1
|
Vargas-Lías DS, Serrano-Arévalo ML, César LT, Guillermo Ernesto CA, Dominguez-Malagon HR. Emperipolesis in pleural fluid mesothelial cells. A phenomenon not associated with Rosai-Dorfman disease, report of a case. Ultrastruct Pathol 2024; 48:438-443. [PMID: 39078195 DOI: 10.1080/01913123.2024.2382987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Emperipolesis is a cell-within-cell phenomenon distinct from phagocytosis more often described in Rosai-Dorfman disease, where usually lymphocytes or other bone marrow cells (plasma cells, erythroblasts or neutrophils) are entirely surrounded but not engulfed by macrophages as the host cell, but occasionally megakaryocytes and neoplastic could be. Mesothelial cell has been described in a couple of cases of lymphomas affecting serous membranes, but never described in pleuritis. In the present work, the first case of emperipolesis by mesothelial cells in a patient with self-limited pleural effusion was demonstrated by immunohistochemistry and Electron Microscopy studies.
Collapse
Affiliation(s)
- Diana Sofía Vargas-Lías
- Department of Surgical Pathology, Instituto Nacional de Cancerología, CDMX, Cuidad de México, México
| | | | - Lara-Torres César
- Department of Molecular Pathology, Instituto Nacional de Cancerología, CDMX, Cuidad de México, México
| | | | - Hugo R Dominguez-Malagon
- Department of Surgical Pathology, Instituto Nacional de Cancerología, CDMX, Cuidad de México, México
| |
Collapse
|
2
|
Kim S, Lee D, Kim SE, Overholtzer M. Entosis: the core mechanism and crosstalk with other cell death programs. Exp Mol Med 2024; 56:870-876. [PMID: 38565900 PMCID: PMC11059358 DOI: 10.1038/s12276-024-01227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024] Open
Abstract
Cell death pathways play critical roles in organism development and homeostasis as well as in the pathogenesis of various diseases. While studies over the last decade have elucidated numerous different forms of cell death that can eliminate cells in various contexts, how certain mechanisms impact physiology is still not well understood. Moreover, recent studies have shown that multiple forms cell death can occur in a cell population, with different forms of death eliminating individual cells. Here, we aim to describe the known molecular mechanisms of entosis, a non-apoptotic cell engulfment process, and discuss signaling mechanisms that control its induction as well as its possible crosstalk with other cell death mechanisms.
Collapse
Affiliation(s)
- Sunghoon Kim
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul, Republic of Korea
- L-HOPE Program for Community-Based Total Learning Health Systems, Seoul, Republic of Korea
| | - Donghyuk Lee
- Department of Pharmacology and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Eun Kim
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, Republic of Korea.
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul, Republic of Korea.
- L-HOPE Program for Community-Based Total Learning Health Systems, Seoul, Republic of Korea.
| | - Michael Overholtzer
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA.
- Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- BCMB Allied Program, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
3
|
Kapsetaki SE, Cisneros LH, Maley CC. Cell-in-cell phenomena across the tree of life. Sci Rep 2024; 14:7535. [PMID: 38553457 PMCID: PMC10980697 DOI: 10.1038/s41598-024-57528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/19/2024] [Indexed: 04/02/2024] Open
Abstract
Cells in obligately multicellular organisms by definition have aligned fitness interests, minimum conflict, and cannot reproduce independently. However, some cells eat other cells within the same body, sometimes called cell cannibalism. Such cell-in-cell events have not been thoroughly discussed in the framework of major transitions to multicellularity. We performed a systematic screening of 508 articles, from which we chose 115 relevant articles in a search for cell-in-cell events across the tree of life, the age of cell-in-cell-related genes, and whether cell-in-cell events are associated with normal multicellular development or cancer. Cell-in-cell events are found across the tree of life, from some unicellular to many multicellular organisms, including non-neoplastic and neoplastic tissue. Additionally, out of the 38 cell-in-cell-related genes found in the literature, 14 genes were over 2.2 billion years old, i.e., older than the common ancestor of some facultatively multicellular taxa. All of this suggests that cell-in-cell events may have originated before the origins of obligate multicellularity. Thus, our results show that cell-in-cell events exist in obligate multicellular organisms, but are not a defining feature of them. The idea of eradicating cell-in-cell events from obligate multicellular organisms as a way of treating cancer, without considering that cell-in-cell events are also part of normal development, should be abandoned.
Collapse
Affiliation(s)
- Stefania E Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA.
- Department of Biology, School of Arts and Sciences, Tufts University, Medford, MA, USA.
| | - Luis H Cisneros
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
4
|
Gaptulbarova KА, Tsydenova IA, Dolgasheva DS, Kravtsova EA, Ibragimova MK, Vtorushin SV, Litviakov NV. Mechanisms and significance of entosis for tumour growth and progression. Cell Death Discov 2024; 10:109. [PMID: 38429285 PMCID: PMC10907354 DOI: 10.1038/s41420-024-01877-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024] Open
Abstract
To date, numerous mechanisms have been identified in which one cell engulfs another, resulting in the creation of 'cell-in-cell' (CIC) structures, which subsequently cause cell death. One of the mechanisms of formation of these structures is entosis, which is presumably associated with possible carcinogenesis and tumour progression. The peculiarity of the process is that entotic cells themselves actively invade the host cell, and afterwards have several possible variants of fate. Entotic formations are structures where one cell is engulfed by another cell, creating a cell-in-cell structure. The nucleus of the outer cell has a crescent shape, while the inner cell is surrounded by a large entotic vacuole. These characteristics differentiate entosis from cell cannibalism. It's worth noting that entotic formations are not necessarily harmful and may even be beneficial in some cases. In this article we will consider the mechanism of entosis and variants of entotic cell death, and also put forward hypothesis about possible variants of participation of this process on the formation and progression of cancer. This article also presents our proposed classification of functional forms of entosis.
Collapse
Affiliation(s)
- Ksenia Аndreevna Gaptulbarova
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia.
- Siberian State Medical University, Moskovsky trakt, 2, 634050, Tomsk, Russia.
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia.
| | - Irina Alexandrovna Tsydenova
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| | - Daria Sergeevna Dolgasheva
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| | - Ekaterina Andreevna Kravtsova
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| | - Marina Konstantinovna Ibragimova
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- Siberian State Medical University, Moskovsky trakt, 2, 634050, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| | - Sergey Vladimirovich Vtorushin
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- Siberian State Medical University, Moskovsky trakt, 2, 634050, Tomsk, Russia
| | - Nikolai Vasilievich Litviakov
- Cancer Research Institute "Tomsk National Research Medical Centre of the Russian Academy of Sciences", Kooperativniy Lane, 5, 634009, Tomsk, Russia
- Siberian State Medical University, Moskovsky trakt, 2, 634050, Tomsk, Russia
- National Research Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia
| |
Collapse
|
5
|
Sieler M, Dittmar T. Cell Fusion and Syncytia Formation in Cancer. Results Probl Cell Differ 2024; 71:433-465. [PMID: 37996689 DOI: 10.1007/978-3-031-37936-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The natural phenomenon of cell-cell fusion does not only take place in physiological processes, such as placentation, myogenesis, or osteoclastogenesis, but also in pathophysiological processes, such as cancer. More than a century ago postulated, today the hypothesis that the fusion of cancer cells with normal cells leads to the formation of cancer hybrid cells with altered properties is in scientific consensus. Some studies that have investigated the mechanisms and conditions for the fusion of cancer cells with other cells, as well as studies that have characterized the resulting cancer hybrid cells, are presented in this review. Hypoxia and the cytokine TNFα, for example, have been found to promote cell fusion. In addition, it has been found that both the protein Syncytin-1, which normally plays a role in placentation, and phosphatidylserine signaling on the cell membrane are involved in the fusion of cancer cells with other cells. In human cancer, cancer hybrid cells were detected not only in the primary tumor, but also in the circulation of patients as so-called circulating hybrid cells, where they often correlated with a worse outcome. Although some data are available, the questions of how and especially why cancer cells fuse with other cells are still not fully answered.
