1
|
Lin L, Lin Y, Han Z, Wang K, Zhou S, Wang Z, Wang S, Chen H. Understanding the molecular regulatory mechanisms of autophagy in lung disease pathogenesis. Front Immunol 2024; 15:1460023. [PMID: 39544928 PMCID: PMC11560454 DOI: 10.3389/fimmu.2024.1460023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024] Open
Abstract
Lung disease development involves multiple cellular processes, including inflammation, cell death, and proliferation. Research increasingly indicates that autophagy and its regulatory proteins can influence inflammation, programmed cell death, cell proliferation, and innate immune responses. Autophagy plays a vital role in the maintenance of homeostasis and the adaptation of eukaryotic cells to stress by enabling the chelation, transport, and degradation of subcellular components, including proteins and organelles. This process is essential for sustaining cellular balance and ensuring the health of the mitochondrial population. Recent studies have begun to explore the connection between autophagy and the development of different lung diseases. This article reviews the latest findings on the molecular regulatory mechanisms of autophagy in lung diseases, with an emphasis on potential targeted therapies for autophagy.
Collapse
Affiliation(s)
- Lin Lin
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- School of Medicine, Southeast University, Nanjing, China
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| | - Ke Wang
- Department of Science and Education, Deyang Hospital Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Shuwei Zhou
- Department of Radiology, Zhongda Hospital, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, School of Medicine, Southeast University, Nanjing, China
| | - Zhanzhan Wang
- Department of Respiratory and Critical Care Medicine, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Siyu Wang
- Department of Preventive Medicine, Kunshan Hospital of Chinese Medicine, Kunshan, China
| | - Haoran Chen
- Science Education Department, Chengdu Xinhua Hospital Affiliated to North Sichuan Medical College, Chengdu, China
| |
Collapse
|
2
|
Malik JA, Zafar MA, Singh S, Nanda S, Bashir H, Das DK, Lamba T, Khan MA, Kaur G, Agrewala JN. From defense to dysfunction: Autophagy's dual role in disease pathophysiology. Eur J Pharmacol 2024; 981:176856. [PMID: 39068979 DOI: 10.1016/j.ejphar.2024.176856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Autophagy is a fundamental pillar of cellular resilience, indispensable for maintaining cellular health and vitality. It coordinates the meticulous breakdown of cytoplasmic macromolecules as a guardian of cell metabolism, genomic integrity, and survival. In the complex play of biological warfare, autophagy emerges as a firm defender, bravely confronting various pathogenic, infectious, and cancerous adversaries. Nevertheless, its role transcends mere defense, wielding both protective and harmful effects in the complex landscape of disease pathogenesis. From the onslaught of infectious outbreaks to the devious progression of chronic lifestyle disorders, autophagy emerges as a central protagonist, convolutedly shaping the trajectory of cellular health and disease progression. In this article, we embark on a journey into the complicated web of molecular and immunological mechanisms that govern autophagy's profound influence over disease. Our focus sharpens on dissecting the impact of various autophagy-associated proteins on the kaleidoscope of immune responses, spanning the spectrum from infectious outbreaks to chronic lifestyle ailments. Through this voyage of discovery, we unveil the vast potential of autophagy as a therapeutic linchpin, offering tantalizing prospects for targeted interventions and innovative treatment modalities that promise to transform the landscape of disease management.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Adeel Zafar
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India; Division of Immunology, Boston Children's Hospital Harvard Medical School Boston, MA, 02115, USA; Department of Pediatrics, Harvard Medical School Boston, MA, 02115, USA
| | - Sanpreet Singh
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India; Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Sidhanta Nanda
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Hilal Bashir
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India
| | - Deepjyoti Kumar Das
- Immunology Laboratory, Institute of Microbial Technology, Chandigarh, 160016, India
| | - Taruna Lamba
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Mohammad Affan Khan
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India
| | - Gurpreet Kaur
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab, 140055, India
| | - Javed N Agrewala
- Immunology Laboratory, Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, India.
| |
Collapse
|
3
|
Bai SY, Weng W, Wang H, Cui Z, Wu J, Qu Y, Hao Y, Gao P, Zhang Y, Zhou L, Ge X, Guo X, Han J, Yang H. Modulation of Autophagy-Lysosome Axis by African Swine Fever Virus and Its Encoded Protein pEP153R. Curr Issues Mol Biol 2024; 46:11236-11254. [PMID: 39451547 PMCID: PMC11505880 DOI: 10.3390/cimb46100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
The autophagy-lysosome axis is an evolutionarily conserved intracellular degradation pathway which constitutes an important component of host innate immunity against microbial infections. Here, we show that African swine fever virus (ASFV), one of most devastating pathogens to the worldwide swine industry, can reshape the autophagy-lysosome axis by recruiting the critical lysosome membrane proteins (LAMP1 and LAMP2) to viral factories while inhibiting autophagic induction in macrophages. The screening of viral membrane proteins led to the identification of several ASFV membrane proteins, exemplified by viral protein pEP153R, that could significantly alter the subcellular localization of LAMP1/2 when expressed alone in transfected cells. Further analysis showed that pEP153R was also a component of viral factories and could induce endoplasmic reticulum (ER) retention of LAMP1/2, leading to the inhibition of the fusion of autophagosomes with lysosomes. Interestingly, the ASFV mutant lacking EP153R could still actively recruit LAMP into viral factories (VFs) and inhibit autophagic flux, indicating the existence of a functional redundancy of other viral proteins in the absence of pEP153R and highlighting the complexity of ASFV replication biology. Taken together, our results reveal novel information about the interplay of ASFV with the autophagy-lysosome axis and a previously unrecognized function of ASFV protein pEP153R in regulating the cellular autophagic process.
Collapse
Affiliation(s)
- Si-Yu Bai
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Wenlian Weng
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Hua Wang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Zhiying Cui
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Jiajun Wu
- China Animal Disease Control Center, Beijing 100125, China; (J.W.); (Y.H.)
| | - Yajin Qu
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Yuxin Hao
- China Animal Disease Control Center, Beijing 100125, China; (J.W.); (Y.H.)
| | - Peng Gao
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (S.-Y.B.); (W.W.); (H.W.); (Z.C.); (Y.Q.); (Y.Z.); (L.Z.); (X.G.); (X.G.); (H.Y.)
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| |
Collapse
|
4
|
Kaur A, Singh S, Sharma SC. Unlocking Trehalose's versatility: A comprehensive Journey from biosynthesis to therapeutic applications. Exp Cell Res 2024; 442:114250. [PMID: 39260672 DOI: 10.1016/j.yexcr.2024.114250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
For over forty years, a sugar of rare configuration known as trehalose (two molecules of glucose linked at their 1-carbons), has been recognised for more than just its roles as a storage compound. The ability of trehalose to protect an extensive range of biological materials, for instance cell lines, tissues, proteins and DNA, has sparked considerable interest in the biotechnology and pharmaceutical industries. Currently, trehalose is now being investigated as a promising therapeutic candidate for human use, as it has shown potential to reduce disease severity in various experimental models. Despite its diverse biological effects, the precise mechanism underlying this observation remain unclear. Therefore, this review delves into the significance of trehalose biosynthesis pathway in the development of novel drug, investigates the inhibitors of trehalose synthesis and evaluates the binding efficiency of T6P with TPS1. Additionally, it also emphasizes the knowledge about the protective effect of trehalose on modulation of autophagy, combating viral infections, addressing the conditions like cancer and neurodegenerative diseases based on the recent advancement. Furthermore, review also highlight the trehalose's emerging role as a surfactant in delivering monoclonal antibodies that will further broadening its potential application in biomedicines.
Collapse
Affiliation(s)
- Amandeep Kaur
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| | - Sukhwinder Singh
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| | | |
Collapse
|
5
|
Lv C, Li R, Yang D, Song S, Cheng X, Chen T, Chen L, Xiong Y. Broad-spectrum antiviral effect of MoringaA-loaded exosomes against IAV by mediating the GCN5-TFEB-autolysosome pathway. J Med Virol 2024; 96:e29906. [PMID: 39262090 DOI: 10.1002/jmv.29906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Influenza virus-induced viral pneumonia is a major threat to human health, and specific therapeutic agents for viral pneumonia are still lacking. MoringaA (MA) is an anti-influenza virus active compound isolated from Moringa seeds, which can inhibit influenza virus by activating the TFEB-autophagic lysosomal pathway in host cells. In this study, we obtained exosomes from M2-type macrophages and encapsulated and delivered MA (MA-Exos), and we investigated the efficacy of MA-Exos in antiviral and viral pneumonia in vivo and in vitro, respectively. In addition, we provided insights into the mechanism by which MA-Exos regulates TFEB-lysosomal autophagy by RNA sequencing. The MA-Exos showed broad-spectrum inhibition of IAV, and significant promotion of the autophagic lysosomal pathway. Meanwhile, we found that GCN5 gene and protein were significantly down-regulated in IAV-infected cells after MA-Exos intervention, indicating its blocking the acetylation of TFEB by GCN5. In addition, MA-Exos also significantly promoted autophagy in lung tissue cells of mice with viral pneumonia. MA-Exos can inhibit and clear influenza virus by mediating the TFEB-autophagy lysosomal pathway by a mechanism related to the down-regulation of histone acetyltransferase GCN5. Our study provides a strategy for targeting MA-Exos for the treatment of viral pneumonia from both antiviral and virus-induced inflammation inhibition pathways.
Collapse
Affiliation(s)
- Chunmei Lv
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ruidong Li
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Dandan Yang
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shunqiang Song
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xu Cheng
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Tingting Chen
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lei Chen
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yongai Xiong
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
6
|
Jassey A, Jackson WT. Viruses and autophagy: bend, but don't break. Nat Rev Microbiol 2024; 22:309-321. [PMID: 38102460 DOI: 10.1038/s41579-023-00995-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 12/17/2023]
Abstract
Autophagy is a constitutive cellular process of degradation required to maintain homeostasis and turn over spent organelles and aggregated proteins. For some viruses, the process can be antiviral, degrading viral proteins or virions themselves. For many other viruses, the induction of the autophagic process provides a benefit and promotes viral replication. In this Review, we survey the roles that the autophagic pathway plays in the replication of viruses. Most viruses that benefit from autophagic induction block autophagic degradation, which is a 'bend, but don't break' strategy initiating but limiting a potentially antiviral response. In almost all cases, it is other effects of the redirected autophagic machinery that benefit these viruses. This rapid mechanism to generate small double-membraned vesicles can be usurped to shape membranes for viral genome replication and virion maturation. However, data suggest that autophagic maintenance of cellular homeostasis is crucial for the initiation of infection, as viruses have evolved to replicate in normal, healthy cells. Inhibition of autophagic degradation is important once infection has initiated. Although true degradative autophagy is probably a negative for most viruses, initiating nondegradative autophagic membranes benefits a wide variety of viruses.
Collapse
Affiliation(s)
- Alagie Jassey
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - William T Jackson
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Wong XK, Ng CS, Yeong KY. Shaping the future of antiviral Treatment: Spotlight on Nucleobase-Containing drugs and their revolutionary impact. Bioorg Chem 2024; 144:107150. [PMID: 38309002 DOI: 10.1016/j.bioorg.2024.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Nucleobases serve as essential molecular frameworks present in both natural and synthetic compounds that exhibit notable antiviral activity. Through molecular modifications, novel nucleobase-containing drugs (NCDs) have been developed, exhibiting enhanced antiviral activity against a wide range of viruses, including the recently emerged SARS‑CoV‑2. This article provides a detailed examination of the significant advancements in NCDs from 2015 till current, encompassing various aspects concerning their mechanisms of action, pharmacology and antiviral properties. Additionally, the article discusses antiviral prodrugs relevant to the scope of this review. It fills in the knowledge gap by examining the structure-activity relationship and trend of NCDs as therapeutics against a diverse range of viral diseases, either as approved drugs, clinical candidates or as early-stage development prospects. Moreover, the article highlights on the status of this field of study and addresses the prevailing limitations encountered.
