1
|
Luo Z, Han Q, Lu J, Ouyang X, Fan Y, Liu Y, Zhou X, Kong J, Liu H, Liu A, Chen D. IL16 Regulates Osteoarthritis Progression as a Target Gene of Novel-miR-81. Cartilage 2024; 15:175-183. [PMID: 37086007 PMCID: PMC11368893 DOI: 10.1177/19476035231168387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/22/2023] [Accepted: 03/22/2023] [Indexed: 04/23/2023] Open
Abstract
OBJECTIVE Functional polymorphisms of interleukin 16 (IL16) have been reported to be closely related to the risk of osteoarthritis (OA). However, how IL16 affects OA remains unclear. In this study, the role of IL16 in OA and the possible mechanisms were examined. METHODS We established a meniscal/ligament injury (MLI) post-traumatic OA model in Sprague Dawley rats and an IL1β-induced ADTC5 cells OA model. We detected the expression of IL16, novel-miR-81, MMP3, and MMP13 by quantitative real-time polymerase chain reaction. Western blot was performed to detect the expression of IL16, MMP3, and MMP13. The association between IL16 and novel-miR-81 was confirmed by luciferase reporter assay. Hematoxylin and eosin staining, Safranin O and Fast Green staining, and immunohistochemical staining were performed to clarify the effect of intra-articular injection of novel-miR-81 agomir in rats OA model. RESULTS IL16 was upregulated in OA model. Knockdown of IL16 and overexpression of novel-miR-81 downregulated the expression of MMP3 and MMP13. Importantly, IL16 was a key target of novel-miR-81. Intra-articular injection of novel-miR-81 agomir could attenuate OA progression in rats OA model. CONCLUSION Novel-miR-81 targeted IL16 to relieve OA, suggesting that novel-miR-81and IL16 may be new therapeutic targets for OA.
Collapse
Affiliation(s)
- Ziwei Luo
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, P.R. China
| | - Qianting Han
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Jianghua Lu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Xiyan Ouyang
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Yueying Fan
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Yangping Liu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, P.R. China
| | - Xianxi Zhou
- Center for Experimental Teaching, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Jiechen Kong
- Center for Experimental Teaching, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Helu Liu
- Traditional Chinese Medicine Innovation Research Center, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou University of Chinese Medicine, Shenzhen, P.R. China
| | - Aijun Liu
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Dongfeng Chen
- Research Centre of Basic Intergrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
2
|
Shang X, Hao X, Hou W, Liu J, Chi R, Deng X, Pan C, Xu T. Exercise-induced modulation of myokine irisin on muscle-bone unit in the rat model of post-traumatic osteoarthritis. J Orthop Surg Res 2024; 19:49. [PMID: 38195597 PMCID: PMC10777589 DOI: 10.1186/s13018-024-04532-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024] Open
Abstract
BACKGROUND AND AIM Post-traumatic osteoarthritis (PTOA) is a subtype of osteoarthritis (OA). Exercise may produce and release the myokine irisin through muscle fiber contraction. However, the effect of exercise-promoted irisin production on the internal interactions of the muscle-bone unit in PTOA studies remains unclear. METHODS Eighteen 8-week-old Sprague-Dawley (SD) rats were randomly divided into three groups: Sham/sedentary (Sham/Sed), PTOA/sedentary (PTOA/Sed), and PTOA/treadmill-walking (PTOA/TW). The PTOA model was established by transection of anterior cruciate ligament (ACLT) and destabilization of medial meniscus (DMM). After 4 weeks of modeling, the PTOA/TW group underwent treadmill exercise (15 m/min, 30 min/d, 5 d/ week, 8 weeks), and the other two groups were free to move in the cage. Evaluation and correlation analysis of muscle, cartilage, subchondral bone and serological indexes were performed after euthanasia. RESULTS Eight weeks of treadmill exercise effectively alleviated the trauma-induced OA phenotype, thereby maintaining cartilage and subchondral bone integrity in PTOA, and reducing quadriceps atrophy and myofibril degradation. Exercise reversed the down-regulated expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and fibronectin type III structural domain protein 5 (FNDC5) in muscle tissue of PTOA rats, and increased the blood irisin level, and the irisin level was positively correlated with the expression of PGC-1α and FNDC5. In addition, correlation analysis showed that irisin metabolism level was strongly negatively correlated with Osteoarthritis Research Society International (OARSI) and subchondral bone loss, indicating that irisin may be involved in cartilage biology and PTOA-related changes in cartilage and subchondral bone. Moreover, the metabolic level of irisin was strongly negatively correlated with muscle fiber cross-sectional area (CSA), Atrogin-1 and muscle ring-finger protein-1(MuRF-1) expression, suggesting that irisin may alleviate muscle atrophy through autocrine action. CONCLUSION Treadmill exercise can alleviate the atrophy and degeneration of muscle fibers in PTOA rats, reduce the degradation of muscle fibrin, promote the expression of serum irisin, and alleviate the degeneration of articular cartilage and subchondral bone loss in PTOA rats. These results indicate that treadmill exercise can affect the process of PTOA by promoting the expression of myokine irisin in rat muscle-bone unit.
Collapse
Affiliation(s)
- Xingru Shang
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Xiaoxia Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Wenjie Hou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Jiawei Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Ruimin Chi
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Xiaofeng Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Chunran Pan
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095#, Jie-Fang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| |
Collapse
|
3
|
Jia S, Yu Z, Bai L. Exerkines and osteoarthritis. Front Physiol 2023; 14:1302769. [PMID: 38107476 PMCID: PMC10722202 DOI: 10.3389/fphys.2023.1302769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent chronic joint disease, with physical exercise being a widely endorsed strategy in its management guidelines. Exerkines, defined as cytokines secreted in response to acute and chronic exercise, function through endocrine, paracrine, and/or autocrine pathways. Various tissue-specific exerkines, encompassing exercise-induced myokines (muscle), cardiokines (heart), and adipokines (adipose tissue), have been linked to exercise therapy in OA. Exerkines are derived from these kines, but unlike them, only kines regulated by exercise can be called exerkines. Some of these exerkines serve a therapeutic role in OA, such as irisin, metrnl, lactate, secreted frizzled-related protein (SFRP), neuregulin, and adiponectin. While others may exacerbate the condition, such as IL-6, IL-7, IL-15, IL-33, myostatin, fractalkine, follistatin-like 1 (FSTL1), visfatin, activin A, migration inhibitory factor (MIF), apelin and growth differentiation factor (GDF)-15. They exerts anti-/pro-apoptosis/pyroptosis/inflammation, chondrogenic differentiation and cell senescence effect in chondrocyte, synoviocyte and mesenchymal stem cell. The modulation of adipokine effects on diverse cell types within the intra-articular joint emerges as a promising avenue for future OA interventions. This paper reviews recent findings that underscore the significant role of tissue-specific exerkines in OA, delving into the underlying cellular and molecular mechanisms involved.
Collapse
Affiliation(s)
- Shuangshuo Jia
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyao Yu
- Imaging Department, Dalian Medical University, Dalian, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Zhao R, Chen Y, Wang D, Zhang C, Song H, Ni G. Role of irisin in bone diseases. Front Endocrinol (Lausanne) 2023; 14:1212892. [PMID: 37600697 PMCID: PMC10436578 DOI: 10.3389/fendo.2023.1212892] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/10/2023] [Indexed: 08/22/2023] Open
Abstract
Bone diseases are common among middle-aged and elderly people, and harm to activities of daily living (ADL) and quality of life (QOL) for patients. It is crucial to search for key regulatory factors associated with the development of bone diseases and explore potential therapeutic targets for bone diseases. Irisin is a novel myokine that has been discovered in recent years. Accumulating evidence indicates that irisin has beneficial effects in the treatment of various diseases such as metabolic, cardiovascular and neurological disorders, especially bone-related diseases. Recent studies had shown that irisin plays the role in various bone diseases such as osteoarthritis, osteoporosis and other bone diseases, suggesting that irisin may be a potential molecule for the prevention and treatment of bone diseases. Therefore, in this review, by consulting the related domestic and international literature of irisin and bone diseases, we summarized the specific regulatory mechanisms of irisin in various bone diseases, and provided a systematic theoretical basis for its application in the diagnosis and treatment of the bone diseases.