Collapse
Affiliation(s)
- Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany.
| | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), University of Witten/Herdecke, Witten, Germany
| |
Collapse
|
6
|
Dehghan S, Kheshtchin N, Hassannezhad S, Soleimani M. Cell death classification: A new insight based on molecular mechanisms. Exp Cell Res 2023; 433:113860. [PMID: 38013091 DOI: 10.1016/j.yexcr.2023.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Cells tend to disintegrate themselves or are forced to undergo such destructive processes in critical circumstances. This complex cellular function necessitates various mechanisms and molecular pathways in order to be executed. The very nature of cell death is essentially important and vital for maintaining homeostasis, thus any type of disturbing occurrence might lead to different sorts of diseases and dysfunctions. Cell death has various modalities and yet, every now and then, a new type of this elegant procedure gets to be discovered. The diversity of cell death compels the need for a universal organizing system in order to facilitate further studies, therapeutic strategies and the invention of new methods of research. Considering all that, we attempted to review most of the known cell death mechanisms and sort them all into one arranging system that operates under a simple but subtle decision-making (If \ Else) order as a sorting algorithm, in which it decides to place and sort an input data (a type of cell death) into its proper set, then a subset and finally a group of cell death. By proposing this algorithm, the authors hope it may solve the problems regarding newer and/or undiscovered types of cell death and facilitate research and therapeutic applications of cell death.
Collapse
Affiliation(s)
- Sepehr Dehghan
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Nasim Kheshtchin
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Soleimani
- Department of Medical Basic Sciences, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Siquara da Rocha LDO, Souza BSDF, Coletta RD, Lambert DW, Gurgel Rocha CA. Mapping Cell-in-Cell Structures in Oral Squamous Cell Carcinoma. Cells 2023; 12:2418. [PMID: 37830632 PMCID: PMC10572403 DOI: 10.3390/cells12192418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Cell-in-cell (CIC) structures contribute to tumor aggressiveness and poor prognosis in oral squamous cell carcinoma (OSCC). In vitro 3D models may contribute to the understanding of the underlying molecular mechanisms of these events. We employed a spheroid model to study the CIC structures in OSCC. Spheroids were obtained from OSCC (HSC3) and cancer-associated fibroblast (CAF) lines using the Nanoshuttle-PLTM bioprinting system (Greiner Bio-One). Spheroid form, size, and reproducibility were evaluated over time (EvosTM XL; ImageJ version 1.8). Slides were assembled, stained (hematoxylin and eosin), and scanned (Axio Imager Z2/VSLIDE) using the OlyVIA System (Olympus Life Science) and ImageJ software (NIH) for cellular morphology and tumor zone formation (hypoxia and/or proliferative zones) analysis. CIC occurrence, complexity, and morphology were assessed considering the spheroid regions. Well-formed spheroids were observed within 6 h of incubation, showing the morphological aspects of the tumor microenvironment, such as hypoxic (core) and proliferative zone (periphery) formation. CIC structures were found in both homotypic and heterotypic groups, predominantly in the proliferative zone of the mixed HSC3/CAF spheroids. "Complex cannibalism" events were also noted. These results showcase the potential of this model in further studies on CIC morphology, formation, and relationship with tumor prognosis.
Collapse
Affiliation(s)
- Leonardo de Oliveira Siquara da Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil; (L.d.O.S.d.R.); (B.S.d.F.S.)
- Department of Pathology and Forensic Medicine, School of Medicine, Federal University of Bahia, Salvador 40110-100, BA, Brazil
| | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil; (L.d.O.S.d.R.); (B.S.d.F.S.)
- D’Or Institute for Research and Education (IDOR), Salvador 41253-190, BA, Brazil
| | - Ricardo Della Coletta
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-903, SP, Brazil
- Graduate Program in Oral Biology, School of Dentistry, University of Campinas, Piracicaba 13414-903, SP, Brazil
| | - Daniel W. Lambert
- School of Clinical Dentistry, The University of Sheffield, Sheffield S10 2TA, UK
| | - Clarissa A. Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil; (L.d.O.S.d.R.); (B.S.d.F.S.)
- Department of Pathology and Forensic Medicine, School of Medicine, Federal University of Bahia, Salvador 40110-100, BA, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador 41253-190, BA, Brazil
- Department of Propaedeutics, School of Dentistry, Federal University of Bahia, Salvador 40110-150, BA, Brazil
| |
Collapse
|
8
|
Barros CCDS, Santos LMDR, Severo MLB, Miguel MCDC, Squarize CH, da Silveira ÉJD. Morphological analysis of cell cannibalism: An auxiliary tool in the prediction of central giant cell granuloma clinical behavior. Acta Histochem 2023; 125:152091. [PMID: 37657202 DOI: 10.1016/j.acthis.2023.152091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/31/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Central giant cell granuloma (CGCG) is a benign jaw lesion with variable clinical behavior. Cell cannibalism is a cellular process associated with aggressiveness and invasion in malignant neoplasms. Here, we morphologically investigated cell cannibalism as an auxiliary method to predict CGCG clinical behavior. Cell cannibalism was quantitatively evaluated in 19 cases of peripheral giant cell granuloma (PGCG), 38 cases of CGCG (non-aggressive and aggressive), and 19 cases of giant cell tumor of bone (GCT) stained with hematoxylin and eosin. T-test was performed to assess the differences between the variables analyzed (p ≤ 0.05). Cell cannibalism was identified in 21% of non-aggressive CGCGs and 68.4% of aggressive CGCGs. A significantly higher amount of cannibal multinucleated giant cells (CMGC) was observed in aggressive CGCG compared to PGCG and non-aggressive CGCG (p = 0.042; p = 0.044, respectively). There were no significant differences in the CMGC index between non-aggressive CGCG and PGCG (p = 0.858) and between aggressive CGCG and GCT (p = 0.069). CGGC cases that exhibited rapid growth and tooth displacement and/or root resorption had a higher amount of CMGC (p = 0.035; p = 0.041, respectively). Cell cannibalism can be identified in CGCG through routine anatomopathological examination. The quantification of CMGC can help to predict the clinical behavior of central giant cell granuloma.
Collapse
Affiliation(s)
- Caio César da Silva Barros
- Postgraduate Program in Dental Sciences, Oral Pathology and Medicine, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil; Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, United States
| | | | - Mara Luana Batista Severo
- Postgraduate Program in Dental Sciences, Oral Pathology and Medicine, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Márcia Cristina da Costa Miguel
- Postgraduate Program in Dental Sciences, Oral Pathology and Medicine, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Cristiane Helena Squarize
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Éricka Janine Dantas da Silveira
- Postgraduate Program in Dental Sciences, Oral Pathology and Medicine, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
9
|
Unseld LH, Hildebrand LS, Putz F, Büttner-Herold M, Daniel C, Fietkau R, Distel LV. Non-Professional Phagocytosis Increases in Melanoma Cells and Tissues with Increasing E-Cadherin Expression. Curr Oncol 2023; 30:7542-7552. [PMID: 37623028 PMCID: PMC10453162 DOI: 10.3390/curroncol30080547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
Non-professional phagocytosis in cancer has been increasingly studied in recent decades. In malignant melanoma metastasis, cell-in-cell structures have been described as a sign of cell cannibalism. To date, only low rates of cell-in-cell structures have been described in patients with malignant melanoma. To investigate these findings further, we examined twelve primary melanoma cell lines in both adherent and suspended co-incubation for evidence of engulfment. In addition, 88 malignant melanoma biopsies and 16 healthy tissue samples were evaluated. E-cadherin levels were determined in the cell lines and tissues. All primary melanoma cell lines were capable of phagocytosis, and phagocytosis increased when cells were in suspension during co-incubation. Cell-in-cell structures were also detected in most of the tissue samples. Early T stages and increasingly advanced N and M stages have correspondingly lower rates of cell-in-cell structures. Non-professional phagocytosis was also present in normal skin tissue. Non-professional phagocytosis appears to be a ubiquitous mechanism in malignant melanoma. The absence of phagocytosis in metastases may be one reason for the high rate of metastasis in malignant melanoma.
