1
|
Kim JL, Jung KM, Han JY. Single-cell RNA sequencing reveals surface markers of primordial germ cells in chicken and zebra finch. Mol Genet Genomics 2024; 299:90. [PMID: 39325237 DOI: 10.1007/s00438-024-02186-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Primordial germ cells (PGCs) in avian species exhibit unique developmental features, including the ability to migrate through the bloodstream and colonize the gonads, allowing their isolation at various developmental stages. Several methods have been developed for the isolation of avian PGCs, including density gradient centrifugation, size-dependent separation, and magnetic-activated cell sorting (MACS) or fluorescence-activated cell sorting (FACS) using a stage-specific embryonic antigen-1 (SSEA-1) antibody. However, these methods present limitations in terms of efficiency and applicability across development stages. In particular, the specificity of SSEA-1 decreases in later developmental stages. Furthermore, surface markers that can be utilized for isolating or utilizing PGCs are lacking for wild birds, including zebra finches, and endangered avian species. To address this, we used single-cell RNA sequencing (scRNA-seq) to uncover novel PGC-specific surface markers in chicken and zebra finch. We screened for genes that were primarily expressed in the PGC population within the gonadal cells. Analyses of gene expression patterns and levels based on scRNA-seq, coupled with validation by RT-PCR, identified NEGR1 and SLC34A2 as novel PGC-specific surface markers in chickens and ESYT3 in zebra finches. Notably, these newly identified genes exhibited sustained expression not only during later developmental stages but also in reproductive tissues.
Collapse
Affiliation(s)
- Jin Lee Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Kyung Min Jung
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Korea.
- Department of International Agricultural Technology & Institute of Green BioScience and Technology, Seoul National University, Pyeongchang, 25354, Korea.
| |
Collapse
|
2
|
Biegler MT, Belay K, Wang W, Szialta C, Collier P, Luo JD, Haase B, Gedman GL, Sidhu AV, Harter E, Rivera-López C, Amoako-Boadu K, Fedrigo O, Tilgner HU, Carroll T, Jarvis ED, Keyte AL. Pronounced early differentiation underlies zebra finch gonadal germ cell development. Dev Biol 2024; 517:73-90. [PMID: 39214328 DOI: 10.1016/j.ydbio.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
The diversity of germ cell developmental strategies has been well documented across many vertebrate clades. However, much of our understanding of avian primordial germ cell (PGC) specification and differentiation has derived from only one species, the chicken (Gallus gallus). Of the three major classes of birds, chickens belong to Galloanserae, representing less than 4% of species, while nearly 95% of extant bird species belong to Neoaves. This represents a significant gap in our knowledge of germ cell development across avian species, hampering efforts to adapt genome editing and reproductive technologies developed in chicken to other birds. We therefore applied single-cell RNA sequencing to investigate inter-species differences in germ cell development between chicken and zebra finch (Taeniopygia castanotis), a Neoaves songbird species and a common model of vocal learning. Analysis of early embryonic male and female gonads revealed the presence of two distinct early germ cell types in zebra finch and only one in chicken. Both germ cell types expressed zebra finch Germline Restricted Chromosome (GRC) genes, present only in songbirds among birds. One of the zebra finch germ cell types expressed the canonical PGC markers, as did chicken, but with expression differences in several signaling pathways and biological processes. The second zebra finch germ cell cluster was marked by proliferation and fate determination markers, indicating beginning of differentiation. Notably, these two zebra finch germ cell populations were present in both male and female zebra finch gonads as early as HH25. Using additional chicken developmental stages, similar germ cell heterogeneity was identified in the more developed gonads of females, but not males. Overall, our study demonstrates a substantial heterochrony in zebra finch germ cell development compared to chicken, indicating a richer diversity of avian germ cell developmental strategies than previously known.
