1
|
Park LM, Lannigan J, Low Q, Jaimes MC, Bonilla DL. OMIP-109: 45-color full spectrum flow cytometry panel for deep immunophenotyping of the major lineages present in human peripheral blood mononuclear cells with emphasis on the T cell memory compartment. Cytometry A 2024. [PMID: 39466962 DOI: 10.1002/cyto.a.24900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 10/30/2024]
Abstract
The need for more in-depth exploration of the human immune system has moved the flow cytometry field forward with advances in instrumentation, reagent development and availability, and user-friendly implementation of data analysis methods. We developed a high-quality human 45-color panel, for comprehensive characterization of major cell lineages present in circulation including T cells, γδ T cells, NKT-like cells, B cells, NK cells, monocytes, basophils, dendritic cells, and ILCs. Assay optimization steps are described in detail to ensure that each marker in the panel was optimally resolved. In addition, we highlight the outstanding discernment of cell activation, exhaustion, memory, and differentiation states of CD4+ and CD8+ T cells using this 45-color panel. The panel enabled an in-depth description of very distinct phenotypes associated with the complexity of the T cell memory response. Furthermore, we present how this panel can be effectively used for cell sorting on instruments with a similar optical layout to achieve the same level of resolution. Functional evaluation of sorted specific rare cell subsets demonstrated significantly different patterns of immunological responses to stimulation, supporting functional and phenotypic differences within the T cell memory subsets. In summary, the combination of full spectrum profiling technology and careful assay design and optimization results in a high resolution multiparametric 45-color assay. This panel offers the opportunity to fully characterize immunological profiles present in peripheral blood in the context of infectious diseases, autoimmunity, neurodegeneration, immunotherapy, and biomarker discovery.
Collapse
Affiliation(s)
- Lily M Park
- Cytek Biosciences, Inc., Scientific Commercialization, Fremont, California, USA
| | - Joanne Lannigan
- Flow Cytometry Support Services, LLC, Alexandria, Virginia, USA
| | - Quentin Low
- Cytek Biosciences, Inc., Scientific Commercialization, Fremont, California, USA
| | - Maria C Jaimes
- Cytek Biosciences, Inc., Scientific Commercialization, Fremont, California, USA
| | - Diana L Bonilla
- Cytek Biosciences, Inc., Scientific Commercialization, Fremont, California, USA
| |
Collapse
|
2
|
Ding S, Zhao P, Song S, Yang Y, Peng C, Chang X, Liu C. A novel enzyme-linked immunosorbent assay tool to evaluate plasma soluble CD226 in primary Sjögren's syndrome. Anal Biochem 2024; 692:115573. [PMID: 38768695 DOI: 10.1016/j.ab.2024.115573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
CD226 is an important receptor constitutively expressed on most immune cells, performing vital functions in immune responses. However, the levels of soluble CD226 (sCD226) and its roles in primary Sjögren syndrome (pSS) remain unclear. In this study, we developed two novel mouse anti-human CD226 monoclonal antibodies (mAbs) and established a novel sandwich enzyme-linked immunosorbent assay (ELISA) system, which proved to be highly effective in detecting human sCD226. We then analyzed the expression of sCD226 in the plasma of pSS patients. Our results showed that the levels of sCD226 were significantly lower in patients with pSS compared to healthy controls. The significant decline was also observed in active group and the patients with high levels of IgG or positive anti-SSB. Additionally, reduced sCD226 was found to be negatively correlated with the disease activity of pSS and several clinical manifestations, including arthralgia, fatigue, decayed tooth and interstitial lung disease (ILD). Furthermore, receiver operator characteristics (ROC) curve analysis showed that sCD226 displayed outstanding capacity in discriminating pSS and predicting the disease activity. Altogether, plasma sCD226 emerges as a promising candidate for diagnostic markers in the context of pSS.
Collapse
Affiliation(s)
- Sisi Ding
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Ping Zhao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, China
| | - Saizhe Song
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yanhong Yang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Cheng Peng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xin Chang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| |
Collapse
|
3
|
Qiao W, Duan C, Ma J, Hu W, Xie Y, Yang L, Wang T, Wu S, Li X, Wang Y, Cheng K, Zhang Y, Zhang Y, Zhuang R. Costimulatory Molecule CD226 Regulates Atopic Dermatitis in a Mouse Model. J Invest Dermatol 2024; 144:1743-1753.e4. [PMID: 38325579 DOI: 10.1016/j.jid.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
This study investigated the role of CD226 in a 2,4-dinitrochlorobenzene (DNCB)-induced mouse model of atopic dermatitis. The results showed that the lack of CD226 (global and CD4+ T-cell specific) significantly increased ear thickness, reddening, swelling, and scaling of the skin as well as inflammatory cell and mast cell infiltration. RT-qPCR results demonstrated that the mRNA expressions of atopic dermatitis-related inflammatory cytokines and chemokines were markedly increased in the draining lymph nodes and lesioned ear skin tissues of global and CD4+ T-cell-specific CD226-deficient mice compared with that in control mice. In vitro assessment revealed that CD226 directly modulates TGFβ-mediated regulatory T (Treg) cell differentiation and proliferation. Notably, Treg cell-specific deletion of CD226 (Cd226fl/flFoxp3cre mice) resulted in more severe dermatitis and epidermal thickening than those observed in littermate mice upon DNCB treatment. Subsequent analysis showed that the infiltration of Treg cells in ear lesions and the number of Tregs in the spleen were significantly reduced in Cd226fl/flFoxp3cre mice after DNCB treatment. In addition, the lack of CD226 induced apoptosis of Treg cells through the activation of caspase 3. Therefore, these results suggest that CD226 has potential efficacy in atopic dermatitis, correlating with Treg cell inhibition.
Collapse
MESH Headings
- Animals
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/pathology
- Dermatitis, Atopic/genetics
- Mice
- Disease Models, Animal
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Mice, Knockout
- Dinitrochlorobenzene
- Apoptosis
- Cell Differentiation
- Mice, Inbred C57BL
- Skin/pathology
- Skin/immunology
Collapse
Affiliation(s)
- Wei Qiao
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China; Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Chujun Duan
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China; Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Jingchang Ma
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Wei Hu
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yang Xie
- Otolaryngological Department of Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lu Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Tingting Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shuwen Wu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Xuemei Li
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yuling Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Kun Cheng
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yun Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Yuan Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, China.
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
4
|
Song Y, Wang Y, Li J, Shen Y, Hou Y, Fu Z, Fang L, Jin B, Chen L. CD226 promotes renal fibrosis by regulating macrophage activation and migration. J Leukoc Biol 2024; 116:103-117. [PMID: 38660893 DOI: 10.1093/jleuko/qiae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/29/2024] [Accepted: 02/21/2024] [Indexed: 04/26/2024] Open
Abstract
It has been found that CD226 plays an important role in regulating macrophage function, but its expression and function in macrophages during renal fibrogenesis have not been studied. Our data demonstrated that CD226 expression in macrophages was obviously upregulated in the unilateral ureteral obstruction model, while CD226 deficiency attenuated collagen deposition in renal interstitium along with fewer M1 within renal cortex and renal medulla and a lower level of proinflammatory factors compared to that of control littermates. Further studies demonstrated that Cd226-/- bone marrow-derived macrophages transferring could significantly reduce the tubular injury, collagen deposition, and proinflammatory cytokine secretion compared with that of Cd226+/+ bone marrow-derived macrophages transferring in the unilateral ureteral obstruction model. Mechanistic investigations revealed that CD226 promoted proinflammatory M1 macrophage accumulation in the kidney via suppressing KLF4 expression in macrophages. Therefore, our results uncovered a pathogenic role of CD226 during the development of chronic kidney disease by promoting monocyte infiltration from peripheral blood into the kidney and enhancing macrophage activation toward the inflammatory phenotype by suppressing KLF4 expression.
Collapse
Affiliation(s)
- Yun Song
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Yazhen Wang
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Juan Li
- College of Life Sciences, Northwest University, No.229, Taibai North Road, Beilin District, Xi'an 710069, ShaanXi, China
| | - Yuting Shen
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Yongli Hou
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Zhaoyue Fu
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Liang Fang
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Boquan Jin
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
| | - Lihua Chen
- Department of Immunology, Air Force Medical University, No.169, Changle West Road, Xincheng District, Xi'an 710032, ShaanXi, China
- College of Life Sciences, Northwest University, No.229, Taibai North Road, Beilin District, Xi'an 710069, ShaanXi, China
| |
Collapse
|
5
|
Dintwe OB, Ballweber Fleming L, Voillet V, McNevin J, Seese A, Naidoo A, Omarjee S, Bekker LG, Kublin JG, De Rosa SC, Newell EW, Fiore-Gartland A, Andersen-Nissen E, McElrath MJ. Adolescent BCG revaccination induces a phenotypic shift in CD4 + T cell responses to Mycobacterium tuberculosis. Nat Commun 2024; 15:5191. [PMID: 38890283 PMCID: PMC11189459 DOI: 10.1038/s41467-024-49050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
A recent clinical trial demonstrated that Bacille Calmette-Guérin (BCG) revaccination of adolescents reduced the risk of sustained infection with Mycobacterium tuberculosis (M.tb). In a companion phase 1b trial, HVTN 602/Aeras A-042, we characterize in-depth the cellular responses to BCG revaccination or to a H4:IC31 vaccine boost to identify T cell subsets that could be responsible for the protection observed. High-dimensional clustering analysis of cells profiled using a 26-color flow cytometric panel show marked increases in five effector memory CD4+ T cell subpopulations (TEM) after BCG revaccination, two of which are highly polyfunctional. CITE-Seq single-cell analysis shows that the activated subsets include an abundant cluster of Th1 cells with migratory potential. Additionally, a small cluster of Th17 TEM cells induced by BCG revaccination expresses high levels of CD103; these may represent recirculating tissue-resident memory cells that could provide pulmonary immune protection. Together, these results identify unique populations of CD4+ T cells with potential to be immune correlates of protection conferred by BCG revaccination.
Collapse
Affiliation(s)
- One B Dintwe
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town, South Africa
| | | | - Valentin Voillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town, South Africa
| | - John McNevin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Aaron Seese
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Anneta Naidoo
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town, South Africa
| | - Saleha Omarjee
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town, South Africa
| | - Linda-Gail Bekker
- The Desmond Tutu HIV Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - James G Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephen C De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Evan W Newell
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Erica Andersen-Nissen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Cape Town HVTN Immunology Laboratory, Hutchinson Centre Research Institute of South Africa, Cape Town, South Africa.
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
6
|
Amo L, Kole HK, Scott B, Borrego F, Qi CF, Wang H, Bolland S. Purification and analysis of kidney-infiltrating leukocytes in a mouse model of lupus nephritis. Methods Cell Biol 2024; 188:131-152. [PMID: 38880521 DOI: 10.1016/bs.mcb.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Renal injury often occurs as a complication in autoimmune diseases such as systemic lupus erythematosus (SLE). It is estimated that a minimum of 20% SLE patients develop lupus nephritis, a condition that can be fatal when the pathology progresses to end-stage renal disease. Studies in animal models showed that incidence of immune cell infiltrates in the kidney was linked to pathological injury and correlated with severe lupus nephritis. Thus, preventing immune cell infiltration into the kidney is a potential approach to impede the progression to an end-stage disease. A requirement to investigate the role of kidney-infiltrating leukocytes is the development of reproducible and efficient protocols for purification and characterization of immune cells in kidney samples. This chapter describes a detailed methodology that discriminates tissue-resident leukocytes from blood-circulating cells that are found in kidney. Our protocol was designed to maximize cell viability and to reduce variability among samples, with a combination of intravascular staining and magnetic bead separation for leukocyte enrichment. Experiments included as example were performed with FcγRIIb[KO] mice, a well-characterized murine model of SLE. We identified T cells and macrophages as the primary leukocyte subsets infiltrating into the kidney during severe nephritis, and we extensively characterized them phenotypically by flow cytometry.
