1
|
Miceli RT, Chen T, Nose Y, Tichkule S, Brown B, Fullard JF, Saulsbury MD, Heyliger SO, Gnjatic S, Kyprianou N, Cordon‐Cardo C, Sahoo S, Taioli E, Roussos P, Stolovitzky G, Gonzalez‐Kozlova E, Dogra N. Extracellular vesicles, RNA sequencing, and bioinformatic analyses: Challenges, solutions, and recommendations. J Extracell Vesicles 2024; 13:e70005. [PMID: 39625409 PMCID: PMC11613500 DOI: 10.1002/jev2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 12/06/2024] Open
Abstract
Extracellular vesicles (EVs) are heterogeneous entities secreted by cells into their microenvironment and systemic circulation. Circulating EVs carry functional small RNAs and other molecular footprints from their cell of origin, and thus have evident applications in liquid biopsy, therapeutics, and intercellular communication. Yet, the complete transcriptomic landscape of EVs is poorly characterized due to critical limitations including variable protocols used for EV-RNA extraction, quality control, cDNA library preparation, sequencing technologies, and bioinformatic analyses. Consequently, there is a gap in knowledge and the need for a standardized approach in delineating EV-RNAs. Here, we address these gaps by describing the following points by (1) focusing on the large canopy of the EVs and particles (EVPs), which includes, but not limited to - exosomes and other large and small EVs, lipoproteins, exomeres/supermeres, mitochondrial-derived vesicles, RNA binding proteins, and cell-free DNA/RNA/proteins; (2) examining the potential functional roles and biogenesis of EVPs; (3) discussing various transcriptomic methods and technologies used in uncovering the cargoes of EVPs; (4) presenting a comprehensive list of RNA subtypes reported in EVPs; (5) describing different EV-RNA databases and resources specific to EV-RNA species; (6) reviewing established bioinformatics pipelines and novel strategies for reproducible EV transcriptomics analyses; (7) emphasizing the significant need for a gold standard approach in identifying EV-RNAs across studies; (8) and finally, we highlight current challenges, discuss possible solutions, and present recommendations for robust and reproducible analyses of EVP-associated small RNAs. Overall, we seek to provide clarity on the transcriptomics landscape, sequencing technologies, and bioinformatic analyses of EVP-RNAs. Detailed portrayal of the current state of EVP transcriptomics will lead to a better understanding of how the RNA cargo of EVPs can be used in modern and targeted diagnostics and therapeutics. For the inclusion of different particles discussed in this article, we use the terms large/small EVs, non-vesicular extracellular particles (NVEPs), EPs and EVPs as defined in MISEV guidelines by the International Society of Extracellular Vesicles (ISEV).
Collapse
Affiliation(s)
- Rebecca T. Miceli
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Tzu‐Yi Chen
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Yohei Nose
- Department of ImmunologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Swapnil Tichkule
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Briana Brown
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - John F. Fullard
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Disease Neurogenetics, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Marilyn D. Saulsbury
- Department of Pharmaceutical Sciences, School of PharmacyHampton UniversityHamptonVirginiaUSA
| | - Simon O. Heyliger
- Department of Pharmaceutical Sciences, School of PharmacyHampton UniversityHamptonVirginiaUSA
| | - Sacha Gnjatic
- Department of ImmunologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Natasha Kyprianou
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Carlos Cordon‐Cardo
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Susmita Sahoo
- Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Emanuela Taioli
- Department of Population Health and ScienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Thoracic SurgeryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Panos Roussos
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Disease Neurogenetics, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Precision Medicine and Translational TherapeuticsJames J. Peters VA Medicinal CenterBronxNew YorkUSA
- Mental Illness Research Education and Clinical Center (MIRECC)James J. Peters VA Medicinal CenterBronxNew YorkUSA
| | - Gustavo Stolovitzky
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Biomedical Data Sciences Hub (Bio‐DaSH), Department of Pathology, NYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Edgar Gonzalez‐Kozlova
- Department of ImmunologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Oncological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Navneet Dogra
- Department of Pathology, Molecular and Cell‐Based MedicineIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Genetics and Genomics SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Icahn Genomics Institute, Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- AI and Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
2
|
Bugajova M, Raudenska M, Masarik M, Kalfert D, Betka J, Balvan J. RNAs in tumour-derived extracellular vesicles and their significance in the tumour microenvironment. Int J Cancer 2024; 155:1147-1161. [PMID: 38845351 DOI: 10.1002/ijc.35035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 05/03/2024] [Indexed: 08/03/2024]
Abstract
Small extracellular vesicles (sEVs) secreted by various types of cells serve as crucial mediators of intercellular communication within the complex tumour microenvironment (TME). Tumour-derived small extracellular vesicles (TDEs) are massively produced and released by tumour cells, recapitulating the specificity of their cell of origin. TDEs encapsulate a variety of RNA species, especially messenger RNAs, microRNAs, long non-coding RNAs, and circular RNAs, which release to the TME plays multifaced roles in cancer progression through mediating cell proliferation, invasion, angiogenesis, and immune evasion. sEVs act as natural delivery vehicles of RNAs and can serve as useful targets for cancer therapy. This review article provides an overview of recent studies on TDEs and their RNA cargo, with emphasis on the role of these RNAs in carcinogenesis.
Collapse
Affiliation(s)
- Maria Bugajova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Praha, Czech Republic
| | - David Kalfert
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jan Betka
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
3
|
Ong JLK, Jalaludin NFF, Wong MK, Tan SH, Angelina C, Sukhatme SA, Yeo T, Lim CT, Lee YT, Soh SY, Lim TKH, Tay TKY, Chang KTE, Chen ZX, Loh AH. Exosomal mRNA Cargo are biomarkers of tumor and immune cell populations in pediatric osteosarcoma. Transl Oncol 2024; 46:102008. [PMID: 38852279 PMCID: PMC11220529 DOI: 10.1016/j.tranon.2024.102008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/04/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024] Open
Abstract
Osteosarcoma is the commonest malignant bone tumor of children and adolescents and is characterized by a high risk of recurrence despite multimodal therapy, especially in metastatic disease. This suggests the presence of clinically undetected cancer cells that persist, leading to cancer recurrence. We sought to evaluate the utility of peripheral blood exosomes as a more sensitive yet minimally invasive blood test that could aid in evaluating treatment response and surveillance for potential disease recurrence. We extracted exosomes from the blood of pediatric osteosarcoma patients at diagnosis (n=7) and after neoadjuvant chemotherapy (n=5 subset), as well as from age-matched cancer-free controls (n=3). We also obtained matched tumor biopsy samples (n=7) from the cases. Exosome isolation was verified by CD9 immunoblot and characterized on electron microscopy. Profiles of 780 cancer-related transcripts were analysed in mRNA from exosomes of osteosarcoma patients at diagnosis and control patients, matched post-chemotherapy samples, and matched primary tumor samples. Peripheral blood exosomes of osteosarcoma patients at diagnosis were significantly smaller than those of controls and overexpressed extracellular matrix protein gene THBS1 and B cell markers MS4A1 and TCL1A. Immunohistochemical staining of corresponding tumor samples verified the expression of THBS1 on tumor cells and osteoid matrix, and its persistence in a treatment-refractory patient, as well as the B cell origin of the latter. These hold potential as liquid biopsy biomarkers of disease burden and host immune response in osteosarcoma. Our findings suggest that exosomes may provide novel and clinically-important insights into the pathophysiology of cancers such as osteosarcoma.