Collapse
Affiliation(s)
- Xi Khai Wong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Chen Seng Ng
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Keng Yoon Yeong
- School of Science, Monash University (Malaysia Campus), Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
8
|
Thinwa JW, Zou Z, Parks E, Sebti S, Hui K, Wei Y, Goodarzi M, Singh V, Urquhart G, Jewell JL, Pfeiffer JK, Levine B, Reese TA, Shiloh MU. CDKL5 regulates p62-mediated selective autophagy and confers protection against neurotropic viruses. J Clin Invest 2024; 134:e168544. [PMID: 37917202 PMCID: PMC10760973 DOI: 10.1172/jci168544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Virophagy, the selective autophagosomal engulfment and lysosomal degradation of viral components, is crucial for neuronal cell survival and antiviral immunity. However, the mechanisms leading to viral antigen recognition and capture by autophagic machinery remain poorly understood. Here, we identified cyclin-dependent kinase-like 5 (CDKL5), known to function in neurodevelopment, as an essential regulator of virophagy. Loss-of-function mutations in CDKL5 are associated with a severe neurodevelopmental encephalopathy. We found that deletion of CDKL5 or expression of a clinically relevant pathogenic mutant of CDKL5 reduced virophagy of Sindbis virus (SINV), a neurotropic RNA virus, and increased intracellular accumulation of SINV capsid protein aggregates and cellular cytotoxicity. Cdkl5-knockout mice displayed increased viral antigen accumulation and neuronal cell death after SINV infection and enhanced lethality after infection with several neurotropic viruses. Mechanistic studies demonstrated that CDKL5 directly binds the canonical selective autophagy receptor p62 and phosphorylates p62 at T269/S272 to promote its interaction with viral capsid aggregates. We found that CDKL5-mediated phosphorylation of p62 facilitated the formation of large p62 inclusion bodies that captured viral capsids to initiate capsid targeting to autophagic machinery. Overall, these findings identify a cell-autonomous innate immune mechanism for autophagy activation to clear intracellular toxic viral protein aggregates during infection.
Collapse
Affiliation(s)
| | | | | | | | - Kelvin Hui
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yongjie Wei
- Cancer Research Institute, Guangzhou Medical University, Guangzhou, China
| | | | | | - Greg Urquhart
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jenna L. Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Beth Levine
- Department of Internal Medicine
- Department of Microbiology
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | |
Collapse
|
9
|
Sberna G, Maggi F, Amendola A. Virus-Encoded Circular RNAs: Role and Significance in Viral Infections. Int J Mol Sci 2023; 24:16547. [PMID: 38003737 PMCID: PMC10671809 DOI: 10.3390/ijms242216547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023] Open
Abstract
Circular RNAs (circRNAs) have been the focus of intense scientific research to understand their biogenesis, mechanisms of action and regulatory functions. CircRNAs are single stranded, covalently closed RNA molecules lacking the 5'-terminal cap and the 3'-terminal polyadenine chain, characteristics that make them very stable and resistant. Synthesised by both cells and viruses, in the past circRNAs were considered to have no precise function. Today, increasing evidence shows that circRNAs are ubiquitous, some of them are tissue- and cell-specific, and critical in multiple regulatory processes (i.e., infections, inflammation, oncogenesis, gene expression). Moreover, circRNAs are emerging as important biomarkers of viral infection and disease progression. In this review, we provided an updated overview of current understanding of virus-encoded and cellular-encoded circRNAs and their involvement in cellular pathways during viral infection.
Collapse
Affiliation(s)
| | | | - Alessandra Amendola
- Laboratory of Virology and Biosafety Laboratories, National Institute for Infectious Diseases “L. Spallanzani” IRCCS, 00149 Rome, Italy; (G.S.)
| |
Collapse
|
10
|
Jassey A, Logue J, Weston S, Wagner MA, Galitska G, Miller K, Frieman M, Jackson WT. SIRT-1 is required for release of enveloped enteroviruses. eLife 2023; 12:RP87993. [PMID: 37850626 PMCID: PMC10584371 DOI: 10.7554/elife.87993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Enterovirus D68 (EV-D68) is a re-emerging enterovirus that causes acute respiratory illness in infants and has recently been linked to Acute Flaccid Myelitis. Here, we show that the histone deacetylase, SIRT-1, is essential for autophagy and EV-D68 infection. Knockdown of SIRT-1 inhibits autophagy and reduces EV-D68 extracellular titers. The proviral activity of SIRT-1 does not require its deacetylase activity or functional autophagy. SIRT-1's proviral activity is, we demonstrate, mediated through the repression of endoplasmic reticulum stress (ER stress). Inducing ER stress through thapsigargin treatment or SERCA2A knockdown in SIRT-1 knockdown cells had no additional effect on EV-D68 extracellular titers. Knockdown of SIRT-1 also decreases poliovirus and SARS-CoV-2 titers but not coxsackievirus B3. In non-lytic conditions, EV-D68 is primarily released in an enveloped form, and SIRT-1 is required for this process. Our data show that SIRT-1, through its translocation to the cytosol, is critical to promote the release of enveloped EV-D68 viral particles.
Collapse
Affiliation(s)
- Alagie Jassey
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland, BaltimoreBaltimoreUnited States
| | - James Logue
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland, BaltimoreBaltimoreUnited States
| | - Stuart Weston
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland, BaltimoreBaltimoreUnited States
| | - Michael A Wagner
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland, BaltimoreBaltimoreUnited States
| | - Ganna Galitska
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland, BaltimoreBaltimoreUnited States
| | - Katelyn Miller
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland, BaltimoreBaltimoreUnited States
| | - Matthew Frieman
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland, BaltimoreBaltimoreUnited States
| | - William T Jackson
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland, BaltimoreBaltimoreUnited States
| |
Collapse
|
11
|
Jiao X, Lu YT, Wang B, Guo ZY, Qian AD, Li YH. Infection of epithelioma papulosum cyprini (EPC) cells with spring viremia of carp virus (SVCV) induces autophagy and apoptosis through endoplasmic reticulum stress. Microb Pathog 2023; 183:106293. [PMID: 37557931 DOI: 10.1016/j.micpath.2023.106293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/29/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Spring viremia of carp virus (SVCV) is a lethal freshwater pathogen of cyprinid fish that has caused significant economic losses to aquaculture. To reduce the economic losses caused by SVCV, its pathogenic mechanism needs to be studied more thoroughly. Here, we report for the first time that SVCV infection of Epithelioma papulosum cyprini (EPC) cells can induce cellular autophagy and apoptosis through endoplasmic reticulum stress. The presence of autophagic vesicles in infected EPC cells was shown by transmission electron microscopy. Quantitative fluorescence PCR and Western blot results showed that p62 mRNA expression was decreased, and the expression of Beclin1 and LC3 mRNA was increased. The p62 protein was decreased, and the Beclin1 protein and LC3 were increased in the endoplasmic reticulum stress activation state. To further clarify the mode of death of SVCV-infected EPC cells, we examined caspase3, caspase9, BCL-2, and Bax mRNA, which showed that they were all increased. Apoptosis of SVCV-infected cells increased upon activation of endoplasmic reticulum stress. Our results suggest that endoplasmic reticulum stress can regulate SVCV infection-induced autophagy and apoptosis. The results of this study provide theoretical data for the pathogenesis of SVCV and lay the foundation for future drug development and vaccine construction.
Collapse
Affiliation(s)
- Xue Jiao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yu-Ting Lu
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, JiLin, China
| | - Bo Wang
- Jilin Provincial Center for Disease Control and Prevention, China
| | - Zheng-Yao Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Ai-Dong Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
| | - Yue-Hong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
12
|
Quach C, Helou DG, Li M, Hurrell BP, Howard E, Shafiei-Jahani P, Soroosh P, Ou JHJ, Razani B, Rehan V, Akbari O. Enhancing autophagy in CD11c + antigen-presenting cells as a therapeutic strategy for acute respiratory distress syndrome. Cell Rep 2023; 42:112990. [PMID: 37590140 PMCID: PMC10510741 DOI: 10.1016/j.celrep.2023.112990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/22/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are severe clinical disorders that mainly develop from viral respiratory infections, sepsis, and chest injury. Antigen-presenting cells play a pivotal role in propagating uncontrolled inflammation and injury through the excess secretion of pro-inflammatory cytokines and recruitment of immune cells. Autophagy, a homeostatic process that involves the degradation of cellular components, is involved in many processes including lung inflammation. Here, we use a polyinosinic-polycytidylic acid (poly(I:C))-induced lung injury mouse model to mimic viral-induced ALI/ARDS and show that disruption of autophagy in macrophages exacerbates lung inflammation and injury, whereas autophagy induction attenuates this process. Therefore, induction of autophagy in macrophages can be a promising therapeutic strategy in ALI/ARDS.
Collapse
Affiliation(s)
- Christine Quach
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Doumet Georges Helou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Meng Li
- USC Libraries Bioinformatics Service, University of Southern California, Los Angeles, CA 90089, USA
| | - Benjamin Pierre Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Emily Howard
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pejman Soroosh
- Janssen Research and Development, San Diego, CA 92121, USA
| | - Jing-Hsiung James Ou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Babak Razani
- University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA 15261, USA; Pittsburgh VA Medical Center, Pittsburgh, PA 15240, USA
| | - Virender Rehan
- Division of Neonatology, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
13
|
Jensen LE. Pellino Proteins in Viral Immunity and Pathogenesis. Viruses 2023; 15:1422. [PMID: 37515108 PMCID: PMC10383966 DOI: 10.3390/v15071422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Pellino proteins are a family of evolutionarily conserved ubiquitin ligases involved in intracellular signaling in a wide range of cell types. They are essential for microbe detection and the initiation of innate and adaptive immune responses. Some viruses specifically target the Pellino proteins as part of their immune evasion strategies. Through studies of mouse models of viral infections in the central nervous system, heart, lungs, and skin, the Pellino proteins have been linked to both beneficial and detrimental immune responses. Only in recent years have some of the involved mechanisms been identified. The objective of this review is to highlight the many diverse aspects of viral immunity and pathogenesis that the Pellino proteins have been associated with, in order to promote further research into their functions. After a brief introduction to the cellular signaling mechanisms involving Pellino proteins, their physiological roles in the initiation of immune responses, pathogenesis through excess inflammation, immune regulation, and cell death are presented. Known viral immune evasion strategies are also described. Throughout, areas that require more in-depth investigation are identified. Future research into the functions of the Pellino protein family may reveal fundamental insights into how our immune system works. Such knowledge may be leveraged in the fight against viral infections and their sequala.