Collapse
Affiliation(s)
- Ruobing Zhao
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Yan Chen
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Dongxue Wang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Chunyu Zhang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Henan Song
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guoxin Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Roggio F, Petrigna L, Trovato B, Di Rosa M, Musumeci G. The Role of Lubricin, Irisin and Exercise in the Prevention and Treatment of Osteoarthritis. Int J Mol Sci 2023; 24:ijms24065126. [PMID: 36982198 PMCID: PMC10049370 DOI: 10.3390/ijms24065126] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Osteoarthritis is a chronic degenerative musculoskeletal disease that worsens with age and is defined by pathological alterations in joint components. All clinical treatment recommendations for osteoarthritis promote exercise, although precise molecular pathways are unclear. The purpose of this study was to critically analyze the research on lubricin and irisin and how they relate to healthy and diseased joint tissue. Our research focused specifically on exercise strategies and offered new perspectives for future potential osteoarthritis treatment plans. Although lubricin and irisin have only recently been discovered, there is evidence that they have an impact on cartilage homeostasis. A crucial component of cartilage lubrication and integrity, lubricin is a surface-active mucinous glycoprotein released by the synovial joint. Its expression increases with joint movement. In healthy joints, lubricin molecules cover the cartilage surface to lubricate the boundary of the joint and inhibit protein and cell attachment. Patients with joint trauma, inflammatory arthritis, or genetically mediated lubricin deficiency, who do not produce enough lubricin to protect the articular cartilage, develop arthropathy. Irisin, sometimes known as the "sports hormone", is a myokine secreted primarily by skeletal muscle. It is a physiologically active protein that can enter the circulation as an endocrine factor, and its synthesis and secretion are primarily triggered by exercise-induced muscle contraction. We searched PubMed, Web of Science, Google Scholar, and Scopus using the appropriate keywords to identify the most recent research. The studies considered advance our knowledge of the role that exercise plays in the fight against osteoarthritis, serve as a valuable resource, and support the advancement of osteoarthritis prevention and therapy.
Collapse
Affiliation(s)
- Federico Roggio
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
- Sport and Exercise Sciences Research Unit, Department of Psychology, Educational Science and Human Movement, University of Palermo, Via Giovanni Pascoli 6, 90144 Palermo, Italy
| | - Luca Petrigna
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Bruno Trovato
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Section of Anatomy, Histology and Movement Science, School of Medicine, University of Catania, Via S. Sofia 97, 95123 Catania, Italy
- Research Center on Motor Activities (CRAM), University of Catania, Via S. Sofia 97, 95123 Catania, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
6
|
Posa F, Zerlotin R, Ariano A, Cosola MD, Colaianni G, Fazio AD, Colucci S, Grano M, Mori G. Irisin Role in Chondrocyte 3D Culture Differentiation and Its Possible Applications. Pharmaceutics 2023; 15:pharmaceutics15020585. [PMID: 36839906 PMCID: PMC9961836 DOI: 10.3390/pharmaceutics15020585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Irisin is a recently discovered cytokine, better known as an exercise-induced myokine, produced primarily in skeletal muscle tissue as a response to exercise. Although the skeleton was initially identified as the main target of Irisin, its action is also proving effective in many other tissues. Physical activity determines a series of beneficial effects on health, including the possibility of counteracting the damage that is caused by arthritis to the cartilage of people suffering from osteoarthritis. Nevertheless, up to now, the studies that have taken into consideration the possible involvement of Irisin on the well-being of cartilage tissue are particularly limited. In this study, we postulated that the protective effect of physical activity on cartilage tissue may depend on the paracrine action of Irisin secreted during exercise; therefore, we analyzed the effects of Irisin, in vitro, on chondrogenic differentiation. To achieve this goal, three-dimensional cultures of commercially available human articular chondrocytes (HACs) were treated with the molecule under study. Our results revealed new crosstalk mechanisms between muscle and cartilage tissue. Furthermore, the confirmation of Irisin ability to induce chondrogenic differentiation could favor the development of exercise-mimetic drugs, with application relevance for patients who cannot perform physical activity.