Collapse
Affiliation(s)
- Laura Amo
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Hemanta K Kole
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Bethany Scott
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Francisco Borrego
- Immunopathology Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Chen-Feng Qi
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Hongsheng Wang
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Silvia Bolland
- Laboratory of Immunogenetics, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| |
Collapse
|
7
|
Sakano Y, Sakano K, Hurrell BP, Helou DG, Shafiei-Jahani P, Kazemi MH, Li X, Shen S, Hilser JR, Hartiala JA, Allayee H, Barbers R, Akbari O. Blocking CD226 regulates type 2 innate lymphoid cell effector function and alleviates airway hyperreactivity. J Allergy Clin Immunol 2024; 153:1406-1422.e6. [PMID: 38244725 DOI: 10.1016/j.jaci.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND Type 2 innate lymphoid cells (ILC2s) play a pivotal role in type 2 asthma. CD226 is a costimulatory molecule involved in various inflammatory diseases. OBJECTIVE We aimed to investigate CD226 expression and function within human and mouse ILC2s, and to assess the impact of targeting CD226 on ILC2-mediated airway hyperreactivity (AHR). METHODS We administered IL-33 intranasally to wild-type mice, followed by treatment with anti-CD226 antibody or isotype control. Pulmonary ILC2s were sorted for ex vivo analyses through RNA sequencing and flow cytometry. Next, we evaluated the effects of CD226 on AHR and lung inflammation in wild-type and Rag2-/- mice. Additionally, we compared peripheral ILC2s from healthy donors and asthmatic patients to ascertain the role of CD226 in human ILC2s. RESULTS Our findings demonstrated an inducible expression of CD226 in activated ILC2s, enhancing their cytokine secretion and effector functions. Mechanistically, CD226 alters intracellular metabolism and enhances PI3K/AKT and MAPK signal pathways. Blocking CD226 ameliorates ILC2-dependent AHR in IL-33 and Alternaria alternata-induced models. Interestingly, CD226 is expressed and inducible in human ILC2s, and its blocking reduces cytokine production. Finally, we showed that peripheral ILC2s in asthmatic patients exhibited elevated CD226 expression compared to healthy controls. CONCLUSION Our findings underscore the potential of CD226 as a novel therapeutic target in ILC2s, presenting a promising avenue for ameliorating AHR and allergic asthma.
Collapse
Affiliation(s)
- Yoshihiro Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Kei Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Doumet Georges Helou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Mohammad H Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Xin Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Stephen Shen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - James R Hilser
- Departments of Population & Public Health Sciences and Biochemistry & Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Jaana A Hartiala
- Departments of Population & Public Health Sciences and Biochemistry & Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Hooman Allayee
- Departments of Population & Public Health Sciences and Biochemistry & Molecular Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Richard Barbers
- Department of Clinical Medicine, Division of Pulmonary and Critical Care Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, Calif
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine of the University of Southern California, Los Angeles, Calif.
| |
Collapse
|
8
|
Borysewicz-Sańczyk H, Wawrusiewicz-Kurylonek N, Gościk J, Sawicka B, Bossowski F, Corica D, Aversa T, Waśniewska M, Bossowski A. Prevalence of Selected Polymorphisms of Il7R, CD226, CAPSL, and CLEC16A Genes in Children and Adolescents with Autoimmune Thyroid Diseases. Int J Mol Sci 2024; 25:4028. [PMID: 38612837 PMCID: PMC11012896 DOI: 10.3390/ijms25074028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Hashimoto's thyroiditis (HT) and Graves' disease (GD) are common autoimmune endocrine disorders in children. Studies indicate that apart from environmental factors, genetic background significantly contributes to the development of these diseases. This study aimed to assess the prevalence of selected single-nucleotide polymorphisms (SNPs) of Il7R, CD226, CAPSL, and CLEC16A genes in children with autoimmune thyroid diseases. We analyzed SNPs at the locus rs3194051, rs6897932 of IL7R, rs763361 of CD226, rs1010601 of CAPSL, and rs725613 of CLEC16A gene in 56 HT patients, 124 GD patients, and 156 healthy children. We observed significant differences in alleles IL7R (rs6897932) between HT males and the control group (C > T, p = 0.028) and between all GD patients and healthy children (C > T, p = 0.035) as well as GD females and controls (C > T, p = 0.018). Moreover, the C/T genotype was less frequent in GD patients at rs6897932 locus and in HT males at rs1010601 locus. The presence of the T allele in the IL7R (rs6897932) locus appears to have a protective effect against HT in males and GD in all children. Similarly, the presence of the T allele in the CAPSL locus (rs1010601) seems to reduce the risk of HT development in all patients.
Collapse
Affiliation(s)
- Hanna Borysewicz-Sańczyk
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Divisions, Medical University of Bialystok, J. Waszyngtona 17, 15-274 Bialystok, Poland; (B.S.); (F.B.)
| | - Natalia Wawrusiewicz-Kurylonek
- Department of Clinical Genetics, Medical University of Bialystok, J. Waszyngtona 13, 15-089 Bialystok, Poland;
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, M. Skłodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Joanna Gościk
- Faculty of Computer Science, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland;
| | - Beata Sawicka
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Divisions, Medical University of Bialystok, J. Waszyngtona 17, 15-274 Bialystok, Poland; (B.S.); (F.B.)
| | - Filip Bossowski
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Divisions, Medical University of Bialystok, J. Waszyngtona 17, 15-274 Bialystok, Poland; (B.S.); (F.B.)
| | - Domenico Corica
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria Cap, 98125 Messina, Italy; (D.C.); (T.A.); (M.W.)
| | - Tommaso Aversa
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria Cap, 98125 Messina, Italy; (D.C.); (T.A.); (M.W.)
| | - Małgorzata Waśniewska
- Unit of Pediatrics, Department of Human Pathology of Adulthood and Childhood, University of Messina, Via Consolare Valeria Cap, 98125 Messina, Italy; (D.C.); (T.A.); (M.W.)
| | - Artur Bossowski
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Divisions, Medical University of Bialystok, J. Waszyngtona 17, 15-274 Bialystok, Poland; (B.S.); (F.B.)
| |
Collapse
|
9
|
Vázquez-Reyes A, Zambrano-Zaragoza JF, Agraz-Cibrián JM, Ayón-Pérez MF, Gutiérrez-Silerio GY, Del Toro-Arreola S, Alejandre-González AG, Ortiz-Martínez L, Haramati J, Tovar-Ocampo IC, Victorio-De los Santos M, Gutiérrez-Franco J. Genetic Variant of DNAM-1 rs763361 C>T Is Associated with Ankylosing Spondylitis in a Mexican Population. Curr Issues Mol Biol 2024; 46:2819-2826. [PMID: 38666906 PMCID: PMC11048971 DOI: 10.3390/cimb46040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
DNAM-1 (CD226) is an activating receptor expressed in CD8+ T cells, NK cells, and monocytes. It has been reported that two SNPs in the DNAM-1 gene, rs763361 C>T and rs727088 G>A, have been associated with different autoimmune diseases; however, the role of DNAM-1 in ankylosing spondylitis has been less studied. For this reason, we focused on the study of these two SNPs in association with ankylosing spondylitis. For this, 34 patients and 70 controls were analyzed using endpoint PCR with allele-specific primers. Our results suggest that rs763361 C>T is involved as a possible protective factor under the CT co-dominant model (OR = 0.34, 95% CI = 0.13-0.88, p = 0.022) and the CT + TT dominant model (OR = 0.39, 95% CI = 0.17-0.90, p = 0.025), while rs727088 G>A did not show an association with the disease in any of the inheritance models. When analyzing the relationships of the haplotypes, we found that the T + A haplotype (OR = 0.31, 95% CI = 0.13-0.73, p = 0.0083) is a protective factor for developing the disease. In conclusion, the CT and CT + TT variants of rs763361 C>T and the T + A haplotype were considered as protective factors for developing ankylosing spondylitis.
Collapse
Affiliation(s)
- Alejandro Vázquez-Reyes
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - José Francisco Zambrano-Zaragoza
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Juan Manuel Agraz-Cibrián
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Miriam Fabiola Ayón-Pérez
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Gloria Yareli Gutiérrez-Silerio
- Laboratorio de Endocrinología y Nutrición, Departamento de Investigación Biomédica, Faculta de Medicina, Universidad Autónoma de Querétaro, Querétaro 76140, Querétaro, Mexico
| | - Susana Del Toro-Arreola
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Alan Guillermo Alejandre-González
- Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Liliana Ortiz-Martínez
- Clínica de Reumatología, Servicio de Medicina Interna, Instituto Mexicano del Seguro Social (IMSS), Tepic 63000, Nayarit, Mexico
| | - Jesse Haramati
- Laboratorio de Inmunobiología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Iris Celeste Tovar-Ocampo
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Marcelo Victorio-De los Santos
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| | - Jorge Gutiérrez-Franco
- Unidad Académica de Ciencias Químico Biológicas y Farmacéuticas (UACQByF), Universidad Autónoma de Nayarit, Tepic 63000, Nayarit, Mexico; (A.V.-R.)
| |
Collapse
|
10
|
Mattisson J, Halvardson J, Davies H, Bruhn-Olszewska B, Olszewski P, Danielsson M, Bjurling J, Lindberg A, Zaghlool A, Rychlicka-Buniowska E, Dumanski JP, Forsberg LA. Loss of chromosome Y in regulatory T cells. BMC Genomics 2024; 25:243. [PMID: 38443832 PMCID: PMC10913415 DOI: 10.1186/s12864-024-10168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Mosaic loss of chromosome Y (LOY) in leukocytes is the most prevalent somatic aneuploidy in aging humans. Men with LOY have increased risks of all-cause mortality and the major causes of death, including many forms of cancer. It has been suggested that the association between LOY and disease risk depends on what type of leukocyte is affected with Y loss, with prostate cancer patients showing higher levels of LOY in CD4 + T lymphocytes. In previous studies, Y loss has however been observed at relatively low levels in this cell type. This motivated us to investigate whether specific subsets of CD4 + T lymphocytes are particularly affected by LOY. Publicly available, T lymphocyte enriched, single-cell RNA sequencing datasets from patients with liver, lung or colorectal cancer were used to study how LOY affects different subtypes of T lymphocyte. To validate the observations from the public data, we also generated a single-cell RNA sequencing dataset comprised of 23 PBMC samples and 32 CD4 + T lymphocytes enriched samples. RESULTS Regulatory T cells had significantly more LOY than any other studied T lymphocytes subtype. Furthermore, LOY in regulatory T cells increased the ratio of regulatory T cells compared with other T lymphocyte subtypes, indicating an effect of Y loss on lymphocyte differentiation. This was supported by developmental trajectory analysis of CD4 + T lymphocytes culminating in the regulatory T cells cluster most heavily affected by LOY. Finally, we identify dysregulation of 465 genes in regulatory T cells with Y loss, many involved in the immunosuppressive functions and development of regulatory T cells. CONCLUSIONS Here, we show that regulatory T cells are particularly affected by Y loss, resulting in an increased fraction of regulatory T cells and dysregulated immune functions. Considering that regulatory T cells plays a critical role in the process of immunosuppression; this enrichment for regulatory T cells with LOY might contribute to the increased risk for cancer observed among men with Y loss in leukocytes.
Collapse
Affiliation(s)
- Jonas Mattisson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jonatan Halvardson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hanna Davies
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Bożena Bruhn-Olszewska
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Paweł Olszewski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
| | - Marcus Danielsson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Josefin Bjurling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Amanda Lindberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ammar Zaghlool
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Jan P Dumanski
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
| | - Lars A Forsberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- The Beijer Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Ruz-Maldonado I, Gonzalez JT, Zhang H, Sun J, Bort A, Kabir I, Kibbey RG, Suárez Y, Greif DM, Fernández-Hernando C. Heterogeneity of hepatocyte dynamics restores liver architecture after chemical, physical or viral damage. Nat Commun 2024; 15:1247. [PMID: 38341404 PMCID: PMC10858916 DOI: 10.1038/s41467-024-45439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Midlobular hepatocytes are proposed to be the most plastic hepatic cell, providing a reservoir for hepatocyte proliferation during homeostasis and regeneration. However, other mechanisms beyond hyperplasia have been little explored and the contribution of other hepatocyte subpopulations to regeneration has been controversial. Thus, re-examining hepatocyte dynamics during regeneration is critical for cell therapy and treatment of liver diseases. Using a mouse model of hepatocyte- and non-hepatocyte- multicolor lineage tracing, we demonstrate that midlobular hepatocytes also undergo hypertrophy in response to chemical, physical, and viral insults. Our study shows that this subpopulation also combats liver impairment after infection with coronavirus. Furthermore, we demonstrate that pericentral hepatocytes also expand in number and size during the repair process and Galectin-9-CD44 pathway may be critical for driving these processes. Notably, we also identified that transdifferentiation and cell fusion during regeneration after severe injury contribute to recover hepatic function.
