1
|
Arab M, Chen T, Lowe M. Mechanisms governing vesicle traffic at the Golgi apparatus. Curr Opin Cell Biol 2024; 88:102365. [PMID: 38705050 DOI: 10.1016/j.ceb.2024.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/07/2024]
Abstract
Vesicle transport at the Golgi apparatus is a well-described process, and the major protein components involved have been identified. This includes the coat proteins that function in cargo sorting and vesicle formation, and the proteins that mediate the downstream events of vesicle tethering and membrane fusion. However, despite this knowledge, there remain significant gaps in our mechanistic understanding of these processes which includes how they are coordinated in space and time. In this review we discuss recent advances that have provided new insights into the mechanisms of Golgi trafficking, focussing on vesicle formation and cargo sorting, and vesicle tethering and fusion. These studies point to a high degree of spatial organisation of trafficking components at the Golgi and indicate an inherent plasticity of trafficking. Going forward, further advancements in technology and more sophisticated functional assays are expected to yield greater understanding of the mechanisms that govern Golgi trafficking events.
Collapse
Affiliation(s)
- Maryam Arab
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Tong Chen
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
2
|
Yeerken D, Xiao W, Li J, Wang Y, Wu Q, Chen J, Gong W, Lv M, Wang T, Gong Y, Liu R, Fan J, Li J, Zhang W, Zhan Q. Nlp-dependent ER-to-Golgi transport. Int J Biol Sci 2024; 20:2881-2903. [PMID: 38904019 PMCID: PMC11186355 DOI: 10.7150/ijbs.91792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/30/2024] [Indexed: 06/22/2024] Open
Abstract
The mechanism that maintains ER-to-Golgi vesicles formation and transport is complicated. As one of the adapters, Ninein-like protein (Nlp) participated in assembly and transporting of partial ER-to-Golgi vesicles that contained specific proteins, such as β-Catenin and STING. Nlp acted as a platform to sustain the specificity and continuity of cargoes during COPII and COPI-coated vesicle transition and transportation through binding directly with SEC31A as well as Rab1B. Thus, we proposed an integrated transport model that particular adapter participated in specific cargo selection or transportation through cooperating with different membrane associated proteins to ensure the continuity of cargo trafficking. Deficiency of Nlp led to vesicle budding failure and accumulation of unprocessed proteins in ER, which further caused ER stress as well as Golgi fragmentation, and PERK-eIF2α pathway of UPR was activated to reduce the synthesis of universal proteins. In contrast, upregulation of Nlp resulted in Golgi fragmentation, which enhanced the cargo transport efficiency between ER and Golgi. Moreover, Nlp deficient mice were prone to spontaneous B cell lymphoma, since the developments and functions of lymphocytes significantly depended on secretory proteins through ER-to-Golgi vesicle trafficking, including IL-13, IL-17 and IL-21. Thus, perturbations of Nlp altered ER-to-Golgi communication and cellular homeostasis, and might contribute to the pathogenesis of B cell lymphoma.
Collapse
Affiliation(s)
- Danna Yeerken
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Wenchang Xiao
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jia Li
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Qingnan Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Chen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Gong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Mengzhu Lv
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ting Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ying Gong
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Rui Liu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jiawen Fan
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jinting Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Weimin Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China. Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen 518035, China
| | - Qimin Zhan
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China. Department of Oncology, Cancer Institute, Peking University Shenzhen Hospital, Shenzhen Peking University-Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen 518035, China
- Peking University International Cancer Institute, Beijing 100191, China
- Soochow University Cancer Institute, Suzhou 215127, China
| |
Collapse
|
3
|
Kersten N, Farías GG. A voyage from the ER: spatiotemporal insights into polarized protein secretion in neurons. Front Cell Dev Biol 2023; 11:1333738. [PMID: 38188013 PMCID: PMC10766823 DOI: 10.3389/fcell.2023.1333738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
To function properly, neurons must maintain a proteome that differs in their somatodendritic and axonal domain. This requires the polarized sorting of newly synthesized secretory and transmembrane proteins into different vesicle populations as they traverse the secretory pathway. Although the trans-Golgi-network is generally considered to be the main sorting hub, this sorting process may already begin at the ER and continue through the Golgi cisternae. At each step in the sorting process, specificity is conferred by adaptors, GTPases, tethers, and SNAREs. Besides this, local synthesis and unconventional protein secretion may contribute to the polarized proteome to enable rapid responses to stimuli. For some transmembrane proteins, some of the steps in the sorting process are well-studied. These will be highlighted here. The universal rules that govern polarized protein sorting remain unresolved, therefore we emphasize the need to approach this problem in an unbiased, top-down manner. Unraveling these rules will contribute to our understanding of neuronal development and function in health and disease.
