Javier Cervera
- Departamento
de Termodinàmica, Facultat de Física,
Universitat de València, E-46100 Burjassot, Spain
| | - Salvador Meseguer
- Laboratory
of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain
| | - Salvador Mafe
- Departamento
de Termodinàmica, Facultat de Física,
Universitat de València, E-46100 Burjassot, Spain
| |
Collapse
|
29
|
Moriarty RA, Stroka KM. Physical confinement alters sarcoma cell cycle progression and division. Cell Cycle 2018; 17:2360-2373. [PMID: 30304981 PMCID: PMC6237433 DOI: 10.1080/15384101.2018.1533776] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/18/2018] [Accepted: 10/03/2018] [Indexed: 10/28/2022] Open
Abstract
Tumor cells experience physical confinement on one or multiple axes, both in the primary tumor and at multiple stages during metastasis. Recent work has shown that confinement in a 3D spheroid alters nucleus geometry and delays cell division, and that vertical confinement impairs mitotic spindle rounding, resulting in abnormal division events. Meanwhile, the effects of bi-axial confinement on cell cycle progression has received little attention. Given the critical role of nuclear shape and mechanics in cell division, we hypothesized that bi-axial physical confinement of the cell body and nucleus would alter cell cycle progression. We used sarcoma cells stably expressing the fluorescence ubiquitination cell cycle indicator (FUCCI), along with fibronectin-coated microchannel devices, and explored the impact of bi-axial physical confinement on cell cycle progression. Our results demonstrate that bi-axial physical confinement reduces the frequency of cell division, which we found to be attributed to an arrest in the S/G2/M phase of the cell cycle, and increases the frequency of abnormal division events. Cell and nuclear morphology were both altered in confinement, with the most confining channels preventing cells from undergoing the normal increase in size from G1 to S/G2/M during cell cycle progression. Finally, our results suggest that confinement induces a mechanical memory to the cells, given our observation of lasting effects on cell division and morphology, even after cells exited confinement. Together, our results provide new insights into the possible impact of mechanical forces on primary and secondary tumor formation and growth.
Collapse
Affiliation(s)
- Rebecca A. Moriarty
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Kimberly M. Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Biophysics Program, University of Maryland, College Park, MD, USA
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, MD, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
30
|
Bioelectrical coupling in multicellular domains regulated by gap junctions: A conceptual approach. Bioelectrochemistry 2018; 123:45-61. [DOI: 10.1016/j.bioelechem.2018.04.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
|