1
|
Guo P, Yang R, Zhong S, Ding Y, Wu J, Wang Z, Wang H, Zhang J, Tu N, Zhou H, Chen S, Wang Q, Li D, Chen W, Chen L. Urolithin A attenuates hexavalent chromium-induced small intestinal injury by modulating PP2A/Hippo/YAP1 pathway. J Biol Chem 2024; 300:107669. [PMID: 39128717 PMCID: PMC11408861 DOI: 10.1016/j.jbc.2024.107669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Hexavalent chromium (Cr(VI)) exposure has been linked with gastrointestinal toxicity, whereas the molecular pathways and key targets remain elusive. Computational toxicology analysis predicted the correlation between protein phosphatase 2A (PP2A) and genes regarding Cr(VI)-induced intestinal injury. Here, we generated a mouse model with intestinal epithelium-specific knock out of Ppp2r1a (encoding PP2A Aα subunit) to investigate the mechanisms underlying Cr(VI)-induced small intestinal toxicity. Heterozygous (HE) mice and matched WT littermates were administrated with Cr(VI) at 0, 5, 20, and 80 mg/l for 28 successive days. Cr(VI) treatment led to crypt hyperplasia, epithelial cell apoptosis, and intestinal barrier dysfunction, accompanied by the decline of goblet cell counts and Occludin expression in WT mice. Notably, these effects were aggravated in HE mice, indicating that PP2A Aα deficiency conferred mice with susceptibility to Cr(VI)-induced intestinal injury. The combination of data analysis and biological experiments revealed Cr(VI) exposure could decrease YAP1 phosphorylation at Ser127 but increase protein expression and activity, together with elevated transcriptional coactivator with PDZ-binding motif protein driving epithelial crypt cells proliferation following damage, suggesting the involvement of Hippo/YAP1 signaling pathway in Cr(VI)-induced intestinal toxicity. Nevertheless, the enhanced phosphorylation of YAP1 in HE mice resulted in proliferation/repair defects in intestinal epithelium, thereby exacerbating Cr(VI)-induced gut barrier dysfunction. Notably, by molecular docking and further studies, we identified urolithin A, a microbial metabolite, attenuated Cr(VI)-induced disruption of intestinal barrier function, partly by modulating YAP1 expression and activity. Our findings reveal the novel molecular pathways participated in Cr(VI)-caused small intestinal injury and urolithin A could potentially protect against environmental hazards-induced intestinal diseases.
Collapse
Affiliation(s)
- Ping Guo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China; School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Rongfang Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Shiyuan Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yingying Ding
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jingnan Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ziwei Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Department of Pathology, Stony Brook Cancer Center, Stony Brook, New York, USA
| | - Huiqi Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jiaxin Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Nannan Tu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hongwei Zhou
- Department of Toxicology, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Daochuan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wen Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Liping Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Ghone DA, Evans EL, Bandini M, Stephenson KG, Sherer NM, Suzuki A. HIV-1 Vif disrupts phosphatase feedback regulation at the kinetochore, leading to a pronounced pseudo-metaphase arrest. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605839. [PMID: 39131328 PMCID: PMC11312601 DOI: 10.1101/2024.07.30.605839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Virion Infectivity Factor (Vif) targets and degrades cellular APOBEC3 proteins, key regulators of intrinsic and innate antiretroviral immune responses, thereby facilitating HIV-1 infection. While Vif's role in degrading APOBEC3G is well-studied, Vif is also known to cause cell cycle arrest but the detailed nature of Vif's effects on the cell cycle has yet to be delineated. In this study, we employed high-temporal single-cell live imaging and super-resolution microscopy to monitor individual cells during Vif-induced cell cycle arrest. Our findings reveal that Vif does not affect the G2/M boundary as previously thought. Instead, Vif triggers a unique and robust pseudo-metaphase arrest, which is markedly distinct from the mild prometaphase arrest induced by the HIV-1 accessory protein, Vpr, known for modulating the cell cycle. During Vif-mediated arrest, chromosomes align properly to form a metaphase plate but later disassemble, resulting in polar chromosomes. Notably, unlike Vpr, Vif significantly reduces the levels of both Phosphatase 1 (PP1) and 2 (PP2) at kinetochores, which are key regulators of chromosome-microtubule interactions. These results reveal a novel function of Vif in kinetochore regulation that governs the spatial organization of chromosomes during mitosis.