Collapse
Affiliation(s)
| | | | - Meng Kang Wong
- VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Sheng Hui Tan
- VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Clara Angelina
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sarvesh A Sukhatme
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Trifanny Yeo
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore; Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - York Tien Lee
- Duke NUS Medical School, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, Singapore
| | - Shui Yen Soh
- Duke NUS Medical School, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; Department of Paediatric Subspecialties Haematology/Oncology Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Tony K H Lim
- Duke NUS Medical School, Singapore, Singapore; Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Timothy Kwang Yong Tay
- Duke NUS Medical School, Singapore, Singapore; Department of Anatomic Pathology, Singapore General Hospital, Singapore, Singapore
| | - Kenneth Tou En Chang
- Duke NUS Medical School, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; Department of Pathology and Laboratory Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Zhi Xiong Chen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; National University Cancer Institute, National University Health System, Singapore, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amos Hp Loh
- Duke NUS Medical School, Singapore, Singapore; VIVA-KKH Paediatric Brain and Solid Tumor Programme, Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore, Singapore; Department of Paediatric Surgery, KK Women's and Children's Hospital, Singapore, Singapore.
| |
Collapse
|
4
|
Wijerathne SVT, Pandit R, Ipinmoroti AO, Crenshaw BJ, Matthews QL. Feline coronavirus influences the biogenesis and composition of extracellular vesicles derived from CRFK cells. Front Vet Sci 2024; 11:1388438. [PMID: 39091390 PMCID: PMC11292801 DOI: 10.3389/fvets.2024.1388438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Introduction Coronavirus (CoV) has become a public health crisis that causes numerous illnesses in humans and certain animals. Studies have identified the small, lipid-bound structures called extracellular vesicles (EVs) as the mechanism through which viruses can enter host cells, spread, and evade the host's immune defenses. EVs are able to package and carry numerous viral compounds, including proteins, genetic substances, lipids, and receptor proteins. We proposed that the coronavirus could alter EV production and content, as well as influence EV biogenesis and composition in host cells. Methods In the current research, Crandell-Rees feline kidney (CRFK) cells were infected with feline coronavirus (FCoV) in an exosome-free media at a multiplicity of infection (MOI) of 2,500 infectious units (IFU) at 48 h and 72 h time points. Cell viability was analyzed and found to be significantly decreased by 9% (48 h) and 15% (72 h) due to FCoV infection. EVs were isolated by ultracentrifugation, and the surface morphology of isolated EVs was analyzed via Scanning Electron Microscope (SEM). Results NanoSight particle tracking analysis (NTA) confirmed that the mean particle sizes of control EVs were 131.9 nm and 126.6 nm, while FCoV infected-derived EVs were 143.4 nm and 120.9 nm at 48 and 72 h, respectively. Total DNA, RNA, and protein levels were determined in isolated EVs at both incubation time points; however, total protein was significantly increased at 48 h. Expression of specific protein markers such as TMPRSS2, ACE2, Alix, TSG101, CDs (29, 47, 63), TLRs (3, 6, 7), TNF-α, and others were altered in infection-derived EVs when compared to control-derived EVs after FCoV infection. Discussion Our findings suggested that FCoV infection could alter the EV production and composition in host cells, which affects the infection progression and disease evolution. One purpose of studying EVs in various animal coronaviruses that are in close contact with humans is to provide significant information about disease development, transmission, and adaptation. Hence, this study suggests that EVs could provide diagnostic and therapeutic applications in animal CoVs, and such understanding could provide information to prevent future coronavirus outbreaks.
Collapse
Affiliation(s)
| | - Rachana Pandit
- Microbiology Program, Alabama State University, Montgomery, AL, United States
| | | | | | - Qiana L. Matthews
- Microbiology Program, Alabama State University, Montgomery, AL, United States
- Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
5
|
Roberts BK, Li DI, Somerville C, Matta B, Jha V, Steinke A, Brune Z, Blanc L, Soffer SZ, Barnes BJ. IRF5 suppresses metastasis through the regulation of tumor-derived extracellular vesicles and pre-metastatic niche formation. Sci Rep 2024; 14:15557. [PMID: 38969706 PMCID: PMC11226449 DOI: 10.1038/s41598-024-66168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024] Open
Abstract
Metastasis is driven by extensive cooperation between a tumor and its microenvironment, resulting in the adaptation of molecular mechanisms that evade the immune system and enable pre-metastatic niche (PMN) formation. Little is known of the tumor-intrinsic factors that regulate these mechanisms. Here we show that expression of the transcription factor interferon regulatory factor 5 (IRF5) in osteosarcoma (OS) and breast carcinoma (BC) clinically correlates with prolonged survival and decreased secretion of tumor-derived extracellular vesicles (t-dEVs). Conversely, loss of intra-tumoral IRF5 establishes a PMN that supports metastasis. Mechanistically, IRF5-positive tumor cells retain IRF5 transcripts within t-dEVs that contribute to altered composition, secretion, and trafficking of t-dEVs to sites of metastasis. Upon whole-body pre-conditioning with t-dEVs from IRF5-high or -low OS and BC cells, we found increased lung metastatic colonization that replicated findings from orthotopically implanted cancer cells. Collectively, our findings uncover a new role for IRF5 in cancer metastasis through its regulation of t-dEV programming of the PMN.
Collapse
Affiliation(s)
- Bailey K Roberts
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Dan Iris Li
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Carter Somerville
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Bharati Matta
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | - Vaishali Jha
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
| | | | - Zarina Brune
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Lionel Blanc
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, 11549, USA
| | - Samuel Z Soffer
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Department of Pediatric Surgery, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, 11549, USA
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
6
|
Pham LHP, Chang C, Tuchez K, Liu F, Chen Y. Assessing Alzheimer's disease via plasma extracellular vesicle-derived mRNA. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e70006. [PMID: 39279994 PMCID: PMC11399882 DOI: 10.1002/dad2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD), the most prevalent neurodegenerative disorder globally, has emerged as a significant health concern. Recently it has been revealed that extracellular vesicles (EVs) play a critical role in AD pathogenesis and progression. Their stability and presence in various biofluids, such as blood, offer a minimally invasive window for monitoring AD-related changes. METHODS We analyzed plasma EV-derived messenger RNA (mRNA) from 82 human subjects, including individuals with AD, mild cognitive impairment (MCI), and healthy controls. With next-generation sequencing, we profiled differentially expressed genes (DEGs), identifying those associated with AD. RESULTS Based on DEGs identified in both the MCI and AD groups, a diagnostic model was established based on machine learning, demonstrating an average diagnostic accuracy of over 98% and showed a strong correlation with different AD stages. DISCUSSION mRNA derived from plasma EVs shows significant promise as a non-invasive biomarker for the early detection and continuous monitoring of AD. Highlights The study conducted next-generation sequencing (NGS) of mRNA derived from human plasma extracellular vesicles (EVs) to assess Alzheimer's disease (AD).Profiling of plasma EV-derived mRNA shows a significantly enriched AD pathway, indicating its potential for AD-related studies.The AD-prediction model achieved a receiver-operating characteristic area under the curve (ROC-AUC) of more than 0.98, with strong correlation to the established Clinical Dementia Rating (CDR).
Collapse
Affiliation(s)
| | | | | | - Fei Liu
- Department of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Yuchao Chen
- WellSIM Biomedical Technologies Inc.San JoseCaliforniaUSA
| |
Collapse
|
7
|
Kural S, Jain G, Agarwal S, Das P, Kumar L. Urinary extracellular vesicles-encapsulated miRNA signatures: A new paradigm for urinary bladder cancer diagnosis and classification. Urol Oncol 2024; 42:179-190. [PMID: 38594151 DOI: 10.1016/j.urolonc.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 04/11/2024]
Abstract
Bladder cancer (BCa) stands as prevalent malignancy of the urinary system globally, especially among men. The clinical classification of BCa into non-muscle invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) is crucial for prognosis and treatment decisions. However, challenges persist in current diagnostic methods like Urine cytopathology that shows poor sensitivity therefore compromising on accurately diagnosing and monitoring BCa. In recent years, research has emphasized the importance of identifying urine and blood-based specific biomarkers for BCa that can enable early and precise diagnosis, effective tumor classification, and monitoring. The convenient proximity of urine with the urinary bladder epithelium makes urine a good source of noninvasive biomarkers, in particular urinary EVs because of the packaged existence of tumor-associated molecules. Therefore, the review assesses the potential of urinary extracellular vesicles (uEVs) as noninvasive biomarkers for BCa. We have elaborately reviewed and discussed the research that delves into the role of urinary EVs in the context of BCa diagnosis and classification. Extensive research has been dedicated to investigating differential microRNA (miRNA) expressions, with the goal of establishing distinct, noninvasive biomarkers for BCa. The identification of such biomarkers has the potential to revolutionize early detection, risk stratification, therapeutic interventions, and ultimately, the long-term prognosis of BCa patients. Despite notable advancements, inconsistencies persist in the biomarkers identified, methodologies employed, and study populations. This review meticulously compiles reported miRNA biomarkers, critically assessing the variability and discrepancies observed in existing research. By synthesizing these findings, the article aims to direct future studies toward a more cohesive and dependable approach in BCa biomarker identification, fostering progress in patient care and management.