Collapse
Affiliation(s)
- Inmaculada Ruz-Maldonado
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - John T Gonzalez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hanming Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jonathan Sun
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alicia Bort
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Inamul Kabir
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Richard G Kibbey
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
12
|
Hoffman-Censits J, Grivas P, Powles T, Hawley J, Tyroller K, Seeberger S, Guenther S, Jacob N, Mehr KT, Hahn NM. The JAVELIN Bladder Medley trial: avelumab-based combinations as first-line maintenance in advanced urothelial carcinoma. Future Oncol 2024; 20:179-190. [PMID: 37671748 DOI: 10.2217/fon-2023-0492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Results from JAVELIN Bladder 100 established avelumab (anti-PD-L1) first-line maintenance as the standard-of-care treatment for patients with advanced urothelial carcinoma (UC) that has not progressed with first-line platinum-based chemotherapy. We describe the design of JAVELIN Bladder Medley (NCT05327530), an ongoing phase II, multicenter, randomized, open-label, parallel-arm, umbrella trial. Overall, 252 patients with advanced UC who are progression-free following first-line platinum-based chemotherapy will be randomized 1:2:2:2 to receive maintenance therapy with avelumab alone (control group) or combined with sacituzumab govitecan (anti-Trop-2/topoisomerase inhibitor conjugate), M6223 (anti-TIGIT) or NKTR-255 (recombinant human IL-15). Primary end points are progression-free survival per investigator and safety/tolerability of the combination regimens. Secondary end points include overall survival, objective response and duration of response per investigator, and pharmacokinetics.
Collapse
Affiliation(s)
- Jean Hoffman-Censits
- Departments of Medical Oncology & Urology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Petros Grivas
- University of Washington, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Thomas Powles
- Department of Genitourinary Oncology, Barts Cancer Institute, Experimental Cancer Medicine Centre, Queen Mary University of London, St Bartholomew's Hospital, London, UK
| | - Jessica Hawley
- University of Washington, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Karin Tyroller
- EMD Serono Research & Development Institute, Inc., Billerica, MA, USA, an affiliate of Merck KGaA
| | | | | | | | | | - Noah M Hahn
- Departments of Medical Oncology & Urology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
13
|
Maxwell M, Söderlund R, Härtle S, Wattrang E. Single-cell RNA-seq mapping of chicken peripheral blood leukocytes. BMC Genomics 2024; 25:124. [PMID: 38287279 PMCID: PMC10826067 DOI: 10.1186/s12864-024-10044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Single-cell transcriptomics provides means to study cell populations at the level of individual cells. In leukocyte biology this approach could potentially aid the identification of subpopulations and functions without the need to develop species-specific reagents. The present study aimed to evaluate single-cell RNA-seq as a tool for identification of chicken peripheral blood leukocytes. For this purpose, purified and thrombocyte depleted leukocytes from 4 clinically healthy hens were subjected to single-cell 3' RNA-seq. Bioinformatic analysis of data comprised unsupervised clustering of the cells, and annotation of clusters based on expression profiles. Immunofluorescence phenotyping of the cell preparations used was also performed. RESULTS Computational analysis identified 31 initial cell clusters and based on expression of defined marker genes 28 cluster were identified as comprising mainly B-cells, T-cells, monocytes, thrombocytes and red blood cells. Of the remaining clusters, two were putatively identified as basophils and eosinophils, and one as proliferating cells of mixed origin. In depth analysis on gene expression profiles within and between the initial cell clusters allowed further identification of cell identity and possible functions for some of them. For example, analysis of the group of monocyte clusters revealed subclusters comprising heterophils, as well as putative monocyte subtypes. Also, novel aspects of TCRγ/δ + T-cell subpopulations could be inferred such as evidence of at least two subtypes based on e.g., different expression of transcription factors MAF, SOX13 and GATA3. Moreover, a novel subpopulation of chicken peripheral B-cells with high SOX5 expression was identified. An overall good correlation between mRNA and cell surface phenotypic cell identification was shown. CONCLUSIONS Taken together, we were able to identify and infer functional aspects of both previously well known as well as novel chicken leukocyte populations although some cell types. e.g., T-cell subtypes, proved more challenging to decipher. Although this methodology to some extent is limited by incomplete annotation of the chicken genome, it definitively has benefits in chicken immunology by expanding the options to distinguish identity and functions of immune cells also without access to species specific reagents.
Collapse
Affiliation(s)
- Matilda Maxwell
- Department of Microbiology, Swedish Veterinary Agency, Uppsala, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Robert Söderlund
- Department of Microbiology, Swedish Veterinary Agency, Uppsala, Sweden
| | - Sonja Härtle
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Eva Wattrang
- Department of Microbiology, Swedish Veterinary Agency, Uppsala, Sweden.
| |
Collapse
|
14
|
Zhao P, Cheng W, Liu C, Peng C, Shen Y, Yang Y, Sun C, Chang X, Wu J. Increased proportion of CD226 + CD14 + monocytes correlates with clinical features and laboratory parameters in patients with primary Sjögren's syndrome. Int J Rheum Dis 2023; 26:2460-2469. [PMID: 37792570 DOI: 10.1111/1756-185x.14936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/21/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVES CD226 is widely expressed on the surface of immune cells as a co-stimulatory receptor, which is involved in the development of many autoimmune diseases. The purpose of this study was to investigate the proportion of CD226 on CD14 + monocytes in the peripheral circulation of patients with primary Sjögren's syndrome (pSS) and the clinical significance of pSS. METHODS The proportion of CD226 on the surface of CD14 + monocytes was measured by flow cytometry in 45 pSS patients and 25 healthy controls (HC). The correlations between the proportion of CD226 + CD14 + monocytes and the clinical features and laboratory parameters of pSS were analyzed. Meanwhile, we analyzed the change in proportion of CD226 + CD14 + monocytes before and after treatment, and the clinical significance of pSS was evaluated. RESULTS The proportion of CD226 on CD14 + monocytes markedly increased in pSS patients compared to HC (p < .01). We found the proportion of CD226 + CD14 + monocytes was positively correlated with the disease activity and severity of pSS patients. The proportion of CD226 + CD14 + monocytes in pSS patients with decayed tooth, fatigue, interstitial lung disease (ILD), low WBC, high IgG, anti-Ro60, and anti-SSB positive increased compared to that in negative patients (p < .05). Furthermore, the proportion of CD226 + CD14 + monocytes was significantly higher in active patients than in nonactive patients (p < .01). Additionally, the proportion of CD226 + CD14 + monocytes decreased in seven pSS patients after treatment (p < .01). CONCLUSION Our study suggested that an increased CD226 proportion on CD14 + monocytes was associated with the clinical manifestations, disease activity, and prognosis of pSS patients. CD226+ CD14 + monocytes may present a potential target and a biomarker for the prognosis and therapy of pSS patients.
Collapse
Affiliation(s)
- Ping Zhao
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Rheumatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Wei Cheng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Dermatology, Changsu NO2 People's Hospital, Changshu, Suzhou, China
| | - Cuiping Liu
- Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Peng
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Shen
- Jiangsu Key Laboratory of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanhong Yang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chao Sun
- Department of Rheumatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xin Chang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Wu
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
15
|
Lim B, Jang MJ, Oh SM, No JG, Lee J, Kim SE, Ock SA, Yun IJ, Kim J, Chee HK, Kim WS, Kang HJ, Cho K, Oh KB, Kim JM. Comparative transcriptome analysis between long- and short-term survival after pig-to-monkey cardiac xenotransplantation reveals differential heart failure development. Anim Cells Syst (Seoul) 2023; 27:234-248. [PMID: 37808548 PMCID: PMC10552608 DOI: 10.1080/19768354.2023.2265150] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/27/2023] [Indexed: 10/10/2023] Open
Abstract
Cardiac xenotransplantation is the potential treatment for end-stage heart failure, but the allogenic organ supply needs to catch up to clinical demand. Therefore, genetically-modified porcine heart xenotransplantation could be a potential alternative. So far, pig-to-monkey heart xenografts have been studied using multi-transgenic pigs, indicating various survival periods. However, functional mechanisms based on survival period-related gene expression are unclear. This study aimed to identify the differential mechanisms between pig-to-monkey post-xenotransplantation long- and short-term survivals. Heterotopic abdominal transplantation was performed using a donor CD46-expressing GTKO pig and a recipient cynomolgus monkey. RNA-seq was performed using samples from POD60 XH from monkey and NH from age-matched pigs, D35 and D95. Gene-annotated DEGs for POD60 XH were compared with those for POD9 XH (Park et al. 2021). DEGs were identified by comparing gene expression levels in POD60 XH versus either D35 or D95 NH. 1,804 and 1,655 DEGs were identified in POD60 XH versus D35 NH and POD60 XH versus D95 NH, respectively. Overlapped 1,148 DEGs were annotated and compared with 1,348 DEGs for POD9 XH. Transcriptomic features for heart failure and inhibition of T cell activation were observed in both long (POD60)- and short (POD9)-term survived monkeys. Only short-term survived monkey showed heart remodeling and regeneration features, while long-term survived monkey indicated multi-organ failure by neural and hormonal signaling as well as suppression of B cell activation. Our results reveal differential heart failure development and survival at the transcriptome level and suggest candidate genes for specific signals to control adverse cardiac xenotransplantation effects.
Collapse
Affiliation(s)
- Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Min-Jae Jang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Seung-Mi Oh
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Jin Gu No
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Jungjae Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Sang Eun Kim
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Sun A. Ock
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Ik Jin Yun
- Departments of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Junseok Kim
- Departments of Thoracic and Cardiovascular Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Hyun Keun Chee
- Departments of Thoracic and Cardiovascular Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Wan Seop Kim
- Departments of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Kahee Cho
- Primate Organ Transplantation Centre, Genia Inc., Seongnam, Republic of Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
16
|
Karnik SJ, Nazzal MK, Kacena MA, Bruzzaniti A. Megakaryocyte Secreted Factors Regulate Bone Marrow Niche Cells During Skeletal Homeostasis, Aging, and Disease. Calcif Tissue Int 2023; 113:83-95. [PMID: 37243755 PMCID: PMC11179715 DOI: 10.1007/s00223-023-01095-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/01/2023] [Indexed: 05/29/2023]
Abstract
The bone marrow microenvironment contains a diverse array of cell types under extensive regulatory control and provides for a novel and complex mechanism for bone regulation. Megakaryocytes (MKs) are one such cell type that potentially acts as a master regulator of the bone marrow microenvironment due to its effects on hematopoiesis, osteoblastogenesis, and osteoclastogenesis. While several of these processes are induced/inhibited through MK secreted factors, others are primarily regulated by direct cell-cell contact. Notably, the regulatory effects that MKs exert on these different cell populations has been found to change with aging and disease states. Overall, MKs are a critical component of the bone marrow that should be considered when examining regulation of the skeletal microenvironment. An increased understanding of the role of MKs in these physiological processes may provide insight into novel therapies that can be used to target specific pathways important in hematopoietic and skeletal disorders.
Collapse
Affiliation(s)
- Sonali J Karnik
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Murad K Nazzal
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, USA.
| | - Angela Bruzzaniti
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA.
| |
Collapse
|
17
|
Xiong Q, Zhu J, Zhang Y, Deng H. CAR-NK cell therapy for glioblastoma: what to do next? Front Oncol 2023; 13:1192128. [PMID: 37404752 PMCID: PMC10315652 DOI: 10.3389/fonc.2023.1192128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/29/2023] [Indexed: 07/06/2023] Open
Abstract
Glioblastoma is a malignant tumor with the highest morbidity and mortality in the central nervous system. Conventional surgical resection combined with radiotherapy or chemotherapy has a high recurrence rate and poor prognosis. The 5-year survival rate of patients is less than 10%. In tumor immunotherapy, CAR-T cell therapy represented by chimeric antigen receptor-modified T cells has achieved great success in hematological tumors. However, the application of CAR-T cells in solid tumors such as glioblastoma still faces many challenges. CAR-NK cells are another potential adoptive cell therapy strategy after CAR-T cells. Compared with CAR-T cell therapy, CAR-NK cells have similar anti-tumor effects. CAR-NK cells can also avoid some deficiencies in CAR-T cell therapy, a research hotspot in tumor immunity. This article summarizes the preclinical research status of CAR-NK cells in glioblastoma and the problems and challenges faced by CAR-NK in glioblastoma.