Collapse
Affiliation(s)
- Luzie Helene Unseld
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (L.H.U.); (L.S.H.); (F.P.); (R.F.)
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Laura S. Hildebrand
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (L.H.U.); (L.S.H.); (F.P.); (R.F.)
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Florian Putz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (L.H.U.); (L.S.H.); (F.P.); (R.F.)
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.B.-H.); (C.D.)
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (M.B.-H.); (C.D.)
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (L.H.U.); (L.S.H.); (F.P.); (R.F.)
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| | - Luitpold Valentin Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstr. 27, 91054 Erlangen, Germany; (L.H.U.); (L.S.H.); (F.P.); (R.F.)
- Comprehensive Cancer Center Erlangen-EMN, 91054 Erlangen, Germany
| |
Collapse
|
10
|
Kapsetaki SE, Basile AJ, Compton ZT, Rupp SM, Duke EG, Boddy AM, Harrison TM, Sweazea KL, Maley CC. The relationship between diet, plasma glucose, and cancer prevalence across vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551378. [PMID: 37577544 PMCID: PMC10418110 DOI: 10.1101/2023.07.31.551378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Could diet and mean plasma glucose concentration (MPGluC) explain the variation in cancer prevalence across species? We collected diet, MPGluC, and neoplasia data for 160 vertebrate species from existing databases. We found that MPGluC negatively correlates with cancer and neoplasia prevalence, mostly of gastrointestinal organs. Trophic level positively correlates with cancer and neoplasia prevalence even after controlling for species MPGluC. Most species with high MPGluC (50/78 species = 64.1%) were birds. Most species in high trophic levels (42/53 species = 79.2%) were reptiles and mammals. Our results may be explained by the evolution of insulin resistance in birds which selected for loss or downregulation of genes related to insulin-mediated glucose import in cells. This led to higher MPGluC, intracellular caloric restriction, production of fewer reactive oxygen species and inflammatory cytokines, and longer telomeres contributing to longer longevity and lower neoplasia prevalence in extant birds relative to other vertebrates.
Collapse
Affiliation(s)
- Stefania E Kapsetaki
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Tufts University, School of Arts and Sciences, Department of Biology, Medford, MA, USA
| | - Anthony J Basile
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, 427 East Tyler Mall, Arizona State University, Tempe, Arizona, USA
| | - Zachary T Compton
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Shawn M Rupp
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Elizabeth G Duke
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, 27607 USA
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, NC, 27607 USA
| | - Amy M Boddy
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Anthropology, University of California Santa Barbara, CA, USA
| | - Tara M Harrison
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, 27607 USA
- Exotic Species Cancer Research Alliance, North Carolina State University, Raleigh, NC, 27607 USA
| | - Karen L Sweazea
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA
- Center for Biocomputing, Security and Society, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
11
|
Wang S, Liu B, Huang J, He H, Li L, Tao A. Cell-in-cell promotes lung cancer malignancy by enhancing glucose metabolism through mitochondria transfer. Exp Cell Res 2023:113665. [PMID: 37236579 DOI: 10.1016/j.yexcr.2023.113665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Heterotypic cell-in-cell structure (CICs) is the definition of the entry of one type of living cells into another type of cell. CICs between immune cells and tumor cells have been found to correlate with malignancy in many cancers. Since tumor immune microenvironment promotes non-small cell lung cancer (NSCLC) progression and drug resistance, we wondered the potential significance of heterotypic CICs in NSCLC. Heterotypic CICs was analyzed by histochemistry in an expanded spectrum of clinical lung cancer tissue specimens. In vitro study was performed using the mouse lung cancer cell line LLC and splenocytes. Our results revealed that CICs formed by lung cancer cells and infiltrated lymphocytes were correlated with malignancy of NSCLC. In addition, we found CICs mediated the transfer of lymphocyte mitochondria to tumor cells, and promoted cancer cell proliferation and anti-cytotoxicity by activating MAPK pathway and up-regulating PD-L1 expression. Furthermore, CICs induces glucose metabolism reprogramming of lung cancer cells by upregulating glucose intake and glycolytic enzyme. Our findings suggest that CICs formed by lung cancer cell and lymphocyte contribute to NSCLC progression and reprogramming of glucose metabolism, and might represent a previously undescribed pathway for drug resistance of NSCLC.
Collapse
Affiliation(s)
- Shan Wang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunology & Immune-mediated Disease, Guangzhou Medical University, Guangzhou, 510260, China
| | - Bowen Liu
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunology & Immune-mediated Disease, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jiahao Huang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunology & Immune-mediated Disease, Guangzhou Medical University, Guangzhou, 510260, China
| | - Huiru He
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunology & Immune-mediated Disease, Guangzhou Medical University, Guangzhou, 510260, China
| | - Linmei Li
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunology & Immune-mediated Disease, Guangzhou Medical University, Guangzhou, 510260, China
| | - Ailin Tao
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunology & Immune-mediated Disease, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
12
|
Buhazi IM, Grosu IG, Filip X, Petran A, Tripon SC, Floare CG, Suciu M. Polydopamine conjugated SiO 2 nanoparticles as potential drug carriers for melanoma treatment. Ther Deliv 2023; 14:157-173. [PMID: 37158273 DOI: 10.4155/tde-2023-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Silica nanoparticles (SiO2) are increasingly investigated for biomedical applications. Aim: This study aimed to analyze the potential use of a SiO2 nanoparticles coated with biocompatible polydopamine (SiO2@PDA) as a potential chemotherapeutic drug carrier. Materials & methods: SiO2 morphology and PDA adhesion was analyzed by dynamic light scattering, electron microscopy and nuclear magnetic resonance. Cytotoxicity studies and morphology analyses (immunofluorescence, scanning and transmission electron microscopy) were used to assess the cellular reaction to the SiO2@PDA nanoparticles and to identify a biocompatible (safe use) window. Results & conclusion: Concentrations above 10 μg/ml and up to 100 μg/ml SiO2@PDA showed the best biocompatibility on human melanoma cells at 24 h and represent a potential drug carrier template for targeted melanoma cancer treatment.