Collapse
Affiliation(s)
- Dhaval A. Ghone
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- These authors contributed equally
| | - Edward L. Evans
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Cancer Biology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- These authors contributed equally
- Present address: Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Madison Bandini
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Cancer Biology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Kaelyn G. Stephenson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Aussie Suzuki
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Hassan M, Yasir M, Shahzadi S, Chun W, Kloczkowski A. Molecular Role of Protein Phosphatases in Alzheimer's and Other Neurodegenerative Diseases. Biomedicines 2024; 12:1097. [PMID: 38791058 PMCID: PMC11117500 DOI: 10.3390/biomedicines12051097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Alzheimer's disease (AD) is distinguished by the gradual loss of cognitive function, which is associated with neuronal loss and death. Accumulating evidence supports that protein phosphatases (PPs; PP1, PP2A, PP2B, PP4, PP5, PP6, and PP7) are directly linked with amyloid beta (Aβ) as well as the formation of the neurofibrillary tangles (NFTs) causing AD. Published data reported lower PP1 and PP2A activity in both gray and white matters in AD brains than in the controls, which clearly shows that dysfunctional phosphatases play a significant role in AD. Moreover, PP2A is also a major causing factor of AD through the deregulation of the tau protein. Here, we review recent advances on the role of protein phosphatases in the pathology of AD and other neurodegenerative diseases. A better understanding of this problem may lead to the development of phosphatase-targeted therapies for neurodegenerative disorders in the near future.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA;
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Huang ZQ, Liu J, Sun LY, Ong HH, Ye J, Xu Y, Wang DY. Updated epithelial barrier dysfunction in chronic rhinosinusitis: Targeting pathophysiology and treatment response of tight junctions. Allergy 2024; 79:1146-1165. [PMID: 38372149 DOI: 10.1111/all.16064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/20/2024]
Abstract
Tight junction (TJ) proteins establish a physical barrier between epithelial cells, playing a crucial role in maintaining tissue homeostasis by safeguarding host tissues against pathogens, allergens, antigens, irritants, etc. Recently, an increasing number of studies have demonstrated that abnormal expression of TJs plays an essential role in the development and progression of inflammatory airway diseases, including chronic obstructive pulmonary disease, asthma, allergic rhinitis, and chronic rhinosinusitis (CRS) with or without nasal polyps. Among them, CRS with nasal polyps is a prevalent chronic inflammatory disease that affects the nasal cavity and paranasal sinuses, leading to a poor prognosis and significantly impacting patients' quality of life. Its pathogenesis primarily involves dysfunction of the nasal epithelial barrier, impaired mucociliary clearance, disordered immune response, and excessive tissue remodeling. Numerous studies have elucidated the pivotal role of TJs in both the pathogenesis and response to traditional therapies in CRS. We therefore to review and discuss potential factors contributing to impair and repair of TJs in the nasal epithelium based on their structure, function, and formation process.
Collapse
Affiliation(s)
- Zhi-Qun Huang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Li-Ying Sun
- First School of Clinical Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hsiao Hui Ong
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| | - Jing Ye
- Department of Otolaryngology-Head and Neck Surgery, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yu Xu
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore, Singapore
| |
Collapse
|
5
|
Bisoyi P, Ratna D, Kumar G, Mallick BN, Goswami SK. In the Rat Midbrain, SG2NA and DJ-1 have Common Interactome, Including Mitochondrial Electron Transporters that are Comodulated Under Oxidative Stress. Cell Mol Neurobiol 2023; 43:3061-3080. [PMID: 37165139 DOI: 10.1007/s10571-023-01356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/26/2023] [Indexed: 05/12/2023]
Abstract
Scaffold proteins Striatin and SG2NA assemble kinases and phosphatases into the signalling complexes called STRIPAK. Dysfunctional STRIPAKs cause cancer, cerebral cavernous malformations, etc. DJ-1, a sensor for oxidative stress, has long been associated with the Parkinson's disease, cancer, and immune disorders. SG2NA interacts with DJ-1 and Akt providing neuroprotection under oxidative stress. To dissect the role of SG2NA and DJ-1 in neuronal pathobiology, rat midbrain extracts were immunoprecipitated with SG2NA and sixty-three interacting proteins were identified. BN-PAGE followed by the LC-MS/MS showed 1030 comigrating proteins as the potential constituents of the multimeric complexes formed by SG2NA. Forty-three proteins were common between those identified by co-immunoprecipitation and the BN-PAGE. Co-immunoprecipitation with DJ-1 identified 179 interacting partners, of which forty-one also interact with SG2NA. Among those forty-one proteins immunoprecipitated with both SG2NA and DJ-1, thirty-nine comigrated with SG2NA in the BN-PAGE, and thus are bonafide constituents of the supramolecular assemblies comprising both DJ-1 and SG2NA. Among those thirty-nine proteins, seven are involved in mitochondrial oxidative phosphorylation. In rotenone-treated rats having Parkinson's like symptoms, the levels of both SG2NA and DJ-1 increased in the mitochondria; and the association of SG2NA with the electron transport complexes enhanced. In the hemi-Parkinson's model, where the rats were injected with 6-OHDA into the midbrain, the occupancy of SG2NA and DJ-1 in the mitochondrial complexes also increased. Our study thus reveals a new family of potential STRIPAK assemblies involving both SG2NA and DJ-1, with key roles in protecting midbrain from the oxidative stress.