Collapse
|
18
|
Wang YC, Cao Y, Pan C, Zhou Z, Yang L, Lusis AJ. Intestinal cell type-specific communication networks underlie homeostasis and response to Western diet. J Exp Med 2023; 220:213924. [PMID: 36880999 PMCID: PMC10038833 DOI: 10.1084/jem.20221437] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/14/2022] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
The small intestine plays a key role in immunity and mediates inflammatory responses to high fat diets. We have used single-cell RNA-sequencing (scRNA-seq) and statistical modeling to examine gaps in our understanding of the dynamic properties of intestinal cells and underlying cellular mechanisms. Our scRNA-seq and flow cytometry studies of different layers of intestinal cells revealed new cell subsets and modeled developmental trajectories of intestinal intraepithelial lymphocytes, lamina propria lymphocytes, conventional dendritic cells, and enterocytes. As compared to chow-fed mice, a high-fat high-sucrose (HFHS) "Western" diet resulted in the accumulation of specific immune cell populations and marked changes to enterocytes nutrient absorption function. Utilizing ligand-receptor analysis, we profiled high-resolution intestine interaction networks across all immune cell and epithelial structural cell types in mice fed chow or HFHS diets. These results revealed novel interactions and communication hubs among intestinal cells, and their potential roles in local as well as systemic inflammation.
Collapse
Affiliation(s)
- Yu-Chen Wang
- Department of Medicine, Division of Cardiology, University of California, Los Angeles , Los Angeles, CA, USA
| | - Yang Cao
- Department of Medicine, Division of Cardiology, University of California, Los Angeles , Los Angeles, CA, USA
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, University of California, Los Angeles , Los Angeles, CA, USA
| | - Zhiqiang Zhou
- Department of Medicine, Division of Cardiology, University of California, Los Angeles , Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles , Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, Los Angeles , Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, the David Geffen School of Medicine, University of California, Los Angeles , Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles , Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Medicine, Division of Cardiology, University of California, Los Angeles , Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles , Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine at UCLA , Los Angeles, CA, USA
| |
Collapse
|
19
|
Fang L, Zhao Y, Guo P, Fang Y, Wu J. MD Simulation Reveals Regulation of Mechanical Force and Extracellular Domain 2 on Binding of DNAM-1 to CD155. Molecules 2023; 28:molecules28062847. [PMID: 36985819 PMCID: PMC10053669 DOI: 10.3390/molecules28062847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Two extracellular domains of the adhesive receptor DNAM-1 are involved in various cellular biological processes through binding to ligand CD155, usually under a mechano-microenvironment. The first extracellular domain (D1) plays a key role in recognition, but the function of the second extracellular domain (D2) and effects of force on the interaction of DNAM-1 with CD155 remain unclear. We herein studied the interaction of DNAM-1 with CD155 by performing steered molecular dynamics (MD) simulations, and observed the roles of tensile force and D2 on the affinity of DNAM-1 to CD155. The results showed that D2 improved DNAM-1 affinity to CD155; the DNAM-1/CD155 complex had a high mechanical strength and a better mechanical stability for its conformational conservation either at pulling with constant velocity or under constant tensile force (≤100 pN); the catch-slip bond transition governed CD155 dissociation from DNAM-1; and, together with the newly assigned key residues in the binding site, force-induced conformation changes should be responsible for the mechanical regulation of DNAM-1's affinity to CD155. This work provided a novel insight in understanding the mechanical regulation mechanism and D2 function in the interaction of DNAM-1 with CD155, as well as their molecular basis, relevant transmembrane signaling, and cellular immune responses under a mechano-microenvironment.
Collapse
Affiliation(s)
- Liping Fang
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yang Zhao
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Pei Guo
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ying Fang
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jianhua Wu
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
20
|
Immunological Aspects of Richter Syndrome: From Immune Dysfunction to Immunotherapy. Cancers (Basel) 2023; 15:cancers15041015. [PMID: 36831361 PMCID: PMC9954516 DOI: 10.3390/cancers15041015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Richter Syndrome (RS) is defined as the development of an aggressive lymphoma in patients with a previous or simultaneous diagnosis of chronic lymphocytic leukemia (CLL). Two pathological variants of RS are recognized: diffuse large B-cell lymphoma (DLBCL)-type and Hodgkin lymphoma (HL)-type RS. Different molecular mechanisms may explain the pathogenesis of DLBCL-type RS, including genetic lesions, modifications of immune regulators, and B cell receptor (BCR) pathway hyperactivation. Limited data are available for HL-type RS, and its development has been reported to be similar to de novo HL. In this review, we focus on the immune-related pathogenesis and immune system dysfunction of RS, which are linked to BCR over-reactivity, altered function of the immune system due to the underlying CLL, and specific features of the RS tumor microenvironment. The standard of care of this disease consists in chemoimmunotherapy, eventually followed by stem cell transplantation, but limited possibilities are offered to chemo-resistant patients, who represent the majority of RS cases. In order to address this unmet clinical need, several immunotherapeutic approaches have been developed, namely T cell engagement obtained with bispecific antibodies, PD-1/PD-L1 immune checkpoint blockade by the use of monoclonal antibodies, selective drug delivery with antibody-drug conjugates, and targeting malignant cells with anti-CD19 chimeric antigen receptor-T cells.
Collapse
|
21
|
Meggyes M, Feik T, Nagy DU, Polgar B, Szereday L. CD8 and CD4 Positive NKT Subpopulations and Immune-Checkpoint Pathways in Early-Onset Preeclampsia and Healthy Pregnancy. Int J Mol Sci 2023; 24:ijms24021390. [PMID: 36674905 PMCID: PMC9863229 DOI: 10.3390/ijms24021390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Although many studies have investigated the clinical aspect of early-onset preeclampsia, our knowledge about the immunological consequences of improper placenta development is scarce. The maternal immunotolerance against the fetus is greatly influenced by the Th1 predominance developed by the mother's immune system. Thirty-two early-onset preeclamptic and fifty-one healthy pregnant women with appropriately matched gestational age were involved in our study. Mononuclear cells were separated from peripheral venous blood and the frequency of CD8⁺, CD4⁺, double positive (DP), and double negative (DN) NKT cell subpopulations was determined using multicolor flow cytometry. Following the characterization, the expression levels of different immune checkpoint receptors and ligands were also defined. Soluble CD226 levels were quantified by ELISA. Novel and significant differences were revealed among the ratios of the investigated NKT subsets and in the expression patterns of PD-1, LAG-3, TIGIT and CD226 receptors. Further differences were determined in the expression of CD112, PD-1, LAG-3 and CD226 MFI values between the early-onset preeclamptic and the healthy pregnant groups. Our results suggest that the investigated NKT subpopulations act differently in the altered immune condition characteristic of early-onset preeclampsia and indicate that the different subsets may contribute to the compensation or maintenance of Th1 predominance.
Collapse
Affiliation(s)
- Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pecs, Hungary
- Correspondence:
| | - Timoteus Feik
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
| | - David U. Nagy
- Institute of Geobotany/Plant Ecology, Martin-Luther-University, Große Steinstraße 79/80, 06108 Halle (Saale), Germany
| | - Beata Polgar
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pecs, Hungary
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pecs, Hungary
| |
Collapse
|
22
|
Meggyes M, Nagy DU, Saad Al Deen I, Parkanyi B, Szereday L. CD8+ and CD8- NKT Cells Exhibit Phenotypic Changes During Pregnancy. Immunol Invest 2023; 52:35-51. [PMID: 36102790 DOI: 10.1080/08820139.2022.2119863] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND NKT cell population is a relatively well-characterized immune cell subset. Numerous publications have characterized the phenotypical features of its subpopulations even in human pregnancy. Nevertheless, there have not been studies investigating the distribution of the NKT cells based on the surface presence of the CD8 receptor. METHODS Thirty-four pregnant women from the first trimester, 30 from the second, and 36 from the third trimester of pregnancy in addition to 35 healthy non-pregnant women have been involved in the study. PBMCs were isolated from peripheral blood, CD8+ and CD8- NKT cells were then studied by flow cytometry using monoclonal antibodies. Immune checkpoint molecules and intracellular markers were also measured. RESULTS Substantial differences were revealed in the proportions of the NKT cell subpopulations in the healthy control cohort and the pregnant groups. By comparing the investigated groups, significant changes were detected in the expression levels of PD-L1, TIGIT, CD155, and NKG2D. Further associations were observed through examination of the relative expressions of TIGIT and CD226 in the CD8+ NKT subset. CONCLUSION Data suggest that the CD8+ NKT cells are under fine regulation during healthy human pregnancy.
Collapse
Affiliation(s)
- Matyas Meggyes
- Medical School, Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary.,Janos Szentagothai Research Centre, Pecs, Hungary
| | - David U Nagy
- Institute of Geobotany/Plant Ecology, Martin-Luther-University, Halle (Saale), Germany
| | - Iyad Saad Al Deen
- Medical School, Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary
| | - Borbala Parkanyi
- Medical School, Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary
| | - Laszlo Szereday
- Medical School, Department of Medical Microbiology and Immunology, University of Pecs, Pecs, Hungary.,Janos Szentagothai Research Centre, Pecs, Hungary
| |
Collapse
|
23
|
Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Cancers (Basel) 2022; 14:cancers14225633. [PMID: 36428727 PMCID: PMC9688455 DOI: 10.3390/cancers14225633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cytotoxic effects as single agents in tumors characterized by defective repair of DNA double-strand breaks deriving from BRCA1/2 mutations or other abnormalities in genes associated with homologous recombination. Preclinical studies have shown that PARPi-induced DNA damage may affect the tumor immune microenvironment and immune-mediated anti-tumor response through several mechanisms. In particular, increased DNA damage has been shown to induce the activation of type I interferon pathway and up-regulation of PD-L1 expression in cancer cells, which can both enhance sensitivity to Immune Checkpoint Inhibitors (ICIs). Despite the recent approval of ICIs for a number of advanced cancer types based on their ability to reinvigorate T-cell-mediated antitumor immune responses, a consistent percentage of treated patients fail to respond, strongly encouraging the identification of combination therapies to overcome resistance. In the present review, we analyzed both established and unexplored mechanisms that may be elicited by PARPi, supporting immune reactivation and their potential synergism with currently used ICIs. This analysis may indicate novel and possibly patient-specific immune features that might represent new pharmacological targets of PARPi, potentially leading to the identification of predictive biomarkers of response to their combination with ICIs.
Collapse
|
24
|
Kumric M, Urlic H, Bilalic A, Rezic-Muzinic N, Mastelic A, Markotic A, Rusic D, Borovac JA, Duplancic D, Luetic M, Covic I, Ticinovic Kurir T, Bozic J. Dynamic of Circulating DNAM-1+ Monocytes and NK Cells in Patients with STEMI Following Primary Percutaneous Coronary Intervention. J Cardiovasc Dev Dis 2022; 9:jcdd9110395. [PMID: 36421930 PMCID: PMC9693248 DOI: 10.3390/jcdd9110395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Although the role of inflammation and adverse cardiac remodeling in myocardial infarction (MI) have been extensively explored, gaps in knowledge on the complex interaction between these processes still exist. Data suggest that DNAX accessory molecule-1 (DNAM-1), an activating receptor implicated in NK cell education, may be involved in cardiac remodeling following coronary artery occlusion. In the present study, we aimed to explore the dynamic of DNAM-1+ monocytes and NK cells in peripheral blood in the early phase following reperfusion in patients with ST-elevation MI (STEMI). The study enrolled 49 patients older than 18 years of age diagnosed with STEMI, referred to primary percutaneous coronary intervention (pPCI). Blood samples were obtained at three distinct points (at admission, 3 h, and 24 h after pPCI) and analyzed using flow cytometry. The number of circulating DNAM-1+ monocytes (CD16++ and CD14++) and CD56dimCD16++NK cells was significantly reduced 3 h after pPCI and subsequently returned to initial levels 24 h after procedure (p = 0.003, p < 0.001, and p = 0.002, respectively). Notably, such dynamic was dependent on age of patients. A positive correlation between high sensitivity troponin I levels and number of CD16++DNAM-1+ monocytes in peripheral blood 3 h after pPCI was observed (r = 0.431, p = 0.003). In conclusion, in the present study we delineated the post-reperfusion dynamic of DNAM-1-expresing leukocytes. Additionally, we demonstrated that the number of CD16++ DNAM-1+ monocytes correlate with the extent of myocardial injury.