Collapse
Affiliation(s)
- Ioana Mădălina Buhazi
- Electron Microscopy Center "C. Crăciun", Biology & Geology Faculty, Babeș-Bolyai University, Cluj-Napoca, 5-7 Clinicilor str., 400006, Romania
| | - Ioana-Georgeta Grosu
- Molecular & Biomolecular Physics Department, National Institute for R&D for Isotopic & Molecular Technologies (INCDTIM), Cluj-Napoca, 67-103 Donath str., 400293, Romania
| | - Xenia Filip
- Molecular & Biomolecular Physics Department, National Institute for R&D for Isotopic & Molecular Technologies (INCDTIM), Cluj-Napoca, 67-103 Donath str., 400293, Romania
| | - Anca Petran
- Physics of Nanostructured Systems, National Institute for R&D for Isotopic & Molecular Technologies (INCDTIM), Cluj-Napoca, 67-103 Donath str., 400293, Romania
| | - Septimiu Cassian Tripon
- Electron Microscopy Center "C. Crăciun", Biology & Geology Faculty, Babeș-Bolyai University, Cluj-Napoca, 5-7 Clinicilor str., 400006, Romania
- LIME-CETATEA, National Institute for R&D for Isotopic & Molecular Technologies (INCDTIM), Cluj-Napoca, 67-103 Donath str., 400293, Romania
| | - Călin Gabriel Floare
- Molecular & Biomolecular Physics Department, National Institute for R&D for Isotopic & Molecular Technologies (INCDTIM), Cluj-Napoca, 67-103 Donath str., 400293, Romania
| | - Maria Suciu
- Electron Microscopy Center "C. Crăciun", Biology & Geology Faculty, Babeș-Bolyai University, Cluj-Napoca, 5-7 Clinicilor str., 400006, Romania
- LIME-CETATEA, National Institute for R&D for Isotopic & Molecular Technologies (INCDTIM), Cluj-Napoca, 67-103 Donath str., 400293, Romania
| |
Collapse
|
13
|
Dziuba I, Gawel AM, Tyrna P, Machtyl J, Olszanecka M, Pawlik A, Wójcik C, Bialy LP, Mlynarczuk-Bialy I. Homotypic Entosis as a Potential Novel Diagnostic Marker in Breast Cancer. Int J Mol Sci 2023; 24:ijms24076819. [PMID: 37047791 PMCID: PMC10095369 DOI: 10.3390/ijms24076819] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Homotypic entotic figures, which are a form of "cell-in-cell" structures, are considered a potential novel independent prognostic marker in various cancers. Nevertheless, the knowledge concerning the biological role of this phenomenon is still unclear. Since breast cancer cells are remarkably entosis-competent, we aimed to investigate and compare the frequency of entoses in a primary breast tumor and in its lymph node metastasis. Moreover, as there are limited data on defined molecular markers of entosis, we investigated entosis in correlation with classical breast cancer biomarkers used in routine pathomorphological diagnostics (HER2, ER, PR, and Ki67). In the study, a cohort of entosis-positive breast cancer samples paired into primary lesions and lymph node metastases was used. The inclusion criteria were a diagnosis of NOS cancer, lymph node metastases, the presence of entotic figures in the primary lesion, and/or lymph node metastases. In a selected, double-negative, HER2-positive NOS breast cancer case, entoses were characterized by a correlation between an epithelial-mesenchymal transition and proliferation markers. We observed that in the investigated cohort entotic figures were positively correlated with Ki67 and HER2, but not with ER or PR markers. Moreover, for the first time, we identified Ki67-positive mitotic inner entotic cells in clinical carcinoma samples. Our study performed on primary and secondary breast cancer specimens indicated that entotic figures, when examined by routine HE histological staining, present potential diagnostic value, since they correlate with two classical prognostic factors of breast cancer.
Collapse
Affiliation(s)
- Ireneusz Dziuba
- Department of Pathology, Faculty of Medicine, Academy of Silesia, 40-555 Katowice, Poland
| | - Agata M Gawel
- Histology and Embryology Students' Science Association, Department of Histology and Embryology, Faculty of Medicine, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Paweł Tyrna
- Histology and Embryology Students' Science Association, Department of Histology and Embryology, Faculty of Medicine, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Jędrzej Machtyl
- Histology and Embryology Students' Science Association, Department of Histology and Embryology, Faculty of Medicine, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Monika Olszanecka
- Histology and Embryology Students' Science Association, Department of Histology and Embryology, Faculty of Medicine, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | | | - Lukasz P Bialy
- Department of Histology and Embryology, Faculty of Medicine, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Izabela Mlynarczuk-Bialy
- Department of Histology and Embryology, Faculty of Medicine, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
14
|
Khan MS, Altwaijry N, Jabir NR, Alamri AM, Tarique M, Khan AU. Potential of green-synthesized ZnO NPs against human ovarian teratocarcinoma: an in vitro study. Mol Biol Rep 2023; 50:4447-4457. [PMID: 37014566 DOI: 10.1007/s11033-023-08367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Ovarian cancer leads to devastating outcomes, and its treatment is highly challenging. At present, there is a lack of clinical symptoms, well-known sensitivity biomarkers, and patients are diagnosed at an advanced stage. Currently, available therapeutics against ovarian cancer are inefficient, costly, and associated with severe side effects. The present study evaluated the anticancer potential of zinc oxide nanoparticles (ZnO NPs) that were successfully biosynthesized in an ecofriendly mode using pumpkin seed extracts. METHODS AND RESULTS The anticancer potential of the biosynthesized ZnO NPs was assessed using an in vitro human ovarian teratocarcinoma cell line (PA-1) by well-known assays such as MTT assay, morphological alterations, induction of apoptosis, measurement of reactive oxygen species (ROS) production, and inhibition of cell adhesion/migration. The biogenic ZnO NPs exerted a high level of cytotoxicity against PA-1 cells. Furthermore, the ZnO NPs inhibited cellular adhesion and migration but induced ROS production and cell death through programmed cell death. CONCLUSION The aforementioned anticancer properties highlight the therapeutic utility of ZnO NPs in ovarian cancer treatment. However, further research is recommended to envisage their mechanism of action in different cancer models and validation in a suitable in vivo system.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Nojood Altwaijry
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nasimudeen R Jabir
- Department of Biochemistry and Biotechnology, Centre for Research and Development, PRIST University, Vallam, Thanjavur, TN, 613403, India
| | | | - Mohammad Tarique
- Department of Child Health, University of Missouri, Columbia, MO, USA
| | - Azhar U Khan
- Department of Chemistry, School of Life and Basic Sciences, SIILAS CAMPUS, Jaipur National University, Jaipur, India
| |
Collapse
|
15
|
Bates M, Mohamed BM, Ward MP, Kelly TE, O'Connor R, Malone V, Brooks R, Brooks D, Selemidis S, Martin C, O'Toole S, O'Leary JJ. Circulating tumour cells: The Good, the Bad and the Ugly. Biochim Biophys Acta Rev Cancer 2023; 1878:188863. [PMID: 36796527 DOI: 10.1016/j.bbcan.2023.188863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/06/2023] [Accepted: 01/21/2023] [Indexed: 02/17/2023]
Abstract
This review is an overview of the current knowledge regarding circulating tumour cells (CTCs), which are potentially the most lethal type of cancer cell, and may be a key component of the metastatic cascade. The clinical utility of CTCs (the "Good"), includes their diagnostic, prognostic, and therapeutic potential. Conversely, their complex biology (the "Bad"), including the existence of CD45+/EpCAM+ CTCs, adds insult to injury regarding their isolation and identification, which in turn hampers their clinical translation. CTCs are capable of forming microemboli composed of both non-discrete phenotypic populations such as mesenchymal CTCs and homotypic and heterotypic clusters which are poised to interact with other cells in the circulation, including immune cells and platelets, which may increase their malignant potential. These microemboli (the "Ugly") represent a prognostically important CTC subset, however, phenotypic EMT/MET gradients bring additional complexities to an already challenging situation.