Collapse
Affiliation(s)
- Padmini Bisoyi
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Deshdeepak Ratna
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
| | - Gaurav Kumar
- Department of Life Sciences and Biotechnology, CSJM University, Kanpur, Uttar Pradesh, 208024, India
| | - Birendra Nath Mallick
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, 201313, India
| | - Shyamal K Goswami
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
6
|
Patil RS, Kovacs-Kasa A, Gorshkov BA, Fulton DJR, Su Y, Batori RK, Verin AD. Serine/Threonine Protein Phosphatases 1 and 2A in Lung Endothelial Barrier Regulation. Biomedicines 2023; 11:1638. [PMID: 37371733 PMCID: PMC10296329 DOI: 10.3390/biomedicines11061638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular barrier dysfunction is characterized by increased permeability and inflammation of endothelial cells (ECs), which are prominent features of acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and sepsis, and a major complication of the SARS-CoV-2 infection and COVID-19. Functional impairment of the EC barrier and accompanying inflammation arises due to microbial toxins and from white blood cells of the lung as part of a defensive action against pathogens, ischemia-reperfusion or blood product transfusions, and aspiration syndromes-based injury. A loss of barrier function results in the excessive movement of fluid and macromolecules from the vasculature into the interstitium and alveolae resulting in pulmonary edema and collapse of the architecture and function of the lungs, and eventually culminates in respiratory failure. Therefore, EC barrier integrity, which is heavily dependent on cytoskeletal elements (mainly actin filaments, microtubules (MTs), cell-matrix focal adhesions, and intercellular junctions) to maintain cellular contacts, is a critical requirement for the preservation of lung function. EC cytoskeletal remodeling is regulated, at least in part, by Ser/Thr phosphorylation/dephosphorylation of key cytoskeletal proteins. While a large body of literature describes the role of phosphorylation of cytoskeletal proteins on Ser/Thr residues in the context of EC barrier regulation, the role of Ser/Thr dephosphorylation catalyzed by Ser/Thr protein phosphatases (PPases) in EC barrier regulation is less documented. Ser/Thr PPases have been proposed to act as a counter-regulatory mechanism that preserves the EC barrier and opposes EC contraction. Despite the importance of PPases, our knowledge of the catalytic and regulatory subunits involved, as well as their cellular targets, is limited and under-appreciated. Therefore, the goal of this review is to discuss the role of Ser/Thr PPases in the regulation of lung EC cytoskeleton and permeability with special emphasis on the role of protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) as major mammalian Ser/Thr PPases. Importantly, we integrate the role of PPases with the structural dynamics of the cytoskeleton and signaling cascades that regulate endothelial cell permeability and inflammation.
Collapse
Affiliation(s)
- Rahul S. Patil
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Boris A. Gorshkov
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yunchao Su
- Department of Pharmacology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Robert K. Batori
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
7
|
Elsayed S, Elsaid KA. Protein phosphatase 2A regulates xanthine oxidase-derived ROS production in macrophages and influx of inflammatory monocytes in a murine gout model. Front Pharmacol 2022; 13:1033520. [PMID: 36467056 PMCID: PMC9712728 DOI: 10.3389/fphar.2022.1033520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 08/08/2023] Open
Abstract
Background: Gout is a common arthritis, due to deposition of monosodium urate (MSU) crystals which results in IL-1β secretion by tissue-resident macrophages. Xanthine oxidase (XO) catalyzes uric acid (UA) production and in the process, reactive oxygen species (ROS) are generated which contributes to NLRP3 inflammasome activation. Protein phosphatase 2A (PP2A) may be involved in regulating inflammatory pathways in macrophages. The objective of this study was to investigate whether PP2A regulates gout inflammation, mediated by XO activity modulation. We studied UA and ROS generations in MSU stimulated murine bone marrow derived macrophages (BMDMs) in response to fingolimod phosphate, a PP2A activator, and compared its anti-inflammatory efficacy to that of an XO inhibitor, febuxostat. Methods: BMDMs were stimulated with MSU, GM-CSF/IL-1β or nigericin ± fingolimod (2.5 μM) or febuxostat (200 μM) and UA levels, ROS, XO, and PP2A activities, Xdh (XO) expression and secreted IL-1β levels were determined. PP2A activity and IL-1β in MSU stimulated BMDMs ± N-acetylcysteine (NAC) (10 μM) ± okadaic acid (a PP2A inhibitor) were also determined. M1 polarization of BMDMs in response to MSU ± fingolimod treatment was assessed by a combination of iNOS expression and multiplex cytokine assay. The in vivo efficacy of fingolimod was assessed in a murine peritoneal model of acute gout where peritoneal lavages were studied for pro-inflammatory classical monocytes (CMs), anti-inflammatory nonclassical monocytes (NCMs) and neutrophils by flow cytometry and IL-1β by ELISA. Results: Fingolimod reduced intracellular and secreted UA levels (p < 0.05), Xdh expression (p < 0.001), XO activity (p < 0.001), ROS generation (p < 0.0001) and IL-1β secretion (p < 0.0001), whereas febuxostat enhanced PP2A activity (p < 0.05). NAC treatment enhanced PP2A activity and reduced XO activity and PP2A restoration mediated NAC's efficacy as co-treatment with okadaic acid increased IL-1β secretion (p < 0.05). Nigericin activated caspase-1 and reduced PP2A activity (p < 0.001) and fingolimod reduced caspase-1 activity in BMDMs (p < 0.001). Fingolimod reduced iNOS expression (p < 0.0001) and secretion of IL-6 and TNF-α (p < 0.05). Fingolimod reduced CMs (p < 0.0001), neutrophil (p < 0.001) and IL-1β (p < 0.05) lavage levels while increasing NCMs (p < 0.001). Conclusion: Macrophage PP2A is inactivated in acute gout by ROS and a PP2A activator exhibited a broad anti-inflammatory effect in acute gout in vitro and in vivo.