Collapse
Affiliation(s)
- Noortje Kersten
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Ginny G Farías
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
4
|
Mironov AA, Savin MA, Zaitseva AV, Dimov ID, Sesorova IS. Mechanisms of Formation of Antibodies against Blood Group Antigens That Do Not Exist in the Body. Int J Mol Sci 2023; 24:15044. [PMID: 37894724 PMCID: PMC10606600 DOI: 10.3390/ijms242015044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
The system of the four different human blood groups is based on the oligosaccharide antigens A or B, which are located on the surface of blood cells and other cells including endothelial cells, attached to the membrane proteins or lipids. After transfusion, the presence of these antigens on the apical surface of endothelial cells could induce an immunological reaction against the host. The final oligosaccharide sequence of AgA consists of Gal-GlcNAc-Gal (GalNAc)-Fuc. AgB contains Gal-GlcNAc-Gal (Gal)-Fuc. These antigens are synthesised in the Golgi complex (GC) using unique Golgi glycosylation enzymes (GGEs). People with AgA also synthesise antibodies against AgB (group A [II]). People with AgB synthesise antibodies against AgA (group B [III]). People expressing AgA together with AgB (group AB [IV]) do not have these antibodies, while people who do not express these antigens (group O [0; I]) synthesise antibodies against both antigens. Consequently, the antibodies are synthesised against antigens that apparently do not exist in the body. Here, we compared the prediction power of the main hypotheses explaining the formation of these antibodies, namely, the concept of natural antibodies, the gut bacteria-derived antibody hypothesis, and the antibodies formed as a result of glycosylation mistakes or de-sialylation of polysaccharide chains. We assume that when the GC is overloaded with lipids, other less specialised GGEs could make mistakes and synthesise the antigens of these blood groups. Alternatively, under these conditions, the chylomicrons formed in the enterocytes may, under this overload, linger in the post-Golgi compartment, which is temporarily connected to the endosomes. These compartments contain neuraminidases that can cleave off sialic acid, unmasking these blood antigens located below the acid and inducing the production of antibodies.
Collapse
Affiliation(s)
- Alexander A. Mironov
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - Maksim A. Savin
- The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Komsomolsky Prospekt, 29, 614990 Perm, Russia;
| | - Anna V. Zaitseva
- Department of Anatomy, Saint Petersburg State Pediatric Medical University, 194100 Saint Petersburg, Russia
| | - Ivan D. Dimov
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - Irina S. Sesorova
- Department of Anatomy, Ivanovo State Medical Academy, 153012 Ivanovo, Russia
| |
Collapse
|
5
|
Mironov AA, Beznoussenko GV. The Regulated Secretion and Models of Intracellular Transport: The Goblet Cell as an Example. Int J Mol Sci 2023; 24:ijms24119560. [PMID: 37298509 DOI: 10.3390/ijms24119560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Transport models are extremely important to map thousands of proteins and their interactions inside a cell. The transport pathways of luminal and at least initially soluble secretory proteins synthesized in the endoplasmic reticulum can be divided into two groups: the so-called constitutive secretory pathway and regulated secretion (RS) pathway, in which the RS proteins pass through the Golgi complex and are accumulated into storage/secretion granules (SGs). Their contents are released when stimuli trigger the fusion of SGs with the plasma membrane (PM). In specialized exocrine, endocrine, and nerve cells, the RS proteins pass through the baso-lateral plasmalemma. In polarized cells, the RS proteins secrete through the apical PM. This exocytosis of the RS proteins increases in response to external stimuli. Here, we analyze RS in goblet cells to try to understand the transport model that can be used for the explanation of the literature data related to the intracellular transport of their mucins.
Collapse
Affiliation(s)
- Alexander A Mironov
- Department of Cell Biology, IFOM ETS-The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - Galina V Beznoussenko
- Department of Cell Biology, IFOM ETS-The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| |
Collapse
|
6
|
Mironov AA. Understanding the Golgi Apparatus and Intracellular Transport Pathways. Int J Mol Sci 2023; 24:7549. [PMID: 37108712 PMCID: PMC10144503 DOI: 10.3390/ijms24087549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Today, the future paradigm of intracellular transport could be based on four competing models, namely the vesicular model, the cisterna maturation-progression model, the diffusion model, and the kiss-and-run model [...].
Collapse
Affiliation(s)
- Alexander A Mironov
- Department of Cell Biology, IFOM ETS-The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| |
Collapse
|
7
|
Mironov AA, Savin MA, Beznoussenko GV. COVID-19 Biogenesis and Intracellular Transport. Int J Mol Sci 2023; 24:ijms24054523. [PMID: 36901955 PMCID: PMC10002980 DOI: 10.3390/ijms24054523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
SARS-CoV-2 is responsible for the COVID-19 pandemic. The structure of SARS-CoV-2 and most of its proteins of have been deciphered. SARS-CoV-2 enters cells through the endocytic pathway and perforates the endosomes' membranes, and its (+) RNA appears in the cytosol. Then, SARS-CoV-2 starts to use the protein machines of host cells and their membranes for its biogenesis. SARS-CoV-2 generates a replication organelle in the reticulo-vesicular network of the zippered endoplasmic reticulum and double membrane vesicles. Then, viral proteins start to oligomerize and are subjected to budding within the ER exit sites, and its virions are passed through the Golgi complex, where the proteins are subjected to glycosylation and appear in post-Golgi carriers. After their fusion with the plasma membrane, glycosylated virions are secreted into the lumen of airways or (seemingly rarely) into the space between epithelial cells. This review focuses on the biology of SARS-CoV-2's interactions with cells and its transport within cells. Our analysis revealed a significant number of unclear points related to intracellular transport in SARS-CoV-2-infected cells.