Collapse
Affiliation(s)
- Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Hrvoje Urlic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Admira Bilalic
- Department of Cardiology, University Hospital of Split, 21000 Split, Croatia
| | - Nikolina Rezic-Muzinic
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia
| | - Angela Mastelic
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia
| | - Anita Markotic
- Department of Medical Chemistry and Biochemistry, University of Split School of Medicine, 21000 Split, Croatia
| | - Doris Rusic
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia
| | - Josip A. Borovac
- Department of Cardiology, University Hospital of Split, 21000 Split, Croatia
- Department of Health Studies, University of Split, 21000 Split, Croatia
| | - Darko Duplancic
- Department of Cardiology, University Hospital of Split, 21000 Split, Croatia
- Department of Internal Medicine, University of Split School of Medicine, 21000 Split, Croatia
| | - Marina Luetic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Ivan Covic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Split, 21000 Split, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
- Correspondence:
| |
Collapse
|
25
|
Wang M, Bissonnette N, Laterrière M, Dudemaine PL, Gagné D, Roy JP, Zhao X, Sirard MA, Ibeagha-Awemu EM. Methylome and transcriptome data integration reveals potential roles of DNA methylation and candidate biomarkers of cow Streptococcus uberis subclinical mastitis. J Anim Sci Biotechnol 2022; 13:136. [PMCID: PMC9639328 DOI: 10.1186/s40104-022-00779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Mastitis caused by different pathogens including Streptococcus uberis (S. uberis) is responsible for huge economic losses to the dairy industry. In order to investigate the potential genetic and epigenetic regulatory mechanisms of subclinical mastitis due to S. uberis, the DNA methylome (whole genome DNA methylation sequencing) and transcriptome (RNA sequencing) of milk somatic cells from cows with naturally occurring S. uberis subclinical mastitis and healthy control cows (n = 3/group) were studied.
Results
Globally, the DNA methylation levels of CpG sites were low in the promoters and first exons but high in inner exons and introns. The DNA methylation levels at the promoter, first exon and first intron regions were negatively correlated with the expression level of genes at a whole-genome-wide scale. In general, DNA methylation level was lower in S. uberis-positive group (SUG) than in the control group (CTG). A total of 174,342 differentially methylated cytosines (DMCs) (FDR < 0.05) were identified between SUG and CTG, including 132,237, 7412 and 34,693 DMCs in the context of CpG, CHG and CHH (H = A or T or C), respectively. Besides, 101,612 methylation haplotype blocks (MHBs) were identified, including 451 MHBs that were significantly different (dMHB) between the two groups. A total of 2130 differentially expressed (DE) genes (1378 with up-regulated and 752 with down-regulated expression) were found in SUG. Integration of methylome and transcriptome data with MethGET program revealed 1623 genes with significant changes in their methylation levels and/or gene expression changes (MetGDE genes, MethGET P-value < 0.001). Functional enrichment of genes harboring ≥ 15 DMCs, DE genes and MetGDE genes suggest significant involvement of DNA methylation changes in the regulation of the host immune response to S. uberis infection, especially cytokine activities. Furthermore, discriminant correlation analysis with DIABLO method identified 26 candidate biomarkers, including 6 DE genes, 15 CpG-DMCs and 5 dMHBs that discriminated between SUG and CTG.
Conclusion
The integration of methylome and transcriptome of milk somatic cells suggests the possible involvement of DNA methylation changes in the regulation of the host immune response to subclinical mastitis due to S. uberis. The presented genetic and epigenetic biomarkers could contribute to the design of management strategies of subclinical mastitis and breeding for mastitis resistance.
Collapse
|
26
|
Yu S, Wang C, Lei K, Leng X, Zhang L, Tian F, Chen Z. Case report: genetic analysis of a child with 18q deletion syndrome and developmental dysplasia of the hip. BMC Med Genomics 2022; 15:199. [PMID: 36123715 PMCID: PMC9484224 DOI: 10.1186/s12920-022-01345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/26/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To analyze the genotypes and phenotypes of a child with developmental dysplasia of the hip (DDH), developmental delays, recurrent fever, hypothyroidism and cleft palate. METHODS G-banding karyotyping analysis and next-generation sequencing (NGS) were performed for the patient. The genotypes of the parents of the patient were verified by copy number variation analysis and Sanger sequencing to determine the source of variations. RESULTS The karyotype of the patient was 46, XX. A 10.44 Mb deletion (chr18:67562936-78005270del) at 18q22.2q23 was found by NGS. We identified 2 HSPG2 mutations (chr1: 22206699, c.2244C > A, exon 17, p.H748Q; chr1: 22157321-22157321, c.11671 + 154insA, intron). One mutation was inherited from the father, and the other was inherited from the mother. CONCLUSION This is the first 18q deletion syndrome case accompanied by DDH. Most phenotypes of this patient, such as developmental delays and cleft palate, may be related to the 18q22.2q23 deletion, but no variants in genes related to DDH were found in this deletion region. DDH may be related to mutations of HSPG2.
Collapse
Affiliation(s)
- Shufeng Yu
- Affiliated Hospital of Qingdao University, Qingdao, China.,Qingdao University, Qingdao, China
| | - Caixia Wang
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ke Lei
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuefei Leng
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lijuan Zhang
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fei Tian
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhihong Chen
- Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
27
|
Meggyes M, Nagy DU, Feik T, Boros A, Polgar B, Szereday L. Examination of the TIGIT-CD226-CD112-CD155 Immune Checkpoint Network during a Healthy Pregnancy. Int J Mol Sci 2022; 23:10776. [PMID: 36142692 PMCID: PMC9502426 DOI: 10.3390/ijms231810776] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The importance of immune checkpoint molecules is well known in tumor and transplantation immunology; however, much less information is available regarding human pregnancy. Despite the significant amount of information about the TIGIT and CD226 immune checkpoint receptors in immune therapies, very little research has been conducted to study the possible role of these surface molecules and their ligands (CD112 and CD155) during the three trimesters of pregnancy. Methods: From peripheral blood, immune cell subpopulations were studied, and the surface expression of immune checkpoint molecules was analyzed by flow cytometry. Soluble immune checkpoint molecule levels were measured by ELISA. Results: Notable changes were observed regarding the percentage of monocyte subpopulation and the expression of CD226 receptor by CD4+ T and NKT cells. Elevated granzyme B content by the intermediate and non-classical monocytes was assessed as pregnancy proceeded. Furthermore, we revealed an important relationship between the CD226 surface expression by NKT cells and the serum CD226 level in the third trimester of pregnancy. Conclusions: Our results confirm the importance of immune checkpoint molecules in immunoregulation during pregnancy. CD226 seems to be a significant regulator, especially in the case of CD4+ T and NKT cells, contributing to the maternal immune tolerance in the late phase of pregnancy.
Collapse
Affiliation(s)
- Matyas Meggyes
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pecs, Hungary
| | - David U. Nagy
- Institute of Geobotany/Plant Ecology, Martin-Luther-University, Große Steinstraße 79/80, D-06108 Halle, Germany
| | - Timoteus Feik
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
| | - Akos Boros
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
| | - Beata Polgar
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
| | - Laszlo Szereday
- Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary
- Janos Szentagothai Research Centre, 20 Ifjusag Street, 7624 Pecs, Hungary
| |
Collapse
|
28
|
Rubin SA, Baron CS, Pessoa Rodrigues C, Duran M, Corbin AF, Yang SP, Trapnell C, Zon LI. Single-cell analyses reveal early thymic progenitors and pre-B cells in zebrafish. J Exp Med 2022; 219:e20220038. [PMID: 35938989 PMCID: PMC9365674 DOI: 10.1084/jem.20220038] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
The zebrafish has proven to be a valuable model organism for studying hematopoiesis, but relatively little is known about zebrafish immune cell development and functional diversity. Elucidating key aspects of zebrafish lymphocyte development and exploring the breadth of effector functions would provide valuable insight into the evolution of adaptive immunity. We performed single-cell RNA sequencing on ∼70,000 cells from the zebrafish marrow and thymus to establish a gene expression map of zebrafish immune cell development. We uncovered rich cellular diversity in the juvenile and adult zebrafish thymus, elucidated B- and T-cell developmental trajectories, and transcriptionally characterized subsets of hematopoietic stem and progenitor cells and early thymic progenitors. Our analysis permitted the identification of two dendritic-like cell populations and provided evidence in support of the existence of a pre-B cell state. Our results provide critical insights into the landscape of zebrafish immunology and offer a foundation for cellular and genetic studies.
Collapse
Affiliation(s)
- Sara A. Rubin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Chloé S. Baron
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Cecilia Pessoa Rodrigues
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
| | - Madeleine Duran
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Alexandra F. Corbin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
| | - Song P. Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Leonard I. Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children’s Hospital and Dana-Farber Cancer Institute, Boston, MA
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, MA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA
| |
Collapse
|
29
|
Analysis on the desert adaptability of indigenous sheep in the southern edge of Taklimakan Desert. Sci Rep 2022; 12:12264. [PMID: 35851076 PMCID: PMC9293982 DOI: 10.1038/s41598-022-15986-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
The southern margin of the Taklimakan Desert is characterized by low rainfall, heavy sandstorms, sparse vegetation and harsh ecological environment. The indigenous sheep in this area are rich in resources, with the advantages of perennial estrus and good resistance to stress in most sheep. Exploring the molecular markers of livestock adaptability in this environment will provide the molecular basis for breeding research to cope with extreme future changes in the desert environment. In this study, we analyzed the population genetic structure and linkage imbalance of five sheep breeds with three different agricultural geographic characteristics using four complementary genomic selection signals: fixation index (FST), cross-population extended haplotype homozygosity (xp-EHH), Rsb (extended haplotype homozygosity between-populations) and iHS (integrated haplotype homozygosity score). We used Illumina Ovine SNP 50K Genotyping BeadChip Array, and gene annotation and enrichment analysis were performed on selected regions of the obtained genome. The ovary of Qira Black sheep (Follicular phase, Luteal phase, 30th day of pregnancy, 45th day of pregnancy) was collected, and the differentially expressed genes were screened by transcriptomic sequencing. Genome-wide selective sweep results and transcriptome data were combined for association analysis to obtain candidate genes associated with perennial estrus and stable reproduction. In order to verify the significance of the results, 15 resulting genes were randomly selected for fluorescence quantitative analysis. The results showed that Dolang sheep and Qira Black sheep evolved from Kazak sheep. Linkage disequilibrium analysis showed that the decay rate of sheep breeds in the Taklimakan Desert was higher than that in Yili grassland. The signals of FST, xp-EHH, Rsb and iHS detected 526, 332, 308 and 408 genes, respectively, under the threshold of 1% and 17 overlapping genes under the threshold of 5%. A total of 29 genes were detected in association analysis of whole-genome and transcriptome data. This study reveals the genetic mechanism of perennial estrus and environmental adaptability of indigenous sheep breeds in the Taklimakan Desert. It provides a theoretical basis for the conservation and exploitation of genetic resources of indigenous sheep breeds in extreme desert environment. This provides a new perspective for the quick adaptation of sheep and other mammals to extreme environments and future climate changes.
Collapse
|
30
|
CD226 Deficiency Alleviates Murine Allergic Rhinitis by Suppressing Group 2 Innate Lymphoid Cell Responses. Mediators Inflamm 2022; 2022:1756395. [PMID: 35846105 PMCID: PMC9283078 DOI: 10.1155/2022/1756395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Allergic rhinitis (AR) is an immunoglobulin E-mediated type 2 inflammation of the nasal mucosa that is mainly driven by type 2 helper T cells (Th2) and type 2 innate lymphoid cells (ILC2s). CD226 is a costimulatory molecule associated with inflammatory response and is mainly expressed on T cells, natural killer cells, and monocytes. This study is aimed at elucidating the role of CD226 in allergic inflammatory responses in murine AR using global and CD4+ T cell-specific Cd226 knockout (KO) mice. AR nasal symptoms were assessed based on the frequency of nose rubbing and sneezing. Hematoxylin and eosin and periodic acid–Schiff staining and quantitative real-time PCR methods were used to determine eosinophils, goblet cells, and ILC2-associated mRNA levels in the nasal tissues of mice. CD226 levels on ILC2s were detected using flow cytometry, and an immunofluorescence double staining assay was employed to determine the number of ILC2s in the nasal mucosa. The results showed that global Cd226 KO mice, but not CD4+ T cell-specific Cd226 KO mice, exhibited attenuated AR nasal symptoms. Eosinophil recruitment, goblet cell proliferation, and Th2-inflammatory cytokines were significantly reduced, which resulted in the alleviation of allergic and inflammatory responses. ILC2s in the murine nasal mucosa expressed higher levels of CD226 after ovalbumin stimulation, and CD226 deficiency led to a reduction in the proportion of nasal ILC2s and ILC2-related inflammatory gene expression. Hence, the effect of CD226 on the AR mouse model may involve the regulation of ILC2 function rather than CD4+ T cells.