Collapse
|
8
|
York NS, Sanchez-Arias JC, McAdam ACH, Rivera JE, Arbour LT, Swayne LA. Mechanisms underlying the role of ankyrin-B in cardiac and neurological health and disease. Front Cardiovasc Med 2022; 9:964675. [PMID: 35990955 PMCID: PMC9386378 DOI: 10.3389/fcvm.2022.964675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The ANK2 gene encodes for ankyrin-B (ANKB), one of 3 members of the ankyrin family of proteins, whose name is derived from the Greek word for anchor. ANKB was originally identified in the brain (B denotes “brain”) but has become most widely known for its role in cardiomyocytes as a scaffolding protein for ion channels and transporters, as well as an interacting protein for structural and signaling proteins. Certain loss-of-function ANK2 variants are associated with a primarily cardiac-presenting autosomal-dominant condition with incomplete penetrance and variable expressivity characterized by a predisposition to supraventricular and ventricular arrhythmias, arrhythmogenic cardiomyopathy, congenital and adult-onset structural heart disease, and sudden death. Another independent group of ANK2 variants are associated with increased risk for distinct neurological phenotypes, including epilepsy and autism spectrum disorders. The mechanisms underlying ANKB's roles in cells in health and disease are not fully understood; however, several clues from a range of molecular and cell biological studies have emerged. Notably, ANKB exhibits several isoforms that have different cell-type–, tissue–, and developmental stage– expression profiles. Given the conservation within ankyrins across evolution, model organism studies have enabled the discovery of several ankyrin roles that could shed important light on ANKB protein-protein interactions in heart and brain cells related to the regulation of cellular polarity, organization, calcium homeostasis, and glucose and fat metabolism. Along with this accumulation of evidence suggesting a diversity of important ANKB cellular functions, there is an on-going debate on the role of ANKB in disease. We currently have limited understanding of how these cellular functions link to disease risk. To this end, this review will examine evidence for the cellular roles of ANKB and the potential contribution of ANKB functional variants to disease risk and presentation. This contribution will highlight the impact of ANKB dysfunction on cardiac and neuronal cells and the significance of understanding the role of ANKB variants in disease.
Collapse
Affiliation(s)
- Nicole S. York
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Alexa C. H. McAdam
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
| | - Joel E. Rivera
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Laura T. Arbour
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Medical Genetics, University of British Columbia, Victoria, BC, Canada
- *Correspondence: Laura T. Arbour
| | - Leigh Anne Swayne
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Cellular and Physiological Sciences and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Leigh Anne Swayne
| |
Collapse
|
9
|
Schuhmacher D, Sontag JM, Sontag E. A Novel Role of PP2A Methylation in the Regulation of Tight Junction Assembly and Integrity. Front Cell Dev Biol 2022; 10:911279. [PMID: 35912112 PMCID: PMC9326217 DOI: 10.3389/fcell.2022.911279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
Tight junctions (TJs) are multiprotein complexes essential for cell polarity and the barrier function of epithelia. The major signaling molecule, protein serine/threonine phosphatase 2A (PP2A), interacts with the TJ and modulates the phosphorylation state of TJ proteins. An important PP2A regulatory mechanism involves leucine carboxyl methyltransferase-1 (LCMT1)-dependent methylation and protein phosphatase methylesterase-1 (PME1)-mediated demethylation of its catalytic subunit on Leu309. Here, using MDCK cells, we show that overexpression of LCMT1, which enhances cellular PP2A methylation, inhibits TJ formation, induces TJ ruffling, and decreases TJ barrier function. Conversely, overexpression of PME1 accelerates TJ assembly and enhances TJ barrier function. PME1-dependent PP2A demethylation increases during early Ca2+-dependent junctional assembly. Inhibition of endogenous PME1 delays the initial Ca2+-mediated redistribution of TJ proteins to cell-cell contacts and affects TJ morphology and barrier function. Manipulating one-carbon metabolism modulates TJ assembly, at least in part by affecting PP2A methylation state. The integrity of PP2A methylation is critical for proper targeting of PP2A to the TJ. It is necessary for PP2A complex formation with the TJ proteins, occludin and ZO-1, and proteins of the PAR complex, Par3 and atypical protein kinase C ζ (aPKCζ), which play a key role in development of cell polarity. Expression of a methylation incompetent PP2A mutant induces defects in TJ assembly and barrier function. aPKCζ-mediated Par3 phosphorylation is also required for targeting of the PP2A ABαC holoenzyme to the TJ. Our findings provide the first evidence for a role of LCMT1, PME1 and PP2A methylation/demethylation processes in modulating TJ assembly and functional integrity. They also position PP2A at the interface of one-carbon metabolism and the regulation of key TJ and polarity proteins that become deregulated in many human diseases.