Collapse
Affiliation(s)
- Liselotte E Jensen
- Department of Microbiology, Immunology and Inflammation, Center for Inflammation and Lung Research, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| |
Collapse
|
14
|
Grassi M, Tarantino B. SEMtree: tree-based structure learning methods with structural equation models. Bioinformatics 2023; 39:btad377. [PMID: 37294820 PMCID: PMC10287946 DOI: 10.1093/bioinformatics/btad377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 06/11/2023] Open
Abstract
MOTIVATION With the exponential growth of expression and protein-protein interaction (PPI) data, the identification of functional modules in PPI networks that show striking changes in molecular activity or phenotypic signatures becomes of particular interest to reveal process-specific information that is correlated with cellular or disease states. This requires both the identification of network nodes with reliability scores and the availability of an efficient technique to locate the network regions with the highest scores. In the literature, a number of heuristic methods have been suggested. We propose SEMtree(), a set of tree-based structure discovery algorithms, combining graph and statistically interpretable parameters together with a user-friendly R package based on structural equation models framework. RESULTS Condition-specific changes from differential expression and gene-gene co-expression are recovered with statistical testing of node, directed edge, and directed path difference between groups. In the end, from a list of seed (i.e. disease) genes or gene P-values, the perturbed modules with undirected edges are generated with five state-of-the-art active subnetwork detection methods. The latter are supplied to causal additive trees based on Chu-Liu-Edmonds' algorithm (Chow and Liu, Approximating discrete probability distributions with dependence trees. IEEE Trans Inform Theory 1968;14:462-7) in SEMtree() to be converted in directed trees. This conversion allows to compare the methods in terms of directed active subnetworks. We applied SEMtree() to both Coronavirus disease (COVID-19) RNA-seq dataset (GEO accession: GSE172114) and simulated datasets with various differential expression patterns. Compared to existing methods, SEMtree() is able to capture biologically relevant subnetworks with simple visualization of directed paths, good perturbation extraction, and classifier performance. AVAILABILITY AND IMPLEMENTATION SEMtree() function is implemented in the R package SEMgraph, easily available at https://CRAN.R-project.org/package=SEMgraph.
Collapse
Affiliation(s)
- Mario Grassi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - Barbara Tarantino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| |
Collapse
|
15
|
Lotti V, Lagni A, Diani E, Sorio C, Gibellini D. Crosslink between SARS-CoV-2 replication and cystic fibrosis hallmarks. Front Microbiol 2023; 14:1162470. [PMID: 37250046 PMCID: PMC10213757 DOI: 10.3389/fmicb.2023.1162470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
SARS-CoV-2, the etiological cause of the COVID-19 pandemic, can cause severe illness in certain at-risk populations, including people with cystic fibrosis (pwCF). Nevertheless, several studies indicated that pwCF do not have higher risks of SARS-CoV-2 infection nor do they demonstrate worse clinical outcomes than those of the general population. Recent in vitro studies indicate cellular and molecular processes to be significant drivers in pwCF lower infection rates and milder symptoms than expected in cases of SARS-CoV-2 infection. These range from cytokine releases to biochemical alterations leading to morphological rearrangements inside the cells associated with CFTR impairment. Based on available data, the reported low incidence of SARS-CoV-2 infection among pwCF is likely a result of several variables linked to CFTR dysfunction, such as thick mucus, IL-6 reduction, altered ACE2 and TMPRSS2 processing and/or functioning, defective anions exchange, and autophagosome formation. An extensive analysis of the relation between SARS-CoV-2 infection and pwCF is essential to elucidate the mechanisms involved in this lower-than-expected infection impact and to possibly suggest potential new antiviral strategies.
Collapse
Affiliation(s)
- Virginia Lotti
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Anna Lagni
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Erica Diani
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Claudio Sorio
- General Pathology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Davide Gibellini
- Microbiology Section, Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
16
|
Paunovic V, Vucicevic L, Misirkic Marjanovic M, Perovic V, Ristic B, Bosnjak M, Mandic M, Stevanovic D, Harhaji-Trajkovic L, Lalosevic J, Nikolic M, Bonaci-Nikolic B, Trajkovic V. Autophagy Receptor p62 Regulates SARS-CoV-2-Induced Inflammation in COVID-19. Cells 2023; 12:cells12091282. [PMID: 37174682 PMCID: PMC10177105 DOI: 10.3390/cells12091282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
As autophagy can promote or inhibit inflammation, we examined autophagy-inflammation interplay in COVID-19. Autophagy markers in the blood of 19 control subjects and 26 COVID-19 patients at hospital admission and one week later were measured by ELISA, while cytokine levels were examined by flow cytometric bead immunoassay. The antiviral IFN-α and proinflammatory TNF, IL-6, IL-8, IL-17, IL-33, and IFN-γ were elevated in COVID-19 patients at both time points, while IL-10 and IL-1β were increased at admission and one week later, respectively. Autophagy markers LC3 and ATG5 were unaltered in COVID-19. In contrast, the concentration of autophagic cargo receptor p62 was significantly lower and positively correlated with TNF, IL-10, IL-17, and IL-33 at hospital admission, returning to normal levels after one week. The expression of SARS-CoV-2 proteins NSP5 or ORF3a in THP-1 monocytes caused an autophagy-independent decrease or autophagy-inhibition-dependent increase, respectively, of intracellular/secreted p62, as confirmed by immunoblot/ELISA. This was associated with an NSP5-mediated decrease in TNF/IL-10 mRNA and an ORF3a-mediated increase in TNF/IL-1β/IL-6/IL-10/IL-33 mRNA levels. A genetic knockdown of p62 mimicked the immunosuppressive effect of NSP5, and a p62 increase in autophagy-deficient cells mirrored the immunostimulatory action of ORF3a. In conclusion, the proinflammatory autophagy receptor p62 is reduced inacute COVID-19, and the balance between autophagy-independent decrease and autophagy blockade-dependent increase of p62 levels could affect SARS-CoV-induced inflammation.
Collapse
Affiliation(s)
- Verica Paunovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Ljubica Vucicevic
- Department of Neurophysiology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Maja Misirkic Marjanovic
- Department of Neurophysiology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Vladimir Perovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Biljana Ristic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Mihajlo Bosnjak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Milos Mandic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Danijela Stevanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Ljubica Harhaji-Trajkovic
- Department of Neurophysiology, Institute for Biological Research "Sinisa Stankovic"-National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11000 Belgrade, Serbia
| | - Jovan Lalosevic
- Clinic of Dermatovenereology, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr. Subotica 8, 11000 Belgrade, Serbia
| | - Milos Nikolic
- Clinic of Dermatovenereology, University Clinical Center of Serbia, Pasterova 2, 11000 Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Dr. Subotica 8, 11000 Belgrade, Serbia
| | - Branka Bonaci-Nikolic
- Faculty of Medicine, University of Belgrade, Dr. Subotica 8, 11000 Belgrade, Serbia
- Clinic of Allergy and Immunology, University Clinical Center of Serbia, Koste Todorovica 2, 11000 Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| |
Collapse
|
17
|
Yousefi P, Tabibzadeh A, Keyvani H, Esghaei M, Karampoor S, Razizadeh MH, Mousavizadeh L. The potential importance of autophagy genes expression profile dysregulation and ATG polymorphisms in COVID-19 pathogenesis. APMIS 2023; 131:161-169. [PMID: 36478304 PMCID: PMC9877785 DOI: 10.1111/apm.13286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Autophagy is one of the important mechanisms in cell maintenance, which is considered associated with different pathological conditions such as viral infections. In this current study, the expression level and polymorphisms in some of the most important genes in the autophagy flux in COVID-19 patients were evaluated. This cross-sectional study was conducted among 50 confirmed COVID-19 patients and 20 healthy controls. The COVID-19 patients were divided into a severe group and a mild group according to their clinical features. The expression levels of ATG5, ATG16L1, LC3, and BECN1 were evaluated by the 2-∆∆CT method and beta-actin as the internal control. The polymorphisms of the ATG5 (rs506027, rs510432) and ATG16L1 (rs2241880 or T300A) were evaluated by the Sanger sequencing following the conventional PCR. The mean age of the included patients was 58.3 ± 17.9 and 22 (44%) were female. The expression levels of the LC3 were downregulated, while BECN1 and ATG16L1 genes represent an upregulation in COVID-19 patients. The polymorphism analysis revealed the ATG16L1 rs2241880 and AGT5 rs506027 polymorphism frequencies are statistically significantly different between COVID-19 and Healthy controls. The autophagy alteration represents an association with COVID-19 pathogenesis and severity. The current study is consistent with the alteration of autophagy elements in COVID-19 patients by mRNA expression-level evaluation. Furthermore, ATG16L1 rs2241880 and AGT5 rs506027 polymorphisms seem to be important in COVID-19 and are highly suggested for further investigations.
Collapse
Affiliation(s)
- Parastoo Yousefi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Tabibzadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Leila Mousavizadeh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Khandia R, Pandey MK, Rzhepakovsky IV, Khan AA, Alexiou A. Synonymous Codon Variant Analysis for Autophagic Genes Dysregulated in Neurodegeneration. Mol Neurobiol 2023; 60:2252-2267. [PMID: 36637744 DOI: 10.1007/s12035-022-03081-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/27/2022] [Indexed: 01/14/2023]
Abstract
Neurodegenerative disorders are often a culmination of the accumulation of abnormally folded proteins and defective organelles. Autophagy is a process of removing these defective proteins, organelles, and harmful substances from the body, and it works to maintain homeostasis. If autophagic removal of defective proteins has interfered, it affects neuronal health. Some of the autophagic genes are specifically found to be associated with neurodegenerative phenotypes. Non-functional, mutated, or gene copies having silent mutations, often termed synonymous variants, might explain this. However, these synonymous variant which codes for exactly similar proteins have different translation rates, stability, and gene expression profiling. Hence, it would be interesting to study the pattern of synonymous variant usage. In the study, synonymous variant usage in various transcripts of autophagic genes ATG5, ATG7, ATG8A, ATG16, and ATG17/FIP200 reported to cause neurodegeneration (if dysregulated) is studied. These genes were analyzed for their synonymous variant usage; nucleotide composition; any possible nucleotide skew in a gene; physical properties of autophagic protein including GRAVY and AROMA; hydropathicity; instability index; and frequency of acidic, basic, neutral amino acids; and gene expression level. The study will help understand various evolutionary forces acting on these genes and the possible augmentation of a gene if showing unusual behavior.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462026, India.
| | - Megha Katare Pandey
- Department of Translational Medicine, All India Institute of Medical Sciences, Bhopal, 462020, India
| | | | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Athanasios Alexiou
- Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med, Wien, Austria
| |
Collapse
|
19
|
Zhang R, Sun C, Han Y, Huang L, Sheng H, Wang J, Zhang Y, Lai J, Yuan J, Chen X, Jiang C, Wu F, Wang J, Fan X, Wang J. Neutrophil autophagy and NETosis in COVID-19: perspectives. Autophagy 2023; 19:758-767. [PMID: 35951555 PMCID: PMC9980466 DOI: 10.1080/15548627.2022.2099206] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has caused substantial losses worldwide in people's lives, health, and property. Currently, COVID-19 is still prominent worldwide without any specific drug treatment. The SARS-CoV-2 pathogen is the cause of various systemic diseases, mainly acute pneumonia. Within the pathological process, neutrophils are recruited to infected sites, especially in the lungs, for the first stage of removing invading SARS-CoV-2 through a range of mechanisms. Macroautophagy/autophagy, a conserved autodegradation process in neutrophils, plays a crucial role in the neutrophil phagocytosis of pathogens. NETosis refers to neutrophil cell death, while auto-inflammatory factors and antigens release NETs. This review summarizes the latest research progress and provides an in-depth explanation of the underlying mechanisms of autophagy and NETosis in COVID-19. Furthermore, after exploring the relationship between autophagy and NETosis, we discuss potential targets and treatment options. This review keeps up with the latest research on COVID-19 from neutrophil autophagy and NETosis with a new perspective, which can guide the urgent development of antiviral drugs and provide guidance for the clinical treatment of COVID-19.Abbreviations: AKT1: AKT serine/threonine kinase 1; AMPK: AMP-activated protein kinase; AP: autophagosome; ARDS: acute respiratory distress syndrome; ATG: autophagy related; BECN1: beclin 1; cfDNA: cell-free DNA; COVID-19: coronavirus disease 2019; CQ: chloroquine; DMVs: double-membrane vesicles; ELANE/NE: elastase, neutrophil expressed; F3: coagulation factor III, tissue factor; HCQ: hydroxychloroquine; MAP1LC3/LC3: microtubule associated protein 1 light chain of 3; MPO: myeloperoxidase; MTORC1: mechanistic target of rapamycin kinase complex 1; NETs: neutrophil traps; NSP: nonstructural protein; PI3K: class I phosphoinositide 3-kinase; PtdIns3K: class III phosphatidylinositol 3-kinase; PtdIns3P: phosphatidylinositol-3-phosphate; ROS: reactive oxygen species; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SKP2: S-phase kinase associated protein 2; TCC: terminal complement complex; ULK1: unc-51 like.
