1
|
Efiong EE, Bazireh H, Fuchs M, Amadi PU, Effa E, Sharma S, Schmaderer C. Crosstalk of Hyperglycaemia and Cellular Mechanisms in the Pathogenesis of Diabetic Kidney Disease. Int J Mol Sci 2024; 25:10882. [PMID: 39456664 PMCID: PMC11507194 DOI: 10.3390/ijms252010882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Among all nephropathies, diabetic kidney disease (DKD) is the most common cause of kidney impairment advancement to end-stage renal disease (ESRD). Although DKD has no cure, the disease is commonly managed by strict control of blood glucose and blood pressure, and in most of these cases, kidney function often deteriorates, resulting in dialysis, kidney replacement therapy, and high mortality. The difficulties in finding a cure for DKD are mainly due to a poor understanding of the underpinning complex cellular mechanisms that could be identified as druggable targets for the treatment of this disease. The review is thus aimed at giving insight into the interconnection between chronic hyperglycaemia and cellular mechanistic perturbations of nephropathy in diabetes. A comprehensive literature review of observational studies on DKD published within the past ten years, with 57 percent published within the past three years was carried out. The article search focused on original research studies and reviews published in English. The articles were explored using Google Scholar, Medline, Web of Science, and PubMed databases based on keywords, titles, and abstracts related to the topic. This article provides a detailed relationship between hyperglycaemia, oxidative stress, and various cellular mechanisms that underlie the onset and progression of the disease. Moreover, it also shows how these mechanisms affect organelle dysfunction, resulting in fibrosis and podocyte impairment. The advances in understanding the complexity of DKD mechanisms discussed in this review will expedite opportunities to develop new interventions for treating the disease.
Collapse
Affiliation(s)
- Esienanwan Esien Efiong
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Biochemistry, Faculty of Science, Federal University of Lafia, PMB 146, Lafia 950101, Nigeria
| | - Homa Bazireh
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Faculty of Medicine, Ludwig-Maximilians-University München, 81377 München, Germany
| | - Markéta Fuchs
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Peter Uchenna Amadi
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Biochemistry, Imo State University, Owerri 460222, Nigeria
| | - Emmanuel Effa
- Division of Nephrology, Department of Internal Medicine, Faculty of Clinical Sciences, University of Calabar, PMB 1115, Calabar 540271, Nigeria
| | - Sapna Sharma
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Research Center for Environmental Health, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Christoph Schmaderer
- Abteilung für Nephrologie, Klinikum Rechts der Isar, der Technischen Universität München, 81675 München, Germany
| |
Collapse
|
2
|
Li Y, Pang S, Guo H, Yang S. The renal apical sodium-dependent bile acid transporter expression rescue attenuates renal damage in diabetic nephropathy via farnesoid X receptor activation. Nephrology (Carlton) 2024; 29:627-635. [PMID: 38925891 DOI: 10.1111/nep.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/28/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
AIM Bile acids (BA) function as signalling molecules regulating glucose-lipid homeostasis and energy expenditure. However, the expression of the apical sodium-dependent bile acid transporter (ASBT) in the kidney, responsible for renal BA reabsorption, is downregulated in patients with diabetic kidney disease (DKD). Using the db/db mouse model of DKD, this study aimed to investigate the effects of rescuing ASBT expression via adeno-associated virus-mediated delivery of ASBT (AAVASBT) on kidney protection. METHODS Six-week-old male db/db mice received an intraparenchymal injection of AAVASBT at a dose of 1 × 1011 viral genomes (vg)/animal and were subsequently fed a chow diet for 2 weeks. Male db/m mice served as controls. For drug treatment, daily intraperitoneal (i.p.) injections of the farnesoid X receptor (FXR) antagonist guggulsterone (GS, 10 mg/kg) were administered one day after initiating the experiment. RESULTS AAVASBT treatment rescued renal ASBT expression and reduced the urinary BA output in db/db mice. AAVASBT treatment activated kidney mitochondrial biogenesis and ameliorated renal impairment associated with diabetes by activating FXR. In addition, the injection of FXR antagonist GS in DKD mice would reverse these beneficial effects by AAVASBT treatment. CONCLUSION Our work indicated that restoring renal ASBT expression slowed the course of DKD via activating FXR. FXR activation stimulates mitochondrial biogenesis while reducing renal oxidative stress and lipid build up, indicating FXR activation's crucial role in preventing DKD. These findings further suggest that the maintenance of renal BA reabsorption could be a viable treatment for DKD.