Collapse
|
10
|
Rust K, Wodarz A. Transcriptional Control of Apical-Basal Polarity Regulators. Int J Mol Sci 2021; 22:ijms222212340. [PMID: 34830224 PMCID: PMC8624420 DOI: 10.3390/ijms222212340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
Cell polarity is essential for many functions of cells and tissues including the initial establishment and subsequent maintenance of epithelial tissues, asymmetric cell division, and morphogenetic movements. Cell polarity along the apical-basal axis is controlled by three protein complexes that interact with and co-regulate each other: The Par-, Crumbs-, and Scrib-complexes. The localization and activity of the components of these complexes is predominantly controlled by protein-protein interactions and protein phosphorylation status. Increasing evidence accumulates that, besides the regulation at the protein level, the precise expression control of polarity determinants contributes substantially to cell polarity regulation. Here we review how gene expression regulation influences processes that depend on the induction, maintenance, or abolishment of cell polarity with a special focus on epithelial to mesenchymal transition and asymmetric stem cell division. We conclude that gene expression control is an important and often neglected mechanism in the control of cell polarity.
Collapse
Affiliation(s)
- Katja Rust
- Department of Molecular Cell Physiology, Institute of Physiology and Pathophysiology, Philipps-University, 35037 Marburg, Germany
- Correspondence: (K.R.); (A.W.)
| | - Andreas Wodarz
- Department of Molecular Cell Biology, Institute I for Anatomy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Cluster of Excellence—Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Robert-Koch-Str. 21, 50931 Cologne, Germany
- Correspondence: (K.R.); (A.W.)
| |
Collapse
|
11
|
Jiang X, Hu J, Wu Z, Cafarello ST, Di Matteo M, Shen Y, Dong X, Adler H, Mazzone M, Ruiz de Almodovar C, Wang X. Protein Phosphatase 2A Mediates YAP Activation in Endothelial Cells Upon VEGF Stimulation and Matrix Stiffness. Front Cell Dev Biol 2021; 9:675562. [PMID: 34055807 PMCID: PMC8158299 DOI: 10.3389/fcell.2021.675562] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/08/2021] [Indexed: 01/14/2023] Open
Abstract
Angiogenesis is an essential process during development. Abnormal angiogenesis also contributes to many disease conditions such as tumor and retinal diseases. Previous studies have established the Hippo signaling pathway effector Yes-associated protein (YAP) as a crucial regulator of angiogenesis. In ECs, activated YAP promotes endothelial cell proliferation, migration and sprouting. YAP activity is regulated by vascular endothelial growth factor (VEGF) and mechanical cues such as extracellular matrix (ECM) stiffness. However, it is unclear how VEGF or ECM stiffness signal to YAP, especially how dephosphorylation of YAP occurs in response to VEGF stimulus or ECM stiffening. Here, we show that protein phosphatase 2A (PP2A) is required for this process. Blocking PP2A activity abolishes VEGF or ECM stiffening mediated YAP activation. Systemic administration of a PP2A inhibitor suppresses YAP activity in blood vessels in developmental and pathological angiogenesis mouse models. Consistently, PP2A inhibitor also inhibits sprouting angiogenesis. Mechanistically, PP2A directly interacts with YAP, and this interaction requires proper cytoskeleton dynamics. These findings identify PP2A as a crucial mediator of YAP activation in ECs and hence as an important regulator of angiogenesis.
Collapse
Affiliation(s)
- Xiao Jiang
- Laboratory of Molecular Ophthalmology, Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiandong Hu
- Laboratory of Molecular Ophthalmology, Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ziru Wu
- Laboratory of Molecular Ophthalmology, Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Sarah Trusso Cafarello
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Mario Di Matteo
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ying Shen
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xue Dong
- Laboratory of Molecular Ophthalmology, Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Heike Adler
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Massimiliano Mazzone
- Laboratory of Tumor Inflammation and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Carmen Ruiz de Almodovar
- European Center for Angioscience, Medicine Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiaohong Wang
- Laboratory of Molecular Ophthalmology, Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
12
|
Licheva M, Raman B, Kraft C, Reggiori F. Phosphoregulation of the autophagy machinery by kinases and phosphatases. Autophagy 2021; 18:104-123. [PMID: 33970777 PMCID: PMC8865292 DOI: 10.1080/15548627.2021.1909407] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells use post-translational modifications to diversify and dynamically coordinate the function and properties of protein networks within various cellular processes. For example, the process of autophagy strongly depends on the balanced action of kinases and phosphatases. Highly conserved from the budding yeast Saccharomyces cerevisiae to humans, autophagy is a tightly regulated self-degradation process that is crucial for survival, stress adaptation, maintenance of cellular and organismal homeostasis, and cell differentiation and development. Many studies have emphasized the importance of kinases and phosphatases in the regulation of autophagy and identified many of the core autophagy proteins as their direct targets. In this review, we summarize the current knowledge on kinases and phosphatases acting on the core autophagy machinery and discuss the relevance of phosphoregulation for the overall process of autophagy.