Collapse
Affiliation(s)
- Sukhad Kural
- Department of Urology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Garima Jain
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Sakshi Agarwal
- Department of Obstetrics & Gynaecology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Parimal Das
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Lalit Kumar
- Department of Urology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| |
Collapse
|
8
|
Katifelis H, Gazouli M. RNA biomarkers in cancer therapeutics: The promise of personalized oncology. Adv Clin Chem 2024; 123:179-219. [PMID: 39181622 DOI: 10.1016/bs.acc.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Cancer therapy is a rapidly evolving and constantly expanding field. Current approaches include surgery, conventional chemotherapy and novel biologic agents as in immunotherapy, that together compose a wide armamentarium. The plethora of choices can, however, be clinically challenging in prescribing the most suitable treatment for any given patient. Fortunately, biomarkers can greatly facilitate the most appropriate selection. In recent years, RNA-based biomarkers have proven most promising. These molecules that range from small noncoding RNAs to protein coding gene transcripts can be valuable in cancer management and especially in cancer therapeutics. Compared to their DNA counterparts which are stable throughout treatment, RNA-biomarkers are dynamic. This allows prediction of success prior to treatment start and can identify alterations in expression that could reflect response. Moreover, improved nucleic acid technology allows RNA to be extracted from practically every biofluid/matrix and evaluated with exceedingly high analytic sensitivity. In addition, samples are largely obtained by minimally invasive procedures and as such can be used serially to assess treatment response real-time. This chapter provides the reader insight on currently known RNA biomarkers, the latest research employing Artificial Intelligence in the identification of such molecules and in clinical decisions driving forward the era of personalized oncology.
Collapse
Affiliation(s)
- Hector Katifelis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
9
|
Golden TN, Mani S, Linn RL, Leite R, Trigg NA, Wilson A, Anton L, Mainigi M, Conine CC, Kaufman BA, Strauss JF, Parry S, Simmons RA. Extracellular vesicles alter trophoblast function in pregnancies complicated by COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.17.580824. [PMID: 38464046 PMCID: PMC10925147 DOI: 10.1101/2024.02.17.580824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and resulting coronavirus disease (COVID-19) causes placental dysfunction, which increases the risk of adverse pregnancy outcomes. While abnormal placental pathology resulting from COVID-19 is common, direct infection of the placenta is rare. This suggests that pathophysiology associated with maternal COVID-19, rather than direct placental infection, is responsible for placental dysfunction and alteration of the placental transcriptome. We hypothesized that maternal circulating extracellular vesicles (EVs), altered by COVID-19 during pregnancy, contribute to placental dysfunction. To examine this hypothesis, we characterized maternal circulating EVs from pregnancies complicated by COVID-19 and tested their effects on trophoblast cell physiology in vitro . We found that the gestational timing of COVID-19 is a major determinant of circulating EV function and cargo. In vitro trophoblast exposure to EVs isolated from patients with an active infection at the time of delivery, but not EVs isolated from Controls, altered key trophoblast functions including hormone production and invasion. Thus, circulating EVs from participants with an active infection, both symptomatic and asymptomatic cases, can disrupt vital trophoblast functions. EV cargo differed between participants with COVID-19 and Controls, which may contribute to the disruption of the placental transcriptome and morphology. Our findings show that COVID-19 can have effects throughout pregnancy on circulating EVs and circulating EVs are likely to participate in placental dysfunction induced by COVID-19.
Collapse
|
10
|
Meissner JM, Chmielińska A, Ofri R, Cisło-Sankowska A, Marycz K. Extracellular Vesicles Isolated from Equine Adipose-Derived Stromal Stem Cells (ASCs) Mitigate Tunicamycin-Induced ER Stress in Equine Corneal Stromal Stem Cells (CSSCs). Curr Issues Mol Biol 2024; 46:3251-3277. [PMID: 38666934 PMCID: PMC11048834 DOI: 10.3390/cimb46040204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Corneal ulcers, characterized by severe inflammation of the cornea, can lead to serious, debilitating complications and may be vision-threatening for horses. In this study, we aimed to investigate the role of endoplasmic reticulum (ER) stress in corneal stem progenitor cell (CSSC) dysfunction and explore the potential of equine adipose-derived stromal stem cell (ASC)-derived extracellular vesicles (EVs) to improve corneal wound healing. We showed that CSSCs expressed high levels of CD44, CD45, and CD90 surface markers, indicating their stemness. Supplementation of the ER-stress-inducer tunicamycin to CSSCs resulted in reduced proliferative and migratory potential, accumulation of endoplasmic reticulum (ER)-stressed cells in the G0/G1 phase of the cell cycle, increased expression of proinflammatory genes, induced oxidative stress and sustained ER stress, and unfolded protein response (UPR). Importantly, treatment with EVs increased the proliferative activity and number of cells in the G2/Mitosis phase, enhanced migratory ability, suppressed the overexpression of proinflammatory cytokines, and upregulated the anti-inflammatory miRNA-146a-5p, compared to control and/or ER-stressed cells. Additionally, EVs lowered the expression of ER-stress master regulators and effectors (PERK, IRE1, ATF6, and XBP1), increased the number of mitochondria, and reduced the expression of Fis-1 and Parkin, thereby promoting metabolic homeostasis and protecting against apoptosis in equine CSSCs. Our findings demonstrate that MSCs-derived EVs represent an innovative and promising therapeutic strategy for the transfer of bioactive mediators which regulate various cellular and molecular signaling pathways.
Collapse
Affiliation(s)
- Justyna M. Meissner
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland;
| | - Aleksandra Chmielińska
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mala, Poland; (A.C.); (A.C.-S.)
| | - Ron Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel;
| | - Anna Cisło-Sankowska
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mala, Poland; (A.C.); (A.C.-S.)
| | - Krzysztof Marycz
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland;
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mala, Poland; (A.C.); (A.C.-S.)
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95516, USA
| |
Collapse
|
11
|
Yang X, Wu M, Kong X, Wang Y, Hu C, Zhu D, Kong L, Qiu F, Jiang W. Exosomal miR-3174 induced by hypoxia promotes angiogenesis and metastasis of hepatocellular carcinoma by inhibiting HIPK3. iScience 2024; 27:108955. [PMID: 38322996 PMCID: PMC10845063 DOI: 10.1016/j.isci.2024.108955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 11/11/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor with rich blood supply. HCC-derived exosomes containing hereditary substances including microRNAs (miRNAs) were involved in regulating tumor angiogenesis and metastasis. Subsequently, series experiments were performed to evaluate the effect of exosomal miR-3174 on HCC angiogenesis and metastasis. HCC-derived exosomal miR-3174 was ingested by human umbilical vein endothelial cells (HUVECs) in which HIPK3 was targeted and silenced, causing subsequent inhibition of Fas and p53 signaling pathways. Furthermore, exosomal miR-3174 induced permeability and angiogenesis of HUVECs to enhance HCC progression and metastasis. Under hypoxia, upregulated HIF-1α further promoted the transcription of miR-3174. Moreover, HNRNPA1 augmented the package of miR-3174 into exosomes. Clinical data analysis confirmed that HCC patients with high-level miR-3174 were correlated with worse prognosis. Thus, exosomal miR-3174 induced by hypoxia promotes angiogenesis and metastasis of HCC by inhibiting HIPK3/p53 and HIPK3/Fas signaling pathways. Our findings might provide potential targets for anti-tumor therapy.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Hepatobiliary Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu 210000, China
| | - Mingyu Wu
- Department of Hepatobiliary Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Center, Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu 214023, China
| | - Xiangxu Kong
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu 210000, China
| | - Yun Wang
- Department of Hepatobiliary Surgery, Xuzhou City Central Hospital, The Affiliated Hospital of the Southeast University Medical School (Xu zhou), The Tumor Research Institute of the Southeast University (Xu zhou), Xuzhou clinical college of Xuzhou Medical University, 199 Jiefang South Road, Xuzhou, Jiangsu 221009, China
| | - Chunyang Hu
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu 210000, China
| | - Deming Zhu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
| | - Lianbao Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu 210000, China
| | - Fei Qiu
- Department of Anesthesiology, The Second Hospital of Nanjing, Nanjing, Jiangsu 210000, China
| | - Wangjie Jiang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210000, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, Jiangsu 210000, China
| |
Collapse
|
12
|
Kitagawa M, Tran TM, Jackson D. Traveling with purpose: cell-to-cell transport of plant mRNAs. Trends Cell Biol 2024; 34:48-57. [PMID: 37380581 DOI: 10.1016/j.tcb.2023.05.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/30/2023]
Abstract
Messenger RNAs (mRNAs) in multicellular organisms can act as signals transported cell-to-cell and over long distances. In plants, mRNAs traffic cell-to-cell via plasmodesmata (PDs) and over long distances via the phloem vascular system to control diverse biological processes - such as cell fate and tissue patterning - in destination organs. Research on long-distance transport of mRNAs in plants has made remarkable progress, including the cataloguing of many mobile mRNAs, characterization of mRNA features important for transport, identification of mRNA-binding proteins involved in their transport, and understanding of the physiological roles of mRNA transport. However, information on short-range mRNA cell-to-cell transport is still limited. This review discusses the regulatory mechanisms and physiological functions of mRNA transport at the cellular and whole plant levels.