Collapse
|
31
|
Tian X, Ning Q, Yu J, Tang S. T-cell immunoglobulin and ITIM domain in cancer immunotherapy: A focus on tumor-infiltrating regulatory T cells. Mol Immunol 2022; 147:62-70. [DOI: 10.1016/j.molimm.2022.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 12/17/2022]
|
32
|
The Ratio of CD226 and TIGIT Expression in Tfh and PD-1 +ICOS +Tfh Cells Are Potential Biomarkers for Chronic Antibody-Mediated Rejection in Kidney Transplantation. J Immunol Res 2022; 2022:5326083. [PMID: 35733922 PMCID: PMC9206998 DOI: 10.1155/2022/5326083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023] Open
Abstract
Kidney transplantation is the ideal treatment for end-stage renal disease (ESRD). Chronic antibody-mediated rejection (CAMR) is the main cause of graft failure. Tfh and B cells are key immune cells that play important roles in CAMR. In this study, the populations of different Tfh cell phenotypes and B cell subsets in CAMR were investigated in a total of 36 patients. Based on Banff-2019, 15 patients were diagnosed with CAMR (CAMR group), 11 recipients were diagnosed with recurrent or de novo IgA nephropathy (IgAN group), and 10 patients displayed stable renal function (stable group). The Tfh and B cell subsets were analyzed by flow cytometry. The percentage and absolute number of PD-1+ICOS+Tfh cells were significantly higher in CAMR (p < 0.05), as was the ratio of CD226+Tfh cells to TIGIT+Tfh cells (p < 0.05). Compared with stable recipients, CAMR patients had lower naïve B cells and higher unswitched memory B cells, which were also significantly related to renal function (p < 0.05). Using the logistic regression model, we concluded that the estimated glomerular filtration rate (eGFR), absolute number of PD-1+ICOS+Tfh cells, and ratio of CD226+Tfh cells to TIGIT+Tfh cells were independent risk factors for CAMR. The combination of eGFR, PD-1+ICOS+Tfh cells, and the ratio of CD226+Tfh cells to TIGIT+Tfh cells showed better diagnostic efficacy for CAMR than each single parameter. The collective findings show that monitoring different Tfh phenotypes and B cell subsets is beneficial to kidney transplant recipients and implicate the combination of eGFR, number of PD-1+ICOS+Tfh cells, and ratio of CD226+Tfh cells to TIGIT+Tfh cells as a biomarker for diagnosing CAMR. The findings may also inform new strategies to identify and treat CAMR.
Collapse
|
33
|
Conner M, Hance KW, Yadavilli S, Smothers J, Waight JD. Emergence of the CD226 Axis in Cancer Immunotherapy. Front Immunol 2022; 13:914406. [PMID: 35812451 PMCID: PMC9263721 DOI: 10.3389/fimmu.2022.914406] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/26/2022] [Indexed: 01/31/2023] Open
Abstract
In recent years, a set of immune receptors that interact with members of the nectin/nectin-like (necl) family has garnered significant attention as possible points of manipulation in cancer. Central to this axis, CD226, TIGIT, and CD96 represent ligand (CD155)-competitive co-stimulatory/inhibitory receptors, analogous to the CTLA-4/B7/CD28 tripartite. The identification of PVRIG (CD112R) and CD112 has introduced complexity and enabled additional nodes of therapeutic intervention. By virtue of the clinical progression of TIGIT antagonists and emergence of novel CD96- and PVRIG-based approaches, our overall understanding of the 'CD226 axis' in cancer immunotherapy is starting to take shape. However, several questions remain regarding the unique characteristics of, and mechanistic interplay between, each receptor-ligand pair. This review provides an overview of the CD226 axis in the context of cancer, with a focus on the status of immunotherapeutic strategies (TIGIT, CD96, and PVRIG) and their underlying biology (i.e., cis/trans interactions). We also integrate our emerging knowledge of the immune populations involved, key considerations for Fc gamma (γ) receptor biology in therapeutic activity, and a snapshot of the rapidly evolving clinical landscape.
Collapse
|
34
|
Lozano-Rodríguez R, Terrón-Arcos V, López R, Martín-Gutiérrez J, Martín-Quirós A, Maroun-Eid C, del Val EM, Cañada-Illana C, Pascual Iglesias A, Quiroga JV, Montalbán-Hernández K, Casalvilla-Dueñas JC, García-Garrido MA, del Balzo-Castillo Á, Peinado-Quesada MA, Gómez-Lage L, Herrero-Benito C, G. Butler R, Avendaño-Ortiz J, López-Collazo E. Differential Immune Checkpoint and Ig-like V-Type Receptor Profiles in COVID-19: Associations with Severity and Treatment. J Clin Med 2022; 11:3287. [PMID: 35743356 PMCID: PMC9225268 DOI: 10.3390/jcm11123287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022] Open
Abstract
Identifying patients' immune system status has become critical to managing SARS-CoV-2 infection and avoiding the appearance of secondary infections during a hospital stay. Despite the high volume of research, robust severity and outcome markers are still lacking in COVID-19. We recruited 87 COVID-19 patients and analyzed, by unbiased automated software, 356 parameters at baseline emergency department admission including: high depth immune phenotyping and immune checkpoint expression by spectral flow cytometry, cytokines and other soluble molecules in plasma as well as routine clinical variables. We identified 69 baseline alterations in the expression of immune checkpoints, Ig-like V type receptors and other immune population markers associated with severity (O2 requirement). Thirty-four changes in these markers/populations were associated with secondary infection appearance. In addition, through a longitudinal sample collection, we described the changes which take place in the immune system of COVID-19 patients during secondary infections and in response to corticosteroid treatment. Our study provides information about immune checkpoint molecules and other less-studied receptors with Ig-like V-type domains such as CD108, CD226, HVEM (CD270), B7H3 (CD276), B7H5 (VISTA) and GITR (CD357), defining these as novel interesting molecules in severe and corticosteroids-treated acute infections.
Collapse
Affiliation(s)
- Roberto Lozano-Rodríguez
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (R.L.-R.); (V.T.-A.); (A.P.I.); (J.V.Q.); (K.M.-H.); (J.C.C.-D.); (Á.d.B.-C.)
- Tumor ImmunologyLaboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Verónica Terrón-Arcos
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (R.L.-R.); (V.T.-A.); (A.P.I.); (J.V.Q.); (K.M.-H.); (J.C.C.-D.); (Á.d.B.-C.)
- Tumor ImmunologyLaboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Raúl López
- Butler Scientifics S.L., 08035 Barcelona, Spain; (R.L.); (J.M.-G.); (R.G.B.)
| | | | - Alejandro Martín-Quirós
- Emergency Department and Emergent Pathology Research Group, IdiPAZ La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (A.M.-Q.); (C.M.-E.); (E.M.d.V.); (C.C.-I.); (M.A.G.-G.); (M.A.P.-Q.); (L.G.-L.); (C.H.-B.)
| | - Charbel Maroun-Eid
- Emergency Department and Emergent Pathology Research Group, IdiPAZ La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (A.M.-Q.); (C.M.-E.); (E.M.d.V.); (C.C.-I.); (M.A.G.-G.); (M.A.P.-Q.); (L.G.-L.); (C.H.-B.)
| | - Elena Muñoz del Val
- Emergency Department and Emergent Pathology Research Group, IdiPAZ La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (A.M.-Q.); (C.M.-E.); (E.M.d.V.); (C.C.-I.); (M.A.G.-G.); (M.A.P.-Q.); (L.G.-L.); (C.H.-B.)
| | - Carlos Cañada-Illana
- Emergency Department and Emergent Pathology Research Group, IdiPAZ La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (A.M.-Q.); (C.M.-E.); (E.M.d.V.); (C.C.-I.); (M.A.G.-G.); (M.A.P.-Q.); (L.G.-L.); (C.H.-B.)
| | - Alejandro Pascual Iglesias
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (R.L.-R.); (V.T.-A.); (A.P.I.); (J.V.Q.); (K.M.-H.); (J.C.C.-D.); (Á.d.B.-C.)
- Tumor ImmunologyLaboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Jaime Valentín Quiroga
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (R.L.-R.); (V.T.-A.); (A.P.I.); (J.V.Q.); (K.M.-H.); (J.C.C.-D.); (Á.d.B.-C.)
- Tumor ImmunologyLaboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Karla Montalbán-Hernández
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (R.L.-R.); (V.T.-A.); (A.P.I.); (J.V.Q.); (K.M.-H.); (J.C.C.-D.); (Á.d.B.-C.)
- Tumor ImmunologyLaboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - José Carlos Casalvilla-Dueñas
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (R.L.-R.); (V.T.-A.); (A.P.I.); (J.V.Q.); (K.M.-H.); (J.C.C.-D.); (Á.d.B.-C.)
- Tumor ImmunologyLaboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Miguel A. García-Garrido
- Emergency Department and Emergent Pathology Research Group, IdiPAZ La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (A.M.-Q.); (C.M.-E.); (E.M.d.V.); (C.C.-I.); (M.A.G.-G.); (M.A.P.-Q.); (L.G.-L.); (C.H.-B.)
| | - Álvaro del Balzo-Castillo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (R.L.-R.); (V.T.-A.); (A.P.I.); (J.V.Q.); (K.M.-H.); (J.C.C.-D.); (Á.d.B.-C.)
- Emergency Department and Emergent Pathology Research Group, IdiPAZ La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (A.M.-Q.); (C.M.-E.); (E.M.d.V.); (C.C.-I.); (M.A.G.-G.); (M.A.P.-Q.); (L.G.-L.); (C.H.-B.)
| | - María A. Peinado-Quesada
- Emergency Department and Emergent Pathology Research Group, IdiPAZ La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (A.M.-Q.); (C.M.-E.); (E.M.d.V.); (C.C.-I.); (M.A.G.-G.); (M.A.P.-Q.); (L.G.-L.); (C.H.-B.)
| | - Laura Gómez-Lage
- Emergency Department and Emergent Pathology Research Group, IdiPAZ La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (A.M.-Q.); (C.M.-E.); (E.M.d.V.); (C.C.-I.); (M.A.G.-G.); (M.A.P.-Q.); (L.G.-L.); (C.H.-B.)
| | - Carmen Herrero-Benito
- Emergency Department and Emergent Pathology Research Group, IdiPAZ La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (A.M.-Q.); (C.M.-E.); (E.M.d.V.); (C.C.-I.); (M.A.G.-G.); (M.A.P.-Q.); (L.G.-L.); (C.H.-B.)
| | - Ray G. Butler
- Butler Scientifics S.L., 08035 Barcelona, Spain; (R.L.); (J.M.-G.); (R.G.B.)
| | - José Avendaño-Ortiz
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (R.L.-R.); (V.T.-A.); (A.P.I.); (J.V.Q.); (K.M.-H.); (J.C.C.-D.); (Á.d.B.-C.)
- Tumor ImmunologyLaboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Eduardo López-Collazo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain; (R.L.-R.); (V.T.-A.); (A.P.I.); (J.V.Q.); (K.M.-H.); (J.C.C.-D.); (Á.d.B.-C.)
- Tumor ImmunologyLaboratory, IdiPAZ, La Paz University Hospital, Paseo de la Castellana 261, 28046 Madrid, Spain
- CIBER of Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
35
|
Feng D, Li D, Shi X, Xiong Q, Zhang F, Wei Q, Yang L. A gene prognostic index from cellular senescence predicting metastasis and radioresistance for prostate cancer. J Transl Med 2022; 20:252. [PMID: 35658892 PMCID: PMC9164540 DOI: 10.1186/s12967-022-03459-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/28/2022] [Indexed: 02/08/2023] Open
Abstract
Background Senescent cells have been identified in the aging prostate, and the senescence-associated secretory phenotype might be linked to prostate cancer (PCa). Thus, we established a cellular senescence-related gene prognostic index (CSGPI) to predict metastasis and radioresistance in PCa. Methods We used Lasso and Cox regression analysis to establish the CSGPI. Clinical correlation, external validation, functional enrichment analysis, drug and cell line analysis, and tumor immune environment analysis were conducted. All analyses were conducted with R version 3.6.3 and its suitable packages. Results We used ALCAM and ALDH2 to establish the CSGPI risk score. High-risk patients experienced a higher risk of metastasis than their counterparts (HR: 10.37, 95% CI 4.50–23.93, p < 0.001), consistent with the results in the TCGA database (HR: 1.60, 95% CI 1.03–2.47, p = 0.038). Furthermore, CSGPI had high diagnostic accuracy distinguishing radioresistance from no radioresistance (AUC: 0.938, 95% CI 0.834–1.000). GSEA showed that high-risk patients were highly associated with apoptosis, cell cycle, ribosome, base excision repair, aminoacyl-tRNA biosynthesis, and mismatch repair. For immune checkpoint analysis, we found that PDCD1LG2 and CD226 were expressed at significantly higher levels in patients with metastasis than in those without metastasis. In addition, higher expression of CD226 significantly increased the risk of metastasis (HR: 3.65, 95% CI 1.58–8.42, p = 0.006). We observed that AZD7762, PHA-793887, PI-103, and SNX-2112 might be sensitive to ALDH2 and ALCAM, and PC3 could be the potential cell line used to investigate the interaction among ALDH2, ALCAM, and the above drugs. Conclusions We found that CSGPI might serve as an effective biomarker predicting metastasis probability and radioresistance for PCa and proposed that immune evasion was involved in the process of PCa metastasis.