Collapse
Affiliation(s)
- Alexander A. Mironov
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
- Correspondence:
| | - Maksim A. Savin
- The Department for Welding Production and Technology of Constructional Materials, Perm National Research Polytechnic University, Komsomolsky Prospekt, 29, 614990 Perm, Russia
| | - Galina V. Beznoussenko
- Department of Cell Biology, IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| |
Collapse
|
8
|
Sumya FT, Pokrovskaya ID, D'Souza Z, Lupashin VV. Acute COG complex inactivation unveiled its immediate impact on Golgi and illuminated the nature of intra-Golgi recycling vesicles. Traffic 2023; 24:52-75. [PMID: 36468177 PMCID: PMC9969905 DOI: 10.1111/tra.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/12/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022]
Abstract
Conserved Oligomeric Golgi (COG) complex controls Golgi trafficking and glycosylation, but the precise COG mechanism is unknown. The auxin-inducible acute degradation system was employed to investigate initial defects resulting from COG dysfunction. We found that acute COG inactivation caused a massive accumulation of COG-dependent (CCD) vesicles that carry the bulk of Golgi enzymes and resident proteins. v-SNAREs (GS15, GS28) and v-tethers (giantin, golgin84, and TMF1) were relocalized into CCD vesicles, while t-SNAREs (STX5, YKT6), t-tethers (GM130, p115), and most of Rab proteins remained Golgi-associated. Airyscan microscopy and velocity gradient analysis revealed that different Golgi residents are segregated into different populations of CCD vesicles. Acute COG depletion significantly affected three Golgi-based vesicular coats-COPI, AP1, and GGA, suggesting that COG uniquely orchestrates tethering of multiple types of intra-Golgi CCD vesicles produced by different coat machineries. This study provided the first detailed view of primary cellular defects associated with COG dysfunction in human cells.
Collapse
Affiliation(s)
- Farhana Taher Sumya
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Irina D. Pokrovskaya
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Zinia D'Souza
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Vladimir V. Lupashin
- Department of Physiology and Cell BiologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
9
|
The Diffusion Model of Intra-Golgi Transport Has Limited Power. Int J Mol Sci 2023; 24:ijms24021375. [PMID: 36674888 PMCID: PMC9861033 DOI: 10.3390/ijms24021375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The Golgi complex (GC) is the main station along the cell biosecretory pathway. Until now, mechanisms of intra-Golgi transport (IGT) have remained unclear. Herein, we confirm that the goodness-of-fit of the regression lines describing the exit of a cargo from the Golgi zone (GZ) corresponds to an exponential decay. When the GC was empty before the re-initiation of the intra-Golgi transport, this parameter of the curves describing the kinetics of different cargoes (which are deleted in Golgi vesicles) with different diffusional mobilities within the GZ as well as their exit from the GZ was maximal for the piecewise nonlinear regression, wherein the first segment was horizontal, while the second segment was similar to the exponential decay. The kinetic curve describing cargo exit from the GC per se resembled a linear decay. The Monte-Carlo simulation revealed that such curves reflect the role of microtubule growth in cells with a central GC or the random hovering of ministacks in cells lacking a microtubule. The synchronization of cargo exit from the GC already filled with a cargo using the wave synchronization protocol did not reveal the equilibration of cargo within a Golgi stack, which would be expected from the diffusion model (DM) of IGT. Moreover, not all cisternae are connected to each other in mini-stacks that are transporting membrane proteins. Finally, the kinetics of post-Golgi carriers and the important role of SNAREs for IGT at different level of IGT also argue against the DM of IGT.
Collapse
|
10
|
Tang VT, Ginsburg D. Cargo selection in endoplasmic reticulum-to-Golgi transport and relevant diseases. J Clin Invest 2023; 133:163838. [PMID: 36594468 PMCID: PMC9797344 DOI: 10.1172/jci163838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Most proteins destined for the extracellular space or various intracellular compartments must traverse the intracellular secretory pathway. The first step is the recruitment and transport of cargoes from the endoplasmic reticulum (ER) lumen to the Golgi apparatus by coat protein complex II (COPII), consisting of five core proteins. Additional ER transmembrane proteins that aid cargo recruitment are referred to as cargo receptors. Gene duplication events have resulted in multiple COPII paralogs present in the mammalian genome. Here, we review the functions of each COPII protein, human disorders associated with each paralog, and evidence for functional conservation between paralogs. We also provide a summary of current knowledge regarding two prototypical cargo receptors in mammals, LMAN1 and SURF4, and their roles in human health and disease.
Collapse
Affiliation(s)
- Vi T. Tang
- Department of Molecular and Integrative Physiology,,Life Sciences Institute
| | - David Ginsburg
- Life Sciences Institute,,Department of Internal Medicine,,Department of Human Genetics,,Department of Pediatrics and Communicable Diseases, and,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
Effect of the First Feeding on Enterocytes of Newborn Rats. Int J Mol Sci 2022; 23:ijms232214179. [PMID: 36430658 PMCID: PMC9699143 DOI: 10.3390/ijms232214179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
The transcytosis of lipids through enterocytes occurs through the delivery of lipid micelles to the microvilli of enterocytes, consumption of lipid derivates by the apical plasma membrane (PM) and then their delivery to the membrane of the smooth ER attached to the basolateral PM. The SER forms immature chylomicrons (iChMs) in the ER lumen. iChMs are delivered at the Golgi complex (GC) where they are subjected to additional glycosylation resulting in maturation of iChMs. ChMs are secreted into the intercellular space and delivered into the lumen of lymphatic capillaries (LCs). The overloading of enterocytes with lipids induces the formation of lipid droplets inside the lipid bilayer of the ER membranes and transcytosis becomes slower. Here, we examined components of the enterocyte-to-lymphatic barriers in newly born rats before the first feeding and after it. In contrast to adult animals, enterocytes of newborns rats exhibited apical endocytosis and a well-developed subapical endosomal tubular network. These enterocytes uptake membranes from amniotic fluid. Then these membranes are transported across the polarized GC and secreted into the intercellular space. The enterocytes did not contain COPII-coated buds on the granular ER. The endothelium of blood capillaries situated near the enterocytes contained only a few fenestrae. The LCs were similar to those in adult animals. The first feeding induced specific alterations of enterocytes, which were similar to those observed after the lipid overloading of enterocytes in adult rats. Enlarged chylomicrons were stopped at the level of the LAMP2 and Neu1 positive post-Golgi structures, secreted, fused, delivered to the interstitial space, captured by the LCs and transported to the lymph node, inducing the movement of macrophages from lymphatic follicles into its sinuses. The macrophages captured the ChMs, preventing their delivery into the blood.