Collapse
Affiliation(s)
- Munenori Kitagawa
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Thu M Tran
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
13
|
Phu Pham LH, Chang CF, Tuchez K, Chen Y. Assess Alzheimer's Disease via Plasma Extracellular Vesicle-derived mRNA. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.26.23299985. [PMID: 38234733 PMCID: PMC10793515 DOI: 10.1101/2023.12.26.23299985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Alzheimer's disease (AD), the most prevalent neurodegenerative disorder globally, has emerged as a significant health concern, particularly due to the increasing aging population. Recently, it has been revealed that extracellular vesicles (EVs) originating from neurons play a critical role in AD pathogenesis and progression. These neuronal EVs can cross the blood-brain barrier and enter peripheral circulation, offering a less invasive means for assessing blood-based AD biomarkers. In this study, we analyzed plasma EV-derived messenger RNA (mRNA) from 82 subjects, including individuals with AD, mild cognitive impairment (MCI), and healthy controls, using next-generation sequencing (NGS) to profile their gene expression for functional enrichment and pathway analysis. Based on the differentially expressed genes identified in both MCI and AD groups, we established a diagnostic model by implementing a machine learning classifier. The refined model demonstrated an average diagnostic accuracy over 98% and showed a strong correlation with different AD stages, suggesting the potential of plasma EV-derived mRNA as a promising non-invasive biomarker for early detection and ongoing monitoring of AD.
Collapse
Affiliation(s)
| | | | | | - Yuchao Chen
- WellSIM Biomedical Technologies Inc., San Jose, CA, USA
| |
Collapse
|
14
|
Santiago JV, Natu A, Ramelow CC, Rayaprolu S, Xiao H, Kumar V, Kumar P, Seyfried NT, Rangaraju S. Identification of State-Specific Proteomic and Transcriptomic Signatures of Microglia-Derived Extracellular Vesicles. Mol Cell Proteomics 2023; 22:100678. [PMID: 37952696 PMCID: PMC10755493 DOI: 10.1016/j.mcpro.2023.100678] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/26/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023] Open
Abstract
Microglia are resident immune cells of the brain that play important roles in mediating inflammatory responses in several neurological diseases via direct and indirect mechanisms. One indirect mechanism may involve extracellular vesicle (EV) release, so that the molecular cargo transported by microglia-derived EVs can have functional effects by facilitating intercellular communication. The molecular composition of microglia-derived EVs, and how microglial activation states impact EV composition and EV-mediated effects in neuroinflammation, remain poorly understood. We hypothesize that microglia-derived EVs have unique molecular profiles that are determined by microglial activation state. Using size-exclusion chromatography to purify EVs from BV2 microglia, combined with proteomic (label-free quantitative mass spectrometry or LFQ-MS) and transcriptomic (mRNA and noncoding RNA seq) methods, we obtained comprehensive molecular profiles of microglia-derived EVs. LFQ-MS identified several classic EV proteins (tetraspanins, ESCRT machinery, and heat shock proteins), in addition to over 200 proteins not previously reported in the literature. Unique mRNA and microRNA signatures of microglia-derived EVs were also identified. After treating BV2 microglia with lipopolysaccharide (LPS), interleukin-10, or transforming growth factor beta, to mimic pro-inflammatory, anti-inflammatory, or homeostatic states, respectively, LFQ-MS and RNA seq revealed novel state-specific proteomic and transcriptomic signatures of microglia-derived EVs. Particularly, LPS treatment had the most profound impact on proteomic and transcriptomic compositions of microglia-derived EVs. Furthermore, we found that EVs derived from LPS-activated microglia were able to induce pro-inflammatory transcriptomic changes in resting responder microglia, confirming the ability of microglia-derived EVs to relay functionally relevant inflammatory signals. These comprehensive microglia-EV molecular datasets represent important resources for the neuroscience and omics communities and provide novel insights into the role of microglia-derived EVs in neuroinflammation.
Collapse
Affiliation(s)
- Juliet V Santiago
- Department of Neurology, Emory University, Atlanta, Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Aditya Natu
- Department of Neurology, Emory University, Atlanta, Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Christina C Ramelow
- Department of Neurology, Emory University, Atlanta, Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Sruti Rayaprolu
- Department of Neurology, Emory University, Atlanta, Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Hailian Xiao
- Department of Neurology, Emory University, Atlanta, Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Vishnu Kumar
- Department of Neurology, Emory University, Atlanta, Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Prateek Kumar
- Department of Neurology, Emory University, Atlanta, Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University, Atlanta, Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA; Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University, Atlanta, Georgia, USA; Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA.
| |
Collapse
|
15
|
Reshi QUA, Godakumara K, Ord J, Dissanayake K, Hasan MM, Andronowska A, Heath P, Fazeli A. Spermatozoa, acts as an external cue and alters the cargo and production of the extracellular vesicles derived from oviductal epithelial cells in vitro. J Cell Commun Signal 2023; 17:737-755. [PMID: 36469292 PMCID: PMC10409707 DOI: 10.1007/s12079-022-00715-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/23/2022] [Indexed: 12/09/2022] Open
Abstract
The oviduct provides optimum physiological and biochemical milieu essential for successful fertilization, early embryo development and facilitates functional maturation of spermatozoa. A study has revealed that spermatozoa alters the gene expression in bovine oviductal epithelial cells (BOECs) remotely via bio-active particles, thus acting as a cue to the oviduct prior to their arrival. However, very little attention has been paid to the question of whether spermatozoa could alter the cargo of extracellular vesicles (EVs) derived from BOECs. Therefore, the aim of this study was to investigate the alterations in small non-coding RNAs in EVs cargo derived from BOECs when incubated with spermatozoa in contact and non-contact co-culture models. After 4 h of incubation the EVs were isolated from the conditioned media, followed by small non-coding sequencing of the BOEC derived EVs. Our results revealed that EVs from both co-culture models contained distinct cargo in form of miRNA, fragmented mRNA versus control. The pathway enrichment analysis revealed that EV miRNA from direct co-culture were involved in the biological processes associated with phagocytosis, macroautophagy, placenta development, cellular responses to TNF and FGF. The mRNA fragments also varied within the different groups and mapped to the exonic regions of the transcriptome providing vital insights regarding the changes in cellular transcriptome on the arrival of spermatozoa. The findings of this study suggest that spermatozoa, in contact as well as remotely, alter the EV cargo of female reproductive tract epithelial cells which might be playing an essential role in pre and post-fertilization events.
Collapse
Affiliation(s)
- Qurat Ul Ain Reshi
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia
| | - James Ord
- Institute for Fish and Wildlife Health, University of Bern, Längassstrasse 122, 3012, Bern, Switzerland
| | - Keerthie Dissanayake
- Department of Anatomy, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Mohammad Mehedi Hasan
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia
- Institute for Women's Health, Maternal and Fetal Medicine Department, University College London, 86-96 Chenies Mews, London, WC1N 1EH, UK
| | - Aneta Andronowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima St. 10, 10-748, Olsztyn, Poland
| | - Paul Heath
- Sheffield Institute for Translational Neuroscience SITraN, University of Sheffield, 385a Glossop Rd, Sheffield, S10 2HQ, UK
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 62, 51006, Tartu, Estonia.
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50411, Tartu, Estonia.