Collapse
Affiliation(s)
- Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland.
| | - Bashir M Mohamed
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Mark P Ward
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Tanya E Kelly
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Roisin O'Connor
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| | - Victoria Malone
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| | - Robert Brooks
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Doug Brooks
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology, Bundoora, VIC 3083, Australia
| | - Cara Martin
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| | - Sharon O'Toole
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin 2, Ireland
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| |
Collapse
|
16
|
Gutwillig A, Santana-Magal N, Farhat-Younis L, Rasoulouniriana D, Madi A, Luxenburg C, Cohen J, Padmanabhan K, Shomron N, Shapira G, Gleiberman A, Parikh R, Levy C, Feinmesser M, Hershkovitz D, Zemser-Werner V, Zlotnik O, Kroon S, Hardt WD, Debets R, Reticker-Flynn NE, Rider P, Carmi Y. Transient cell-in-cell formation underlies tumor relapse and resistance to immunotherapy. eLife 2022; 11:80315. [PMID: 36124553 PMCID: PMC9489212 DOI: 10.7554/elife.80315] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the remarkable successes of cancer immunotherapies, the majority of patients will experience only partial response followed by relapse of resistant tumors. While treatment resistance has frequently been attributed to clonal selection and immunoediting, comparisons of paired primary and relapsed tumors in melanoma and breast cancers indicate that they share the majority of clones. Here, we demonstrate in both mouse models and clinical human samples that tumor cells evade immunotherapy by generating unique transient cell-in-cell structures, which are resistant to killing by T cells and chemotherapies. While the outer cells in this cell-in-cell formation are often killed by reactive T cells, the inner cells remain intact and disseminate into single tumor cells once T cells are no longer present. This formation is mediated predominantly by IFNγ-activated T cells, which subsequently induce phosphorylation of the transcription factors signal transducer and activator of transcription 3 (STAT3) and early growth response-1 (EGR-1) in tumor cells. Indeed, inhibiting these factors prior to immunotherapy significantly improves its therapeutic efficacy. Overall, this work highlights a currently insurmountable limitation of immunotherapy and reveals a previously unknown resistance mechanism which enables tumor cells to survive immune-mediated killing without altering their immunogenicity. Cancer immunotherapies use the body’s own immune system to fight off cancer. But, despite some remarkable success stories, many patients only see a temporary improvement before the immunotherapy stops being effective and the tumours regrow. It is unclear why this occurs, but it may have to do with how the immune system attacks cancer cells. Immunotherapies aim to activate a special group of cells known as killer T-cells, which are responsible for the immune response to tumours. These cells can identify cancer cells and inject toxic granules through their membranes, killing them. However, killer T-cells are not always effective. This is because cancer cells are naturally good at avoiding detection, and during treatment, their genes can mutate, giving them new ways to evade the immune system. Interestingly, when scientists analysed the genes of tumour cells before and after immunotherapy, they found that many of the genes that code for proteins recognized by T-cells do not change significantly. This suggests that tumours’ resistance to immune attack may be physical, rather than genetic. To investigate this hypothesis, Gutwillig et al. developed several mouse tumour models that stop responding to immunotherapy after initial treatment. Examining cells from these tumours revealed that when the immune system attacks, they reorganise by getting inside one another. This allows some cancer cells to hide under many layers of cell membrane. At this point killer T-cells can identify and inject the outer cell with toxic granules, but it cannot reach the cells inside. This ability of cancer cells to hide within one another relies on them recognising when the immune system is attacking. This happens because the cancer cells can detect certain signals released by the killer T-cells, allowing them to hide. Gutwillig et al. identified some of these signals, and showed that blocking them stopped cancer cells from hiding inside each other, making immunotherapy more effective. This new explanation for how cancer cells escape the immune system could guide future research and lead to new cancer treatments, or approaches to boost existing treatments. Understanding the process in more detail could allow scientists to prevent it from happening, by revealing which signals to block, and when, for best results.
Collapse
Affiliation(s)
- Amit Gutwillig
- Department of Pathology, Sackler School of Medicine, Tel Aviv University
| | | | - Leen Farhat-Younis
- Department of Pathology, Sackler School of Medicine, Tel Aviv University
| | | | - Asaf Madi
- Department of Pathology, Sackler School of Medicine, Tel Aviv University
| | - Chen Luxenburg
- Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University
| | - Jonathan Cohen
- Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University
| | | | - Noam Shomron
- Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University
| | - Guy Shapira
- Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University
| | - Annette Gleiberman
- Department of Pathology, Sackler School of Medicine, Tel Aviv University
| | - Roma Parikh
- Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University
| | - Carmit Levy
- Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University
| | - Meora Feinmesser
- Department of Pathology, Sackler School of Medicine, Tel Aviv University
- Institute of Pathology, Rabin Medical Center- Beilinson Hospital
| | - Dov Hershkovitz
- Department of Pathology, Sackler School of Medicine, Tel Aviv University
- Institute of Pathology, Tel Aviv Sourasky Medical Center
| | | | - Oran Zlotnik
- Department of General Surgery, Rabin Medical Center- Beilinson Campus
| | - Sanne Kroon
- Department of Biology, Institute of Microbiology
| | | | - Reno Debets
- Department of Medical Oncology, Erasmus MC Cancer Institute
| | | | - Peleg Rider
- Department of Pathology, Sackler School of Medicine, Tel Aviv University
| | - Yaron Carmi
- Department of Pathology, Sackler School of Medicine, Tel Aviv University
| |
Collapse
|
17
|
Choe YJ, Min JY, Lee H, Lee SY, Kwon J, Kim HJ, Lee J, Kim HM, Park HS, Cho MY, Hyun JY, Kim HM, Chung YH, Ha SK, Jeong HG, Choi I, Kim TD, Hong KS, Han EH. Heterotypic cell-in-cell structures between cancer and NK cells is associated with enhanced anti-cancer drug resistance. iScience 2022; 25:105017. [PMID: 36105584 PMCID: PMC9464952 DOI: 10.1016/j.isci.2022.105017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/13/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
The heterotypic CIC structures formed of cancer and immune cells have been observed in tumor tissues. We aimed to assess the feasibility of using heterotypic CICs as a functional biomarker to predict NK susceptibility and drug resistance. The heterotypic CIC-forming cancer cells showed a lower response to NK cytotoxicity and higher proliferative ability than non-CIC cancer cells. After treatment with anticancer drugs, cancer cells that formed heterotypic CICs showed a higher resistance to anticancer drugs than non-CIC cancer cells. We also observed the formation of more CIC structures in cancer cells treated with anticancer drugs than in the non-treated group. Our results confirm the association between heterotypic CIC structures and anticancer drug resistance in CICs formed from NK and cancer cells. These results suggest a mechanism underlying immune evasion in heterotypic CIC cancer cells and provide insights into the anticancer drug resistance of cancer cells. Conformation of heterotypic CIC structures formed between cancer and NK cells Heterotypic CICs exhibit a higher proliferative ability than non-CIC cells Heterotypic CICs are associated with NK susceptibility Heterotypic CICs are involved in anticancer drug resistance
Collapse
|
18
|
Siquara da Rocha LDO, Souza BSDF, Lambert DW, Gurgel Rocha CDA. Cell-in-Cell Events in Oral Squamous Cell Carcinoma. Front Oncol 2022; 12:931092. [PMID: 35847959 PMCID: PMC9280122 DOI: 10.3389/fonc.2022.931092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
For over a century, cells within other cells have been detected by pathologists as common histopathological findings in tumors, being generally identified as “cell-in-cell” structures. Despite their characteristic morphology, these structures can originate from various processes, such as cannibalism, entosis and emperipolesis. However, only in the last few decades has more attention been given to these events due to their importance in tumor development. In cancers such as oral squamous cell carcinoma, cell-in-cell events have been linked to aggressiveness, metastasis, and therapeutic resistance. This review aims to summarize relevant information about the occurrence of various cell-in-cell phenomena in the context of oral squamous cell carcinoma, addressing their causes and consequences in cancer. The lack of a standard terminology in diagnosing these events makes it difficult to classify the existing cases and to map the behavior and impacts of these structures. Despite being frequently reported in oral squamous cell carcinoma and other cancers, their impacts on carcinogenesis aren’t fully understood. Cell-in-cell formation is seen as a survival mechanism in the face of a lack of nutritional availability, an acid microenvironment and potential harm from immune cell defense. In this deadly form of competition, cells that engulf other cells establish themselves as winners, taking over as the predominant and more malignant cell population. Understanding the link between these structures and more aggressive behavior in oral squamous cell carcinoma is of paramount importance for their incorporation as part of a therapeutic strategy.