Collapse
Affiliation(s)
- Youmei Li
- Department of Endocrinology, Jinan Central Hospital, Shandong University, Jinan, China
- Department of Endocrinology, Changqing District People's Hospital, Jinan, China
| | - Shuguang Pang
- Department of Endocrinology, Jinan Central Hospital, Shandong University, Jinan, China
- Department of Endocrinology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Clinical Medicine, Weifang Medical College, Weifang, China
| | - Honggang Guo
- Laboratory of Experimental Animal and Safety Evaluation, Hangzhou Medical College, Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Shuo Yang
- Department of Clinical Medicine, Weifang Medical College, Weifang, China
| |
Collapse
|
3
|
Wu Y, Xu Y, Deng H, Sun J, Li X, Tang J. Poricoic acid a ameliorates high glucose-induced podocyte injury by regulating the AMPKα/FUNDC1 pathway. Mol Biol Rep 2024; 51:1003. [PMID: 39305364 DOI: 10.1007/s11033-024-09921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Poricoic acid A (PAA), a major triterpenoid component of Poria cocos with anti-tumor, anti-fibrotic, anti-inflammatory, and immune-regulating activities, has been shown to induce podocyte autophagy in diabetic kidney disease (DKD) by downregulating FUN14 domain containing 1 (FUNDC1). This study aimed to identify the role of adenosine monophosphate-activated protein kinase alpha (AMPKα) in PAA-mediated phosphorylation of FUNDC1 in podocyte injury occurring in the pathogenesis of DKD. METHODS AND RESULTS A cellular model of renal podocyte injury was established by culturing MPC5 cells under high-glucose (HG) conditions. MPC5 cells were subjected to transfection with small interfering RNA (siRNA) targeting AMPKα or siRNA targeting FUNDC1, an AMPKα activator, or PAA. PAA treatment induced the phosphorylation of AMPKα in HG-cultured podocytes. AMPKα activation was implicated in the inhibitory effect of PAA on FUNDC phosphorylation in HG-cultured podocytes. Treatment targeting the AMPKα activator also significantly augmented proliferation, migration, mitochondrial membrane potential, and autophagy levels, while reducing apoptosis levels, inhibiting oxidative stress, and suppressing the release of proinflammatory factors in HG-cultured MPC5 cells. In contrast, insufficient expression of AMPKα reversed the effects of PAA on the proliferation, migration, and apoptosis of podocytes and further exacerbated the reduction of phosphorylated FUNDC1 expression in podocytes under HG conditions. CONCLUSIONS AMPKα is involved in the regulation of FUNDC1 phosphorylation by PAA in HG-induced podocyte injury. Furthermore, the AMPKα/FUNDC1 pathway plays a crucial regulatory role in HG-induced podocyte injury. These findings support AMPKα, FUNDC1, and the AMPKα/FUNDC1 pathway as targets for PAA intervention.
Collapse
Affiliation(s)
- Yuwen Wu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, No.167 Donghu Road, Wuhan, 430071, Hubei, China.