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, S10 2SF, UK.
| |
Collapse
|
16
|
Santiago JV, Natu A, Ramelow CC, Rayaprolu S, Xiao H, Kumar V, Seyfried NT, Rangaraju S. Identification of state-specific proteomic and transcriptomic signatures of microglia-derived extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.551012. [PMID: 37546899 PMCID: PMC10402142 DOI: 10.1101/2023.07.28.551012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Microglia are resident immune cells of the brain that play important roles in mediating inflammatory responses in several neurological diseases via direct and indirect mechanisms. One indirect mechanism may involve extracellular vesicle (EV) release, so that the molecular cargo transported by microglia-derived EVs can have functional effects by facilitating intercellular communication. The molecular composition of microglia-derived EVs, and how microglial activation states impacts EV composition and EV-mediated effects in neuroinflammation, remain poorly understood. We hypothesize that microglia-derived EVs have unique molecular profiles that are determined by microglial activation state. Using size-exclusion chromatography to purify EVs from BV2 microglia, combined with proteomic (label-free quantitative mass spectrometry or LFQ-MS) and transcriptomic (mRNA and non-coding RNA seq) methods, we obtained comprehensive molecular profiles of microglia-derived EVs. LFQ-MS identified several classic EV proteins (tetraspanins, ESCRT machinery, and heat shock proteins), in addition to over 200 proteins not previously reported in the literature. Unique mRNA and microRNA signatures of microglia-derived EVs were also identified. After treating BV2 microglia with lipopolysaccharide (LPS), interleukin-10, or transforming growth factor beta, to mimic pro-inflammatory, anti-inflammatory, or homeostatic states, respectively, LFQ-MS and RNA seq revealed novel state-specific proteomic and transcriptomic signatures of microglia-derived EVs. Particularly, LPS treatment had the most profound impact on proteomic and transcriptomic compositions of microglia-derived EVs. Furthermore, we found that EVs derived from LPS-activated microglia were able to induce pro-inflammatory transcriptomic changes in resting responder microglia, confirming the ability of microglia-derived EVs to relay functionally-relevant inflammatory signals. These comprehensive microglia-EV molecular datasets represent important resources for the neuroscience and glial communities, and provide novel insights into the role of microglia-derived EVs in neuroinflammation.
Collapse
Affiliation(s)
- Juliet V. Santiago
- Department of Neurology, Emory University, 201 Dowman Drive Atlanta, Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Aditya Natu
- Department of Neurology, Emory University, 201 Dowman Drive Atlanta, Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Christina C. Ramelow
- Department of Neurology, Emory University, 201 Dowman Drive Atlanta, Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Sruti Rayaprolu
- Department of Neurology, Emory University, 201 Dowman Drive Atlanta, Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Hailian Xiao
- Department of Neurology, Emory University, 201 Dowman Drive Atlanta, Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Vishnu Kumar
- Department of Neurology, Emory University, 201 Dowman Drive Atlanta, Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| | - Nicholas T. Seyfried
- Department of Neurology, Emory University, 201 Dowman Drive Atlanta, Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Srikant Rangaraju
- Department of Neurology, Emory University, 201 Dowman Drive Atlanta, Georgia, 30322, United States of America
- Center for Neurodegenerative Diseases, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
17
|
Mao Y, Zhang M, Wang L, Lu Y, Hu X, Chen Z. Role of microRNA carried by small extracellular vesicles in urological tumors. Front Cell Dev Biol 2023; 11:1192937. [PMID: 37333986 PMCID: PMC10272383 DOI: 10.3389/fcell.2023.1192937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Small extracellular vesicles (sEVs) are minute vesicles secreted by various cells that are capable of transporting cargo, including microRNAs, between donor and recipient cells. MicroRNAs (miRNAs), small non-coding RNAs approximately 22 nucleotides in length, have been implicated in a wide array of biological processes, including those involved in tumorigenesis. Emerging evidence highlights the pivotal role of miRNAs encapsulated in sEVs in both the diagnosis and treatment of urological tumors, with potential implications in epithelial-mesenchymal transition, proliferation, metastasis, angiogenesis, tumor microenvironment and drug resistance. This review provides a brief overview of the biogenesis and functional mechanisms of sEVs and miRNAs, followed by a summarization of recent empirical findings on miRNAs encapsulated in sEVs from three archetypal urologic malignancies: prostate cancer, clear cell renal cell carcinoma, and bladder cancer. We conclude by underscoring the potential of sEV-enclosed miRNAs as both biomarkers and therapeutic targets, with a particular focus on their detection and analysis in biological fluids such as urine, plasma, and serum.
Collapse
Affiliation(s)
- Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
18
|
Fusco P, Fietta A, Esposito MR, Zanella L, Micheli S, Bastianello A, Bova L, Borile G, Germano G, Cimetta E. miR-210-3p enriched extracellular vesicles from hypoxic neuroblastoma cells stimulate migration and invasion of target cells. Cell Biosci 2023; 13:89. [PMID: 37202777 DOI: 10.1186/s13578-023-01045-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/03/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Tumor hypoxia stimulates release of extracellular vesicles (EVs) that facilitate short- and long-range intercellular communication and metastatization. Albeit hypoxia and EVs release are known features of Neuroblastoma (NB), a metastasis-prone childhood malignancy of the sympathetic nervous system, whether hypoxic EVs can facilitate NB dissemination is unclear. METHODS Here we isolated and characterized EVs from normoxic and hypoxic NB cell culture supernatants and performed microRNA (miRNA) cargo analysis to identify key mediators of EVs biological effects. We then validated if EVs promote pro-metastatic features both in vitro and in an in vivo zebrafish model. RESULTS EVs from NB cells cultured at different oxygen tensions did not differ for type and abundance of surface markers nor for biophysical properties. However, EVs derived from hypoxic NB cells (hEVs) were more potent than their normoxic counterpart in inducing NB cells migration and colony formation. miR-210-3p was the most abundant miRNA in the cargo of hEVs; mechanistically, overexpression of miR-210-3p in normoxic EVs conferred them pro-metastatic features, whereas miR-210-3p silencing suppressed the metastatic ability of hypoxic EVs both in vitro and in vivo. CONCLUSION Our data identify a role for hypoxic EVs and their miR-210-3p cargo enrichment in the cellular and microenvironmental changes favoring NB dissemination.
Collapse
Affiliation(s)
- Pina Fusco
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Anna Fietta
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Maria Rosaria Esposito
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Luca Zanella
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Sara Micheli
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padua, Italy
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Angelica Bastianello
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Lorenzo Bova
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padua, Italy
| | - Giulia Borile
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Giuseppe Germano
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131, Padua, Italy.
- Fondazione Istituto Di Ricerca Pediatrica Città Della Speranza (IRP), Corso Stati Uniti 4, 35127, Padua, Italy.
| |
Collapse
|
19
|
Rahat ST, Mäkelä M, Nasserinejad M, Ikäheimo TM, Hyrkäs-Palmu H, Valtonen RIP, Röning J, Sebert S, Nieminen AI, Ali N, Vainio S. Clinical-Grade Patches as a Medium for Enrichment of Sweat-Extracellular Vesicles and Facilitating Their Metabolic Analysis. Int J Mol Sci 2023; 24:ijms24087507. [PMID: 37108669 PMCID: PMC10139190 DOI: 10.3390/ijms24087507] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Cell-secreted extracellular vesicles (EVs), carrying components such as RNA, DNA, proteins, and metabolites, serve as candidates for developing non-invasive solutions for monitoring health and disease, owing to their capacity to cross various biological barriers and to become integrated into human sweat. However, the evidence for sweat-associated EVs providing clinically relevant information to use in disease diagnostics has not been reported. Developing cost-effective, easy, and reliable methodologies to investigate EVs' molecular load and composition in the sweat may help to validate their relevance in clinical diagnosis. We used clinical-grade dressing patches, with the aim being to accumulate, purify and characterize sweat EVs from healthy participants exposed to transient heat. The skin patch-based protocol described in this paper enables the enrichment of sweat EVs that express EV markers, such as CD63. A targeted metabolomics study of the sweat EVs identified 24 components. These are associated with amino acids, glutamate, glutathione, fatty acids, TCA, and glycolysis pathways. Furthermore, as a proof-of-concept, when comparing the metabolites' levels in sweat EVs isolated from healthy individuals with those of participants with Type 2 diabetes following heat exposure, our findings revealed that the metabolic patterns of sweat EVs may be linked with metabolic changes. Moreover, the concentration of these metabolites may reflect correlations with blood glucose and BMI. Together our data revealed that sweat EVs can be purified using routinely used clinical patches, setting the foundations for larger-scale clinical cohort work. Furthermore, the metabolites identified in sweat EVs also offer a realistic means to identify relevant disease biomarkers. This study thus provides a proof-of-concept towards a novel methodology that will focus on the use of the sweat EVs and their metabolites as a non-invasive approach, in order to monitor wellbeing and changes in diseases.