Collapse
Affiliation(s)
- Leonardo de Oliveira Siquara da Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Department of Pathology and Legal Medicine, School of Medicine, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Salvador, Brazil
| | - Daniel W. Lambert
- School of Clinical Dentistry, The University of Sheffield, Sheffield, United Kingdom
| | - Clarissa de Araújo Gurgel Rocha
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
- Department of Pathology and Legal Medicine, School of Medicine, Federal University of Bahia (UFBA), Salvador, Brazil
- Center for Biotechnology and Cell Therapy, D'Or Institute for Research and Education (IDOR), Salvador, Brazil
- Department of Clinical Propedeutics, School of Dentistry, Federal University of Bahia (UFBA), Salvador, Brazil
- *Correspondence: Clarissa de Araújo Gurgel Rocha,
| |
Collapse
|
19
|
Ibragimova M, Tsyganov M, Litviakov N. Tumour Stem Cells in Breast Cancer. Int J Mol Sci 2022; 23:ijms23095058. [PMID: 35563449 PMCID: PMC9099719 DOI: 10.3390/ijms23095058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022] Open
Abstract
Tumour stem cells (CSCs) are a self-renewing population that plays important roles in tumour initiation, recurrence, and metastasis. Although the medical literature is extensive, problems with CSC identification and cancer therapy remain. This review provides the main mechanisms of CSC action in breast cancer (BC): CSC markers and signalling pathways, heterogeneity, plasticity, and ecological behaviour. The dynamic heterogeneity of CSCs and the dynamic transitions of CSC− non-CSCs and their significance for metastasis are considered.
Collapse
Affiliation(s)
- Marina Ibragimova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 2, Moscow Tract, 634050 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 36, Lenin, 634050 Tomsk, Russia
- Correspondence:
| | - Matvey Tsyganov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
| | - Nikolai Litviakov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 2, Moscow Tract, 634050 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 36, Lenin, 634050 Tomsk, Russia
| |
Collapse
|
20
|
Hönigova K, Navratil J, Peltanova B, Polanska HH, Raudenska M, Masarik M. Metabolic tricks of cancer cells. Biochim Biophys Acta Rev Cancer 2022; 1877:188705. [PMID: 35276232 DOI: 10.1016/j.bbcan.2022.188705] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/26/2022] [Indexed: 12/15/2022]
Abstract
One of the characteristics of cancer cells important for tumorigenesis is their metabolic plasticity. Indeed, in various stress conditions, cancer cells can reshape their metabolic pathways to support the increased energy request due to continuous growth and rapid proliferation. Moreover, selective pressures in the tumor microenvironment, such as hypoxia, acidosis, and competition for resources, force cancer cells to adapt by complete reorganization of their metabolism. In this review, we highlight the characteristics of cancer metabolism and discuss its clinical significance, since overcoming metabolic plasticity of cancer cells is a key objective of modern cancer therapeutics and a better understanding of metabolic reprogramming may lead to the identification of possible targets for cancer therapy.
Collapse
Affiliation(s)
- Katerina Hönigova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Jiri Navratil
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Barbora Peltanova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Hana Holcova Polanska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University / Kamenice 5, CZ-625 00 Brno, Czech Republic; BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, CZ-252 50 Vestec, Czech Republic.
| |
Collapse
|
21
|
Filippone A, Li JG, Praticò D. VPS35 Downregulation Alters Degradation Pathways in Neuronal Cells. J Alzheimers Dis 2021; 84:1079-1089. [PMID: 34602481 DOI: 10.3233/jad-210701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The vacuolar protein sorting 35 (VPS35) is the main component of the retromer recognition core complex system which regulates intracellular cargo protein sorting and trafficking. Downregulation of VPS35 has been linked to the pathogenesis of neurodegenerative disorders such Alzheimer's and Parkinson's diseases via endosome dysregulation. OBJECTIVE Here we show that the genetic manipulation of VPS35 affects intracellular degradation pathways. METHODS A neuronal cell line expressing human APP Swedish mutant was used. VPS35 silencing was performed treating cells with VPS35 siRNA or Ctr siRNA for 72 h. RESULTS Downregulation of VPS35 was associated with alteration of autophagy flux and intracellular accumulation of acidic and ubiquitinated aggregates suggesting that dysfunction of the retromer recognition core leads to a significant alteration in both pathways. CONCLUSION Taken together, our data demonstrate that besides cargo sorting and trafficking, VPS35 by supporting the integral function of the retromer complex system plays an important role also as a critical regulator of intracellular degradation pathways.
Collapse
Affiliation(s)
- Alessia Filippone
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jian-Guo Li
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Domenico Praticò
- Alzheimer's Center at Temple, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
22
|
Borensztejn K, Tyrna P, Gaweł AM, Dziuba I, Wojcik C, Bialy LP, Mlynarczuk-Bialy I. Classification of Cell-in-Cell Structures: Different Phenomena with Similar Appearance. Cells 2021; 10:cells10102569. [PMID: 34685548 PMCID: PMC8534218 DOI: 10.3390/cells10102569] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
A phenomenon known for over 100 years named “cell-in-cell” (CIC) is now undergoing its renaissance, mostly due to modern cell visualization techniques. It is no longer an esoteric process studied by a few cell biologists, as there is increasing evidence that CICs may have prognostic and diagnostic value for cancer patients. There are many unresolved questions stemming from the difficulties in studying CICs and the limitations of current molecular techniques. CIC formation involves a dynamic interaction between an outer or engulfing cell and an inner or engulfed cell, which can be of the same (homotypic) or different kind (heterotypic). Either one of those cells appears to be able to initiate this process, which involves signaling through cell–cell adhesion, followed by cytoskeleton activation, leading to the deformation of the cellular membrane and movements of both cells that subsequently result in CICs. This review focuses on the distinction of five known forms of CIC (cell cannibalism, phagoptosis, enclysis, entosis, and emperipolesis), their unique features, characteristics, and underlying molecular mechanisms.
Collapse
Affiliation(s)
- Karol Borensztejn
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.B.); (P.T.); (A.M.G.)
| | - Paweł Tyrna
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.B.); (P.T.); (A.M.G.)
| | - Agata M. Gaweł
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland; (K.B.); (P.T.); (A.M.G.)
| | - Ireneusz Dziuba
- Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
- Faculty of Medicine, University of Technology, Rolna 43, 40-555 Katowice, Poland
| | - Cezary Wojcik
- US Cardiovascular, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA;
| | - Lukasz P. Bialy
- Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Izabela Mlynarczuk-Bialy
- Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-6295282
| |
Collapse
|
23
|
Hass R, von der Ohe J, Dittmar T. Cancer Cell Fusion and Post-Hybrid Selection Process (PHSP). Cancers (Basel) 2021; 13:cancers13184636. [PMID: 34572863 PMCID: PMC8470238 DOI: 10.3390/cancers13184636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Fusion of cancer cells either with other cancer cells (homotypic fusion) in local vicinity of the tumor tissue or with other cell types (e.g., macrophages, cancer-associated fibroblasts (CAFs), mesenchymal stromal-/stem-like cells (MSC)) (heterotypic fusion) represents a rare event. Accordingly, the clinical relevance of cancer-cell fusion events appears questionable. However, enhanced tumor growth and/or development of certain metastases can originate from cancer-cell fusion. Formation of hybrid cells after cancer-cell fusion requires a post-hybrid selection process (PHSP) to cope with genomic instability of the parental nuclei and reorganize survival and metabolic functionality. The present review dissects mechanisms that contribute to a PHSP and resulting functional alterations of the cancer hybrids. Based upon new properties of cancer hybrid cells, the arising clinical consequences of the subsequent tumor heterogeneity after cancer-cell fusion represent a major therapeutic challenge. However, cellular partners during cancer-cell fusion such as MSC within the tumor microenvironment or MSC-derived exosomes may provide a suitable vehicle to specifically address and deliver anti-tumor cargo to cancer cells.