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, No.167 Donghu Road, Wuhan, 430071, Hubei, China
| | - Haohua Deng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, No.167 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jiazhong Sun
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, No.167 Donghu Road, Wuhan, 430071, Hubei, China
| | - Xin Li
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, No.167 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jun Tang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, No.167 Donghu Road, Wuhan, 430071, Hubei, China
| |
Collapse
|
4
|
Liu J, Xiong Y, Mo H, Niu H, Miao J, Shen W, Zhou S, Wang X, Li X, Zhang Y, Ma K, Zhou L. MicroRNA-29b Plays a Vital Role in Podocyte Injury and Glomerular Diseases through Inducing Mitochondrial Dysfunction. Int J Biol Sci 2024; 20:4654-4673. [PMID: 39309435 PMCID: PMC11414390 DOI: 10.7150/ijbs.93506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetic kidney disease (DKD) is becoming the most leading cause of end-stage renal disease (ESRD). Podocyte injury plays a critical role in DKD progression. Notably, mitochondrial dysfunction is crucial for podocyte injury. MicroRNAs (miRNAs) involves in various kidney diseases. Herein, we discovered miR-29b was induced in the urine of 126 patients with DKD (stage I and II), and negatively correlated with kidney function and podocyte homeostasis. Mechanically, miR-29b targeted peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), a co-activator of transcription factors regulating mitochondrial biogenesis and energy metabolism. In vitro, ectopic miR-29b downregulated PGC-1α and promoted podocyte injury, while inhibition of miR-29b alleviated podocyte injury. Consistently, inhibition of miR-29b mitigated podocyte injury and preserved kidney function in ADR nephropathy and db/db mice, and overexpression of miR-29b accelerated disease. Knockout miR-29b specifically in podocyte inhibited mitochondrial dysfunction and podocyte injury. These results revealed miR-29b plays a crucial role in mitochondrial dysfunction through targeted inhibition on PGC-1α, leading to podocyte injury and DKD progression. Importantly, miR-29b could serve as a novel biomarker of podocyte injury and assists to early diagnose DKD.
Collapse
Affiliation(s)
- Jiafeng Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yabing Xiong
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyan Mo
- Department of Nephrology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hongxin Niu
- Special Medical Service Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinhua Miao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Shen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shan Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxu Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolong Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunfang Zhang
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Kunling Ma
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lili Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Guangdong Provincial Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Nephrology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Han Z, Gong L, Xue Y, Wang R, Liu J, Wang X, Zhao W, Liao H, Li R. Effects of Inonotus obliquus on ameliorating podocyte injury in ORG mice through TNF pathway and prediction of active compounds. Front Pharmacol 2024; 15:1426917. [PMID: 39234117 PMCID: PMC11371614 DOI: 10.3389/fphar.2024.1426917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024] Open
Abstract
Background Podocyte injury is a common pathologic mechanism in diabetic kidney disease (DKD) and obesity-related glomerulopathy (ORG). Our previous study confirmed that Inonotus obliquus (IO) improved podocyte injury on DKD rats. The current study explored the pharmacological effects, related mechanisms and possible active components of IO on ORG mice. Methods Firstly, by combining ultra-high performance liquid chromatography tandem mass spectrometry analysis (UPLC-Q-TOF-MS) with network pharmacology to construct the human protein-protein interaction mechanism and enrich the pathway, which led to discover the crucial mechanism of IO against ORG. Then, ORG mice were established by high-fat diet and biochemical assays, histopathology, and Western blot were used to explore the effects of IO on obesity and podocyte injury. Finally, network pharmacology-based findings were confirmed by immunohistochemistry. The compositions of IO absorbed in mice plasma were analyzed by UPLC-Q-TOF-MS and molecular docking was used to predict the possible active compounds. Results The network pharmacology result suggested that IO alleviated the inflammatory response of ORG by modulating TNF signal. The 20-week in vivo experiment confirmed that IO improved glomerular hypertrophy, podocyte injury under electron microscopy, renal nephrin, synaptopodin, TNF-α and IL-6 expressions with Western blotting and immunohistochemical staining. Other indicators of ORG such as body weight, kidney weight, serum total cholesterol, liver triglyceride also improved by IO intervention. The components analysis showed that triterpenoids, including inoterpene F and trametenolic acid, might be the pharmacodynamic basis. Conclusion The research based on UPLC-Q-TOF-MS analysis, network pharmacology and in vivo experiment suggested that the amelioration of IO on podocyte injury in ORG mice via its modulation on TNF signal. Triterpenoids were predicated as acting components.