Collapse
Affiliation(s)
- Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Babu Raman
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| |
Collapse
|
13
|
Sarkar S. Shaggy functions downstream of dMyc and their concurrent downregulation confers additive rescue against tau toxicity in Drosophila. Biofactors 2021; 47:461-477. [PMID: 33651466 DOI: 10.1002/biof.1721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
Neurodegenerative tauopathies such as Alzheimer's and Parkinson's diseases are characterized by hyperphosphorylation of tau protein and their subsequent aggregation in the forms of paired helical filaments and/or neurofibrillary tangles in specific areas of the brain. Despite several attempts, it remains a challenge to develop reliable biomarkers or effective drugs against tauopathies. It is increasingly evident now that due to the involvement of multiple cellular cascades affected by the pathogenic tau molecules, a single genetic modifier or a molecule is unlikely to be efficient enough to provide an inclusive rescue. Hence, multitargets based combinatorial approach(s) have been suggested to provide an efficient rescue against tauopathies. We have reported earlier that targeted downregulation of dmyc (a Drosophila homolog of human cmyc proto-oncogene) restricts tau etiology by limiting tau hyperphosphorylation and heterochromatin loss. Although, dmyc generates a significant rescue; however, it is not proficient enough to provide a complete alleviation against tauopathies. Here, we report that tissue-specific concurrent downregulation of dmyc and gsk3β conveys a near-complete rescue against tau toxicity in Drosophila. We noted that combinatorial downregulation of dmyc and gsk3β reduces tau hyperphosphorylation, restricts the formation of neurofibrillary tangles, and restores heterochromatin loss to the physiological level. Our subsequent investigations revealed that dmyc regulates gsk3β via protein phosphatase 2A (dPP2A) in a dose-dependent manner to regulate tau pathogenesis. We propose that dmyc and gsk3β candidates can be utilized in a synergistic manner for the development of an efficient combinatorial therapeutic approach against the devastating human tauopathies.
Collapse
Affiliation(s)
- Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
14
|
Jacquet K, Rodrigue MA, Richard DE, Lavoie JN. The adenoviral protein E4orf4: a probing tool to decipher mechanical stress-induced nuclear envelope remodeling in tumor cells. Cell Cycle 2020; 19:2963-2981. [PMID: 33103553 DOI: 10.1080/15384101.2020.1836441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The human adenovirus (Ad) type 2/5 early region 4 (E4) ORF4 protein (E4orf4) exerts a remarkable tumor cell-selective killing activity in mammalian cells. This indicates that E4orf4 can target tumor cell-defining features and is a unique tool to probe cancer cell vulnerabilities. Recently, we found that E4orf4, through an interaction with the polarity protein PAR3, subverts nuclear envelope (NE) remodeling processes in a tumor cell-selective manner. In this Perspective, we outline mechanical signals that modify nuclear dynamics and tumor cell behavior to highlight potential mechanisms for E4orf4's tumoricidal activity. Through an analysis of E4orf4's cellular targets, we define a protein subnetwork that comprises phosphatase systems interconnected to polarity protein hubs, which could contribute to enhanced NE plasticity. We infer that elucidating E4orf4's protein network at a functional level could uncover key mechanisms of NE remodeling that define the tumor cell phenotype.
Collapse
Affiliation(s)
- Kévin Jacquet
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Marc-Antoine Rodrigue
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Darren E Richard
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval , Québec, Canada.,Endocrinology and Nephrology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada
| | - Josée N Lavoie
- Centre de Recherche sur le Cancer de l'Université Laval , Québec, Canada.,Oncology, Centre de Recherche du CHU de Québec-Université Laval , Québec, Canada.,Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Université Laval , Québec, Canada
| |
Collapse
|
15
|
Stein V, Blank-Landeshammer B, Müntjes K, Märker R, Teichert I, Feldbrügge M, Sickmann A, Kück U. The STRIPAK signaling complex regulates dephosphorylation of GUL1, an RNA-binding protein that shuttles on endosomes. PLoS Genet 2020; 16:e1008819. [PMID: 32997654 PMCID: PMC7550108 DOI: 10.1371/journal.pgen.1008819] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/12/2020] [Accepted: 08/17/2020] [Indexed: 12/03/2022] Open
Abstract
The striatin-interacting phosphatase and kinase (STRIPAK) multi-subunit signaling complex is highly conserved within eukaryotes. In fungi, STRIPAK controls multicellular development, morphogenesis, pathogenicity, and cell-cell recognition, while in humans, certain diseases are related to this signaling complex. To date, phosphorylation and dephosphorylation targets of STRIPAK are still widely unknown in microbial as well as animal systems. Here, we provide an extended global proteome and phosphoproteome study using the wild type as well as STRIPAK single and double deletion mutants (Δpro11, Δpro11Δpro22, Δpp2Ac1Δpro22) from the filamentous fungus Sordaria macrospora. Notably, in the deletion mutants, we identified the differential phosphorylation of 129 proteins, of which 70 phosphorylation sites were previously unknown. Included in the list of STRIPAK targets are eight proteins with RNA recognition motifs (RRMs) including GUL1. Knockout mutants and complemented transformants clearly show that GUL1 affects hyphal growth and sexual development. To assess the role of GUL1 phosphorylation on fungal development, we constructed phospho-mimetic and -deficient mutants of GUL1 residues. While S180 was dephosphorylated in a STRIPAK-dependent manner, S216, and S1343 served as non-regulated phosphorylation sites. While the S1343 mutants were indistinguishable from wild type, phospho-deficiency of S180 and S216 resulted in a drastic reduction in hyphal growth, and phospho-deficiency of S216 also affects sexual fertility. These results thus suggest that differential phosphorylation of GUL1 regulates developmental processes such as fruiting body maturation and hyphal morphogenesis. Moreover, genetic interaction studies provide strong evidence that GUL1 is not an integral subunit of STRIPAK. Finally, fluorescence microscopy revealed that GUL1 co-localizes with endosomal marker proteins and shuttles on endosomes. Here, we provide a new mechanistic model that explains how STRIPAK-dependent and -independent phosphorylation of GUL1 regulates sexual development and asexual growth.