Collapse
|
12
|
Illuminating membrane structural dynamics of fusion and endocytosis with advanced light imaging techniques. Biochem Soc Trans 2022; 50:1157-1167. [PMID: 35960003 PMCID: PMC9444071 DOI: 10.1042/bst20210263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/24/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Visualization of cellular dynamics using fluorescent light microscopy has become a reliable and indispensable source of experimental evidence for biological studies. Over the past two decades, the development of super-resolution microscopy platforms coupled with innovations in protein and molecule labeling led to significant biological findings that were previously unobservable due to the barrier of the diffraction limit. As a result, the ability to image the dynamics of cellular processes is vastly enhanced. These imaging tools are extremely useful in cellular physiology for the study of vesicle fusion and endocytosis. In this review, we will explore the power of stimulated emission depletion (STED) and confocal microscopy in combination with various labeling techniques in real-time observation of the membrane transformation of fusion and endocytosis, as well as their underlying mechanisms. We will review how STED and confocal imaging are used to reveal fusion and endocytic membrane transformation processes in live cells, including hemi-fusion; hemi-fission; hemi-to-full fusion; fusion pore opening, expansion, constriction and closure; shrinking or enlargement of the Ω-shape membrane structure after vesicle fusion; sequential compound fusion; and the sequential endocytic membrane transformation from flat- to O-shape via the intermediate Λ- and Ω-shape transition. We will also discuss how the recent development of imaging techniques would impact future studies in the field.
Collapse
|
13
|
The Golgi complex: An organelle that determines urothelial cell biology in health and disease. Histochem Cell Biol 2022; 158:229-240. [PMID: 35773494 PMCID: PMC9399047 DOI: 10.1007/s00418-022-02121-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 12/05/2022]
Abstract
The Golgi complex undergoes considerable structural remodeling during differentiation of urothelial cells in vivo and in vitro. It is known that in a healthy bladder the differentiation from the basal to the superficial cell layer leads to the formation of the tightest barrier in our body, i.e., the blood–urine barrier. In this process, urothelial cells start expressing tight junctional proteins, apical membrane lipids, surface glycans, and integral membrane proteins, the uroplakins (UPs). The latter are the most abundant membrane proteins in the apical plasma membrane of differentiated superficial urothelial cells (UCs) and, in addition to well-developed tight junctions, contribute to the permeability barrier by their structural organization and by hindering endocytosis from the apical plasma membrane. By studying the transport of UPs, we were able to demonstrate their differentiation-dependent effect on the Golgi architecture. Although fragmentation of the Golgi complex is known to be associated with mitosis and apoptosis, we found that the process of Golgi fragmentation is required for delivery of certain specific urothelial differentiation cargoes to the plasma membrane as well as for cell–cell communication. In this review, we will discuss the currently known contribution of the Golgi complex to the formation of the blood–urine barrier in normal UCs and how it may be involved in the loss of the blood–urine barrier in cancer. Some open questions related to the Golgi complex in the urothelium will be highlighted.
Collapse
|
14
|
Shin W, Zucker B, Kundu N, Lee SH, Shi B, Chan CY, Guo X, Harrison JT, Turechek JM, Hinshaw JE, Kozlov MM, Wu LG. Molecular mechanics underlying flat-to-round membrane budding in live secretory cells. Nat Commun 2022; 13:3697. [PMID: 35760780 PMCID: PMC9237132 DOI: 10.1038/s41467-022-31286-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/10/2022] [Indexed: 12/21/2022] Open
Abstract
Membrane budding entails forces to transform flat membrane into vesicles essential for cell survival. Accumulated studies have identified coat-proteins (e.g., clathrin) as potential budding factors. However, forces mediating many non-coated membrane buddings remain unclear. By visualizing proteins in mediating endocytic budding in live neuroendocrine cells, performing in vitro protein reconstitution and physical modeling, we discovered how non-coated-membrane budding is mediated: actin filaments and dynamin generate a pulling force transforming flat membrane into Λ-shape; subsequently, dynamin helices surround and constrict Λ-profile's base, transforming Λ- to Ω-profile, and then constrict Ω-profile's pore, converting Ω-profiles to vesicles. These mechanisms control budding speed, vesicle size and number, generating diverse endocytic modes differing in these parameters. Their impact is widespread beyond secretory cells, as the unexpectedly powerful functions of dynamin and actin, previously thought to mediate fission and overcome tension, respectively, may contribute to many dynamin/actin-dependent non-coated-membrane buddings, coated-membrane buddings, and other membrane remodeling processes.