Collapse
Affiliation(s)
- Zhaodi Han
- Drug Clinical Trial Institution, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Le Gong
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Yani Xue
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Rui Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Jing Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Xinyu Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Wenyan Zhao
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Hui Liao
- Drug Clinical Trial Institution, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
6
|
Zhu JY, Duan J, van de Leemput J, Han Z. Dysfunction of Mitochondrial Dynamics Induces Endocytosis Defect and Cell Damage in Drosophila Nephrocytes. Cells 2024; 13:1253. [PMID: 39120284 PMCID: PMC11312102 DOI: 10.3390/cells13151253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Mitochondria are crucial for cellular ATP production. They are highly dynamic organelles, whose morphology and function are controlled through mitochondrial fusion and fission. The specific roles of mitochondria in podocytes, the highly specialized cells of the kidney glomerulus, remain less understood. Given the significant structural, functional, and molecular similarities between mammalian podocytes and Drosophila nephrocytes, we employed fly nephrocytes to explore the roles of mitochondria in cellular function. Our study revealed that alterations in the Pink1-Park (mammalian PINK1-PRKN) pathway can disrupt mitochondrial dynamics in Drosophila nephrocytes. This disruption led to either fragmented or enlarged mitochondria, both of which impaired mitochondrial function. The mitochondrial dysfunction subsequently triggered defective intracellular endocytosis, protein aggregation, and cellular damage. These findings underscore the critical roles of mitochondria in nephrocyte functionality.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jianli Duan
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Ou LP, Liu YJ, Qiu ST, Yang C, Tang JX, Li XY, Liu HF, Ye ZN. Glutaminolysis is a Potential Therapeutic Target for Kidney Diseases. Diabetes Metab Syndr Obes 2024; 17:2789-2807. [PMID: 39072347 PMCID: PMC11283263 DOI: 10.2147/dmso.s471711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
Metabolic reprogramming contributes to the progression and prognosis of various kidney diseases. Glutamine is the most abundant free amino acid in the body and participates in more metabolic processes than other amino acids. Altered glutamine metabolism is a prominent feature in different kidney diseases. Glutaminolysis converts glutamine into the TCA cycle metabolite, alpha-ketoglutarate, via a cascade of enzymatic reactions. This metabolic pathway plays pivotal roles in inflammation, maladaptive repair, cell survival and proliferation, redox homeostasis, and immune regulation. Given the crucial role of glutaminolysis in bioenergetics and anaplerotic fluxes in kidney pathogenesis, studies on this cascade could provide a better understanding of kidney diseases, thus inspiring the development of potential methods for targeted therapy. Emerging evidence has shown that targeting glutaminolysis is a promising therapeutic strategy for ameliorating kidney disease. In this narrative review, equation including keywords related to glutamine, glutaminolysis and kidney are subjected to an exhaustive search on Pubmed database, we identified all relevant articles published before 1 April, 2024. Afterwards, we summarize the regulation of glutaminolysis in major kidney diseases and its underlying molecular mechanisms. Furthermore, we highlight therapeutic strategies targeting glutaminolysis and their potential clinical applications.
Collapse
Affiliation(s)
- Li-Ping Ou
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Yong-Jian Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Shi-Tong Qiu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Chen Yang
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Ji-Xin Tang
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Xiao-Yu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Hua-Feng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Zhen-Nan Ye
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| |
Collapse
|
8
|
Njeim R, Merscher S, Fornoni A. Mechanisms and implications of podocyte autophagy in chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F877-F893. [PMID: 38601984 PMCID: PMC11386983 DOI: 10.1152/ajprenal.00415.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Autophagy is a protective mechanism through which cells degrade and recycle proteins and organelles to maintain cellular homeostasis and integrity. An accumulating body of evidence underscores the significant impact of dysregulated autophagy on podocyte injury in chronic kidney disease (CKD). In this review, we provide a comprehensive overview of the diverse types of autophagy and their regulation in cellular homeostasis, with a specific emphasis on podocytes. Furthermore, we discuss recent findings that focus on the functional role of different types of autophagy during podocyte injury in chronic kidney disease. The intricate interplay between different types of autophagy and podocyte health requires further research, which is critical for understanding the pathogenesis of CKD and developing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Rachel Njeim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
9
|
Guo X, Wang J, Wu Y, Zhu X, Xu L. Renal aging and mitochondrial quality control. Biogerontology 2024; 25:399-414. [PMID: 38349436 DOI: 10.1007/s10522-023-10091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/29/2023] [Indexed: 06/01/2024]
Abstract
Mitochondria are dynamic organelles that participate in different cellular process that control metabolism, cell division, and survival, and the kidney is one of the most metabolically active organs that contains abundant mitochondria. Perturbations in mitochondrial homeostasis in the kidney can accelerate kidney aging, and maintaining mitochondrial homeostasis can effectively delay aging in the kidney. Kidney aging is a degenerative process linked to detrimental processes. The significance of aberrant mitochondrial homeostasis in renal aging has received increasing attention. However, the contribution of mitochondrial quality control (MQC) to renal aging has not been reviewed in detail. Here, we generalize the current factors contributing to renal aging, review the alterations in MQC during renal injury and aging, and analyze the relationship between mitochondria and intrinsic renal cells. We also introduce MQC in the context of renal aging, and discuss the study of mitochondria in the intrinsic cells of the kidney, which is the innovation of our paper. In addition, during kidney injury and repair, the specific functions and regulatory mechanisms of MQC systems in resident and circulating cell types remain unclear. Currently, most of the studies we reviewed are based on animal and cellular models, the relationship between renal tissue aging and mitochondria has not been adequately investigated in clinical studies, and there is still a long way to go.