Collapse
Affiliation(s)
- Ruoyu Zhang
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chen Sun
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yunze Han
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Honghui Sheng
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Wang
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuqing Zhang
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jonathan Lai
- Premed track majoring in Biology, Baylor University, Waco, Texas, USA
| | - Jiahao Yuan
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xuemei Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Chao Jiang
- Department of Neurology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Fuyuan Wu
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Junmin Wang
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaochong Fan
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jian Wang
- Department of Pain Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
- Department of Human Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
20
|
McNulty J, Babu-Dokuburra C, Scattolon J, Zepeda-Velazquez C, Wesesky MA, Caldwell JK, Zheng W, Milosevic J, Kinchington PR, Bloom DC, Nimgaonkar VL, D'Aiuto L. Truncated ring-A amaryllidaceae alkaloid modulates the host cell integrated stress response, exhibiting antiviral activity to HSV-1 and SARSCoV-2. Sci Rep 2023; 13:1639. [PMID: 36717567 PMCID: PMC9885069 DOI: 10.1038/s41598-023-28691-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The total synthesis of four novel mono-methoxy and hydroxyl substituted ring-A dihydronarciclasine derivatives enabled identification of the 7-hydroxyl derivative as a potent and selective antiviral agent targeting SARSCoV-2 and HSV-1. The concentration of this small molecule that inhibited HSV-1 infection by 50% (IC50), determined by using induced pluripotent stem cells (iPCS)-derived brain organ organoids generated from two iPCS lines, was estimated to be 0.504 µM and 0.209 µM. No significant reduction in organoid viability was observed at concentrations up to 50 mM. Genomic expression analyses revealed a significant effect on host-cell innate immunity, revealing activation of the integrated stress response via PERK kinase upregulation, phosphorylation of eukaryotic initiation factor 2α (eIF2α) and type I IFN, as factors potentiating multiple host-defense mechanisms against viral infection. Following infection of mouse eyes with HSV-1, treatment with the compound dramatically reduced HSV-1 shedding in vivo.
Collapse
Affiliation(s)
- James McNulty
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada.
| | - Chanti Babu-Dokuburra
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Jon Scattolon
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Carlos Zepeda-Velazquez
- Department of Chemistry & Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Maribeth A Wesesky
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jill K Caldwell
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Wenxiao Zheng
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Second Xiangya Hospital, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jadranka Milosevic
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Captis Diagnostics Inc, Pittsburgh, PA, USA
| | - Paul R Kinchington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - David C Bloom
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Vishwajit L Nimgaonkar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Veterans Administration Pittsburgh Healthcare System, 4100 Allequippa St (University Drive C), Pittsburgh, PA, 15240, USA
| | - Leonardo D'Aiuto
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
21
|
Chaperone-assisted selective autophagy targets filovirus VP40 as a client and restricts egress of virus particles. Proc Natl Acad Sci U S A 2023; 120:e2210690120. [PMID: 36598950 PMCID: PMC9926251 DOI: 10.1073/pnas.2210690120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The filovirus VP40 protein directs virion egress, which is regulated either positively or negatively by select VP40-host interactions. We demonstrate that host BAG3 and HSP70 recognize VP40 as a client and inhibit the egress of VP40 virus-like particles (VLPs) by promoting degradation of VP40 via Chaperone-assisted selective autophagy (CASA). Pharmacological inhibition of either the early stage formation of the VP40/BAG3/HSP70 tripartite complex, or late stage formation of autolysosomes, rescued VP40 VLP egress back to WT levels. The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of autophagy, and we found that surface expression of EBOV GP on either VLPs or an infectious VSV recombinant virus, activated mTORC1. Notably, pharmacological suppression of mTORC1 signaling by rapamycin activated CASA in a BAG3-dependent manner to restrict the egress of both VLPs and infectious EBOV in Huh7 cells. In sum, our findings highlight the involvement of the mTORC1/CASA axis in regulating filovirus egress.
Collapse
|
22
|
Jassey A, Wagner MA, Galitska G, Paudel B, Miller K, Jackson WT. Starvation after infection restricts enterovirus D68 replication. Autophagy 2023; 19:112-125. [PMID: 35446171 PMCID: PMC9809931 DOI: 10.1080/15548627.2022.2062888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Enterovirus D68 (EV-D68) is a respiratory pathogen associated with acute flaccid myelitis, a childhood paralysis disease. No approved vaccine or antiviral treatment exists against EV-D68. Infection with this virus induces the formation of autophagosomes to enhance its replication but blocks the downstream autophagosome- lysosome fusion steps. Here, we examined the impact of autophagy induction through starvation, either before (starvation before infection, SBI) or after (starvation after infection, SAI) EV-D68 infection. We showed that SAI, but not SBI, attenuated EV-D68 replication in multiple cell lines and abrogated the viral-mediated cleavage of host autophagic flux-related proteins. Furthermore, SAI induced autophagic flux during EV-D68 replication and prevented production of virus-induced membranes, which are required for picornavirus replication. Pharmacological inhibition of autophagic flux during SAI did not rescue EV-D68 titers. SAI had the same effect in multiple cell types, and restricted the replication of several medically relevant picornaviruses. Our results highlight the significance of autophagosomes for picornavirus replication and identify SAI as an attractive broad-spectrum anti-picornavirus strategy.Abbreviations: BAF: bafilomycin A1; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CQ: chloroquine; CVB3: coxsackievirus B3; EV-D68: enterovirus D68; hpi: hour post-infection; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; NSP2B: nonstructural protein 2B; PV: poliovirus; RES: resveratrol; RV14: rhinovirus 14; SAI: starvation after infection; SBI: starvation before infection; SNAP29: synaptosome associated protein 29; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB.
Collapse
Affiliation(s)
- Alagie Jassey
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael A. Wagner
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ganna Galitska
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bimal Paudel
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katelyn Miller
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA
| | - William T. Jackson
- Department of Microbiology and Immunology and Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, MD, USA,CONTACT William T. Jackson Department of Microbiology and Immunology and Center for Pathogen Research University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
23
|
Sharma KB, Chhabra S, Kalia M. Japanese Encephalitis Virus-Infected Cells. Subcell Biochem 2023; 106:251-281. [PMID: 38159231 DOI: 10.1007/978-3-031-40086-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
RNA virus infections have been a leading cause of pandemics. Aided by global warming and increased connectivity, their threat is likely to increase over time. The flaviviruses are one such RNA virus family, and its prototypes such as the Japanese encephalitis virus (JEV), Dengue virus, Zika virus, West Nile virus, etc., pose a significant health burden on several endemic countries. All viruses start off their life cycle with an infected cell, wherein a series of events are set in motion as the virus and host battle for autonomy. With their remarkable capacity to hijack cellular systems and, subvert/escape defence pathways, viruses are able to establish infection and disseminate in the body, causing disease. Using this strategy, JEV replicates and spreads through several cell types such as epithelial cells, fibroblasts, monocytes and macrophages, and ultimately breaches the blood-brain barrier to infect neurons and microglia. The neurotropic nature of JEV, its high burden on the paediatric population, and its lack of any specific antivirals/treatment strategies emphasise the need for biomedical research-driven solutions. Here, we highlight the latest research developments on Japanese encephalitis virus-infected cells and discuss how these can aid in the development of future therapies.
Collapse
Affiliation(s)
- Kiran Bala Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Simran Chhabra
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manjula Kalia
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
24
|
White J, Suklabaidya S, Vo MT, Choi YB, Harhaj EW. Multifaceted roles of TAX1BP1 in autophagy. Autophagy 2023; 19:44-53. [PMID: 35470757 PMCID: PMC9809930 DOI: 10.1080/15548627.2022.2070331] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
TAX1BP1 is a selective macroautophagy/autophagy receptor that plays a central role in host defense to pathogens and in regulating the innate immune system. TAX1BP1 facilitates the xenophagic clearance of pathogenic bacteria such as Salmonella typhimurium and Mycobacterium tuberculosis and regulates TLR3 (toll-like receptor 3)-TLR4 and DDX58/RIG-I-like receptor (RLR) signaling by targeting TICAM1 and MAVS for autophagic degradation respectively. In addition to these canonical autophagy receptor functions, TAX1BP1 can also exert multiple accessory functions that influence the biogenesis and maturation of autophagosomes. In this review, we will discuss and integrate recent findings related to the autophagy function of TAX1BP1 and highlight outstanding questions regarding its functions in autophagy and regulation of innate immunity and host defense.Abbreviations: ATG: autophagy related; CALCOCO: calcium binding and coiled-coil domain; CC: coiled-coil; CHUK/IKKα: conserved helix-loop-helix ubiquitous kinase; CLIR: noncanonical LC3-interacting region; GABARAP: gamma-aminobutyric acid receptor associated protein; HTLV-1: human T-lymphotropic virus 1; IFN: interferon; IL1B/IL1β: interleukin 1 beta; LIR: LC3-interacting region; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK/JNK: mitogen-activated protein kinase; mATG8: mammalian Atg8 homolog; MAVS: mitochondrial antiviral signaling protein; MEF: mouse embryonic fibroblast; MTB: Mycobacterium tuberculosis; MYD88: myeloid differentiation primary response gene 88; NBR1: NBR1, autophagy cargo receptor; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; OPTN: optineurin; Poly(I:C): polyinosinic:polycytidylic acid; PTM: post-translational modification; RB1CC1: RB1-inducible coiled-coil 1; RIPK: receptor (TNFRSF)-interacting serine-threonine kinase; RLR: DDX58/RIG-I-like receptor; RSV: respiratory syncytia virus; SKICH: SKIP carboxyl homology; SLR: SQSTM1 like receptor; SQSTM1: sequestosome 1; TAX1BP1: Tax1 (human T cell leukemia virus type I) binding protein 1; TBK1: TANK-binding kinase 1; TICAM1: toll-like receptor adaptor molecule 1; TLR: toll-like receptor; TNF: tumor necrosis factor; TNFAIP3: TNF alpha induced protein 3; TNFR: tumor necrosis factor receptor; TOM1: target of myb1 trafficking protein; TRAF: TNF receptor-associated factor; TRIM32: tripartite motif-containing 32; UBD: ubiquitin binding domain; ZF: zinc finger.
Collapse
Affiliation(s)
- Jesse White
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, USA
| | - Sujit Suklabaidya
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, USA
| | - Mai Tram Vo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Young Bong Choi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Edward W. Harhaj
- Department of Microbiology and Immunology, Penn State College School of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
25
|
Liu Y, Song D, Liu X, Wang Y, Wang G, Lan Y. Suppression of porcine hemagglutinating encephalomyelitis virus replication by resveratrol. Virol J 2022; 19:226. [PMID: 36578037 PMCID: PMC9795454 DOI: 10.1186/s12985-022-01953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Porcine hemagglutinating encephalomyelitis virus (PHEV), a member of the genus Betacoronavirus, is the causative agent of neurological disease in pigs. No effective therapeutics are currently available for PHEV infection. Resveratrol has been shown to exert neuroprotective and antiviral effects. Here resveratrol was investigated for its ability to inhibit PHEV replication in nerve cells and central nervous system tissues. METHODS Anti-PHEV effect of resveratrol was evaluated using an in vitro cell-based PHEV infection model and employing a mouse PHEV infection model. The collected cells or tissues were used for quantitative PCR analysis, western blot analysis, or indirect immunofluorescence assay. The supernatants were collected to quantify viral loads by TCID50 assay in vitro. EC50 and CC50 were determined by dose-response experiments, and the ratio (EC50/CC50) was used as a selectivity index (SI) to measure the antiviral versus cytotoxic activity. RESULTS Our results showed that resveratrol treatment reduced PHEV titer in a dose-dependent manner, with a 50% inhibition concentration of 6.24 μM. A reduction of > 70% of viral protein expression and mRNA copy number and a 19-fold reduction of virus titer were achieved when infected cells were treated with 10 µM resveratrol in a pre-treatment assay. Quantitative PCR analysis and TCID50 assay results revealed that the addition of 10 μM resveratrol to cells after adsorption of PHEV significantly reduced 56% PHEV mRNA copy number and eightfold virus titer. 10 µM resveratrol treatment reduced 46% PHEV mRNA copy number and fourfold virus titer in virus inactivation assay. Moreover, the in vivo data obtained in this work also demonstrated that resveratrol inhibited PHEV replication, and anti-PHEV activities of resveratrol treatment via intranasal installation displayed better than oral gavage. CONCLUSION These results indicated that resveratrol exerted antiviral effects under various drug treatment and virus infection conditions in vitro and holds promise as a treatment for PHEV infection in vivo.