Collapse
Affiliation(s)
- Francesca Posa
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Roberta Zerlotin
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Anastasia Ariano
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Michele Di Cosola
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
| | - Graziana Colaianni
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Aldo Di Fazio
- Regional Complex Intercompany Institute of Legal Medicine, San Carlo Hospital, 85100 Potenza, Italy
| | - Silvia Colucci
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Viale Pinto 1, 71122 Foggia, Italy
- Correspondence:
| |
Collapse
|
7
|
Zhang X, Xu S, Hu Y, Liu Q, Liu C, Chai H, Luo Y, Jin L, Li S. Irisin exhibits neuroprotection by preventing mitochondrial damage in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:13. [PMID: 36720890 PMCID: PMC9889817 DOI: 10.1038/s41531-023-00453-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/12/2023] [Indexed: 02/02/2023] Open
Abstract
Exercise has been proposed as an effective non-pharmacological management for Parkinson's disease (PD) patients. Irisin, a recently identified myokine, is increased by exercise and plays pivotal roles in energy metabolism. However, it remains unknown whether irisin has any protective effects on PD. Here, we found that serum irisin levels of PD patients were markedly elevated after 12-week regular exercise, which had a positive correlation with improved balance function scored by Berg Balance Scale. Treatment with exogenous irisin could improve motor function, and reduce dopaminergic neurodegeneration in PD models. Meanwhile, irisin could reduce cell apoptosis by renovating mitochondrial function in PD models, which was reflected in decreased oxidative stress, increased mitochondrial complex I activity and mitochondrial content, increased mitochondrial biogenesis, and repaired mitochondrial morphology. Furthermore, irisin regulated the aforementioned aspects by upregulating downstream Akt signaling pathway and ERK1/2 signaling pathway through integrin receptors rather than directly targeting mitochondria. With the use of small-molecule inhibitors, it was found that irisin can reduce apoptosis, restore normal mitochondrial biogenesis, and improve mitochondrial morphology and dynamic balance in PD models by activating Akt signaling pathway and ERK1/2 signaling pathway. And irisin reduced oxidative stress via activating ERK1/2 signaling pathway. The results revealed that exogenous irisin conferred neuroprotection relieving apoptosis and oxidative stress, restraining mitochondrial fragmentation, and promoting mitochondrial respiration and biogenesis in PD models, and irisin exerted the aforementioned effects by activating Akt signaling pathway and ERK1/2 signaling pathway. Thus, peripherally delivered irisin might be a promising candidate for therapeutic targeting of PD.