Collapse
Affiliation(s)
- Wonchul Shin
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Ben Zucker
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Ramat Aviv, Israel
| | - Nidhi Kundu
- Structural Cell Biology Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Sung Hoon Lee
- Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Bo Shi
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Chung Yu Chan
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Xiaoli Guo
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Jonathan T Harrison
- Structural Cell Biology Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | | | - Jenny E Hinshaw
- Structural Cell Biology Section, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, 69978, Ramat Aviv, Israel.
| | - Ling-Gang Wu
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
15
|
Mechanisms regulating the sorting of soluble lysosomal proteins. Biosci Rep 2022; 42:231123. [PMID: 35394021 PMCID: PMC9109462 DOI: 10.1042/bsr20211856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Lysosomes are key regulators of many fundamental cellular processes such as metabolism, autophagy, immune response, cell signalling and plasma membrane repair. These highly dynamic organelles are composed of various membrane and soluble proteins, which are essential for their proper functioning. The soluble proteins include numerous proteases, glycosidases and other hydrolases, along with activators, required for catabolism. The correct sorting of soluble lysosomal proteins is crucial to ensure the proper functioning of lysosomes and is achieved through the coordinated effort of many sorting receptors, resident ER and Golgi proteins, and several cytosolic components. Mutations in a number of proteins involved in sorting soluble proteins to lysosomes result in human disease. These can range from rare diseases such as lysosome storage disorders, to more prevalent ones, such as Alzheimer’s disease, Parkinson’s disease and others, including rare neurodegenerative diseases that affect children. In this review, we discuss the mechanisms that regulate the sorting of soluble proteins to lysosomes and highlight the effects of mutations in this pathway that cause human disease. More precisely, we will review the route taken by soluble lysosomal proteins from their translation into the ER, their maturation along the Golgi apparatus, and sorting at the trans-Golgi network. We will also highlight the effects of mutations in this pathway that cause human disease.
Collapse
|
16
|
Comparison of the Cisterna Maturation-Progression Model with the Kiss-and-Run Model of Intra-Golgi Transport: Role of Cisternal Pores and Cargo Domains. Int J Mol Sci 2022; 23:ijms23073590. [PMID: 35408951 PMCID: PMC8999060 DOI: 10.3390/ijms23073590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
The Golgi complex is the central station of the secretory pathway. Knowledge about the mechanisms of intra-Golgi transport is inconsistent. Here, we compared the explanatory power of the cisterna maturation-progression model and the kiss-and-run model. During intra-Golgi transport, conventional cargoes undergo concentration and form cisternal distensions or distinct membrane domains that contain only one membrane cargo. These domains and distension are separated from the rest of the Golgi cisternae by rows of pores. After the arrival of any membrane cargo or a large cargo aggregate at the Golgi complex, the cis-Golgi SNAREs become enriched within the membrane of cargo-containing domains and then replaced by the trans-Golgi SNAREs. During the passage of these domains, the number of cisternal pores decreases. Restoration of the cisternal pores is COPI-dependent. Our observations are more in line with the kiss-and-run model.
Collapse
|
17
|
Wang S, Ma C. Neuronal SNARE complex assembly guided by Munc18-1 and Munc13-1. FEBS Open Bio 2022; 12:1939-1957. [PMID: 35278279 PMCID: PMC9623535 DOI: 10.1002/2211-5463.13394] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/28/2022] [Accepted: 03/10/2022] [Indexed: 01/25/2023] Open
Abstract
Neurotransmitter release by Ca2+ -triggered synaptic vesicle exocytosis is essential for information transmission in the nervous system. The soluble N-ethylmaleimide sensitive factor attachment protein receptors (SNAREs) syntaxin-1, SNAP-25, and synaptobrevin-2 form the SNARE complex to bring synaptic vesicles and the plasma membranes together and to catalyze membrane fusion. Munc18-1 and Munc13-1 regulate synaptic vesicle priming via orchestrating neuronal SNARE complex assembly. In this review, we summarize recent advances toward the functions and molecular mechanisms of Munc18-1 and Munc13-1 in guiding neuronal SNARE complex assembly, and discuss the functional similarities and differences between Munc18-1 and Munc13-1 in neurons and their homologs in other intracellular membrane trafficking systems.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of EducationCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
18
|
Mironov AA, Beznoussenko GV. Opinion: On the Way towards the New Paradigm of Atherosclerosis. Int J Mol Sci 2022; 23:2152. [PMID: 35216269 PMCID: PMC8879789 DOI: 10.3390/ijms23042152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a multicausal disease characterized by the formation of cholesterol-containing plaque in the pronounced intima nearest to the heart's elastic-type arteries that have high levels of blood circulation. Plaques are formed due to arterial pressure-induced damage to the endothelium in areas of turbulent blood flow. It is found in the majority of the Western population, including young people. This denies the monogenic mechanism of atherogenesis. In 1988, Orekhov et al. and Kawai et al. discovered that the presence of atherogenic (modified, including oxidized ones) LDLs is necessary for atherogenesis. On the basis of our discovery, suggesting that the overloading of enterocytes with lipids could lead to the formation of modified LDLs, we proposed a new hypothesis explaining the main factors of atherogenesis. Indeed, when endothelial cells are damaged and then pass through the G2 phase of their cell cycle they secrete proteins into their basement membrane. This leads to thickening of the basement membrane and increases its affinity to LDL especially for modified ones. When the enterocyte transcytosis pathway is overloaded with fat, very large chylomicrons are formed, which have few sialic acids, circulate in the blood for a long time, undergo oxidation, and can induce the production of autoantibodies. It is the sialic acids that shield the short forks of the polysaccharide chains to which autoantibodies are produced. Here, these data are evaluated from the point of view of our new model.