Collapse
Affiliation(s)
- Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
- Correspondence: (R.H.); (T.D.); Tel.: +49-511-5326070 (R.H.); +49-2302-926165 (T.D.)
| | - Juliane von der Ohe
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Thomas Dittmar
- Institute of Immunology, Center of Biomedical Education and Research (ZABF), Witten/Herdecke University, 58448 Witten, Germany
- Correspondence: (R.H.); (T.D.); Tel.: +49-511-5326070 (R.H.); +49-2302-926165 (T.D.)
| |
Collapse
|
24
|
Hybrid Formation and Fusion of Cancer Cells In Vitro and In Vivo. Cancers (Basel) 2021; 13:cancers13174496. [PMID: 34503305 PMCID: PMC8431460 DOI: 10.3390/cancers13174496] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cell fusion as a fundamental biological process is required for various physiological processes, including fertilization, placentation, myogenesis, osteoclastogenesis, and wound healing/tissue regeneration. However, cell fusion is also observed during pathophysiological processes like tumor development. Mesenchymal stroma/stem-like cells (MSC) which play an important role within the tumor microenvironment like other cell types such as macrophages can closely interact and hybridize with cancer cells. The formation of cancer hybrid cells can involve various different mechanisms whereby the genomic parts of the hybrid cells require rearrangement to form a new functional hybrid cell. The fusion of cancer cells with neighboring cell types may represent an important mechanism during tumor development since cancer hybrid cells are detectable in various tumor tissues. During this rare event with resulting genomic instability the cancer hybrid cells undergo a post-hybrid selection process (PHSP) to reorganize chromosomes of the two parental nuclei whereby the majority of the hybrid population undergoes cell death. The remaining cancer hybrid cells survive by displaying altered properties within the tumor tissue. Abstract The generation of cancer hybrid cells by intra-tumoral cell fusion opens new avenues for tumor plasticity to develop cancer stem cells with altered properties, to escape from immune surveillance, to change metastatic behavior, and to broaden drug responsiveness/resistance. Genomic instability and chromosomal rearrangements in bi- or multinucleated aneuploid cancer hybrid cells contribute to these new functions. However, the significance of cell fusion in tumorigenesis is controversial with respect to the low frequency of cancer cell fusion events and a clonal advantage of surviving cancer hybrid cells following a post-hybrid selection process. This review highlights alternative processes of cancer hybrid cell development such as entosis, emperipolesis, cannibalism, therapy-induced polyploidization/endoreduplication, horizontal or lateral gene transfer, and focusses on the predominant mechanisms of cell fusion. Based upon new properties of cancer hybrid cells the arising clinical consequences of the subsequent tumor heterogeneity after cancer cell fusion represent a major therapeutic challenge.
Collapse
|
25
|
Zhang W, Zhao W, Li Q, Zhao D, Qu J, Yuan Z, Cheng Z, Zhu X, Zhuang X, Zhang Z. 3D-printing magnesium-polycaprolactone loaded with melatonin inhibits the development of osteosarcoma by regulating cell-in-cell structures. J Nanobiotechnology 2021; 19:263. [PMID: 34481503 PMCID: PMC8418751 DOI: 10.1186/s12951-021-01012-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/24/2021] [Indexed: 12/30/2022] Open
Abstract
Melatonin has been proposed as a potent anticarcinogen presents a short half-life for osteosarcoma (OS). Cell-in-cell (CIC) structures play a role in the development of malignant tumors by changing the tumor cell energy metabolism. This study developed a melatonin-loaded 3D printed magnesium-polycaprolactone (Mg-PCL) scaffold and investigated its effect and molecular mechanism on CIC in OS. Mg-PCL scaffold was prepared by 3D-printing and its characteristic was determined. The effect and molecular mechanism of Mg-PCL scaffold as well as melatonin-loaded Mg-PCL on OS growth and progression were investigated in vivo and in vitro. We found that melatonin receptor 1 (MT1) and CIC expressions were increased in OS tissues and cells. Melatonin treatment inhibit the key CIC pathway, Rho/ROCK, through the cAMP/PKA signaling pathway, interfering with the mitochondrial physiology of OS cells, and thus playing an anti-invasion and anti-metastasis role in OS. The Mg-PCL-MT could significantly inhibit distant organ metastasis of OS in the in vivo model. Our results showed that melatonin-loaded Mg-PCL scaffolds inhibited the proliferation, invasion and metastasis of OS cells through the CIC pathway. The Mg-PCL-MT could be a potential therapeutics for OS.
Collapse
Affiliation(s)
- Weilin Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Wei Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Qin Li
- Translational Medicine Center, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Duoyi Zhao
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Junxing Qu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Ziyang Yuan
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Zhihong Cheng
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China
| | - Xiaojuan Zhu
- Key Laboratory of Molecular Epigenetics, Ministry of Education and Institute of Cytology and Genetics, Northeast Normal University, Changchun, Jilin, China
| | - Xiuli Zhuang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun, Jilin, China
| | - Zhiyu Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, Liaoning, China.
| |
Collapse
|
26
|
Mon KS, Kilic I, Barkan GA, Pambuccian SE. "Bird's eye" cells in a pericardial effusion: Metastatic renal medullary carcinoma. Diagn Cytopathol 2021; 49:773-778. [PMID: 33908708 DOI: 10.1002/dc.24736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Khin Su Mon
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois, USA
| | - Irem Kilic
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois, USA
| | - Güliz A Barkan
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois, USA
| | - Stefan E Pambuccian
- Department of Pathology, Loyola University Medical Center, Maywood, Illinois, USA
| |
Collapse
|
27
|
Wang W, Zou R, Qiu Y, Liu J, Xin Y, He T, Qiu Z. Interaction Networks Converging on Immunosuppressive Roles of Granzyme B: Special Niches Within the Tumor Microenvironment. Front Immunol 2021; 12:670324. [PMID: 33868318 PMCID: PMC8047302 DOI: 10.3389/fimmu.2021.670324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Granzyme B is a renowned effector molecule primarily utilized by CTLs and NK cells against ill-defined and/or transformed cells during immunosurveillance. The overall expression of granzyme B within tumor microenvironment has been well-established as a prognostic marker indicative of priming immunity for a long time. Until recent years, increasing immunosuppressive effects of granzyme B are unveiled in the setting of different immunological context. The accumulative evidence confounded the roles of granzyme B in immune responses, thereby arousing great interests in characterizing detailed feature of granzyme B-positive niche. In this paper, the granzyme B-related regulatory effects of major suppressor cells as well as the tumor microenvironment that defines such functionalities were longitudinally summarized and discussed. Multiplex networks were built upon the interactions among different transcriptional factors, cytokines, and chemokines that regarded to the initiation and regulation of granzyme B-mediated immunosuppression. The conclusions and prospect may facilitate better interpretations of the clinical significance of granzyme B, guiding the rational development of therapeutic regimen and diagnostic probes for anti-tumor purposes.
Collapse
Affiliation(s)
- Weinan Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Zou
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Jishuang Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yu Xin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Tianzhu He
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China.,School of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
28
|
Cell-cell fusions and cell-in-cell phenomena in healthy cells and cancer: Lessons from protists and invertebrates. Semin Cancer Biol 2021; 81:96-105. [PMID: 33713795 DOI: 10.1016/j.semcancer.2021.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 02/08/2023]
Abstract
Herein we analyze two special routes of the multinucleated cells' formation - the fusion of mononuclear cells and the formation of cell-in-cell structures - in the healthy tissues and in tumorigenesis. There are many theories of tumorigenesis based on the phenomenon of emergence of the hybrid cancer cells. We consider the phenomena, which are rarely mentioned in those theories: namely, cellularization of syncytium or coenocytes, and the reversible or irreversible somatogamy. The latter includes the short-term and the long-term vegetative (somatic) cells' fusions in the life cycles of unicellular organisms. The somatogamy and multinuclearity have repeatedly and independently emerged in various groups of unicellular eukaryotes. These phenomena are among dominant survival and biodiversity sustaining strategies in protists and we admit that they can likely play an analogous role in cancer cells.