Collapse
Affiliation(s)
- Xi Zhang
- grid.24516.340000000123704535Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China ,grid.8547.e0000 0001 0125 2443Department of rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China ,grid.24516.340000000123704535Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital, Tongji University School of Medicine, Shanghai, China ,grid.24516.340000000123704535Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sutong Xu
- grid.24516.340000000123704535Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong Hu
- grid.24516.340000000123704535Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiulu Liu
- grid.24516.340000000123704535Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenming Liu
- grid.24516.340000000123704535Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huazhen Chai
- grid.24516.340000000123704535Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuping Luo
- grid.24516.340000000123704535Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingjing Jin
- grid.24516.340000000123704535Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital, Tongji University School of Medicine, Shanghai, China ,grid.24516.340000000123704535Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Siguang Li
- grid.24516.340000000123704535Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
[Research progress on the correlation between sarcopenia and osteoarthritis]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:1549-1557. [PMID: 36545865 PMCID: PMC9763072 DOI: 10.7507/1002-1892.202209015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective To review the research progress on the correlation between sarcopenia and osteoarthritis (OA). Methods The basic and clinical studies at home and abroad in recent years on sarcopenia and OA were extensively reviewed. The correlation between sarcopenia and OA was analyzed and summarized from five aspects: epidemiological status, risk factors, pathogenesis, clinical treatments, and the impact on joint arthroplasty. Results Sarcopenia and OA are common diseases in the elderly with high prevalence and can increase the ill risk of each other. They share a set of risk factors, and show negative interactive and influence on pathogenesis and clinical treatments, thus participating in each other's disease process and reducing the treatment benefits. Clinical studies show that sarcopenia can affect the rehabilitation effect and increase the risk of postoperative complications after total joint arthroplasty in many ways. Conclusion Current research results show that sarcopenia and OA are related and can be mutually affected in the above 5 aspects, but more studies are needed to further clarify the relationship between them, so as to provide more theoretical basis for the understanding, prevention, diagnosis, and treatments of the two diseases.
Collapse
|
9
|
Liu S, Cui F, Ning K, Wang Z, Fu P, Wang D, Xu H. Role of irisin in physiology and pathology. Front Endocrinol (Lausanne) 2022; 13:962968. [PMID: 36225200 PMCID: PMC9549367 DOI: 10.3389/fendo.2022.962968] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/07/2022] [Indexed: 01/10/2023] Open
Abstract
Irisin, out-membrane part of fibronectin type III domain-containing 5 protein (FNDC5), was activated by Peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) during physical exercise in skeletal muscle tissues. Most studies have reported that the concentration of irisin is highly associated with health status. For instance, the level of irisin is significantly lower in patients with obesity, osteoporosis/fractures, muscle atrophy, Alzheimer's disease, and cardiovascular diseases (CVDs) but higher in patients with cancer. Irisin can bind to its receptor integrin αV/β5 to induce browning of white fat, maintain glucose stability, keep bone homeostasis, and alleviate cardiac injury. However, it is unclear whether it works by directly binding to its receptors to regulate muscle regeneration, promote neurogenesis, keep liver glucose homeostasis, and inhibit cancer development. Supplementation of recombinant irisin or exercise-activated irisin might be a successful strategy to fight obesity, osteoporosis, muscle atrophy, liver injury, and CVDs in one go. Here, we summarize the publications of FNDC5/irisin from PubMed/Medline, Scopus, and Web of Science until March 2022, and we review the role of FNDC5/irisin in physiology and pathology.