Collapse
Affiliation(s)
- Alexander A. Mironov
- Laboratory of Electron Microscopy, The FIRC Institute of Molecular Oncology, 20139 Milan, Italy;
| | | |
Collapse
|
19
|
Aniento F, Sánchez de Medina Hernández V, Dagdas Y, Rojas-Pierce M, Russinova E. Molecular mechanisms of endomembrane trafficking in plants. THE PLANT CELL 2022; 34:146-173. [PMID: 34550393 PMCID: PMC8773984 DOI: 10.1093/plcell/koab235] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/12/2021] [Indexed: 05/10/2023]
Abstract
Endomembrane trafficking is essential for all eukaryotic cells. The best-characterized membrane trafficking organelles include the endoplasmic reticulum (ER), Golgi apparatus, early and recycling endosomes, multivesicular body, or late endosome, lysosome/vacuole, and plasma membrane. Although historically plants have given rise to cell biology, our understanding of membrane trafficking has mainly been shaped by the much more studied mammalian and yeast models. Whereas organelles and major protein families that regulate endomembrane trafficking are largely conserved across all eukaryotes, exciting variations are emerging from advances in plant cell biology research. In this review, we summarize the current state of knowledge on plant endomembrane trafficking, with a focus on four distinct trafficking pathways: ER-to-Golgi transport, endocytosis, trans-Golgi network-to-vacuole transport, and autophagy. We acknowledge the conservation and commonalities in the trafficking machinery across species, with emphasis on diversity and plant-specific features. Understanding the function of organelles and the trafficking machinery currently nonexistent in well-known model organisms will provide great opportunities to acquire new insights into the fundamental cellular process of membrane trafficking.
Collapse
Affiliation(s)
| | - Víctor Sánchez de Medina Hernández
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | | | | | | |
Collapse
|
20
|
Sakti YM, Malueka RG, Dwianingsih EK, Kusumaatmaja A, Mafaza A, Emiri DM. Diamond Concept as Principle for the Development of Spinal Cord Scaffold: A Literature Review. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.7438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION: Spinal cord injury (SCI) has been bringing detrimental impacts on the affected individuals. However, not only that, it also brings a tremendous effect on the socioeconomic and health-care system. Treatment regimen and strategy for SCI patient have been under further research.
DISCUSSION: The main obstacles of regeneration on neuronal structure are the neuroinflammatory process and poor debris clearance, causing a longer healing process and an extensive inflammation process due to this particular inflammatory process. To resolve all of the mentioned significant issues in SCIs neuronal regeneration, a comprehensive model is necessary to analyze each step of progressive condition in SCI. In this review, we would like to redefine a comprehensive concept of the “Diamond Concept” from previously used in fracture management to SCI management, which consists of cellular platform, cellular inductivity, cellular conductivity, and material integrity. The scaffolding treatment strategy for SCI has been widely proposed due to its flexibility. It enables the physician to combine another treatment method such as neuroprotective or neuroregenerative or both in one intervention.
CONCLUSION: Diamond concept perspective in the implementation of scaffolding could be advantageous to increase the outcome of SCI treatment.
Collapse
|
21
|
ER exit sites in Drosophila display abundant ER-Golgi vesicles and pearled tubes but no megacarriers. Cell Rep 2021; 36:109707. [PMID: 34525362 DOI: 10.1016/j.celrep.2021.109707] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/24/2021] [Accepted: 08/20/2021] [Indexed: 01/08/2023] Open
Abstract
Secretory cargos are collected at endoplasmic reticulum (ER) exit sites (ERES) before transport to the Golgi apparatus. Decades of research have provided many details of the molecular events underlying ER-Golgi exchanges. Essential questions, however, remain about the organization of the ER-Golgi interface in cells and the type of membrane structures mediating traffic from ERES. To investigate these, we use transgenic tagging in Drosophila flies, 3D-structured illumination microscopy (SIM), and focused ion beam scanning electron microscopy (FIB-SEM) to characterize ERES-Golgi units in collagen-producing fat body, imaginal discs, and imaginal discs overexpressing ERES determinant Tango1. Facing ERES, we find a pre-cis-Golgi region, equivalent to the vertebrate ER-Golgi intermediate compartment (ERGIC), involved in both anterograde and retrograde transport. This pre-cis-Golgi is continuous with the rest of the Golgi, not a separate compartment or collection of large carriers, for which we find no evidence. We observe, however, many vesicles, as well as pearled tubules connecting ERES and Golgi.
Collapse
|
22
|
Holst MR, Gammelgaard L, Aaron J, Login FH, Rajkumar S, Hahn U, Nejsum LN. Regulated exocytosis: Renal Aquaporin-2 3D Vesicular Network Organization and Association with F-actin. Am J Physiol Cell Physiol 2021; 321:C1060-C1069. [PMID: 34432538 DOI: 10.1152/ajpcell.00255.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulated vesicle exocytosis is a key response to extracellular stimuli in diverse physiological processes; including hormone regulated short-term urine concentration. In the renal collecting duct, the water channel aquaporin-2 localizes to the apical plasma membrane as well as small, sub-apical vesicles. In response to stimulation with the antidiuretic hormone, arginine vasopressin, aquaporin-2 containing vesicles fuse with the plasma membrane, which increases collecting duct water reabsorption and thus, urine concentration. The nano-scale size of these vesicles has limited analysis of their 3D organization. Using a cell system combined with 3D super resolution microscopy, we provide the first direct analysis of the 3D network of aquaporin-2 containing exocytic vesicles in a cell culture system. We show that aquaporin-2 vesicles are 43 ± 3nm in diameter, a size similar to synaptic vesicles, and that one fraction of AQP2 vesicles localized with the sub-cortical F-actin layer and the other localized in between the F-actin layer and the plasma membrane. Aquaporin-2 vesicles associated with F-actin and this association was enhanced in a serine 256 phospho-mimic of aquaporin-2, whose phosphorylation is a key event in antidiuretic hormone-mediated aquaporin-2 vesicle exocytosis.