Collapse
|
29
|
Hofmann A, Putz F, Büttner-Herold M, Hecht M, Fietkau R, Distel LV. Increase in non-professional phagocytosis during the progression of cell cycle. PLoS One 2021; 16:e0246402. [PMID: 33544774 PMCID: PMC7864402 DOI: 10.1371/journal.pone.0246402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Homotypic or heterotypic internalization of another, either living or necrotic cell is currently in the center of research interest. The active invasion of a living cell called entosis and cannibalism of cells by rapidly proliferating cancers are prominent examples. Additionally, normal healthy tissue cells are capable of non-professional phagocytosis. This project studied the relationship between non-professional phagocytosis, individual proliferation and cell cycle progression. Three mesenchymal and two epithelial normal tissue cell lines were studied for homotypic non-professional phagocytosis. Homotypic dead cells were co-incubated with adherent growing living cell layers. Living cells were synchronized by mitotic shake-off as well as Aphidicolin-treatment and phagocytotic activity was analyzed by immunostaining. Cell cycle phases were evaluated by flow cytometry. Mesenchymal and epithelial normal tissue cells were capable of internalizing dead cells. Epithelial cells had much higher non-professional phagocytotic rates than mesenchymal cells. Cells throughout the entire cell cycle were able to phagocytose. The phagocytotic rate significantly increased with progressing cell cycle phases. Mitotic cells regularly phagocytosed dead cells, this was verified by Nocodazole and Colcemid treatment. Taken together, our findings indicate the ability of human tissue cells to phagocytose necrotic neighboring cells in confluent cell layers. The origin of the cell line influences the rate of cell-in-cell structure formation. The higher cell-in-cell structure rates during cell cycle progression might be influenced by cytoskeletal reorganization during this period or indicate an evolutionary anchorage of the process. Recycling of nutrients during cell growth might also be an explanation.
Collapse
Affiliation(s)
- Alexander Hofmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Florian Putz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Luitpold V. Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
30
|
Yan S, Fang J, Zhu Y, Xie Y, Fang F. Comprehensive analysis of prognostic immune-related genes associated with the tumor microenvironment of pancreatic ductal adenocarcinoma. Oncol Lett 2020; 20:366. [PMID: 33133266 PMCID: PMC7590433 DOI: 10.3892/ol.2020.12228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor with a specific tumor immune microenvironment (TIME). Therefore, investigating prognostic immune-related genes (IRGs) that are closely associated with TIME to predict PDAC clinical outcomes is necessary. In the present study, 459 samples of PDAC from the Genotype-Tissue Expression database, The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) were included and a survival-associated module was identified using weighted gene co-expression network analysis. Based on the Cox regression analysis and least absolute shrinkage and selection operator analysis, four IRGs (2′-5′-oligoadenylate synthetase 1, MET proto-oncogene, receptor tyrosine kinase, interleukin 1 receptor type 2 and interleukin 20 receptor subunit β) were included in the prognostic model to calculate the risk score (RS), and patients with PDAC were divided into high- and low-RS groups. Kaplan-Meier survival and receiver operating characteristic curve analyses demonstrated that the low-RS group had significantly improved survival conditions compared with the high-RS group in TCGA training set. The prognostic function of the model was also validated using ICGC and GEO cohorts. To investigate the mechanism of different overall survival between the high- and low-RS groups, the present study included Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using Expression Data and Cell Type Identification by Estimating Relative Subset of Known RNA Transcripts algorithms to investigate the state of the tumor microenvironment and immune infiltration inpatients in the cohort from TCGA. In summary, four genes associated with the TIME of PDAC were identified, which may provide a reference for clinical treatment.
Collapse
Affiliation(s)
- Shibai Yan
- Department of Medical Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Juntao Fang
- Laboratory of Experimental Cardiology, Department of Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Yuanqiang Zhu
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Yong Xie
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| | - Feng Fang
- Department of Obstetrics and Gynecology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, P.R. China
| |
Collapse
|
31
|
Mlynarczuk-Bialy I, Dziuba I, Sarnecka A, Platos E, Kowalczyk M, Pels KK, Wilczynski GM, Wojcik C, Bialy LP. Entosis: From Cell Biology to Clinical Cancer Pathology. Cancers (Basel) 2020; 12:cancers12092481. [PMID: 32883000 PMCID: PMC7563411 DOI: 10.3390/cancers12092481] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/03/2022] Open
Abstract
Simple Summary We review published clinico-histopathological studies establishing entosis an important prognostic and predictor factor in various cancer types. We also propose a new model to study this phenomenon, which involves active entry of one cell into another one. The internalized cell can remain viable and leave the host cell after a long time, potentially leading to cancer recurrence. Entotic figures are cell in cell structures, in which the nucleus of external cell is crescent-shaped, and the inner cell is surrounded by the extensive space entotic vacuole, distinguishing entosis from cell cannibalism. Entosis correlates with cancer worse prognosis in head and neck squamous cell carcinoma, anal carcinoma, lung adenocarcinoma, pancreatic ductal carcinoma, and some breast ductal carcinoma. The BxPC-3 pancreatic cancer cells provide a new, more convenient model for entosis research in comparison to the previously described semidherent MCF7 model. BxPC-3 cells undergo and survive spontaneous entosis in normal adherent culture conditions. Abstract Entosis is a phenomenon, in which one cell enters a second one. New clinico-histopathological studies of entosis prompted us to summarize its significance in cancer. It appears that entosis might be a novel, independent prognostic predictor factor in cancer histopathology. We briefly discuss the biological basis of entosis, followed by a summary of published clinico-histopathological studies on entosis significance in cancer prognosis. The correlation of entosis with cancer prognosis in head and neck squamous cell carcinoma, anal carcinoma, lung adenocarcinoma, pancreatic ductal carcinoma and breast ductal carcinoma, is shown. Numerous entotic figures are associated with a more malignant cancer phenotype and poor prognosis in many cancers. We also showed that some anticancer drugs could induce entosis in cell culture, even as an escape mechanism. Thus, entosis is likely beneficial for survival of malignant cells, i.e., an entotic cell can hide from unfavourable factors in another cell and subsequently leave the host cell remaining intact, leading to failure in therapy or cancer recurrence. Finally, we highlight the potential relationship of cell adhesion with entosis in vitro, based on the model of the BxPc3 cells cultured in full adhesive conditions, comparing them to a commonly used MCF7 semiadhesive model of entosis.
Collapse
Affiliation(s)
| | - Ireneusz Dziuba
- Department of Pathology, West Pomeranian Hospital in Gryfice, 72-300 Gryfice, Poland;
| | - Agnieszka Sarnecka
- HESA Association at the Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warszawa, Poland; (A.S.); (E.P.); (M.K.)
| | - Emilia Platos
- HESA Association at the Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warszawa, Poland; (A.S.); (E.P.); (M.K.)
| | - Magdalena Kowalczyk
- HESA Association at the Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warszawa, Poland; (A.S.); (E.P.); (M.K.)
| | - Katarzyna K. Pels
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (K.K.P.); (G.M.W.)
| | - Grzegorz M. Wilczynski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (K.K.P.); (G.M.W.)
| | - Cezary Wojcik
- US Cardiovascular, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1799, USA;
| | - Lukasz P. Bialy
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warszawa, Poland;
- Correspondence:
| |
Collapse
|