Collapse
Affiliation(s)
- Shiqiang Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Fengqi Cui
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Kaiting Ning
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Zhen Wang
- Xi’an International Medical Center Hospital Affiliated to Northwest University, Xi’an, China
| | - Pengyu Fu
- Department of Physical Education, Northwestern Polytechnical University, Xi’an, China
| | - Dongen Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Huiyun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
- Research Center of Special Environmental Biomechanics and Medical Engineering, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
10
|
Kinoshita Y, Takafuji Y, Okumoto K, Takada Y, Ehara H, Mizukami Y, Kawao N, Jo JI, Tabata Y, Kaji H. Irisin improves delayed bone repair in diabetic female mice. J Bone Miner Metab 2022; 40:735-747. [PMID: 35925402 DOI: 10.1007/s00774-022-01353-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/16/2022] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Irisin is a proteolytic product of fibronectin type II domain-containing 5, which is related to the improvement in glucose metabolism. Numerous studies have suggested that irisin is a crucial myokine linking muscle to bone in physiological and pathophysiological states. MATERIALS AND METHODS We examined the effects of local irisin administration with gelatin hydrogel sheets and intraperitoneal injection of irisin on the delayed femoral bone repair caused by streptozotocin (STZ)-induced diabetes in female mice. We analyzed the femurs of mice using quantitative computed tomography and histological analyses and then measured the mRNA levels in the damaged mouse tissues. RESULTS Local irisin administration significantly blunted the delayed bone repair induced by STZ 10 days after a femoral bone defect was generated. Local irisin administration significantly blunted the number of Osterix-positive cells that were suppressed by STZ at the damaged site 4 days after a femoral bone defect was generated, although it did not affect the mRNA levels of chondrogenic and adipogenic genes 4 days after bone injury in the presence or absence of diabetes. On the other hand, intraperitoneal injection of irisin did not affect delayed bone repair induced by STZ 10 days after bone injury. Irisin significantly blunted the decrease in Osterix mRNA levels induced by advanced glycation end products or high-glucose conditions in ST2 cells in the presence of bone morphogenetic protein-2. CONCLUSIONS We first showed that local irisin administration with gelatin hydrogel sheets improves the delayed bone repair induced by diabetic state partially by enhancing osteoblastic differentiation.
Collapse
Affiliation(s)
- Yuko Kinoshita
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Katsumi Okumoto
- Life Science Research Institute, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yuto Takada
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hiroki Ehara
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yuya Mizukami
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-Cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-Cho Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.
| |
Collapse
|
11
|
Ning K, Wang Z, Zhang XA. Exercise-induced modulation of myokine irisin in bone and cartilage tissue—Positive effects on osteoarthritis: A narrative review. Front Aging Neurosci 2022; 14:934406. [PMID: 36062149 PMCID: PMC9439853 DOI: 10.3389/fnagi.2022.934406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is a chronic degenerative musculoskeletal disease characterized by pathological changes in joint structures along with the incidence of which increases with age. Exercise is recommended for all clinical treatment guidelines of osteoarthritis, but the exact molecular mechanisms are still unknown. Irisin is a newly discovered myokine released mainly by skeletal muscle in recent years—a biologically active protein capable of being released into the bloodstream as an endocrine factor, the synthesis and secretion of which is specifically induced by exercise-induced muscle contraction. Although the discovery of irisin is relatively recent, its role in affecting bone density and cartilage homeostasis has been reported. Here, we review the production and structural characteristics of irisin and discuss the effects of the different types of exercise involved in the current study on irisin and the role of irisin in anti-aging. In addition, the role of irisin in the regulation of bone mineral density, bone metabolism, and its role in chondrocyte homeostasis and metabolism is reviewed. A series of studies on irisin have provided new insights into the mechanisms of exercise training in improving bone density, resisting cartilage degeneration, and maintaining the overall environmental homeostasis of the joint. These studies further contribute to the understanding of the role of exercise in the fight against osteoarthritis and will provide an important reference and aid in the development of the field of osteoarthritis prevention and treatment.