Collapse
Affiliation(s)
| | | | - Wei Wang
- The Rockefeller University, New York NY, USA
| | | | | | - Ji-Dung Luo
- The Rockefeller University, New York NY, USA
| | | | | | | | | | | | | | | | | | | | - Erich D Jarvis
- The Rockefeller University, New York NY, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | | |
Collapse
|
3
|
Park S, Kim J, Lee J, Jung S, Pack SP, Lee JH, Yoon K, Woo SJ, Han JY, Seo M. RNA sequencing analysis of sexual dimorphism in Japanese quail. Front Vet Sci 2024; 11:1441021. [PMID: 39104546 PMCID: PMC11299063 DOI: 10.3389/fvets.2024.1441021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction Japanese quail are of significant economic value, providing protein nutrition to humans through their reproductive activity; however, sexual dimorphism in this species remains relatively unexplored compared with other model species. Method A total of 114 RNA sequencing datasets (18 and 96 samples for quail and chicken, respectively) were collected from existing studies to gain a comprehensive understanding of sexual dimorphism in quail. Cross-species integrated analyses were performed with transcriptome data from evolutionarily close chickens to identify sex-biased genes in the embryonic, adult brain, and gonadal tissues. Results Our findings indicate that the expression patterns of genes involved in sex-determination mechanisms during embryonic development, as well as those of most sex-biased genes in the adult brain and gonads, are identical between quails and chickens. Similar to most birds with a ZW sex determination system, quails lacked global dosage compensation for the Z chromosome, resulting in directional outcomes that supported the hypothesis that sex is determined by the individual dosage of Z-chromosomal genes, including long non-coding RNAs located in the male hypermethylated region. Furthermore, genes, such as WNT4 and VIP, reversed their sex-biased patterns at different points in embryonic development and/or in different adult tissues, suggesting a potential hurdle in breeding and transgenic experiments involving avian sex-related traits. Discussion The findings of this study are expected to enhance our understanding of sexual dimorphism in birds and subsequently facilitate insights into the field of breeding and transgenesis of sex-related traits that economically benefit humans.
Collapse
Affiliation(s)
- Sinwoo Park
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| | - Jaeryeong Kim
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| | - Jinbaek Lee
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| | - Sungyoon Jung
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-si, Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong-si, Republic of Korea
| | - Kyungheon Yoon
- Division of Genome Science, Department of Precision Medicine, National Institue of Health, Cheongju-si, Republic of Korea
| | - Seung Je Woo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minseok Seo
- Department of Computer and Information Science, Korea University, Sejong-si, Republic of Korea
| |
Collapse
|
4
|
Li J, Zhang X, Wang X, Wang Z, Li X, Zheng J, Li J, Xu G, Sun C, Yi G, Yang N. Single-nucleus transcriptional and chromatin accessible profiles reveal critical cell types and molecular architecture underlying chicken sex determination. J Adv Res 2024:S2090-1232(24)00185-1. [PMID: 38734369 DOI: 10.1016/j.jare.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/23/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
INTRODUCTION Understanding the sex determination mechanisms in birds has great significance for the biological sciences and production in the poultry industry. Sex determination in chickens is a complex process that involves fate decisions of supporting cells such as granulosa or Sertoli cells. However, a systematic understanding of the genetic regulation and cell commitment process underlying sex determination in chickens is still lacking. OBJECTIVES We aimed to dissect the molecular characteristics associated with sex determination in the gonads of chicken embryos. METHODS Single-nucleus RNA-seq (snRNA-seq) and ATAC-seq (snATAC-seq) analysis were conducted on the gonads of female and male chickens at embryonic day 3.5 (E3.5), E4.5, and E5.5. RESULTS Here, we provided a time-course transcriptional and chromatin accessible profiling of gonads during chicken sex determination at single-cell resolution. We uncovered differences in cell composition and developmental trajectories between female and male gonads and found that the divergence of transcription and accessibility in gonadal cells first emerged at E5.5. Furthermore, we revealed key cell-type-specific transcription factors (TFs) and regulatory networks that drive lineage commitment. Sex determination signaling pathways, dominated by BMP signaling, are preferentially activated in males during gonadal development. Further pseudotime analysis of the supporting cells indicated that granulosa cells were regulated mainly by the TEAD gene family and that Sertoli cells were driven by the DMRT1 regulons. Cross-species analysis suggested high conservation of both cell types and cell-lineage-specific TFs across the six vertebrates. CONCLUSIONS Overall, our study will contribute to accelerating the development of sex manipulation technology in the poultry industry and the application of chickens as a unique model for studying cell fate decisions.
Collapse
Affiliation(s)
- Jianbo Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Xiuan Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Xiqiong Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Zhen Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Junying Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Guiyun Xu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China.