Collapse
Affiliation(s)
- Mikkel R Holst
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Louis Gammelgaard
- Centre for Stochastic Geometry and Advanced Bioimaging, Department of Mathematics, Aarhus University, Aarhus, Denmark
| | - Jesse Aaron
- Advanced Imaging Center, Janelia Research Campus, Ashburn, VA, United States
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Sampavi Rajkumar
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Ute Hahn
- Centre for Stochastic Geometry and Advanced Bioimaging, Department of Mathematics, Aarhus University, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
23
|
Waterlogging-Stress-Responsive LncRNAs, Their Regulatory Relationships with miRNAs and Target Genes in Cucumber ( Cucumis sativus L.). Int J Mol Sci 2021; 22:ijms22158197. [PMID: 34360961 PMCID: PMC8348067 DOI: 10.3390/ijms22158197] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Low oxygen level is a phenomenon often occurring during the cucumber cultivation period. Genes involved in adaptations to stress can be regulated by non-coding RNA. The aim was the identification of long non-coding RNAs (lncRNAs) involved in the response to long-term waterlogging stress in two cucumber haploid lines, i.e., DH2 (waterlogging tolerant—WL-T) and DH4 (waterlogging sensitive—WL-S). Plants, at the juvenile stage, were waterlogged for 7 days (non-primed, 1xH), and after a 14-day recovery period, plants were stressed again for another 7 days (primed, 2xH). Roots were collected for high-throughput RNA sequencing. Implementation of the bioinformatic pipeline made it possible to determine specific lncRNAs for non-primed and primed plants of both accessions, highlighting differential responses to hypoxia stress. In total, 3738 lncRNA molecules were identified. The highest number (1476) of unique lncRNAs was determined for non-primed WL-S plants. Seventy-one lncRNAs were depicted as potentially being involved in acquiring tolerance to hypoxia in cucumber. Understanding the mechanism of gene regulation under long-term waterlogging by lncRNAs and their interactions with miRNAs provides sufficient information in terms of adaptation to the oxygen deprivation in cucumber. To the best of our knowledge, this is the first report concerning the role of lncRNAs in the regulation of long-term waterlogging tolerance by priming application in cucumber.
Collapse
|
24
|
Shomron O, Nevo-Yassaf I, Aviad T, Yaffe Y, Zahavi EE, Dukhovny A, Perlson E, Brodsky I, Yeheskel A, Pasmanik-Chor M, Mironov A, Beznoussenko GV, Mironov AA, Sklan EH, Patterson GH, Yonemura Y, Sannai M, Kaether C, Hirschberg K. COPII collar defines the boundary between ER and ER exit site and does not coat cargo containers. J Cell Biol 2021; 220:211990. [PMID: 33852719 PMCID: PMC8054201 DOI: 10.1083/jcb.201907224] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/14/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
COPII and COPI mediate the formation of membrane vesicles translocating in opposite directions within the secretory pathway. Live-cell and electron microscopy revealed a novel mode of function for COPII during cargo export from the ER. COPII is recruited to membranes defining the boundary between the ER and ER exit sites, facilitating selective cargo concentration. Using direct observation of living cells, we monitored cargo selection processes, accumulation, and fission of COPII-free ERES membranes. CRISPR/Cas12a tagging, the RUSH system, and pharmaceutical and genetic perturbations of ER-Golgi transport demonstrated that the COPII coat remains bound to the ER–ERES boundary during protein export. Manipulation of the cargo-binding domain in COPII Sec24B prohibits cargo accumulation in ERES. These findings suggest a role for COPII in selecting and concentrating exported cargo rather than coating Golgi-bound carriers. These findings transform our understanding of coat proteins’ role in ER-to-Golgi transport.
Collapse
Affiliation(s)
- Olga Shomron
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Inbar Nevo-Yassaf
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Tamar Aviad
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Yakey Yaffe
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Eitan Erez Zahavi
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Anna Dukhovny
- Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ilya Brodsky
- Lomonosov Moscow State University, Andrey N. Belozersky Institute for Physico-Chemical Biology, Moscow, Russia
| | - Adva Yeheskel
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Anna Mironov
- Istituto Firc di Oncologia Molecolare, Fondazione Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia Molecolare, Milan, Italy
| | - Galina V Beznoussenko
- Istituto Firc di Oncologia Molecolare, Fondazione Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia Molecolare, Milan, Italy
| | - Alexander A Mironov
- Istituto Firc di Oncologia Molecolare, Fondazione Istituto Fondazione Italiana per la Ricerca sul Cancro di Oncologia Molecolare, Milan, Italy
| | - Ella H Sklan
- Department of Clinical Immunology and Microbiology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - George H Patterson
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Rockville, MD
| | - Yoji Yonemura
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Mara Sannai
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | | | - Koret Hirschberg
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Abstract
Eukaryotic cells are complicated factories that need ensure productivity and functionality on the cellular level as well as being able to communicate with their environment. In order to do so cells developed intracellular communication systems. For a long time, research focused mainly on the secretory/biosynthetic and endocytic routes for communication, leaving the communication with other organelles apart. In the last decade, this view has changed dramatically and a more holistic view of intracellular communication is emerging. We are still at the tip of the iceberg, but a common theme of touching, kissing, fusing is emerging as general principles of communication.