Collapse
|
12
|
Chen T, Peng Y, Hu W, Shi H, Li P, Que Y, Qiu J, Qiu X, Gao B, Zhou H, Chen Y, Zhu Y, Li S, Liang A, Gao W, Huang D. Irisin enhances chondrogenic differentiation of human mesenchymal stem cells via Rap1/PI3K/AKT axis. Stem Cell Res Ther 2022; 13:392. [PMID: 35922833 PMCID: PMC9351134 DOI: 10.1186/s13287-022-03092-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/17/2022] [Indexed: 12/11/2022] Open
Abstract
Background Human mesenchymal stem cells (hMSCs) have been proven to have inherent chondrogenic differentiation potential, which appears to be used in cartilage regeneration. Increasing evidence suggests that irisin enhances osteoblast differentiation of MSCs, but little is known about its potential on chondrogenic differentiation. Methods In the study, we investigated the effects of irisin on chondrogenic differentiation of hMSCs using a high-density pellet culture system. The cartilage pellets were evaluated by morphology, and the metabolism of cartilage matrix was detected by qPCR, western blot and immunohistochemistry. Next, RNA-seq was performed to explore the underlying mechanism. Furthermore, using the transduction of plasmid, miRNAs mimics and inhibitor, the activation of Rap1/PI3K/AKT axis, the expression level of SIPA1L2, and the functional verification of miR-125b-5p were detected on day 7 of chondrogenic differentiation of hMSCs. Results Compared with the controls, we found that irisin treatment could significantly enhance the chondrogenic differentiation of hMSCs, enlarge the induced-cartilage tissue and up-regulate the expression levels of cartilage markers. RNA-seq indicated that irisin activated the Rap1 and PI3K/AKT signaling pathway, and the lower expression level of SIPA1L2 and the higher expression level of miR-125b-5p were found in irisin-treated group. Further, we found that irisin treatment could up-regulate the expression level of miR-125b-5p, targeting SIPA1L2 and consequently activating the Rap1/PI3K/AKT axis on the process of chondrogenic differentiation of hMSCs. Conclusions Collectively, our study reveals that irisin can enhance chondrogenic differentiation of hMSCs via the Rap1/PI3K/AKT pathway, suggesting that irisin possesses prospects in cartilage regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03092-8.
Collapse
Affiliation(s)
- Taiqiu Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Yan Peng
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Wenjun Hu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Huihong Shi
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Pengfei Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Yichen Que
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Jincheng Qiu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Xianjian Qiu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Bo Gao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Hang Zhou
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Yanbo Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Yuanxin Zhu
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Shaoguang Li
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Anjing Liang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China.
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Irisin Ameliorates Intervertebral Disc Degeneration by Activating LATS/YAP/CTGF Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9684062. [PMID: 35915608 PMCID: PMC9338732 DOI: 10.1155/2022/9684062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/05/2022] [Indexed: 12/30/2022]
Abstract
Unbalanced metabolism of an extracellular matrix (ECM) in nucleus pulposus cells (NPCs) is widely acknowledged as the primary cause of intervertebral disc degeneration (IDD). Irisin, a novel myokine, is cleaved from fibronectin type III domain-containing 5 (FNDC5) and has recently been proven to regulate the metabolism of ECM. However, little is known about its potential on NPCs and the development of IDD. Therefore, this study sought to examine the protective effects and molecular mechanism of irisin on IDD in vivo and in vitro. Decreased expression levels of FNDC5 and anabolism markers (COL2A1 and ACAN) but increased levels of catabolism markers (ADAMTS4) were found in degenerative nucleus pulposus (NP) tissues. In a punctured-induced rat IDD model, irisin treatment was found to significantly slow the development of IDD, and in TNF-α-stimulated NPCs, irisin treatment partly reversed the disorder of ECM metabolism. In mechanism, RNA-seq results suggested that irisin treatment affected the Hippo signaling pathway. Further studies revealed that with irisin treatment, the phosphorylation levels of key factors (LATS and YAP) were downregulated, while the expression level of CTGF was upregulated. Moreover, CTGF knockdown partially eliminated the protective effects of irisin on the metabolism of ECM in NPCs, including inhibiting the anabolism and promoting the catabolism. Taken together, this study demonstrated that the expression levels of FNDC5 were decreased in degenerative NP tissues, while irisin treatment promoted the anabolism, inhibited the catabolism of the ECM in NPCs, and delayed the progression of IDD via LATS/YAP/CTGF signaling. These results shed light on the protective actions of irisin on NPCs, leading to the development of a novel therapeutic target for treating IDD.