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Daniels RR, Taylor RS, Robledo D, Macqueen DJ. Single cell genomics as a transformative approach for aquaculture research and innovation. REVIEWS IN AQUACULTURE 2023; 15:1618-1637. [PMID: 38505116 PMCID: PMC10946576 DOI: 10.1111/raq.12806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 03/21/2024]
Abstract
Single cell genomics encompasses a suite of rapidly maturing technologies that measure the molecular profiles of individual cells within target samples. These approaches provide a large up-step in biological information compared to long-established 'bulk' methods that profile the average molecular profiles of all cells in a sample, and have led to transformative advances in understanding of cellular biology, particularly in humans and model organisms. The application of single cell genomics is fast expanding to non-model taxa, including aquaculture species, where numerous research applications are underway with many more envisaged. In this review, we highlight the potential transformative applications of single cell genomics in aquaculture research, considering barriers and potential solutions to the broad uptake of these technologies. Focusing on single cell transcriptomics, we outline considerations for experimental design, including the essential requirement to obtain high quality cells/nuclei for sequencing in ectothermic aquatic species. We further outline data analysis and bioinformatics considerations, tailored to studies with the under-characterized genomes of aquaculture species, where our knowledge of cellular heterogeneity and cell marker genes is immature. Overall, this review offers a useful source of knowledge for researchers aiming to apply single cell genomics to address biological challenges faced by the global aquaculture sector though an improved understanding of cell biology.
Collapse
Affiliation(s)
- Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Richard S. Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| | - Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianUK
| |
Collapse
|
6
|
Kim YM, Woo SJ, Han JY. Strategies for the Generation of Gene Modified Avian Models: Advancement in Avian Germline Transmission, Genome Editing, and Applications. Genes (Basel) 2023; 14:genes14040899. [PMID: 37107658 PMCID: PMC10137648 DOI: 10.3390/genes14040899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/02/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Avian models are valuable for studies of development and reproduction and have important implications for food production. Rapid advances in genome-editing technologies have enabled the establishment of avian species as unique agricultural, industrial, disease-resistant, and pharmaceutical models. The direct introduction of genome-editing tools, such as the clustered regularly interspaced short palindromic repeats (CRISPR) system, into early embryos has been achieved in various animal taxa. However, in birds, the introduction of the CRISPR system into primordial germ cells (PGCs), a germline-competent stem cell, is considered a much more reliable approach for the development of genome-edited models. After genome editing, PGCs are transplanted into the embryo to establish germline chimera, which are crossed to produce genome-edited birds. In addition, various methods, including delivery by liposomal and viral vectors, have been employed for gene editing in vivo. Genome-edited birds have wide applications in bio-pharmaceutical production and as models for disease resistance and biological research. In conclusion, the application of the CRISPR system to avian PGCs is an efficient approach for the production of genome-edited birds and transgenic avian models.
Collapse
Affiliation(s)
| | - Seung-Je Woo
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae-Yong Han
- Avinnogen Co., Ltd., Seoul 08826, Republic of Korea
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
7
|
Jung KM, Seo M, Han JY. Comparative single-cell transcriptomic analysis reveals differences in signaling pathways in gonadal primordial germ cells between chicken (Gallus gallus) and zebra finch (Taeniopygia guttata). FASEB J 2023; 37:e22706. [PMID: 36520042 DOI: 10.1096/fj.202201569r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Primordial germ cells (PGCs) have been used in avian genetic resource conservation and transgenic animal production. Despite their potential applications to numerous avian taxa facing extinction due to habitat loss and degradation, research has largely focused on poultry, such as chickens, in part owing to the difficulty in obtaining intact PGCs from other species. Recently, phenotypic differences between PGCs of chicken and zebra finch, a wild bird with vocal learning, in early embryonic development have been reported. In this study, we used advanced single-cell RNA sequencing (scRNA-seq) technology to evaluate zebra finch and chicken PGCs and surrounding cells, and to identify species-specific characteristics. We constructed single-cell transcriptome landscapes of chicken gonadal PGCs for a comparison with previously reported scRNA-seq data for zebra finch. We identified interspecific differences in several signaling pathways in gonadal PGCs and somatic cells. In particular, NODAL and insulin signaling pathway activity levels were higher in zebra finch than in chickens, whereas activity levels of the downstream FGF signaling pathway, involved in the proliferation of chicken PGCs, were higher in chickens. This study is the first cross-species single-cell transcriptomic analysis targeting birds, revealing differences in germ cell development between phylogenetically distant Galliformes and Passeriformes. Our results provide a basis for understanding the reproductive physiology of avian germ cells and for utilizing PGCs in the restoration of endangered birds and the production of transgenic birds.