Collapse
Affiliation(s)
- Valentina Stein
- Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| | | | - Kira Müntjes
- Institut für Mikrobiologie, Cluster of Excellence on Plant Sciences, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Ramona Märker
- Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| | - Ines Teichert
- Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| | - Michael Feldbrügge
- Institut für Mikrobiologie, Cluster of Excellence on Plant Sciences, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Ulrich Kück
- Allgemeine und Molekulare Botanik, Ruhr-Universität, Bochum, Germany
| |
Collapse
|
16
|
Postal BG, Ghezzal S, Aguanno D, André S, Garbin K, Genser L, Brot-Laroche E, Poitou C, Soula H, Leturque A, Clément K, Carrière V. AhR activation defends gut barrier integrity against damage occurring in obesity. Mol Metab 2020; 39:101007. [PMID: 32360426 PMCID: PMC7267728 DOI: 10.1016/j.molmet.2020.101007] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 12/24/2022] Open
Abstract
Objective Obesity is characterized by systemic and low-grade tissue inflammation. In the intestine, alteration of the intestinal barrier and accumulation of inflammatory cells in the epithelium are important contributors of gut inflammation. Recent studies demonstrated the role of the aryl hydrocarbon receptor (AhR) in the maintenance of immune cells at mucosal barrier sites. A wide range of ligands of external and local origin can activate this receptor. We studied the causal relationship between AhR activation and gut inflammation in obesity. Methods Jejunum samples from subjects with normal weight and severe obesity were phenotyped according to T lymphocyte infiltration in the epithelium from lamina propria and assayed for the mRNA level of AhR target genes. The effect of an AhR agonist was studied in mice and Caco-2/TC7 cells. AhR target gene expression, permeability to small molecules and ions, and location of cell-cell junction proteins were recorded under conditions of altered intestinal permeability. Results We showed that a low AhR tone correlated with a high inflammatory score in the intestinal epithelium in severe human obesity. Moreover, AhR activation protected junctional complexes in the intestinal epithelium in mice challenged by an oral lipid load. AhR ligands prevented chemically induced damage to barrier integrity and cytokine expression in Caco-2/TC7 cells. The PKC and p38MAPK signaling pathways were involved in this AhR action. Conclusions The results of these series of human, mouse, and cell culture experiments demonstrate the protective effect of AhR activation in the intestine targeting particularly tight junctions and cytokine expression. We propose that AhR constitutes a valuable target to protect intestinal functions in metabolic diseases, which can be achieved in the future via food or drug ligands. Intestinal inflammation in obese subjects correlates with low AhR activity. AhR activation protects intestinal epithelium from damages. AhR activation prevents cytokine induction in response to damages. Protective role of AhR activation targets junctional complexes. Protein kinases-dependent signaling pathways are involved in AhR action.
Collapse
Affiliation(s)
- Bárbara G Postal
- Cordeliers Research Center, Sorbonne University, Paris Dauphine University 05, INSERM, CNRS, F-75006, Paris, France; Saint-Antoine Research Center, Sorbonne University, INSERM, F-75012, Paris, France
| | - Sara Ghezzal
- Cordeliers Research Center, Sorbonne University, Paris Dauphine University 05, INSERM, CNRS, F-75006, Paris, France
| | - Doriane Aguanno
- Cordeliers Research Center, Sorbonne University, Paris Dauphine University 05, INSERM, CNRS, F-75006, Paris, France; Saint-Antoine Research Center, Sorbonne University, INSERM, F-75012, Paris, France; EPHE, PSL Research University, F-75006, Paris, France
| | - Sébastien André
- Sorbonne University, INSERM, NutriOmics Research Unit Paris, F-75013, France
| | - Kevin Garbin
- CHIC Platform of Cordeliers Research Center, Sorbonne University, UPD Univ Paris 05, INSERM, F-75006, Paris, France
| | - Laurent Genser
- Sorbonne University, INSERM, NutriOmics Research Unit Paris, F-75013, France
| | - Edith Brot-Laroche
- Cordeliers Research Center, Sorbonne University, Paris Dauphine University 05, INSERM, CNRS, F-75006, Paris, France
| | - Christine Poitou
- Sorbonne University, INSERM, NutriOmics Research Unit Paris, F-75013, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, CRNH Ile de France, F-75013, Paris, France
| | - Hédi Soula
- Sorbonne University, INSERM, NutriOmics Research Unit Paris, F-75013, France
| | - Armelle Leturque
- Cordeliers Research Center, Sorbonne University, Paris Dauphine University 05, INSERM, CNRS, F-75006, Paris, France; Sorbonne University, INSERM, NutriOmics Research Unit Paris, F-75013, France
| | - Karine Clément
- Sorbonne University, INSERM, NutriOmics Research Unit Paris, F-75013, France; Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Nutrition Department, CRNH Ile de France, F-75013, Paris, France
| | - Véronique Carrière
- Cordeliers Research Center, Sorbonne University, Paris Dauphine University 05, INSERM, CNRS, F-75006, Paris, France; Saint-Antoine Research Center, Sorbonne University, INSERM, F-75012, Paris, France.