Collapse
Affiliation(s)
- Xiuli Guo
- Department of Laboratory, The First Hospital of China Medical University, Shenyang, China
| | - Jiao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yinjie Wu
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, China
| | - Xinwang Zhu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, China
| | - Li Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524003, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Zhang Y, Xia S, Tian X, Yuan L, Gao Y, Liu D, Qi H, Wang S, Liu Z, Li Y, Zhao Z, Liu W. miR-4645-3p attenuates podocyte injury and mitochondrial dysfunction in diabetic kidney disease by targeting Cdk5. FASEB J 2024; 38:e23668. [PMID: 38742811 DOI: 10.1096/fj.202300357rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Podocyte injury plays a critical role in the progression of diabetic kidney disease (DKD), but the underlying cellular and molecular mechanisms remain poorly understanding. MicroRNAs (miRNAs) can disrupt gene expression by inducing translation inhibition and mRNA degradation, and recent evidence has shown that miRNAs may play a key role in many kidney diseases. In this study, we identified miR-4645-3p by global transcriptome expression profiling as one of the major downregulated miRNAs in high glucose-cultured podocytes. Moreover, whether DKD patients or STZ-induced diabetic mice, expression of miR-4645-3p was also significantly decreased in kidney. In the podocytes cultured by normal glucose, inhibition of miR-4645-3p expression promoted mitochondrial damage and podocyte apoptosis. In the podocytes cultured by high glucose (30 mM glucose), overexpression of miR-4645-3p significantly attenuated mitochondrial dysfunction and podocyte apoptosis induced by high glucose. Furthermore, we found that miR-4645-3p exerted protective roles by targeting Cdk5 inhibition. In vitro, miR-4645-3p obviously antagonized podocyte injury by inhibiting overexpression of Cdk5. In vivo of diabetic mice, podocyte injury, proteinuria, and impaired renal function were all effectively ameliorated by treatment with exogenous miR-4645-3p. Collectively, these findings demonstrate that miR-4645-3p can attenuate podocyte injury and mitochondrial dysfunction in DKD by targeting Cdk5. Sustaining the expression of miR-4645-3p in podocytes may be a novel strategy to treat DKD.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Diagnostics, Hebei Medical University, Shijiazhuang, China
| | - Shunjie Xia
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Yixing People's Hospital, Yixing, China
| | - Xiaoxi Tian
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Liming Yuan
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Yuan Gao
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Dan Liu
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Huimin Qi
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Shuo Wang
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Zanchao Liu
- Hebei Key Laboratory of Basic Medicine for Diabetes, Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Yang Li
- Hebei Key Laboratory of Basic Medicine for Diabetes, Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Zhe Zhao
- Hebei Key Laboratory of Basic Medicine for Diabetes, Shijiazhuang Second Hospital, Shijiazhuang, China
| | - Wei Liu
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Forensic Medicine, Shijiazhuang, China
| |
Collapse
|
11
|
Zhu JY, van de Leemput J, Han Z. Promoting mitochondrial dynamics by inhibiting the PINK1-PRKN pathway to relieve diabetic nephropathy. Dis Model Mech 2024; 17:dmm050471. [PMID: 38602042 PMCID: PMC11095637 DOI: 10.1242/dmm.050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Diabetes is a metabolic disorder characterized by high blood glucose levels and is a leading cause of kidney disease. Diabetic nephropathy has been attributed to dysfunctional mitochondria. However, many questions remain about the exact mechanism. The structure, function and molecular pathways are highly conserved between mammalian podocytes and Drosophila nephrocytes; therefore, we used flies on a high-sucrose diet to model type 2 diabetic nephropathy. The nephrocytes from flies on a high-sucrose diet showed a significant functional decline and decreased cell size, associated with a shortened lifespan. Structurally, the nephrocyte filtration structure, known as the slit diaphragm, was disorganized. At the cellular level, we found altered mitochondrial dynamics and dysfunctional mitochondria. Regulating mitochondrial dynamics by either genetic modification of the Pink1-Park (mammalian PINK1-PRKN) pathway or treatment with BGP-15, mitigated the mitochondrial defects and nephrocyte functional decline. These findings support a role for Pink1-Park-mediated mitophagy and associated control of mitochondrial dynamics in diabetic nephropathy, and demonstrate that targeting this pathway might provide therapeutic benefits for type 2 diabetic nephropathy.