Collapse
Affiliation(s)
- Yuzhu Liu
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Deguang Song
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xueli Liu
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yuanqi Wang
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gaili Wang
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, Jilin China
| | - Yungang Lan
- grid.64924.3d0000 0004 1760 5735Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
26
|
Shin S, Han D, Cho H, Kim E, Choi K. Non-cytopathic bovine viral diarrhoea virus 2 induces autophagy to enhance its replication. Vet Med Sci 2022; 9:405-416. [PMID: 36533845 PMCID: PMC9856993 DOI: 10.1002/vms3.1052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Bovine viral diarrhoea virus (BVDV) is an important viral pathogen that has an economic impact on the livestock industry worldwide. Autophagy is one of the earliest cell-autonomous defence mechanisms against microbial invasion, and many types of viruses can induce autophagy by infecting host cells. OBJECTIVES The aim of this study was to identify the role of autophagy in the pathogenesis of non-cytopathic (ncp) BVDV2 infection. METHODS Madin-Darby bovine kidney (MDBK) cells were treated with ncp BVDV2, rapamycin, or 3-methyladenine (MA) and ncp BVDV2 and then incubated at 37°C for 24 h. Cells were harvested, and the effects of autophagy were determined by transmission electron microscopy (TEM), confocal laser microscopy, western blotting and qRT-PCR. Apoptotic analysis was also performed using western blotting and flow cytometry. RESULTS In ncp BVDV2-infected MDBK cells, more autophagosomes were observed by TEM, and the number of microtubule-associated protein 1 light chain 3B (LC3B) with green fluorescent protein puncta was also increased. The ncp BVDV2-infected cells showed significantly enhanced conversion of LC3-I to LC3-II, as well as upregulation of autophagy-related proteins, including ATG5 and Beclin 1, and substantial degradation of p62/SQSTM1. These results are similar to those induced by rapamycin, an autophagy inducer. E2 protein expression, which is associated with viral replication, increased over time in ncp BVDV2-infected cells. Inhibition of autophagy by 3-MA in ncp BVDV2-infected MDBK cells downregulated the expressions of LC3-II, ATG5 and Beclin 1 and prevented the degradation of p62/SQSTM1. Moreover, the expressions of phosphorylated Akt and procaspase-3 were significantly increased in ncp BVDV2-infected cells. In addition, the mRNA level of protein kinase R (PKR) was significantly reduced in ncp BVDV2-infected cells. CONCLUSIONS Our results demonstrate that ncp BVDV2 infection induced autophagy in MDBK cells via anti-apoptosis and PKR suppression. Therefore, autophagy may play a role in establishing persistent infection caused by ncp BVDV.
Collapse
Affiliation(s)
- Seung‐Uk Shin
- Department of Animal Science and BiotechnologyCollege of Ecology and Environmental Science, Kyungpook National UniversitySangjuSouth Korea
| | - Du‐Gyeong Han
- Korea National Institute of HealthCheongjuChungcheongbuk‐doSouth Korea
| | - Hyung‐Chul Cho
- Department of Animal Science and BiotechnologyCollege of Ecology and Environmental Science, Kyungpook National UniversitySangjuSouth Korea
| | - Eun‐Mi Kim
- Department of Animal Science and BiotechnologyCollege of Ecology and Environmental Science, Kyungpook National UniversitySangjuSouth Korea
| | - Kyoung‐Seong Choi
- Department of Animal Science and BiotechnologyCollege of Ecology and Environmental Science, Kyungpook National UniversitySangjuSouth Korea
| |
Collapse
|
27
|
Koči J, Novotová M, Sláviková M, Klempa B, Zahradník I. SARS-CoV-2 Exploits Non-Canonical Autophagic Processes to Replicate, Mature, and Egress the Infected Vero E6 Cells. Pathogens 2022; 11:pathogens11121535. [PMID: 36558869 PMCID: PMC9781122 DOI: 10.3390/pathogens11121535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
The coronavirus transforms the cytoplasm of susceptible cells to support virus replication. It also activates autophagy-like processes, the role of which is not well understood. Here, we studied SARS-CoV-2-infected Vero E6 cells using transmission electron microscopy and autophagy PCR array. After 6-24 h post-infection (hpi), the cytoplasm of infected cells only contained double-membrane vesicles, phagophores, and phagosomes engulfing virus particles and cytoplasmic debris, including damaged mitochondria. The phagosomes interacted with the viral nucleoprotein complex, virus particles, mitochondria, and lipid droplets. The phagosomes transformed into egress vacuoles, which broke through the plasmalemma and discharged the virus particles. The Vero E6 cells exhibited pronounced virus replication at 6 hpi, which stabilized at 18-24 hpi at a high level. The autophagy PCR array tests revealed a significant upregulation of 10 and downregulation of 8 autophagic gene markers out of 84. Altogether, these results underline the importance of autophagy-like processes for SARS-CoV-2 maturation and egress, and point to deviations from a canonical autophagy response.
Collapse
Affiliation(s)
- Juraj Koči
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Correspondence: (J.K.); (I.Z.)
| | - Marta Novotová
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Monika Sláviková
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
| | - Boris Klempa
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia
| | - Ivan Zahradník
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia
- Correspondence: (J.K.); (I.Z.)
| |
Collapse
|
28
|
Saleh D, Ramadan A, Mohammed RH, Alnaggar ARLR, Saleh EM. Autophagy-related genes in Egyptian patients with Behçet's disease. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Abstract
Background
Behçet's disease (BD) is a chronic, multi-systemic, recurrent condition that affects the vascular, ocular, mucocutaneous, and central nervous systems. The diagnosis of this disease depends on its clinical features, which are similar to those observed in several diseases, such as Parkinson’s disease, pemphigus vulgaris, systemic lupus erythematosus, Crohn ҆s disease, and Sjӧgren’s syndrome. Lysosome-mediated autophagy is a catabolic, cytoprotective mechanism that maintains cell homeostasis by degrading undesired long-lived proteins and recycling nutrients. The aim of this study was to evaluate the correlations between some autophagy-related genes (ATG5, ATG7, ATG12, LC3b, mTOR) and the pathogenesis and immunopathology of BD. The expression levels of the genes were evaluated by quantitative polymerase chain reaction (qPCR) in 101 individuals that are classified into two groups. Group 1: (n = 71) BD patients, Group 2: (n = 30) healthy controls.
Results
Patients with BD had lower mRNA expression levels of ATG5 and mTOR and higher levels of LC3b mRNA than the controls. No significant differences in the levels of both ATG7 and ATG12 were observed between the two groups. According to the area under the curve analysis, LC3b was considered the best candidate biomarker among the selected markers for the diagnosis of BD. The mRNA expression of ATG5 was significantly correlated with patient age and the presence of oral ulcers. The mRNA expression of ATG7 was significantly associated with age and the presence of erythema nodosum and vascular lesions, whereas that of LC3b was significantly correlated with the presence of pustules.
Conclusion
These findings indicated that elevated levels of LC3b were strongly associated with BD. Likewise, the levels of ATG5 and ATG7 were associated with the complications and outcomes of this disease. Additional assessments of the mRNA expression levels of these autophagy-related genes might prove beneficial in diagnosing this autoimmune disorder.
Collapse
|
29
|
Spirin P, Shyrokova E, Vedernikova V, Lebedev T, Prassolov V. Emetine in Combination with Chloroquine Induces Oncolytic Potential of HIV-1-Based Lentiviral Particles. Cells 2022; 11:cells11182829. [PMID: 36139404 PMCID: PMC9497060 DOI: 10.3390/cells11182829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Chloroquine and Emetine are drugs used to treat human parasitic infections. In addition, it has been shown that these drugs have an antiviral effect. Both drugs were also found to cause a suppressive effect on the growth of cancer cells of different origins. Here, using the replication-deficient HIV-1-based lentiviral vector particles, we evaluated the ability of the combination of these drugs to reduce viral transduction efficiency. We showed that these drugs act synergistically to decrease cancer cell growth when added in combination with medium containing lentiviral particles. We found that the combination of these drugs with lentiviral particles decreases the viability of treated cells. Taken together, we state the oncolytic potential of the medium containing HIV-1-based particles provoked by the combination of Chloroquine and Emetine.
Collapse
Affiliation(s)
- Pavel Spirin
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Correspondence:
| | - Elena Shyrokova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141701 Dolgoprudny, Russia
| | - Valeria Vedernikova
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, Institutskiy per. 9, 141701 Dolgoprudny, Russia
| | - Timofey Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Vladimir Prassolov
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| |
Collapse
|
30
|
Skelin J, Sabol I, Tomaić V. Do or Die: HPV E5, E6 and E7 in Cell Death Evasion. Pathogens 2022; 11:pathogens11091027. [PMID: 36145459 PMCID: PMC9502459 DOI: 10.3390/pathogens11091027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Human papillomaviruses (HPVs) infect the dividing cells of human epithelia and hijack the cellular replication machinery to ensure their own propagation. In the effort to adapt the cell to suit their own reproductive needs, the virus changes a number of processes, amongst which is the ability of the cell to undergo programmed cell death. Viral infections, forced cell divisions and mutations, which accumulate as a result of uncontrolled proliferation, all trigger one of several cell death pathways. Here, we examine the mechanisms employed by HPVs to ensure the survival of infected cells manipulated into cell cycle progression and proliferation.
Collapse
|
31
|
Boroumand-Noughabi S, Khoshnegah Z, Amel Jamehdar S, Ayatollahi H, Sheikhi M, Rostami M, Keramati MR. Deregulation of the Expression of Beclin1 and Light Chain 3(LC3), Autophagy-Related Genes, in COVID-19 Patients. Med J Islam Repub Iran 2022; 36:99. [PMID: 36419945 PMCID: PMC9588152 DOI: 10.47176/mjiri.36.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Indexed: 09/07/2024] Open
Abstract
Background: The autophagy machinery is reported to be employed by Coronaviruses during their replication. Beclin-1 (BECN1) and protein 1 light chain 3 (LC3) are two key elements in the autophagy process, and their inhibition can prevent the replication of some coronaviruses in vitro. Here, we aimed to investigate the expression levels of Beclin-1 and LC3 in COVID-19 patients and healthy controls, hoping to find new therapeutic targets. Methods: This cross-sectional study was conducted in Imam Reza and Ghaem University Hospitals, Mashhad, Iran. Nasopharyngeal samples of 68 consecutive Covid-19 patients and 61 healthy controls, who have been referred to the laboratories for COVID-19 PCR testing between 21 March to 21 September 2021, were used in order to evaluate the expression of BECN1 and LC3 genes using the Real-time quantitative PCR method. Demographic and other laboratory findings of patients were extracted from the hospital electronic system. SPSS Statistics 16.0 and Graph Pad Prism 8.4.2 soft wares were used for statistical analysis. Non-parametric tests were used. Results: BECN1 expression was significantly higher in COVID-19 patients compared to the controls (14.37±18.84 vs. 4.26±7.39, p=0.001). The expression of LC3 gene was significantly lower in patients compared to the controls (1.01±1.06 vs. 1.49±1.12, p=0.007). There was no significant correlation between the expression levels of BECN1 and LC3. Patients with lower BECN1 expression showed significantly higher RBC counts, higher Urea and lower HCO3 levels. The patients in LC3Low group showed significantly lower MCH, MCHC and PH levels compared to the others. Conclusion: Regarding the significant difference in the expression of BECN1 and LC3 in COVID-19 patients compared to the controls, these molecules may have a role in the pathogenesis of this disease. In case of further confirmation of this role, these molecules may be used as possible therapeutic targets.