| |
Collapse
|
17
|
Jong CJ, Merrill RA, Wilkerson EM, Herring LE, Graves LM, Strack S. Reduction of protein phosphatase 2A (PP2A) complexity reveals cellular functions and dephosphorylation motifs of the PP2A/B'δ holoenzyme. J Biol Chem 2020; 295:5654-5668. [PMID: 32156701 PMCID: PMC7186168 DOI: 10.1074/jbc.ra119.011270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a large enzyme family responsible for most cellular Ser/Thr dephosphorylation events. PP2A substrate specificity, localization, and regulation by second messengers rely on more than a dozen regulatory subunits (including B/R2, B'/R5, and B″/R3), which form the PP2A heterotrimeric holoenzyme by associating with a dimer comprising scaffolding (A) and catalytic (C) subunits. Because of partial redundancy and high endogenous expression of PP2A holoenzymes, traditional approaches of overexpressing, knocking down, or knocking out PP2A regulatory subunits have yielded only limited insights into their biological roles and substrates. To this end, here we sought to reduce the complexity of cellular PP2A holoenzymes. We used tetracycline-inducible expression of pairs of scaffolding and regulatory subunits with complementary charge-reversal substitutions in their interaction interfaces. For each of the three regulatory subunit families, we engineered A/B charge-swap variants that could bind to one another, but not to endogenous A and B subunits. Because endogenous Aα was targeted by a co-induced shRNA, endogenous B subunits were rapidly degraded, resulting in expression of predominantly a single PP2A heterotrimer composed of the A/B charge-swap pair and the endogenous catalytic subunit. Using B'δ/PPP2R5D, we show that PP2A complexity reduction, but not PP2A overexpression, reveals a role of this holoenzyme in suppression of extracellular signal-regulated kinase signaling and protein kinase A substrate dephosphorylation. When combined with global phosphoproteomics, the PP2A/B'δ reduction approach identified consensus dephosphorylation motifs in its substrates and suggested that residues surrounding the phosphorylation site play roles in PP2A substrate specificity.
Collapse
Affiliation(s)
- Chian Ju Jong
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Ronald A Merrill
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| | - Emily M Wilkerson
- Michael Hooker Proteomics Facility, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Laura E Herring
- Michael Hooker Proteomics Facility, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Lee M Graves
- Michael Hooker Proteomics Facility, University of North Carolina, Chapel Hill, North Carolina 27516
| | - Stefan Strack
- Department of Neuroscience and Pharmacology and Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242.
| |
Collapse
|
18
|
Yuan F, Sun Z, Feng Y, Liu S, Du Y, Yu S, Yang M, Lv G. Epithelial–mesenchymal transition in the formation of hypertrophic scars and keloids. J Cell Physiol 2019; 234:21662-21669. [PMID: 31106425 DOI: 10.1002/jcp.28830] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Feng‐Lai Yuan
- Department of Orthopaedics and Central Laboratory The Third Hospital Affiliated to Nantong University Wuxi Jiangsu China
| | - Zi‐Li Sun
- Nanjing University of Chinese Medicine Nanjing Jiangsu China
| | - Yi Feng
- Yangzhou University Yangzhou Jiangsu China
| | - Si‐Yu Liu
- Department of Orthopaedics and Central Laboratory The Third Hospital Affiliated to Nantong University Wuxi Jiangsu China
| | - Yong Du
- Department of Orthopaedics and Central Laboratory The Third Hospital Affiliated to Nantong University Wuxi Jiangsu China
| | - Shun Yu
- Department of Orthopaedics and Central Laboratory The Third Hospital Affiliated to Nantong University Wuxi Jiangsu China
| | - Ming‐Lie Yang
- Department of Orthopaedics and Central Laboratory The Third Hospital Affiliated to Nantong University Wuxi Jiangsu China
| | - Guo‐Zhong Lv
- Department of Orthopaedics and Central Laboratory The Third Hospital Affiliated to Nantong University Wuxi Jiangsu China
| |
Collapse
|