Collapse
Affiliation(s)
- Syeda Tayyiba Rahat
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Mira Mäkelä
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
| | - Maryam Nasserinejad
- Research Unit of Population Health Research, Faculty of Medicine, University of Oulu, 90570 Oulu, Finland
- Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Tiina M Ikäheimo
- Department of Community Medicine, University of Tromsø, N-9037 Tromsø, Norway
- Research Unit of Population Health, University of Oulu, 90220 Oulu, Finland
| | - Henna Hyrkäs-Palmu
- Research Unit of Population Health, University of Oulu, 90220 Oulu, Finland
| | - Rasmus I P Valtonen
- Research Unit of Biomedicine, Medical Research Center, Faculty of Medicine, University of Oulu, Oulu University Hospital, 90220 Oulu, Finland
| | - Juha Röning
- Infotech Oulu, University of Oulu, 90014 Oulu, Finland
- Biomimetics and Intelligent Systems Group, Faculty of Information Technology and Electrical Engineering, University of Oulu, 90570 Oulu, Finland
| | - Sylvain Sebert
- Research Unit of Population Health Research, Faculty of Medicine, University of Oulu, 90570 Oulu, Finland
- Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Anni I Nieminen
- FIMM Metabolomics Unit, Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Nsrein Ali
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
- Infotech Oulu, University of Oulu, 90014 Oulu, Finland
- Flagship GeneCellNano, University of Oulu, 90220 Oulu, Finland
| | - Seppo Vainio
- Laboratory of Developmental Biology, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220 Oulu, Finland
- Infotech Oulu, University of Oulu, 90014 Oulu, Finland
- Flagship GeneCellNano, University of Oulu, 90220 Oulu, Finland
- Kvantum Institute, University of Oulu, 90014 Oulu, Finland
| |
Collapse
|
20
|
Loric S, Denis JA, Desbene C, Sabbah M, Conti M. Extracellular Vesicles in Breast Cancer: From Biology and Function to Clinical Diagnosis and Therapeutic Management. Int J Mol Sci 2023; 24:7208. [PMID: 37108371 PMCID: PMC10139222 DOI: 10.3390/ijms24087208] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer (BC) is the first worldwide most frequent cancer in both sexes and the most commonly diagnosed in females. Although BC mortality has been thoroughly declining over the past decades, there are still considerable differences between women diagnosed with early BC and when metastatic BC is diagnosed. BC treatment choice is widely dependent on precise histological and molecular characterization. However, recurrence or distant metastasis still occurs even with the most recent efficient therapies. Thus, a better understanding of the different factors underlying tumor escape is mainly mandatory. Among the leading candidates is the continuous interplay between tumor cells and their microenvironment, where extracellular vesicles play a significant role. Among extracellular vesicles, smaller ones, also called exosomes, can carry biomolecules, such as lipids, proteins, and nucleic acids, and generate signal transmission through an intercellular transfer of their content. This mechanism allows tumor cells to recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. By reciprocity, stromal cells can also use exosomes to profoundly modify tumor cell behavior. This review intends to cover the most recent literature on the role of extracellular vesicle production in normal and cancerous breast tissues. Specific attention is paid to the use of extracellular vesicles for early BC diagnosis, follow-up, and prognosis because exosomes are actually under the spotlight of researchers as a high-potential source of liquid biopsies. Extracellular vesicles in BC treatment as new targets for therapy or efficient nanovectors to drive drug delivery are also summarized.
Collapse
Affiliation(s)
- Sylvain Loric
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | | | - Cédric Desbene
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Michèle Sabbah
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Marc Conti
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
- INTEGRACELL SAS, 91160 Longjumeau, France
| |
Collapse
|
21
|
Singh S, Goyal D, Raman K, Kumar S, Malik PS, Elangovan R. RNA profile of immuno-magnetically enriched lung cancer associated exosomes isolated from clinical samples. Cancer Genet 2023; 274-275:59-71. [PMID: 37030018 DOI: 10.1016/j.cancergen.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/12/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
Exosomal cargo secreted from cancer cells has been associated with the development and progression of the tumour. Enriching clinically relevant tissue-specific exosomes may assist in the focused analysis of RNA molecules packaged during cancer. Therefore, this study utilized a rapid immunomagnetic enrichment approach for targeted isolation of lung cancer cell-derived exosomes from human plasma, followed by analysing their cargo RNA using high throughput sequencing. The total RNA purified from these immunomagnetically enriched exosomes provided adequate RNA quality for characterization through the Illumina platform. Differential expression analysis was performed between patients and healthy controls to study the altered exosomal RNA profile during lung cancer. Further, functional enrichment analysis was performed with the list of identified differentially expressed genes (DEGs). In total, 1383 mRNAs and 64 lncRNA were identified as differentially expressed between patient plasma exosomes than healthy controls (fold change > 2, P < 0.05). Kyoto encyclopaedia of Genes and Genomes (KEGG) pathway analysis revealed that the DEGs were mainly associated with cancer-related pathways, purine metabolism, calcium, and cGMP-PKG signalling pathways. In conclusion, the presented approach successfully demonstrated a novel strategy for focused disease-specific transcriptome analysis, which provides a feasible option for identifying disease-specific exosome biomarkers for detecting non-small lung cancer.
Collapse
Affiliation(s)
- Shefali Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India
| | - Deevanshu Goyal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India
| | - Karthikeyan Raman
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sachin Kumar
- Department of Medical Oncology, Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar East, New Delhi, 110029, India
| | - Prabhat Singh Malik
- Department of Medical Oncology, Dr. B.R.A Institute-Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar East, New Delhi, 110029, India
| | - Ravikrishnan Elangovan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
22
|
Protein-Coding Region Derived Small RNA in Exosomes from Influenza A Virus-Infected Cells. Int J Mol Sci 2023; 24:ijms24010867. [PMID: 36614310 PMCID: PMC9820831 DOI: 10.3390/ijms24010867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Exosomes may function as multifactorial mediators of cell-to-cell communication, playing crucial roles in both physiological and pathological processes. Exosomes released from virus-infected cells may contain RNA and proteins facilitating infection spread. The purpose of our study was to analyze how the small RNA content of exosomes is affected by infection with the influenza A virus (IAV). Exosomes were isolated by ultracentrifugation after hemadsorption of virions and their small RNA content was identified using high-throughput sequencing. As compared to mock-infected controls, 856 RNA transcripts were significantly differentially expressed in exosomes from IAV-infected cells, including fragments of 458 protein-coding (pcRNA), 336 small, 28 long intergenic non-coding RNA transcripts, and 33 pseudogene transcripts. Upregulated pcRNA species corresponded mainly to proteins associated with translation and antiviral response, and the most upregulated among them were RSAD2, CCDC141 and IFIT2. Downregulated pcRNA species corresponded to proteins associated with the cell cycle and DNA packaging. Analysis of differentially expressed pseudogenes showed that in most cases, an increase in the transcription level of pseudogenes was correlated with an increase in their parental genes. Although the role of exosome RNA in IAV infection remains undefined, the biological processes identified based on the corresponding proteins may indicate the roles of some of its parts in IAV replication.
Collapse
|
23
|
Cheng P, Wang X, Liu Q, Yang T, Qu H, Zhou H. Extracellular vesicles mediate biological information delivery: A double-edged sword in cardiac remodeling after myocardial infarction. Front Pharmacol 2023; 14:1067992. [PMID: 36909157 PMCID: PMC9992194 DOI: 10.3389/fphar.2023.1067992] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Acute myocardial infarction (AMI) is a severe ischemic disease with high morbidity and mortality worldwide. Maladaptive cardiac remodeling is a series of abnormalities in cardiac structure and function that occurs following myocardial infarction (MI). The pathophysiology of this process can be separated into two distinct phases: the initial inflammatory response, and the subsequent longer-term scar revision that includes the regression of inflammation, neovascularization, and fibrotic scar formation. Extracellular vesicles are nano-sized lipid bilayer vesicles released into the extracellular environment by eukaryotic cells, containing bioinformatic transmitters which are essential mediators of intercellular communication. EVs of different cellular origins play an essential role in cardiac remodeling after myocardial infarction. In this review, we first introduce the pathophysiology of post-infarction cardiac remodeling, as well as the biogenesis, classification, delivery, and functions of EVs. Then, we explore the dual role of these small molecule transmitters delivered by EVs in post-infarction cardiac remodeling, including the double-edged sword of pro-and anti-inflammation, and pro-and anti-fibrosis, which is significant for post-infarction cardiac repair. Finally, we discuss the pharmacological and engineered targeting of EVs for promoting heart repair after MI, thus revealing the potential value of targeted modulation of EVs and its use as a drug delivery vehicle in the therapeutic process of post-infarction cardiac remodeling.