Collapse
Affiliation(s)
- Samaneh Boroumand-Noughabi
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Khoshnegah
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Amel Jamehdar
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Ayatollahi
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Sheikhi
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Rostami
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Keramati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Molecular Pathology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Targeting autophagy regulation in NLRP3 inflammasome-mediated lung inflammation in COVID-19. Clin Immunol 2022; 244:109093. [PMID: 35944881 PMCID: PMC9356669 DOI: 10.1016/j.clim.2022.109093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging evidence indicates that the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated, which results in a cytokine storm at the late stage of COVID-19. Autophagy regulation is involved in the infection and replication of SARS-CoV-2 at the early stage and the inhibition of NLRP3 inflammasome-mediated lung inflammation at the late stage of COVID-19. Here, we discuss the autophagy regulation at different stages of COVID-19. Specifically, we highlight the therapeutic potential of autophagy activators in COVID-19 by inhibiting the NLRP3 inflammasome, thereby avoiding the cytokine storm. We hope this review provides enlightenment for the use of autophagy activators targeting the inhibition of the NLRP3 inflammasome, specifically the combinational therapy of autophagy modulators with the inhibitors of the NLRP3 inflammasome, antiviral drugs, or anti-inflammatory drugs in the fight against COVID-19.
Collapse
|
33
|
Konishi K, Yamaji T, Sakuma C, Kasai F, Endo T, Kohara A, Hanada K, Osada N. Whole-Genome Sequencing of Vero E6 (VERO C1008) and Comparative Analysis of Four Vero Cell Sublines. Front Genet 2022; 13:801382. [PMID: 35391802 PMCID: PMC8981525 DOI: 10.3389/fgene.2022.801382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The Vero cell line is an immortalized cell line established from kidney epithelial cells of the African green monkey. A variety of Vero sublines have been developed and can be classified into four major cell lineages. In this study, we determined the whole-genome sequence of Vero E6 (VERO C1008), which is one of the most widely used cell lines for the proliferation and isolation of severe acute respiratory syndrome coronaviruses (SARS-CoVs), and performed comparative analysis among Vero JCRB0111, Vero CCL-81, Vero 76, and Vero E6. Analysis of the copy number changes and loss of heterozygosity revealed that these four sublines share a large deletion and loss of heterozygosity on chromosome 12, which harbors type I interferon and CDKN2 gene clusters. We identified a substantial number of genetic differences among the sublines including single nucleotide variants, indels, and copy number variations. The spectrum of single nucleotide variants indicated a close genetic relationship between Vero JCRB0111 and Vero CCL-81, and between Vero 76 and Vero E6, and a considerable genetic gap between the former two and the latter two lines. In contrast, we confirmed the pattern of genomic integration sites of simian endogenous retroviral sequences, which was consistent among the sublines. We identified subline-specific/enriched loss of function and missense variants, which potentially contribute to the differences in response to viral infection among the Vero sublines. In particular, we identified four genes (IL1RAP, TRIM25, RB1CC1, and ATG2A) that contained missense variants specific or enriched in Vero E6. In addition, we found that V739I variants of ACE2, which functions as the receptor for SARS-CoVs, were heterozygous in Vero JCRB0111, Vero CCL-81, and Vero 76; however, Vero E6 harbored only the allele with isoleucine, resulting from the loss of one of the X chromosomes.
Collapse
Affiliation(s)
- Kazuhiro Konishi
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chisato Sakuma
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Fumio Kasai
- Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Toshinori Endo
- Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Arihiro Kohara
- Laboratory of Cell Cultures, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoki Osada
- Faculty of Information Science and Technology, Hokkaido University, Sapporo, Japan
| |
Collapse
|
34
|
Firoz A, Talwar P. COVID-19 and Retinal Degenerative Diseases: Promising link “Kaempferol”. Curr Opin Pharmacol 2022; 64:102231. [PMID: 35544976 PMCID: PMC9080119 DOI: 10.1016/j.coph.2022.102231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 01/18/2023]
Abstract
Coronavirus disease (COVID-19) outbreak has caused unprecedented global disruption since 2020. Approximately 238 million people are affected worldwide where the elderly succumb to mortality. Post-COVID syndrome and its side effects have popped up with several health hazards, such as macular degeneration and vision loss. It thus necessitates better medical care and management of our dietary practices. Natural flavonoids have been included in traditional medicine and have also been used safely against COVID-19 and several other diseases. Kaempferol is an essential flavonoid that has been demonstrated to influence several vital cellular signaling pathways involved in apoptosis, angiogenesis, inflammation, and autophagy. In this review, we emphasize the plausible regulatory effects of Kaempferol on hallmarks of COVID-19 and macular degeneration.
Collapse
|
35
|
Human Papillomavirus Type 16 Early Protein E7 Activates Autophagy through Inhibition of Dual-Specificity Phosphatase 5. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1863098. [PMID: 35368866 PMCID: PMC8966754 DOI: 10.1155/2022/1863098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/30/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022]
Abstract
Consistent high-risk human papillomavirus (HPV) infection leads to various malignant cancers. Autophagy can promote cancer progression by helping cancer cells survive under stress or induce oncogenic effects when mutations or abnormalities occur. Mitogen activated protein kinases (MAPKs) can transduce various external or intrinsic stimuli into cellular responses, including autophagy, and dual-specificity phosphates (DUSPs) contribute to the direct regulation of MAPK activities. Previously, we showed that expression of DUSP5 was repressed in HPV16 E7-expressing normal human epidermal keratinocytes (NHEKs). Here we show that clinical HPV16 E7-positive precancerous and cancerous tissues also demonstrate low DUSP5 levels compared with control tissues, indicating that the inverse correlation between HPV16 E7 and DUSP5 is clinically relevant. We furthermore investigated the autophagy response in both DUSP5-deficient and HPV16 E7-expressing NHEKs. Confocal microscopy and Western analysis showed induction of LC3-II levels, autophagosome formation and autophagy fluxes in DUSP5-deficient NHEKs. Furthermore, Western analysis demonstrated specific induction of phosphorylated ERK in DUSP5-deficient and HPV16 E7-expressing NHEKs, indicating that HPV16 E7-mediated repression of DUSP5 results in induced MAPK/ERK signaling. Finally, phosphorylated mTOR and ULK (S757) were reduced in DUSP5-deficient NHEKs, while phosphorylated ULK (S555) and AMPK were increased, thereby inducing canonical autophagy through the mTOR and AMPK pathways. In conclusion, our results demonstrate that HPV16 E7 expression reduces DUSP5 levels, which in turn results in active MAPK/ERK signaling and induction of canonical autophagy through mTOR and MAPK regulation. Given its demonstrated inverse correlation with clinical cancerous tissues, DUSP5 may serve as a potential therapeutic target for cervical cancer.
Collapse
|
36
|
Chawla K, Subramanian G, Rahman T, Fan S, Chakravarty S, Gujja S, Demchak H, Chakravarti R, Chattopadhyay S. Autophagy in Virus Infection: A Race between Host Immune Response and Viral Antagonism. IMMUNO 2022; 2:153-169. [PMID: 35252965 PMCID: PMC8893043 DOI: 10.3390/immuno2010012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Virus-infected cells trigger a robust innate immune response and facilitate virus replication. Here, we review the role of autophagy in virus infection, focusing on both pro-viral and anti-viral host responses using a select group of viruses. Autophagy is a cellular degradation pathway operated at the basal level to maintain homeostasis and is induced by external stimuli for specific functions. The degradative function of autophagy is considered a cellular anti-viral immune response. However, autophagy is a double-edged sword in viral infection; viruses often benefit from it, and the infected cells can also use it to inhibit viral replication. In addition to viral regulation, autophagy pathway proteins also function in autophagy-independent manners to regulate immune responses. Since viruses have co-evolved with hosts, they have developed ways to evade the anti-viral autophagic responses of the cells. Some of these mechanisms are also covered in our review. Lastly, we conclude with the thought that autophagy can be targeted for therapeutic interventions against viral diseases.
Collapse
Affiliation(s)
- Karan Chawla
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Gayatri Subramanian
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Tia Rahman
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Shumin Fan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Sukanya Chakravarty
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Shreyas Gujja
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Hayley Demchak
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Ritu Chakravarti
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Correspondence:
| |
Collapse
|
37
|
Mogensen TH. Genetic susceptibility to viral disease in humans. Clin Microbiol Infect 2022; 28:1411-1416. [PMID: 35218976 DOI: 10.1016/j.cmi.2022.02.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/16/2022] [Accepted: 02/13/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND During the past decades studies on patients with severe viral infections have revealed rare inborn errors of immunity (IEI) underlying these diseases. This has led to important new insights into the molecular genetics and immunological mechanisms underlying susceptibility to viral infection in humans. OBJECTIVES Here the current knowledge on major IEI predisposing to severe or chronic viral infection are described and discussed, and the clinical implications of these findings for individualized prophylaxis and treatment are outlined. SOURCES The review is based on a broad literature search including relevant studies primarily based studies in patients, supported by experimental molecular models in vitro or in mice to characterize pathophysiological mechanism governing these disease conditions. CONTENT Current concepts and principles of genetic predisposition to viral infections in humans are described with a major focus on defects related to innate immune responses and new concepts of constitutive immune mechanisms. The topic therefore spans from seminal studies on the human genetics of herpesvirus infections in the central nervous system, severe influenza, and disease following vaccination with live attenuated viral vaccines, and finally mentioning genetic resistance to viral infection. IMPLICATIONS Past and present studies in patients with IEI conferring vulnerability to viral infections have taught us important lessons on protective innate and adaptive antiviral immunity in humans. Such knowledge also has important clinical implications allowing development of prophylactic and therapeutic solutions to prevent or dampen the clinical consequences of insufficient or dysregulated antiviral immunity in patients. Collectively, such measures are likely to improve patient management at an individualized level and also help societies reduce disease burden from viral infections.