Collapse
Affiliation(s)
- Kyung Min Jung
- Biomodulation Major, Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Minseok Seo
- Department of Computer and Information Science, Korea University, Sejong, South Korea
| | - Jae Yong Han
- Biomodulation Major, Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
8
|
Biegler MT, Fedrigo O, Collier P, Mountcastle J, Haase B, Tilgner HU, Jarvis ED. Induction of an immortalized songbird cell line allows for gene characterization and knockout by CRISPR-Cas9. Sci Rep 2022; 12:4369. [PMID: 35288582 PMCID: PMC8921232 DOI: 10.1038/s41598-022-07434-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
The zebra finch is one of the most commonly studied songbirds in biology, particularly in genomics, neuroscience and vocal communication. However, this species lacks a robust cell line for molecular biology research and reagent optimization. We generated a cell line, designated CFS414, from zebra finch embryonic fibroblasts using the SV40 large and small T antigens. This cell line demonstrates an improvement over previous songbird cell lines through continuous and density-independent growth, allowing for indefinite culture and monoclonal line derivation. Cytogenetic, genomic, and transcriptomic profiling established the provenance of this cell line and identified the expression of genes relevant to ongoing songbird research. Using this cell line, we disrupted endogenous gene sequences using S.aureus Cas9 and confirmed a stress-dependent localization response of a song system specialized gene, SAP30L. The utility of CFS414 cells enhances the comprehensive molecular potential of the zebra finch and validates cell immortalization strategies in a songbird species.
Collapse
Affiliation(s)
- Matthew T Biegler
- Laboratory of Neurogenetics of Language, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, 10065, USA
| | - Paul Collier
- Center for Neurogenetics, Graduate School of Medical Sciences, Weil Cornell Medical Center, New York, NY, 10065, USA
| | | | - Bettina Haase
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, 10065, USA
| | - Hagen U Tilgner
- Center for Neurogenetics, Graduate School of Medical Sciences, Weil Cornell Medical Center, New York, NY, 10065, USA
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
9
|
Rengaraj D, Cha DG, Park KJ, Lee KY, Woo SJ, Han JY. Finer resolution analysis of transcriptional programming during the active migration of chicken primordial germ cells. Comput Struct Biotechnol J 2022; 20:5911-5924. [PMID: 36382185 PMCID: PMC9636429 DOI: 10.1016/j.csbj.2022.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/04/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2022] Open
Abstract
Primordial germ cells (PGCs) in chickens polarize and move passively toward the anterior region by the morphogenetic movement of the embryo. Further migration of PGCs towards the genital ridge via the germinal crescent region and blood vessels occurs actively through the chemoattractive signals. The mechanisms of initiation of PGCs migration, lodging the PGCs in the vascular system, and colonization of PGCs in the gonads are well-studied. However, transcriptome sequencing-based cues directing the migration of the PGCs towards gonads, some of the relevant molecules, biological processes, and transcription factors (TFs) are less studied in chickens. The current study comprehensively interprets the transcriptional programming of PGCs during their active migration (E2.5 to E8). Current results revealed several vital understandings, including a set of genes that upregulated male-specifically (XPA, GNG10, RPL17, RPS23, and NDUFS4) or female-specifically (HINTW, NIPBL, TERAL2, ATP5F1AW, and SMAD2W) in migrating PGCs, and transcriptionally distinct PGCs, particularly in the gonadal environment. We identified DNA methylation and histone modification-associated genes that are novel in chicken PGCs and show a time-dependent enrichment in migrating PGCs. We further identified a large number of differentially expressed genes (DEGs, including TFs) in blood PGCs (at E2.5) compared to gonadal PGCs (at E8) in both sexes; however, this difference was greater in males. We also revealed the enriched biological processes and signaling pathways of significant DEGs identified commonly, male-specifically, or female-specifically between the PGCs isolated at E2.5, E6, and E8. Collectively, these analyses provide molecular insights into chicken PGCs during their active migration phase.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Dong Gon Cha
- Department of New Biology, DGIST, Daegu 42988, Korea
| | - Kyung Je Park
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Kyung Youn Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Seung Je Woo
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Corresponding author at: Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|