Collapse
Affiliation(s)
- Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyan Qu
- Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
24
|
RBCK1 regulates the progression of ER-positive breast cancer through the HIF1α signaling. Cell Death Dis 2022; 13:1023. [PMID: 36473847 PMCID: PMC9726878 DOI: 10.1038/s41419-022-05473-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most common malignancy in women on a global scale. It can generally be divided into four main categories, of which estrogen receptor ER-positive breast cancer accounts for most breast cancer cases. RBCK1 protein is an E3 ubiquitin ligase containing the UBL, NZF, and RBR domains. It is well known to exhibit abnormal expression in breast tumors, making it a valuable diagnostic marker and drug target. Additionally, studies have confirmed that in breast cancer, about 25 to 40% of tumors appear as visible hypoxic regions, while in hypoxia, tumor cells can activate the hypoxia-inducing factor HIF1 pathway and widely activate the expression of downstream genes. Previous studies have confirmed that in the hypoxic environment of tumors, HIF1α promotes the remodeling of extracellular matrix, induces the recruitment of tumor-associated macrophages (TAM) and immunosuppression of allogeneic tumors, thereby influencing tumor recurrence and metastasis. This research aims to identify RBCK1 as an important regulator of HIF1α signaling pathway. Targeted therapy with RBCK1 could be a promising treatment strategy for ER-positive breast cancer.
Collapse
|
25
|
Wu D, Tao T, Eshraghian EA, Lin P, Li Z, Zhu X. Extracellular RNA as a kind of communication molecule and emerging cancer biomarker. Front Oncol 2022; 12:960072. [PMID: 36465402 PMCID: PMC9714358 DOI: 10.3389/fonc.2022.960072] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/10/2022] [Indexed: 11/04/2023] Open
Abstract
Extracellular RNA (exRNA) is a special form of RNA in the body. RNA carries information about genes and metabolic regulation in the body, which can reflect the real-time status of cells. This characteristic renders it a biomarker for disease diagnosis, treatment, and prognosis. ExRNA is transported through extracellular vesicles as a signal medium to mediate communication between cells. Tumor cells can release more vesicles than normal cells, thereby promoting tumor development. Depending on its easy detection, the advantages of non-invasive molecular diagnostic technology can be realized. In this systematic review, we present the types, vectors, and biological value of exRNA. We briefly describe new methods of tumor diagnosis and treatment, as well as the difficulties faced in the progress of such research. This review highlights the groundbreaking potential of exRNA as a clinical biomarker.
Collapse
Affiliation(s)
- Danny Wu
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, China
| | - Tao Tao
- Department of Gastroenterology, Zibo Central Hospital, Zibo, China
| | - Emily A. Eshraghian
- Department of Medicine, University of California (UC) San Diego Health, San Diego, CA, United States
| | - Peixu Lin
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, China
| | - Zesong Li
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China
| | - Xiao Zhu
- Institute of Marine Medicine, Guangdong Medical University, Zhanjiang, China
- Ningbo Institute of Life and Health Industry, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
26
|
Alberti G, Russo E, Corrao S, Anzalone R, Kruzliak P, Miceli V, Conaldi PG, Di Gaudio F, La Rocca G. Current Perspectives on Adult Mesenchymal Stromal Cell-Derived Extracellular Vesicles: Biological Features and Clinical Indications. Biomedicines 2022; 10:2822. [PMID: 36359342 PMCID: PMC9687875 DOI: 10.3390/biomedicines10112822] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 08/10/2023] Open
Abstract
Extracellular vesicles (EVs) constitute one of the main mechanisms by which cells communicate with the surrounding tissue or at distance. Vesicle secretion is featured by most cell types, and adult mesenchymal stromal cells (MSCs) of different tissue origins have shown the ability to produce them. In recent years, several reports disclosed the molecular composition and suggested clinical indications for EVs derived from adult MSCs. The parental cells were already known for their roles in different disease settings in regulating inflammation, immune modulation, or transdifferentiation to promote cell repopulation. Interestingly, most reports also suggested that part of the properties of parental cells were maintained by isolated EV populations. This review analyzes the recent development in the field of cell-free therapies, focusing on several adult tissues as a source of MSC-derived EVs and the available clinical data from in vivo models.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Eleonora Russo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Simona Corrao
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Rita Anzalone
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Peter Kruzliak
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | | | - Giampiero La Rocca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
27
|
Gao X, Gao B, Li S. Extracellular vesicles: A new diagnostic biomarker and targeted drug in osteosarcoma. Front Immunol 2022; 13:1002742. [PMID: 36211364 PMCID: PMC9539319 DOI: 10.3389/fimmu.2022.1002742] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma (OS) is a primary bone cancer that is highly prevalent among adolescents and adults below the age of 20 years. The prognostic outcome of metastatic OS or relapse is extremely poor; thus, developing new diagnostic and therapeutic strategies for treating OS is necessary. Extracellular vesicles (EVs) ranging from 30–150 nm in diameter are commonly produced in different cells and are found in various types of body fluids. EVs are rich in biologically active components like proteins, lipids, and nucleic acids. They also strongly affect pathophysiological processes by modulating the intercellular signaling pathways and the exchange of biomolecules. Many studies have found that EVs influence the occurrence, development, and metastasis of osteosarcoma. The regulation of inflammatory communication pathways by EVs affects OS and other bone-related pathological conditions, such as osteoarthritis and rheumatoid arthritis. In this study, we reviewed the latest findings related to diagnosis, prognosis prediction, and the development of treatment strategies for OS from the perspective of EVs.
Collapse
Affiliation(s)
- Xiaozhuo Gao
- Department of Pathology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Bo Gao
- Department of Pathology, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Shenyang, China
- *Correspondence: Shenglong Li, ;
| |
Collapse
|
28
|
Kobayashi M, Fujiwara K, Takahashi K, Yoshioka Y, Ochiya T, Podyma-Inoue KA, Watabe T. Transforming growth factor-β-induced secretion of extracellular vesicles from oral cancer cells evokes endothelial barrier instability via endothelial-mesenchymal transition. Inflamm Regen 2022; 42:38. [PMID: 36057626 PMCID: PMC9441046 DOI: 10.1186/s41232-022-00225-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background During metastasis, cancer cells undergo epithelial-mesenchymal transition (EMT) in response to transforming growth factor-β (TGF-β), which is abundant in the tumor microenvironment, and acquire invasive and metastatic potentials. Metastasis to distant organs requires intravascular invasion and extravasation of cancer cells, which is accompanied by the disruption of the adhesion between vascular endothelial cells. Cancer cell-derived extracellular vesicles (EVs) have been suggested to induce the destabilization of normal blood vessels at the metastatic sites. However, the roles of EVs secreted from cancer cells that have undergone EMT in the destabilization of blood vessels remain to be elucidated. In the present study, we characterized EVs secreted by oral cancer cells undergoing TGF-β-induced EMT and elucidated their effects on the characteristics of vascular endothelial cells. Methods Induction of EMT by TGF-β in human oral cancer cells was assessed using quantitative RT-PCR (qRT-PCR) and immunocytochemistry. Oral cancer cell-derived EVs were isolated from the conditioned media of oral cancer cells that were treated with or without TGF-β using ultracentrifugation, and characterized using nanoparticle tracking analysis and immunoblotting. The effects of EVs on human umbilical artery endothelial cells were examined by qRT-PCR, cellular staining, and permeability assay. The significant differences between means were determined using a t-test or one-way analysis of variance with Tukey’s multiple comparisons test. Results Oral cancer cells underwent EMT in response to TGF-β as revealed by changes in the expression of epithelial and mesenchymal cell markers at both the RNA and protein levels. Oral cancer cells treated with TGF-β showed increased EV production and altered EV composition when compared with untreated cells. The EVs that originated from cells that underwent EMT by TGF-β induced endothelial-mesenchymal transition, which was characterized by the decreased and increased expression of endothelial and mesenchymal cell markers, respectively. EVs derived from oral cancer cells also induced intercellular gap formation which led to the loss of endothelial cell barrier stability. Conclusions EVs released from oral cancer cells that underwent TGF-β-induced EMT target endothelial cells to induce vascular destabilization. Detailed characterization of oral cancer-derived EVs and factors responsible for EV-mediated vascular instability will lead to the development of agents targeting metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s41232-022-00225-7.