Collapse
Affiliation(s)
- Trine H Mogensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
38
|
Zheng Q, Duan L, Zhang Y, Li J, Zhang S, Wang H. A dynamically evolving war between autophagy and pathogenic microorganisms. J Zhejiang Univ Sci B 2022; 23:19-41. [PMID: 35029086 PMCID: PMC8758936 DOI: 10.1631/jzus.b2100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Autophagy is an intracellular degradation process that maintains cellular homeostasis. It is essential for protecting organisms from environmental stress. Autophagy can help the host to eliminate invading pathogens, including bacteria, viruses, fungi, and parasites. However, pathogens have evolved multiple strategies to interfere with autophagic signaling pathways or inhibit the fusion of autophagosomes with lysosomes to form autolysosomes. Moreover, host cell matrix degradation by different types of autophagy can be used for the proliferation and reproduction of pathogens. Thus, determining the roles and mechanisms of autophagy during pathogen infections will promote understanding of the mechanisms of pathogen‒host interactions and provide new strategies for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Qianqian Zheng
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Liangwei Duan
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Yang Zhang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiaoyang Li
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Shiyu Zhang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China. .,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
39
|
Tavčar Verdev P, Potokar M, Korva M, Resman Rus K, Kolenc M, Avšič Županc T, Zorec R, Jorgačevski J. In human astrocytes neurotropic flaviviruses increase autophagy, yet their replication is autophagy-independent. Cell Mol Life Sci 2022; 79:566. [PMID: 36283999 PMCID: PMC9596533 DOI: 10.1007/s00018-022-04578-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023]
Abstract
Astrocytes, an abundant type of glial cells, are the key cells providing homeostasis in the central nervous system. Due to their susceptibility to infection, combined with high resilience to virus-induced cell death, astrocytes are now considered one of the principal types of cells, responsible for virus retention and dissemination within the brain. Autophagy plays an important role in elimination of intracellular components and in maintaining cellular homeostasis and is also intertwined with the life cycle of viruses. The physiological significance of autophagy in astrocytes, in connection with the life cycle and transmission of viruses, remains poorly investigated. In the present study, we investigated flavivirus-induced modulation of autophagy in human astrocytes by monitoring a tandem fluorescent-tagged LC3 probe (mRFP-EGFP-LC3) with confocal and super-resolution fluorescence microscopy. Astrocytes were infected with tick-borne encephalitis virus (TBEV) or West Nile virus (WNV), both pathogenic flaviviruses, and with mosquito-only flavivirus (MOF), which is considered non-pathogenic. The results revealed that human astrocytes are susceptible to infection with TBEV, WNV and to a much lower extent also to MOF. Infection and replication rates of TBEV and WNV are paralleled by increased rate of autophagy, whereas autophagosome maturation and the size of autophagic compartments are not affected. Modulation of autophagy by rapamycin and wortmannin does not influence TBEV and WNV replication rate, whereas bafilomycin A1 attenuates their replication and infectivity. In human astrocytes infected with MOF, the low infectivity and the lack of efficient replication of this flavivirus are mirrored by the absence of an autophagic response.
Collapse
Affiliation(s)
- Petra Tavčar Verdev
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Potokar
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia ,grid.433223.7Celica Biomedical, Ljubljana, Slovenia
| | - Miša Korva
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Resman Rus
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Kolenc
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič Županc
- grid.8954.00000 0001 0721 6013Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia ,grid.433223.7Celica Biomedical, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- grid.8954.00000 0001 0721 6013Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia ,grid.433223.7Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
40
|
Jan MW, Su HL, Chang TH, Tsai KJ. Characterization of Pathogenesis and Inflammatory Responses to Experimental Parechovirus Encephalitis. Front Immunol 2021; 12:753683. [PMID: 34899705 PMCID: PMC8654935 DOI: 10.3389/fimmu.2021.753683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Human parechovirus type 3 (PeV-A3) infection has been recognized as an emerging etiologic factor causing severe nerve disease or sepsis in infants and young children. But the neuropathogenic mechanisms of PeV-A3 remain unknown. To understand the pathogenesis of PeV-A3 infection in the neuronal system, PeV-A3-mediated cytopathic effects were analyzed in human glioblastoma cells and neuroblastoma cells. PeV-A3 induced interferons and inflammatory cytokine expression in these neuronal cells. The pronounced cytopathic effects accompanied with activation of death signaling pathways of apoptosis, autophagy, and pyroptosis were detected. A new experimental disease model of parechovirus encephalitis was established. In the disease model, intracranial inoculation with PeV-A3 in C57BL/6 neonatal mice showed body weight loss, hindlimb paralysis, and approximately 20% mortality. PeV-A3 infection in the hippocampus and cortex regions of the neonatal mouse brain was revealed. Mechanistic assay supported the in vitro results, indicating detection of PeV-A3 replication, inflammatory cytokine expression, and death signaling transduction in mouse brain tissues. These in vitro and in vivo studies revealed that the activation of death signaling and inflammation responses is involved in PeV-A3-mediated neurological disorders. The present results might account for some of the PeV-A3-associated clinical manifestations.
Collapse
Affiliation(s)
- Ming-Wei Jan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, Agriculture Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
| | - Tsung-Hsien Chang
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
41
|
Patra U, Mukhopadhyay U, Mukherjee A, Dutta S, Chawla-Sarkar M. Treading a HOSTile path: Mapping the dynamic landscape of host cell-rotavirus interactions to explore novel host-directed curative dimensions. Virulence 2021; 12:1022-1062. [PMID: 33818275 PMCID: PMC8023246 DOI: 10.1080/21505594.2021.1903198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 12/27/2022] Open
Abstract
Viruses are intracellular pathogens and are dependent on host cellular resources to carry out their cycles of perpetuation. Obtaining an integrative view of host-virus interaction is of utmost importance to understand the complex and dynamic interplay between viral components and host machineries. Besides its obvious scholarly significance, a comprehensive host-virus interaction profile also provides a platform where from host determinants of pro-viral and antiviral importance can be identified and further be subjected to therapeutic intervention. Therefore, adjunct to conventional methods of prophylactic vaccination and virus-directed antivirals, this host-targeted antiviral approach holds promising therapeutic potential. In this review, we present a comprehensive landscape of host cellular reprogramming in response to infection with rotavirus (RV) which causes profuse watery diarrhea in neonates and infants. In addition, an emphasis is given on how host determinants are either usurped or subverted by RV in course of infection and how therapeutic manipulation of specific host factors can effectively modulate the RV life cycle.
Collapse
Affiliation(s)
- Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Urbi Mukhopadhyay
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Arpita Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Beliaghata, Kolkata, India
| |
Collapse
|
42
|
Ashraf U, Ding Z, Deng S, Ye J, Cao S, Chen Z. Pathogenicity and virulence of Japanese encephalitis virus: Neuroinflammation and neuronal cell damage. Virulence 2021; 12:968-980. [PMID: 33724154 PMCID: PMC7971234 DOI: 10.1080/21505594.2021.1899674] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/12/2021] [Accepted: 03/03/2021] [Indexed: 01/22/2023] Open
Abstract
Thousands of human deaths occur annually due to Japanese encephalitis (JE), caused by Japanese encephalitis virus. During the virus infection of the central nervous system, reactive gliosis, uncontrolled inflammatory response, and neuronal cell death are considered as the characteristic features of JE. To date, no specific treatment has been approved to overcome JE, indicating a need for the development of novel therapies. In this article, we focused on basic biological mechanisms in glial (microglia and astrocytes) and neuronal cells that contribute to the onset of neuroinflammation and neuronal cell damage during Japanese encephalitis virus infection. We also provided comprehensive knowledge about anti-JE therapies tested in clinical or pre-clinical settings, and discussed recent therapeutic strategies that could be employed for JE treatment. The improved understanding of JE pathogenesis might lay a foundation for the development of novel therapies to halt JE.Abbreviations AKT: a serine/threonine-specific protein kinase; AP1: activator protein 1; ASC: apoptosis-associated speck-like protein containing a CARD; ASK1: apoptosis signal-regulated kinase 1; ATF3/4/6: activating transcription factor 3/4/6; ATG5/7: autophagy-related 5/7; BBB: blood-brain barrier; Bcl-3/6: B-cell lymphoma 3/6 protein; CCL: C-C motif chemokine ligand; CCR2: C-C motif chemokine receptor 2; CHOP: C/EBP homologous protein; circRNA: circular RNA; CNS: central nervous system; CXCL: C-X-C motif chemokine ligand; dsRNA: double-stranded RNA; EDEM1: endoplasmic reticulum degradation enhancer mannosidase alpha-like 1; eIF2-ɑ: eukaryotic initiation factor 2 alpha; ER: endoplasmic reticulum; ERK: extracellular signal-regulated kinase; GRP78: 78-kDa glucose-regulated protein; ICAM: intercellular adhesion molecule; IFN: interferon; IL: interleukin; iNOS: inducible nitric oxide synthase; IRAK1/2: interleukin-1 receptor-associated kinase 1/2; IRE-1: inositol-requiring enzyme 1; IRF: interferon regulatory factor; ISG15: interferon-stimulated gene 15; JE: Japanese encephalitis; JEV: Japanese encephalitis virus; JNK: c-Jun N-terminal kinase; LAMP2: lysosome-associated membrane protein type 2; LC3-I/II: microtubule-associated protein 1 light chain 3-I/II; lncRNA: long non-coding RNA; MAPK: mitogen-activated protein kinase; miR/miRNA: microRNA; MK2: mitogen-activated protein kinase-activated protein kinase 2; MKK4: mitogen-activated protein kinase kinase 4; MLKL: mixed-linage kinase domain-like protein; MMP: matrix metalloproteinase; MyD88: myeloid differentiation factor 88; Nedd4: neural precursor cell-expressed developmentally downregulated 4; NF-κB: nuclear factor kappa B; NKRF: nuclear factor kappa B repressing factor; NLRP3: NLR family pyrin domain containing 3; NMDAR: N-methyl-D-aspartate receptor; NO: nitric oxide; NS2B/3/4: JEV non-structural protein 2B/3/4; P: phosphorylation. p38: mitogen-activated protein kinase p38; PKA: protein kinase A; PAK4: p21-activated kinase 4; PDFGR: platelet-derived growth factor receptor; PERK: protein kinase R-like endoplasmic reticulum kinase; PI3K: phosphoinositide 3-kinase; PTEN: phosphatase and tensin homolog; Rab7: Ras-related GTPase 7; Raf: proto-oncogene tyrosine-protein kinase Raf; Ras: a GTPase; RIDD: regulated IRE-1-dependent decay; RIG-I: retinoic acid-inducible gene I; RIPK1/3: receptor-interacting protein kinase 1/3; RNF11/125: RING finger protein 11/125; ROS: reactive oxygen species; SHIP1: SH2-containing inositol 5' phosphatase 1; SOCS5: suppressor of cytokine signaling 5; Src: proto-oncogene tyrosine-protein kinase Src; ssRNA = single-stranded RNA; STAT: signal transducer and activator of transcription; TLR: toll-like receptor; TNFAIP3: tumor necrosis factor alpha-induced protein 3; TNFAR: tumor necrosis factor alpha receptor; TNF-α: tumor necrosis factor-alpha; TRAF6: tumor necrosis factor receptor-associated factor 6; TRIF: TIR-domain-containing adapter-inducing interferon-β; TRIM25: tripartite motif-containing 25; VCAM: vascular cell adhesion molecule; ZO-1: zonula occludens-1.
Collapse
Affiliation(s)
- Usama Ashraf
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Zhen Ding
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, P. R. China
| | - Shunzhou Deng
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, P. R. China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Zheng Chen
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, P. R. China
- Key Laboratory for Animal Health of Jiangxi Province, Nanchang, Jiangxi, P. R. China
| |
Collapse
|
43
|
Leiser OP, Hobbs EC, Sims AC, Korch GW, Taylor KL. Beyond the List: Bioagent-Agnostic Signatures Could Enable a More Flexible and Resilient Biodefense Posture Than an Approach Based on Priority Agent Lists Alone. Pathogens 2021; 10:1497. [PMID: 34832652 PMCID: PMC8623450 DOI: 10.3390/pathogens10111497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/23/2022] Open
Abstract
As of 2021, the biothreat policy and research communities organize their efforts around lists of priority agents, which elides consideration of novel pathogens and biotoxins. For example, the Select Agents and Toxins list is composed of agents that historic biological warfare programs had weaponized or that have previously caused great harm during natural outbreaks. Similarly, lists of priority agents promulgated by the World Health Organization and the National Institute of Allergy and Infectious Diseases are composed of previously known pathogens and biotoxins. To fill this gap, we argue that the research/scientific and biodefense/biosecurity communities should categorize agents based on how they impact their hosts to augment current list-based paradigms. Specifically, we propose integrating the results of multi-omics studies to identify bioagent-agnostic signatures (BASs) of disease-namely, patterns of biomarkers that accurately and reproducibly predict the impacts of infection or intoxication without prior knowledge of the causative agent. Here, we highlight three pathways that investigators might exploit as sources of signals to construct BASs and their applicability to this framework. The research community will need to forge robust interdisciplinary teams to surmount substantial experimental, technical, and data analytic challenges that stand in the way of our long-term vision. However, if successful, our functionality-based BAS model could present a means to more effectively surveil for and treat known and novel agents alike.