Collapse
Affiliation(s)
- Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xu Shi
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qiao Xiong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Facai Zhang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Guoxue Xiang #37, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
36
|
Loss of CD226 protects apolipoprotein E-deficient mice from diet-induced atherosclerosis. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166452. [PMID: 35618182 DOI: 10.1016/j.bbadis.2022.166452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/18/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022]
Abstract
CD226 is a costimulatory molecule that regulates immune cell functions in T cells, natural killer cells, and macrophages. Because macrophage-derived foam cell formation is a crucial factor contributing to the development of atherosclerosis, we aimed to evaluate the potential roles of CD226 in the pathogenesis of atherosclerosis. The effects of CD226 on atherosclerosis were investigated in CD226 and apolipoprotein E double-knockout (CD226-/- ApoE-/-) mice fed with a high-cholesterol atherogenic diet. CD226 expression in macrophages was evaluated using flow cytometry. Histopathological analysis was performed to evaluate the atherosclerotic lesions. Inflammatory cell infiltration was detected using immunofluorescence staining. Bone marrow-derived macrophages (BMDMs) and peritoneal macrophages (PEMs) were isolated from the mice and used to explore the mechanism in vitro. The in vivo results indicated that CD226 knockdown protected against atherosclerosis in ApoE-/- mice, evidenced by reduced plaque accumulation in the brachiocephalic artery, aortic roots, and main aortic tree. CD226 gene-deficient macrophages showed reduced foam cell formation under ox-low density lipoprotein stimulation compared with wild-type (WT) cells. CD226 deficiency also decreased the expression of CD36 and scavenger receptor (SR)-A (responsible for lipoprotein uptake) but increased the expression of ATP-binding cassette transporter A1 and G1 (two transporters for cholesterol efflux). Therefore, loss of CD226 hinders foam cell formation and atherosclerosis progression, suggesting that CD226 is a promising new therapeutic target for atherosclerosis.
Collapse
|
37
|
Zajec A, Trebušak Podkrajšek K, Tesovnik T, Šket R, Čugalj Kern B, Jenko Bizjan B, Šmigoc Schweiger D, Battelino T, Kovač J. Pathogenesis of Type 1 Diabetes: Established Facts and New Insights. Genes (Basel) 2022; 13:genes13040706. [PMID: 35456512 PMCID: PMC9032728 DOI: 10.3390/genes13040706] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 01/08/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the T-cell-mediated destruction of insulin-producing β-cells in pancreatic islets. It generally occurs in genetically susceptible individuals, and genetics plays a major role in the development of islet autoimmunity. Furthermore, these processes are heterogeneous among individuals; hence, different endotypes have been proposed. In this review, we highlight the interplay between genetic predisposition and other non-genetic factors, such as viral infections, diet, and gut biome, which all potentially contribute to the aetiology of T1D. We also discuss a possible active role for β-cells in initiating the pathological processes. Another component in T1D predisposition is epigenetic influences, which represent a link between genetic susceptibility and environmental factors and may account for some of the disease heterogeneity. Accordingly, a shift towards personalized therapies may improve the treatment results and, therefore, result in better outcomes for individuals in the long-run. There is also a clear need for a better understanding of the preclinical phases of T1D and finding new predictive biomarkers for earlier diagnosis and therapy, with the final goal of reverting or even preventing the development of the disease.
Collapse
Affiliation(s)
- Ana Zajec
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katarina Trebušak Podkrajšek
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tine Tesovnik
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
| | - Robert Šket
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
| | - Barbara Čugalj Kern
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Darja Šmigoc Schweiger
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadej Battelino
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jernej Kovač
- Division of Paediatrics, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia; (A.Z.); (K.T.P.); (T.T.); (R.Š.); (B.Č.K.); (B.J.B.); (D.Š.S.); (T.B.)
- Department of Paediatrics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
38
|
Moesin: A novel receptor on NK lymphocytes binds to TOMM40 on K562 leukemia cells initiating cytolysis. Hum Immunol 2022; 83:418-427. [DOI: 10.1016/j.humimm.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
|
39
|
Rönnberg E, Boey DZH, Ravindran A, Säfholm J, Orre AC, Al-Ameri M, Adner M, Dahlén SE, Dahlin JS, Nilsson G. Immunoprofiling Reveals Novel Mast Cell Receptors and the Continuous Nature of Human Lung Mast Cell Heterogeneity. Front Immunol 2022; 12:804812. [PMID: 35058936 PMCID: PMC8764255 DOI: 10.3389/fimmu.2021.804812] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Background Immunohistochemical analysis of granule-associated proteases has revealed that human lung mast cells constitute a heterogeneous population of cells, with distinct subpopulations identified. However, a systematic and comprehensive analysis of cell-surface markers to study human lung mast cell heterogeneity has yet to be performed. Methods Human lung mast cells were obtained from lung lobectomies, and the expression of 332 cell-surface markers was analyzed using flow cytometry and the LEGENDScreen™ kit. Markers that exhibited high variance were selected for additional analyses to reveal whether they were correlated and whether discrete mast cell subpopulations were discernable. Results We identified the expression of 102 surface markers on human lung mast cells, 23 previously not described on mast cells, of which several showed high continuous variation in their expression. Six of these markers were correlated: SUSD2, CD49a, CD326, CD34, CD66 and HLA-DR. The expression of these markers was also correlated with the size and granularity of mast cells. However, no marker produced an expression profile consistent with a bi- or multimodal distribution. Conclusions LEGENDScreen analysis identified more than 100 cell-surface markers on mast cells, including 23 that, to the best of our knowledge, have not been previously described on human mast cells. The comprehensive expression profiling of the 332 surface markers did not identify distinct mast cell subpopulations. Instead, we demonstrate the continuous nature of human lung mast cell heterogeneity.
Collapse
Affiliation(s)
- Elin Rönnberg
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Clinical Immunology and Transfusion Medicine, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Daryl Zhong Hao Boey
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Clinical Immunology and Transfusion Medicine, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Avinash Ravindran
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Clinical Immunology and Transfusion Medicine, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Jesper Säfholm
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Unit for Experimental Asthma and Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ann-Charlotte Orre
- Thoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Mamdoh Al-Ameri
- Thoracic Surgery, Department of Molecular Medicine and Surgery, Karolinska Institutet, and Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Adner
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Unit for Experimental Asthma and Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sven-Erik Dahlén
- Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Unit for Experimental Asthma and Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joakim S Dahlin
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Clinical Immunology and Transfusion Medicine, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden
| | - Gunnar Nilsson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, and Karolinska University Hospital, Clinical Immunology and Transfusion Medicine, Stockholm, Sweden.,Centre for Allergy Research, Karolinska Institutet, Stockholm, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
40
|
The Immunogenetics of Systemic Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:259-298. [DOI: 10.1007/978-3-030-92616-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Chang WA, Tsai MJ, Hung JY, Wu KL, Tsai YM, Huang YC, Chang CY, Tsai PH, Hsu YL. miR-150-5p-Containing Extracellular Vesicles Are a New Immunoregulator That Favor the Progression of Lung Cancer in Hypoxic Microenvironments by Altering the Phenotype of NK Cells. Cancers (Basel) 2021; 13:cancers13246252. [PMID: 34944871 PMCID: PMC8699319 DOI: 10.3390/cancers13246252] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/28/2022] Open
Abstract
Natural killer (NKs) cells are cytotoxic effector cells, which can modulate tumor metastasis according to their function; however, the role of NK cells in lung cancer has not been extensively investigated. In this study, we determined the functional profiles of NK cells in a hypoxic tumor microenvironment (TME) of lung cancer. We revealed CD226 downregulation and functional repression of NK cells after hypoxic lung cancer priming and we then investigated their interaction with extracellular vesicles (EVs) and miR-150-5p. We also found that NK cells from lung cancer patients had lower expression of CD226 on their surface and exhibited a pro-inflammatory, pro-angiogenic and tumorigenesis phenotype by expressing VEGF, CXCL1, CXCL8, S100A8 and MMPs. Moreover, inhibition of miR-150 improved tumor surveillance by reversing CD226 expression and subsequently reinstating cytotoxic NK cell activity in an animal model. Our study introduces a new scenario for the pro-inflammatory and pro-angiogenic activities of NK cells in the hypoxic TME in lung cancer.
Collapse
Affiliation(s)
- Wei-An Chang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Ming-Ju Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
| | - Kuan-Li Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
| | - Ying-Ming Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (W.-A.C.); (M.-J.T.); (J.-Y.H.); (K.-L.W.); (Y.-M.T.)
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Yung-Chi Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
| | - Chao-Yuan Chang
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
- Department of Anatomy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Pei-Hsun Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
| | - Ya-Ling Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-C.H.); (P.-H.T.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 2136-26)
| |
Collapse
|
42
|
Márquez A, Martín J. Genetic overlap between type 1 diabetes and other autoimmune diseases. Semin Immunopathol 2021; 44:81-97. [PMID: 34595540 DOI: 10.1007/s00281-021-00885-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes (T1D) is a chronic disease caused by the destruction of pancreatic β cells, which is driven by autoreactive T lymphocytes. It has been described that a high proportion of T1D patients develop other autoimmune diseases (AIDs), such as autoimmune thyroid disease, celiac disease, or vitiligo, which suggests the existence of common etiological factors among these disorders. In this regard, genetic studies have identified a high number of loci consistently associated with T1D that also represent established genetic risk factors for other AIDs. In addition, studies focused on identifying the shared genetic component in autoimmunity have described several common susceptibility loci with a potential role in T1D. Elucidation of this genetic overlap has been useful in identifying key molecular pathways with a pathogenic role in multiple disorders. In this review, we summarize recent advances in understanding the shared genetic component between T1D and other AIDs and discuss how the identification of common pathogenic mechanisms can help in the development of new therapeutic approaches as well as in improving the use of existing drugs.
Collapse
Affiliation(s)
- Ana Márquez
- Institute of Parasitology and Biomedicine López-Neyra. Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain.,Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria Ibs. GRANADA, Granada, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra. Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain.
| |
Collapse
|
43
|
Chashchina A, Märklin M, Hinterleitner C, Salih HR, Heitmann JS, Klimovich B. DNAM-1/CD226 is functionally expressed on acute myeloid leukemia (AML) cells and is associated with favorable prognosis. Sci Rep 2021; 11:18012. [PMID: 34504191 PMCID: PMC8429762 DOI: 10.1038/s41598-021-97400-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022] Open
Abstract
DNAM-1 is reportedly expressed on cytotoxic T and NK cells and, upon interaction with its ligands CD112 and CD155, plays an important role in tumor immunosurveillance. It has also been reported to be functionally expressed by myeloid cells, but expression and function on malignant cells of the myeloid lineage have not been studied so far. Here we analyzed expression of DNAM-1 in leukemic cells of acute myeloid leukemia (AML) patients. We found substantial levels of DNAM-1 to be expressed on leukemic blasts in 48 of 62 (> 75%) patients. Interaction of DNAM-1 with its ligands CD112 and CD155 induced release of the immunomodulatory cytokines IL-6, IL-8 IL-10 and TNF-α by AML cells and DNAM-1 expression correlated with a more differentiated phenotype. Multivariate analysis did not show any association of DNAM-1 positivity with established risk factors, but expression was significantly associated with clinical disease course: patients with high DNAM-1 surface levels had significantly longer progression-free and overall survival compared to DNAM-1low patients, independently whether patients had undergone allogenic stem cell transplantation or not. Together, our findings unravel a functional role of DNAM-1 in AML pathophysiology and identify DNAM-1 as a potential novel prognostic maker in AML.