Collapse
Affiliation(s)
- Anne Spang
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| |
Collapse
|
26
|
Feng Z, Yang K, Pastor-Pareja JC. Tales of the ER-Golgi Frontier: Drosophila-Centric Considerations on Tango1 Function. Front Cell Dev Biol 2021; 8:619022. [PMID: 33505971 PMCID: PMC7829582 DOI: 10.3389/fcell.2020.619022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
In the secretory pathway, the transfer of cargo from the ER to the Golgi involves dozens of proteins that localize at specific regions of the ER called ER exit sites (ERES), where cargos are concentrated preceding vesicular transport to the Golgi. Despite many years of research, we are missing crucial details of how this highly dynamic ER-Golgi interface is defined, maintained and functions. Mechanisms allowing secretion of large cargos such as the very abundant collagens are also poorly understood. In this context, Tango1, discovered in the fruit fly Drosophila and widely conserved in animal evolution, has received a lot of attention in recent years. Tango1, an ERES-localized transmembrane protein, is the single fly member of the MIA/cTAGE family, consisting in humans of TANGO1 and at least 14 different related proteins. After its discovery in flies, a specific role of human TANGO1 in mediating secretion of collagens was reported. However, multiple studies in Drosophila have demonstrated that Tango1 is required for secretion of all cargos. At all ERES, through self-interaction and interactions with other proteins, Tango1 aids ERES maintenance and tethering of post-ER membranes. In this review, we discuss discoveries on Drosophila Tango1 and put them in relation with research on human MIA/cTAGE proteins. In doing so, we aim to offer an integrated view of Tango1 function and the nature of ER-Golgi transport from an evolutionary perspective.
Collapse
Affiliation(s)
- Zhi Feng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ke Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - José C Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
27
|
David Y, Castro IG, Schuldiner M. The Fast and the Furious: Golgi Contact Sites. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2021; 4:1-15. [PMID: 35071979 PMCID: PMC7612241 DOI: 10.1177/25152564211034424] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Contact sites are areas of close apposition between two membranes that coordinate nonvesicular communication between organelles. Such interactions serve a wide range of cellular functions from regulating metabolic pathways to executing stress responses and coordinating organelle inheritance. The past decade has seen a dramatic increase in information on certain contact sites, mostly those involving the endoplasmic reticulum. However, despite its central role in the secretory pathway, the Golgi apparatus and its contact sites remain largely unexplored. In this review, we discuss the current knowledge of Golgi contact sites and share our thoughts as to why Golgi contact sites are understudied. We also highlight what exciting future directions may exist in this emerging field.
Collapse
Affiliation(s)
- Yotam David
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Inês G Castro
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
28
|
Membrane Curvature, Trans-Membrane Area Asymmetry, Budding, Fission and Organelle Geometry. Int J Mol Sci 2020; 21:ijms21207594. [PMID: 33066582 PMCID: PMC7590041 DOI: 10.3390/ijms21207594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/02/2023] Open
Abstract
In biology, the modern scientific fashion is to mostly study proteins. Much less attention is paid to lipids. However, lipids themselves are extremely important for the formation and functioning of cellular membrane organelles. Here, the role of the geometry of the lipid bilayer in regulation of organelle shape is analyzed. It is proposed that during rapid shape transition, the number of lipid heads and their size (i.e., due to the change in lipid head charge) inside lipid leaflets modulates the geometrical properties of organelles, in particular their membrane curvature. Insertion of proteins into a lipid bilayer and the shape of protein trans-membrane domains also affect the trans-membrane asymmetry between surface areas of luminal and cytosol leaflets of the membrane. In the cases where lipid molecules with a specific shape are not predominant, the shape of lipids (cylindrical, conical, or wedge-like) is less important for the regulation of membrane curvature, due to the flexibility of their acyl chains and their high ability to diffuse.
Collapse
|
29
|
Pacheco-Fernandez N, Pakdel M, Blank B, Sanchez-Gonzalez I, Weber K, Tran ML, Hecht TKH, Gautsch R, Beck G, Perez F, Hausser A, Linder S, von Blume J. Nucleobindin-1 regulates ECM degradation by promoting intra-Golgi trafficking of MMPs. J Cell Biol 2020; 219:e201907058. [PMID: 32479594 PMCID: PMC7401813 DOI: 10.1083/jcb.201907058] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/29/2019] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Matrix metalloproteinases (MMPs) degrade several ECM components and are crucial modulators of cell invasion and tissue organization. Although much has been reported about their function in remodeling ECM in health and disease, their trafficking across the Golgi apparatus remains poorly understood. Here we report that the cis-Golgi protein nucleobindin-1 (NUCB1) is critical for MMP2 and MT1-MMP trafficking along the Golgi apparatus. This process is Ca2+-dependent and is required for invasive MDA-MB-231 cell migration as well as for gelatin degradation in primary human macrophages. Our findings emphasize the importance of NUCB1 as an essential component of MMP transport and its overall impact on ECM remodeling.
Collapse
Affiliation(s)
| | | | - Birgit Blank
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | | | - Kathrin Weber
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg, Hamburg, Germany
| | - Mai Ly Tran
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Tobias Karl-Heinz Hecht
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Renate Gautsch
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gisela Beck
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Franck Perez
- Institute Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Stefan Linder
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg, Hamburg, Germany
| | - Julia von Blume
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
30
|
Structure of the enterocyte transcytosis compartments during lipid absorption. Histochem Cell Biol 2020; 153:413-429. [DOI: 10.1007/s00418-020-01851-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
|