Collapse
Affiliation(s)
- Miho Kobayashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kashio Fujiwara
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Kazuki Takahashi
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Tokyo, 160-0023, Japan
| | - Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Tokyo, 160-0023, Japan
| | - Katarzyna A Podyma-Inoue
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
29
|
The Role of Extracellular Vesicles in Melanoma Progression. Cancers (Basel) 2022; 14:cancers14133086. [PMID: 35804857 PMCID: PMC9264817 DOI: 10.3390/cancers14133086] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma arises from a malignant transformation of the melanocytes in the skin. It is the deadliest form of skin cancer owing to its potential to metastasize. While recent advances in immuno-oncology have been successful in melanoma treatment, not all the patients respond to the treatment equally, thus individual pre-screening and personalized combination therapies are essential to stratify and monitor patients. Extracellular vesicles (EVs) have emerged as promising biomarker candidates to tackle these challenges. EVs are ~50-1000-nm-sized, lipid bilayer-enclosed spheres, which are secreted by almost all cell types, including cancer cells. Their cargo, such as nucleic acids, proteins, lipids, amino acids, and metabolites, can be transferred to target cells. Thanks to these properties, EVs can both provide a multiplexed molecular fingerprint of the cell of origin and thus serve as potential biomarkers, or reveal pathways important for cancer progression that can be targeted pharmaceutically. In this review we give a general overview of EVs and focus on their impact on melanoma progression. In particular, we shed light on the role of EVs in shaping the tumor-stroma interactions that facilitate metastasis and summarize the latest findings on molecular profiling of EV-derived miRNAs and proteins that can serve as potential biomarkers for melanoma progression.
Collapse
|
30
|
Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23126480. [PMID: 35742923 PMCID: PMC9224400 DOI: 10.3390/ijms23126480] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer membrane particles that play critical roles in intracellular communication through EV-encapsulated informative content, including proteins, lipids, and nucleic acids. Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal ability derived from bone marrow, fat, umbilical cord, menstruation blood, pulp, etc., which they use to induce tissue regeneration by their direct recruitment into injured tissues, including the heart, liver, lung, kidney, etc., or secreting factors, such as vascular endothelial growth factor or insulin-like growth factor. Recently, MSC-derived EVs have been shown to have regenerative effects against various diseases, partially due to the post-transcriptional regulation of target genes by miRNAs. Furthermore, EVs have garnered attention as novel drug delivery systems, because they can specially encapsulate various target molecules. In this review, we summarize the regenerative effects and molecular mechanisms of MSC-derived EVs.
Collapse
|
31
|
Abstract
Exosomes are natural nanoparticles that originate in the endocytic system. Exosomes play an important role in cell-to-cell communication by transferring RNAs, lipids, and proteins from donor cells to recipient cells or by binding to receptors on the recipient cell surface. The concentration of exosomes and the diversity of cargos are high in milk. Exosomes and their cargos resist degradation in the gastrointestinal tract and during processing of milk in dairy plants. They are absorbed and accumulate in tissues following oral administrations, cross the blood-brain barrier, and dietary depletion and supplementation elicit phenotypes. These features have sparked the interest of the nutrition and pharmacology communities for exploring milk exosomes as novel bioactive food compounds and for delivering drugs to diseased tissues. This review discusses the current knowledgebase, uncertainties, and controversies in these lines of scholarly endeavor and health research.
Collapse
Affiliation(s)
- Alice Ngu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Shu Wang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Haichuan Wang
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Afsana Khanam
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
32
|
Yang L, Jia J, Li S. Advances in the Application of Exosomes Identification Using Surface-Enhanced Raman Spectroscopy for the Early Detection of Cancers. Front Bioeng Biotechnol 2022; 9:808933. [PMID: 35087806 PMCID: PMC8786808 DOI: 10.3389/fbioe.2021.808933] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022] Open
Abstract
Exosomes are small nanoscale vesicles with a double-layered lipid membrane structure secreted by cells, and almost all types of cells can secrete exosomes. Exosomes carry a variety of biologically active contents such as nucleic acids and proteins, and play an important role not only in intercellular information exchange and signal transduction, but also in various pathophysiological processes in the human body. Surface-enhanced Raman Spectroscopy (SERS) uses light to interact with nanostructured materials such as gold and silver to produce a strong surface plasmon resonance effect, which can significantly enhance the Raman signal of molecules adsorbed on the surface of nanostructures to obtain a rich fingerprint of the sample itself or Raman probe molecules with ultra-sensitivity. The unique advantages of SERS, such as non-invasive and high sensitivity, good selectivity, fast analysis speed, and low water interference, make it a promising technology for life science and clinical testing applications. In this paper, we briefly introduce exosomes and the current main detection methods. We also describe the basic principles of SERS and the progress of the application of unlabeled and labeled SERS in exosome detection. This paper also summarizes the value of SERS-based exosome assays for early tumor diagnosis.
Collapse
Affiliation(s)
- Lu Yang
- Department of Internal Medicine, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute), Shenyang, China
| | - Jingyuan Jia
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, China
- *Correspondence: Jingyuan Jia, ; Shenglong Li,
| | - Shenglong Li
- Department of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital and Institute), Shenyang, China
- *Correspondence: Jingyuan Jia, ; Shenglong Li,
| |
Collapse
|
33
|
Jian X, Yang D, Wang L, Wang H. Downregulation of microRNA-200c-3p alleviates the aggravation of venous thromboembolism by targeting serpin family C member 1. Bioengineered 2021; 12:11156-11168. [PMID: 34783290 PMCID: PMC8810153 DOI: 10.1080/21655979.2021.2005982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022] Open
Abstract
Venous thromboembolism (VTE) is the third most prevalent cardiovascular complication. Increasing studies have demonstrated that some microRNAs (miRNAs) are aberrantly expressed in VTE and play crucial roles in mediating the development of VTE. Therefore, our study intends to explore the detailed function and molecular mechanism of miR-200c-3p in VTE progression. In our research, VTE rat models were first established via inferior vena cava (IVC) ligation and the time-dependent effects of IVC ligation on thrombus formation were discovered. The results of reverse transcription quantitative polymerase-chain reaction (RT-qPCR) and western blotting showed that serpin family C member 1 (SERPINC1) was downregulated in VTE rat models and showed an inverse correlation with thrombus load. MiRNA target prediction tools and luciferase reporter assay confirmed SERPINC1 as a target for miR-200c-3p. VTE rats were injected with miR-200c-3p inhibitor for 24 h to investigate whether miR-200c-3p knockdown influences thrombus formation in vivo. Histological examination through hematoxylin-eosin staining revealed that miR-200c-3p downregulation markedly inhibited the formation of thrombus in IVC of rats. Additionally, miR-200c-3p was upregulated while SERPINC1 was downregulated in serum and inferior vena cava of VTE rats as well as in plasma of patients with VTE. Linear regression analysis demonstrated that miR-200c-3p expression was negatively correlated to SERPINC1 expression in VTE rats and patients with VTE. Our study determines the previously unelucidated function of miR-200c-3p in VTE, which might provide a potential novel insight for the treatment of VTE.
Collapse
Affiliation(s)
- Xiaorong Jian
- Department of Hematology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Dehua Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430022, China
| | - Li Wang
- Department of Hematology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongxiang Wang
- Department of Hematology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
34
|
Chabanovska O, Galow AM, David R, Lemcke H. mRNA - A game changer in regenerative medicine, cell-based therapy and reprogramming strategies. Adv Drug Deliv Rev 2021; 179:114002. [PMID: 34653534 PMCID: PMC9418126 DOI: 10.1016/j.addr.2021.114002] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022]
Abstract
After thirty years of intensive research shaping and optimizing the technology, the approval of the first mRNA-based formulation by the EMA and FDA in order to stop the COVID-19 pandemic was a breakthrough in mRNA research. The astonishing success of these vaccines have brought the mRNA platform into the spotlight of the scientific community. The remarkable persistence of the groundwork is mainly attributed to the exceptional benefits of mRNA application, including the biological origin, immediate but transitory mechanism of action, non-integrative properties, safe and relatively simple manufacturing as well as the flexibility to produce any desired protein. Based on these advantages, a practical implementation of in vitro transcribed mRNA has been considered in most areas of medicine. In this review, we discuss the key preconditions for the rise of the mRNA in the medical field, including the unique structural and functional features of the mRNA molecule and its vehicles, which are crucial aspects for a production of potent mRNA-based therapeutics. Further, we focus on the utility of mRNA tools particularly in the scope of regenerative medicine, i.e. cell reprogramming approaches or manipulation strategies for targeted tissue restoration. Finally, we highlight the strong clinical potential but also the remaining hurdles to overcome for the mRNA-based regenerative therapy, which is only a few steps away from becoming a reality.
Collapse
Affiliation(s)
- Oleksandra Chabanovska
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, Rostock, Germany,Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany
| | - Anne-Marie Galow
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Robert David
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, Rostock, Germany,Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany,Corresponding author at: Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, Rostock, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), Rostock University Medical Center, Rostock, Germany,Faculty of Interdisciplinary Research, Department Life, Light & Matter, University Rostock, Rostock, Germany
| |
Collapse
|