Collapse
Affiliation(s)
- Owen P. Leiser
- Pacific Northwest National Laboratory, Seattle, WA 98109, USA; (O.P.L.); (E.C.H.)
| | - Errett C. Hobbs
- Pacific Northwest National Laboratory, Seattle, WA 98109, USA; (O.P.L.); (E.C.H.)
| | - Amy C. Sims
- Pacific Northwest National Laboratory, Richland, WA 99354, USA;
| | - George W. Korch
- Battelle National Biodefense Institute, LLC, Fort Detrick, MD 21072, USA;
| | - Karen L. Taylor
- Pacific Northwest National Laboratory, Seattle, WA 98109, USA; (O.P.L.); (E.C.H.)
| |
Collapse
|
44
|
The Emerging Roles of Autophagy in Human Diseases. Biomedicines 2021; 9:biomedicines9111651. [PMID: 34829881 PMCID: PMC8615641 DOI: 10.3390/biomedicines9111651] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy, a process of cellular self-digestion, delivers intracellular components including superfluous and dysfunctional proteins and organelles to the lysosome for degradation and recycling and is important to maintain cellular homeostasis. In recent decades, autophagy has been found to help fight against a variety of human diseases, but, at the same time, autophagy can also promote the procession of certain pathologies, which makes the connection between autophagy and diseases complex but interesting. In this review, we summarize the advances in understanding the roles of autophagy in human diseases and the therapeutic methods targeting autophagy and discuss some of the remaining questions in this field, focusing on cancer, neurodegenerative diseases, infectious diseases and metabolic disorders.
Collapse
|
45
|
Pereira-Dutra FS, Bozza PT. Lipid droplets diversity and functions in inflammation and immune response. Expert Rev Proteomics 2021; 18:809-825. [PMID: 34668810 DOI: 10.1080/14789450.2021.1995356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Lipid droplets (LDs) are dynamic and evolutionary conserved lipid-enriched organelles composed of a core of neutral lipids surrounded by a monolayer of phospholipids associated with a diverse array of proteins that are cell- and stimulus-regulated. Far beyond being simply a deposit of neutral lipids, accumulating evidence demonstrate that LDs act as spatial and temporal local for lipid and protein compartmentalization and signaling organization. AREAS COVERED This review focuses on the progress in our understanding of LD protein diversity and LD functions in the context of cell signaling and immune responses, highlighting the relationship between LD composition with the multiple roles of this organelle in immunometabolism, inflammation and host-response to infection. EXPERT OPINION LDs are essential platforms for various cellular processes, including metabolic regulation, cell signaling, and immune responses. The functions of LD in infection and inflammatory disease are associated with the dynamic and complexity of their proteome. Our contemporary view place LDs as critical regulators of different inflammatory and infectious diseases and key markers of leukocyte activation.
Collapse
Affiliation(s)
- Filipe S Pereira-Dutra
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
46
|
Guo Z, Zhuo Y, Li K, Niu S, Dai H. Recent advances in cell homeostasis by African swine fever virus-host interactions. Res Vet Sci 2021; 141:4-13. [PMID: 34634684 DOI: 10.1016/j.rvsc.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/07/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
African swine fever (ASF) is an acute hemorrhagic disease caused by the infection of domestic swine and wild boar by the African swine fever virus (ASFV), with a mortality rate close to 90-100%. ASFV has been spreading in the world and poses a severe economic threat to the swine industry. There is no high effective vaccine commercially available or drug for this disease. However, attenuated ASFV isolates may infect pigs by chronic infection, and the infected pigs will not be lethal, which may indicate that pigs can produce protective immunity to resistant ASFV. Immunity acquisition and virus clearances are the central pillars to maintain the host normal cell activities and animal survival dependent on virus-host interactions, which has offered insights into the biology of ASFV. This review is organized around general themes including native immunity, endoplasmic reticulum stress, cell apoptosis, ubiquitination, autophagy regarding the intricate relationship between ASFV protein-host. Elucidating the multifunctional role of ASFV proteins in virus-host interactions can provide more new insights on the initial virus sensing, clearance, and cell homeostasis, and contribute to understanding viral pathogenesis and developing novel antiviral therapeutics.
Collapse
Affiliation(s)
- Zeheng Guo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Yisha Zhuo
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Keke Li
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Sai Niu
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China
| | - Hanchuan Dai
- College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Street, Wuhan, Hubei 430070, China.
| |
Collapse
|
47
|
Brinck Andersen NS, Jørgensen SE, Skipper KA, Larsen SM, Heinz J, Thomsen MM, Farahani E, Cai Y, Hait AS, Kay L, Giehm Mikkelsen J, Høgsbjerg Schleimann M, Thomsen MK, Paludan SR, Mogensen TH. Essential role of autophagy in restricting poliovirus infection revealed by identification of an ATG7 defect in a poliomyelitis patient. Autophagy 2021; 17:2449-2464. [PMID: 33016799 PMCID: PMC8496727 DOI: 10.1080/15548627.2020.1831800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 01/10/2023] Open
Abstract
Paralytic poliomyelitis is a rare disease manifestation following poliovirus (PV) infection. The disease determinants remain largely unknown. We used whole exome sequencing to uncover possible contributions of host genetics to the development of disease outcome in humans with poliomyelitis. We identified a patient with a variant in ATG7, an important regulatory gene in the macroautophagy/autophagy pathway. PV infection did not induce a prominent type I interferon response, but rather activated autophagy in neuronal-like cells, and this was essential for viral control. Importantly, virus-induced autophagy was impaired in patient fibroblasts and associated with increased viral burden and enhanced cell death following infection. Lack of ATG7 prevented control of infection in neuronal-like cells, and reconstitution of patient cells with wild-type ATG7 reestablished autophagy-mediated control of infection. Collectively, these data suggest that ATG7 defect contributes to host susceptibility to PV infection and propose autophagy as an unappreciated antiviral effector in viral infection in humans.
Collapse
Affiliation(s)
- Nanna-Sophie Brinck Andersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Sofie Eg Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | - Simon Müller Larsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Johanna Heinz
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Michelle Mølgaard Thomsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Ensieh Farahani
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Yujia Cai
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Alon Schneider Hait
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Lise Kay
- Department of poliomyelitis survivors, Specialhospitalet, Værløse, Denmark
| | | | | | | | | | - Trine H. Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
48
|
Sabli IK, Sancho-Shimizu V. Inborn errors of autophagy and infectious diseases. Curr Opin Immunol 2021; 72:272-276. [PMID: 34371322 DOI: 10.1016/j.coi.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 12/31/2022]
Abstract
Autophagy is a fundamental component of cell-autonomous immunity, targeting intracellular pathogens including viruses and cytosolic bacteria to lysosomes for degradation. Genetic mutations in components of the autophagy pathway result in autoinflammatory and neurodegenerative disorders. We focus on recent developments through the newly discovered inborn errors of autophagy strictly predisposing to severe viral infections. These feature mutations in TBK1, ATG4A, MAP1LC3B2, and ATG7, leading to herpes encephalitis, recurrent lymphocytic meningitis, and paralytic poliomyelitis. We highlight how this enhances our understanding of autophagy mechanisms and its role in human viral disease. As we better understand the contribution of these genes to disease, we can aim to develop targeted therapies for enhanced infection control.
Collapse
Affiliation(s)
- Ira Kd Sabli
- Dept of Paediatric Infectious Diseases & Virology, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK
| | - Vanessa Sancho-Shimizu
- Dept of Paediatric Infectious Diseases & Virology, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
49
|
Qin C, Niu C, Shen Z, Zhang Y, Liu G, Hou C, Dong J, Zhao M, Cheng Q, Yang X, Zhang J. RACK1 T50 Phosphorylation by AMPK Potentiates Its Binding with IRF3/7 and Inhibition of Type 1 IFN Production. THE JOURNAL OF IMMUNOLOGY 2021; 207:1411-1418. [PMID: 34348973 DOI: 10.4049/jimmunol.2100086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023]
Abstract
The receptor for activated C kinase 1 (RACK1) adaptor protein has been implicated in viral infection. However, whether RACK1 promotes in vivo viral infection in mammals remains unknown. Moreover, it remains elusive how RACK1 is engaged in antiviral innate immune signaling. In this study, we report that myeloid RACK1 deficiency does not affect the development and survival of myeloid cells under resting conditions but renders mice less susceptible to viral infection. RACK1-deficient macrophages produce more IFN-α and IFN-β in response to both RNA and DNA virus infection. In line with this, RACK1 suppresses transcriptional activation of type 1 IFN gene promoters in response to virus infection. Analysis of virus-mediated signaling indicates that RACK1 inhibits the phosphorylation of IRF3/7. Indeed, RACK1 interacts with IRF3/7, which is enhanced after virus infection. Further exploration indicates that virus infection triggers AMPK activation, which in turn phosphorylates RACK1 at Thr50 RACK1 phosphorylation at Thr50 enhances its interaction with IRF3/7 and thereby limits IRF3/7 phosphorylation. Thus, our results confirm that myeloid RACK1 promotes in vivo viral infection and provide insight into the control of type 1 IFN production in response to virus infection.
Collapse
Affiliation(s)
- Cheng Qin
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunxiao Niu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zhuo Shen
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Yaolin Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Genyu Liu
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Chunmei Hou
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jie Dong
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Min Zhao
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Qianqian Cheng
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiqin Yang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
50
|
Sargazi S, Sheervalilou R, Rokni M, Shirvaliloo M, Shahraki O, Rezaei N. The role of autophagy in controlling SARS-CoV-2 infection: An overview on virophagy-mediated molecular drug targets. Cell Biol Int 2021; 45:1599-1612. [PMID: 33818861 PMCID: PMC8251464 DOI: 10.1002/cbin.11609] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 12/16/2022]
Abstract
Autophagy-dependent cell death is a prominent mechanism that majorly contributes to homeostasis by maintaining the turnover of organelles under stressful conditions. Several viruses, including coronaviruses (CoVs), take advantage of cellular autophagy to facilitate their own replication. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a beta-coronavirus (β-CoVs) that mediates its replication through a dependent or independent ATG5 pathway using specific double-membrane vesicles that can be considered as similar to autophagosomes. With due attention to several mutations in NSP6, a nonstructural protein with a positive regulatory effect on autophagosome formation, a potential correlation between SARS-CoV-2 pathogenesis mechanisms and autophagy can be expected. Certain medications, albeit limited in number, have been indicated to negatively regulate autophagy flux, potentially in a way similar to the inhibitory effect of β-CoVs on the process of autophagy. However, there is no conclusive evidence to support their direct antagonizing effect on CoVs. Off-target accumulation of a major fraction of FDA-approved autophagy modulating drugs may result in adverse effects. Therefore, medications that have modulatory effects on autophagy could be considered as potential lead compounds for the development of new treatments against this virus. This review discusses the role of autophagy/virophagy in controlling SARS-CoV-2, focusing on the potential therapeutic implications.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis InstituteZahedan University of Medical SciencesZahedanIran
| | | | - Mohsen Rokni
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
| | - Milad Shirvaliloo
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
- Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Omolbanin Shahraki
- Pharmacology Research CenterZahedan University of Medical SciencesZahedanIran
| | - Nima Rezaei
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for Immunodeficiencies, Children's Medical CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|