Collapse
|
14
|
Sui C, Wu Y, Zhang R, Zhang T, Zhang Y, Xi J, Ding Y, Wen J, Hu Y. Rutin Inhibits the Progression of Osteoarthritis Through CBS-Mediated RhoA/ROCK Signaling. DNA Cell Biol 2022; 41:617-630. [PMID: 35588172 DOI: 10.1089/dna.2021.1182] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by the deterioration of cartilage and subchondral bone in the joints. Currently, there is no complete cure for OA, only treatments designed to temporarily relieve pain and improve function. Compared with the high cost of surgical treatment, medical treatment of OA is more acceptable and cost-effective. Rutin, as a flavonoid, has been shown to have anti-OA properties. We evaluated the effects of rutin on chondrocytes in lipopolysaccharide (LPS)-induced OA and on OA in rats induced by anterior cruciate ligament transection. We found that rutin effectively reduced the expression levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), and matrix metalloproteinase 13 (MMP-13) and increased the expression of Col II and aggrecan (p < 0.001). In addition, we also found that rutin increased the expression of cystathionine-β-synthase (CBS) and inhibited the expression of Rho-related coiled-coil protein kinase (ROCK) in chondrocytes (p < 0.05), thereby effectively inhibiting the inflammatory progression of OA. We concluded that rutin inhibits the inflammatory progression of OA through the CBS-mediated RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Cong Sui
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yichao Wu
- Department of Orthopedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ran Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tiantian Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiaojiao Xi
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yanyu Ding
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiyue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yong Hu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Orthopedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Jia S, Yang Y, Bai Y, Wei Y, Zhang H, Tian Y, Liu J, Bai L. Mechanical Stimulation Protects Against Chondrocyte Pyroptosis Through Irisin-Induced Suppression of PI3K/Akt/NF-κB Signal Pathway in Osteoarthritis. Front Cell Dev Biol 2022; 10:797855. [PMID: 35356271 PMCID: PMC8959944 DOI: 10.3389/fcell.2022.797855] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/09/2022] [Indexed: 12/19/2022] Open
Abstract
Irisin, a myokine secreted by muscle during physical exercise, is known to have biological activities in different cell types. Chondrocyte inflammation and pyroptosis have been shown to play important roles in osteoarthritis (OA). In this study, we investigated the effects of exercise-induced irisin during different intensities of treadmill exercise in a rat OA model and the anti-inflammatory and antipyroptosis mechanism of irisin in OA chondrocytes. Forty-eight SD rats (n = 8) were randomly assigned to control (CG), OA (OAG), OA groups under different intensities of treadmill exercise (OAL, OAM, and OAH), OAM + irisin neutralizing antibodies group (OAM + irisin (NA)). The levels of irisin and the severity of OA between groups were detected using ELISA, histology, immunohistochemistry, X-ray and computed tomography and magnetic resonance imaging. The anti-inflammatory and antipyroptosis mechanisms of irisin were investigated in vitro in OA chondrocytes preincubated with recombinant irisin (0, 5, or 10 ng/ml) for 1 h before treatment with interleukin-1β (IL-1β) for 24 h mRNA and protein expression levels were determined using quantitative reverse transcription polymerase chain reaction, and western blot analyses. Morphological changes and cell death associated with pyroptosis were examined using transmission electron microscopy, flow cytometry and immunofluorescence. Moderate-intensity treadmill exercise increased the levels of irisin, exhibiting the best therapeutic effects on OA which could be suppressed by irisin neutralizing antibodies. Irisin not only recovered the expression of collagen II and attenuated that of MMP-13 and ADAMTS-5 in IL-1β-induced OA chondrocytes by inhibiting the PI3K/Akt/NF-κB signaling pathway, but also inhibited the activity of nod-like receptor protein-3 (NLRP3)/caspase-1, thus ameliorating pyroptosis in chondrocytes. In conclusion, moderate mechanical stimulation protects against chondrocyte pyroptosis through irisin-induced suppression of PI3K/Akt/NF-κB signal pathway in osteoarthritis.
Collapse
Affiliation(s)
- Shuangshuo Jia
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Yang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yishu Bai
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Yingliang Wei
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - He Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yicheng Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jiabao Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lunhao Bai
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Lunhao Bai,
| |
Collapse
|