Collapse
Affiliation(s)
- Anna Chashchina
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.,DFG Cluster of Excellence 2180 "Image-Guided and Functional Instructed Tumor Therapy (iFIT)", 72076, Tübingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.,DFG Cluster of Excellence 2180 "Image-Guided and Functional Instructed Tumor Therapy (iFIT)", 72076, Tübingen, Germany
| | - Clemens Hinterleitner
- DFG Cluster of Excellence 2180 "Image-Guided and Functional Instructed Tumor Therapy (iFIT)", 72076, Tübingen, Germany.,Department of Medical Oncology and Pulmonology, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Helmut R Salih
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.,DFG Cluster of Excellence 2180 "Image-Guided and Functional Instructed Tumor Therapy (iFIT)", 72076, Tübingen, Germany
| | - Jonas S Heitmann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany. .,DFG Cluster of Excellence 2180 "Image-Guided and Functional Instructed Tumor Therapy (iFIT)", 72076, Tübingen, Germany.
| | - Boris Klimovich
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) Department of Internal Medicine, University Hospital Tübingen, Otfried-Müller-Str. 10, 72076, Tübingen, Germany.,DFG Cluster of Excellence 2180 "Image-Guided and Functional Instructed Tumor Therapy (iFIT)", 72076, Tübingen, Germany
| |
Collapse
|
44
|
Banana Lectin from Musa paradisiaca Is Mitogenic for Cow and Pig PBMC via IL-2 Pathway and ELF1. IMMUNO 2021. [DOI: 10.3390/immuno1030018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of the study was to gain deeper insights in the potential of polyclonal stimulation of PBMC with banana lectin (BanLec) from Musa paradisiaca. BanLec induced a marked proliferative response in cow and pig PBMC, but was strongest in pigs, where it induced an even higher proliferation rate than Concanavalin A. Molecular processes associated with respective responses in porcine PBMC were examined with differential proteome analyses. Discovery proteomic experiments was applied to BanLec stimulated PBMC and cellular and secretome responses were analyzed with label free LC-MS/MS. In PBMC, 3955 proteins were identified. After polyclonal stimulation with BanLec, 459 proteins showed significantly changed abundance in PBMC. In respective PBMC secretomes, 2867 proteins were identified with 231 differentially expressed candidates as reaction to BanLec stimulation. The transcription factor “E74 like ETS transcription factor 1 (ELF1)” was solely enriched in BanLec stimulated PBMC. BanLec induced secretion of several immune regulators, amongst them positive regulators of activated T cell proliferation and Jak-STAT signaling pathway. Top changed immune proteins were CD226, CD27, IFNG, IL18, IL2, CXCL10, LAT, ICOS, IL2RA, LAG3, and CD300C. BanLec stimulates PBMC of cows and pigs polyclonally and induces IL2 pathway and further proinflammatory cytokines. Proteomics data are available via ProteomeXchange with identifier PXD027505.
Collapse
|
45
|
Nakano M, Ayano M, Kushimoto K, Kawano S, Higashioka K, Inokuchi S, Mitoma H, Kimoto Y, Akahoshi M, Ono N, Arinobu Y, Akashi K, Horiuchi T, Niiro H. Increased Proportion of CD226 + B Cells Is Associated With the Disease Activity and Prognosis of Systemic Lupus Erythematosus. Front Immunol 2021; 12:713225. [PMID: 34367178 PMCID: PMC8334729 DOI: 10.3389/fimmu.2021.713225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/05/2021] [Indexed: 12/22/2022] Open
Abstract
Background CD226, an activating receptor expressed on the surface of natural killer (NK) cells and T cells, is also seen on B cells and CD226 polymorphism is associated with systemic lupus erythematosus (SLE). Because the specific roles of CD226+ B cells in SLE are still unknown, we investigated the association of CD226+ B cells with SLE. Methods We measured CD226 expression on B cells and its subsets using flow cytometry in 48 SLE patients and 24 healthy controls (HCs). We assessed the relationships between CD226+ B cells and SLE Disease Activity Index 2000 (SLEDAI-2K), clinical manifestations, laboratory data, and prognosis after 12 months. Results The proportions of CD226+ cells in whole B cells and all its subsets were significantly higher in SLE patients than HCs. In SLE patients, the proportions of CD226+ B cells and CD226+ switched-memory (SM) B cells were significantly correlated with SLEDAI-2K scores and anti-dsDNA antibody titers, and negatively correlated with serum complement levels. Moreover, basal percentages of CD226+ B cells and CD226+ SM B cells were low in patients who were in Lupus Low Disease Activity State after 12 months. In patients with renal involvement, the proportion of CD226+ B cells increased. Additionally, the proportion of CD226+ B cells was higher in patients who were not in complete renal remission after 12 months. Conclusions Increased proportion of CD226+ B cells was associated with disease activity and prognosis of SLE. CD226+ B cells may be a useful biomarker for the management of SLE.
Collapse
Affiliation(s)
- Miki Nakano
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Masahiro Ayano
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.,Department of Cancer Stem Cell Research, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kazuo Kushimoto
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shotaro Kawano
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Kazuhiko Higashioka
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shoichiro Inokuchi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Hiroki Mitoma
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yasutaka Kimoto
- Department of Internal Medicine, Kyushu University Beppu Hospital, Beppu, Japan
| | - Mitsuteru Akahoshi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Nobuyuki Ono
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yojiro Arinobu
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takahiko Horiuchi
- Department of Internal Medicine, Kyushu University Beppu Hospital, Beppu, Japan
| | - Hiroaki Niiro
- Department of Medical Education, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
46
|
Lakhssassi K, Lahoz B, Sarto P, Iguácel LP, Folch J, Alabart JL, Serrano M, Calvo JH. Genome-Wide Association Study Demonstrates the Role Played by the CD226 Gene in Rasa Aragonesa Sheep Reproductive Seasonality. Animals (Basel) 2021; 11:ani11041171. [PMID: 33921837 PMCID: PMC8074133 DOI: 10.3390/ani11041171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary To elucidate the genetic basis of reproductive seasonality in Rasa Aragonesa sheep breed, we performed a genome-wide association study (GWAS) in order to detect single nucleotide polymorphisms (SNPs) or regions associated with traits related to ovarian function and behavioural signs of estrous. The GWAS included 205 ewes with genotypes for 583882 SNPs. Only one SNP overcame the genome-wide significance level. Nine potential SNPs overcame the chromosome-wise significance level (FDR 10%). Gene annotation demonstrated that CD226molecule (CD226) and neuropeptide Y (NPY) genes that could be involved in reproductive seasonality were close to the significant SNPs. To validate the results, we sequenced the entire coding region of the NPY gene and four exons of the CD226 gene to search for polymorphisms that could be involved in the phenotypes studied. Two synonymous and two nonsynonymous SNPs in the NPY and CD226 genes, respectively, were genotyped in the whole population. We demonstrated that the AA genotype of the SNP rs404360094 located in exon 3 of the CD226 gene was associated with higher and lower total days of anoestrus and oestrous cycling months, respectively. Therefore, this SNP could be utilized as a genetic marker for assisted selection marker to reduce seasonality. Abstract A genome-wide association study (GWAS) was used to identify genomic regions influencing seasonality reproduction traits in Rasa Aragonesa sheep. Three traits associated with either ovarian function based on blood progesterone levels (total days of anoestrus and progesterone cycling months) or behavioral signs of oestrous (oestrous cycling months) were studied. The GWAS included 205 ewes genotyped using the 50k and 680k Illumina Ovine Beadchips. Only one SNP associated with the progesterone cycling months overcame the genome-wide significance level (rs404991855). Nine SNPs exhibited significant associations at the chromosome level, being the SNPs rs404991855 and rs418191944, that are located in the CD226 molecule (CD226) gene, associated with the three traits. This gene is related to reproductive diseases. Two other SNPs were located close to the neuropeptide Y (NPY) gene, which is involved in circadian rhythms. To validate the GWAS, partial characterization of both genes by Sanger sequencing, and genotyping of two synonymous and two nonsynonymous SNPs in the NPY and CD226 genes, respectively, were performed. SNP association analysis showed that only SNP rs404360094 in the exon 3 of the CD226 gene, which produces an amino acid substitution from asparagine (uncharged polar) to aspartic acid (acidic), was associated with the three seasonality traits. Our results suggest that the CD226 gene may be involved in the reproductive seasonality in Rasa Aragonesa.
Collapse
Affiliation(s)
- Kenza Lakhssassi
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
- INRA, Instituts Morocco, 6356 Rabat, Morocco
| | - Belén Lahoz
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - Pilar Sarto
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - Laura Pilar Iguácel
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - José Folch
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - José Luis Alabart
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
| | - Malena Serrano
- Departamento de Mejora Genética Animal INIA, 28040 Madrid, Spain;
| | - Jorge Hugo Calvo
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón (IA2) (CITA–Zaragoza University), 50059 Zaragoza, Spain; (K.L.); (B.L.); (P.S.); (L.P.I.); (J.F.); (J.L.A.)
- The Aragonese Foundation for Research and Development (ARAID), 50018 Zaragoza, Spain
- Correspondence: ; Tel.: +34976716471
| |
Collapse
|
47
|
Philip M. CD226 Throttles up CD8 + T Cell Antitumor Activity. Immunity 2021; 53:704-706. [PMID: 33053327 DOI: 10.1016/j.immuni.2020.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this issue of Immunity, Weulersse et al. and Braun et al. explain how CD226 expression loss on CD8+ T cells impairs TCR-driven activation, and thereby anti-tumor effector responses, tantamount to taking the CD8+ T cell's foot off the gas pedal.
Collapse
Affiliation(s)
- Mary Philip
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA.
| |
Collapse
|
48
|
TIGIT/CD226 Axis Regulates Anti-Tumor Immunity. Pharmaceuticals (Basel) 2021; 14:ph14030200. [PMID: 33670993 PMCID: PMC7997242 DOI: 10.3390/ph14030200] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Tumors escape immune surveillance by inducing various immunosuppressive pathways, including the activation of inhibitory receptors on tumor-infiltrating T cells. While monoclonal antibodies (mAbs) blocking programmed cell death 1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) have been approved for multiple cancer indications, only a subset of patients benefit from immune checkpoint blockade therapies, highlighting the need for additional approaches. Therefore, the identification of new target molecules acting in distinct or complementary pathways in monotherapy or combination therapy with PD-1/PD-L1 blockade is gaining immense interest. T cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains (TIGIT) has received considerable attention in cancer immunotherapy. Recently, anti-TIGIT mAb (tiragolumab) has demonstrated promising clinical efficacy in non-small cell lung cancer treatment when combined with an anti-PD-L1 drug (Tecentriq), leading to phase III trial initiation. TIGIT is expressed mainly on T and natural killer cells; it functions as an inhibitory checkpoint receptor, thereby limiting adaptive and innate immunity. CD226 competes for binding with the same ligands with TIGIT but delivers a positive stimulatory signal to the immune cells. This review discusses the recent discoveries regarding the roles of TIGIT and CD226 in immune cell function and their potential application in cancer immunotherapy.
Collapse
|
49
|
Moser D, Biere K, Han B, Hoerl M, Schelling G, Choukér A, Woehrle T. COVID-19 Impairs Immune Response to Candida albicans. Front Immunol 2021; 12:640644. [PMID: 33717195 PMCID: PMC7953065 DOI: 10.3389/fimmu.2021.640644] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Infection with SARS-CoV-2 can lead to Coronavirus disease-2019 (COVID-19) and result in severe acute respiratory distress syndrome (ARDS). Recent reports indicate an increased rate of fungal coinfections during COVID-19. With incomplete understanding of the pathogenesis and without any causative therapy available, secondary infections may be detrimental to the prognosis. We monitored 11 COVID-19 patients with ARDS for their immune phenotype, plasma cytokines, and clinical parameters on the day of ICU admission and on day 4 and day 7 of their ICU stay. Whole blood stimulation assays with lipopolysaccharide (LPS), heat-killed Listeria monocytogenes (HKLM), Aspergillus fumigatus, and Candida albicans were used to mimic secondary infections, and changes in immune phenotype and cytokine release were assessed. COVID-19 patients displayed an immune phenotype characterized by increased HLA-DR+CD38+ and PD-1+ CD4+ and CD8+ T cells, and elevated CD8+CD244+ lymphocytes, compared to healthy controls. Monocyte activation markers and cytokines IL-6, IL-8, TNF, IL-10, and sIL2Rα were elevated, corresponding to monocyte activation syndrome, while IL-1β levels were low. LPS, HKLM and Aspergillus fumigatus antigen stimulation provoked an immune response that did not differ between COVID-19 patients and healthy controls, while COVID-19 patients showed an attenuated monocyte CD80 upregulation and abrogated release of IL-6, TNF, IL-1α, and IL-1β toward Candida albicans. This study adds further detail to the characterization of the immune response in critically ill COVID-19 patients and hints at an increased susceptibility for Candida albicans infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexander Choukér
- Department of Anesthesiology, LMU Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | |
Collapse
|