Collapse
Affiliation(s)
- Jun-yi Zhu
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joyce van de Leemput
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Zhe Han
- Center for Precision Disease Modeling, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Endocrinology, Diabetes, and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Lang Y, Wang Q, Sheng Q, Lu S, Yang M, Kong Z, Gao Y, Fan X, Shen N, Wang R, Lv Z. FTO-mediated m6A modification of serum amyloid A2 mRNA promotes podocyte injury and inflammation by activating the NF-κB signaling pathway. FASEB J 2024; 38:e23409. [PMID: 38193628 DOI: 10.1096/fj.202301419rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Diabetic kidney disease (DKD) is one of the severe complications of diabetes mellitus, yet there is no effective treatment. Exploring the development of DKD is essential to treatment. Podocyte injury and inflammation are closely related to the development of DKD. However, the mechanism of podocyte injury and progression in DKD remains largely unclear. Here, we observed that FTO expression was significantly upregulated in high glucose-induced podocytes and that overexpression of FTO promoted podocyte injury and inflammation. By performing RNA-seq and MeRIP-seq with control podocytes and high glucose-induced podocytes with or without FTO knockdown, we revealed that serum amyloid A2 (SAA2) is a target of FTO-mediated m6A modification. Knockdown of FTO markedly increased SAA2 mRNA m6A modification and decreased SAA2 mRNA expression. Mechanistically, we demonstrated that SAA2 might participate in podocyte injury and inflammation through activation of the NF-κB signaling pathway. Furthermore, by generating podocyte-specific adeno-associated virus 9 (AAV9) to knockdown SAA2 in mice, we discovered that the depletion of SAA2 significantly restored podocyte injury and inflammation. Together, our results suggested that upregulation of SAA2 promoted podocyte injury through m6A-dependent regulation, thus suggesting that SAA2 may be a therapeutic target for diabetic kidney disease.
Collapse
Affiliation(s)
- Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qimeng Wang
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
13
|
Xie S, Song S, Liu S, Li Q, Zou W, Ke J, Wang C. (Pro)renin receptor mediates tubular epithelial cell pyroptosis in diabetic kidney disease via DPP4-JNK pathway. J Transl Med 2024; 22:26. [PMID: 38183100 PMCID: PMC10768114 DOI: 10.1186/s12967-023-04846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND (Pro)renin receptor (PRR) is highly expressed in renal tubules, which is involved in physiological and pathological processes. However, the role of PRR, expressed in renal tubular epithelial cells, in diabetic kidney disease (DKD) remain largely unknown. METHODS In this study, kidney biopsies, urine samples, and public RNA-seq data from DKD patients were used to assess PRR expression and cell pyroptosis in tubular epithelial cells. The regulation of tubular epithelial cell pyroptosis by PRR was investigated by in situ renal injection of adeno-associated virus9 (AAV9)-shRNA into db/db mice, and knockdown or overexpression of PRR in HK-2 cells. To reveal the underlined mechanism, the interaction of PRR with potential binding proteins was explored by using BioGrid database. Furthermore, the direct binding of PRR to dipeptidyl peptidase 4 (DPP4), a pleiotropic serine peptidase which increases blood glucose by degrading incretins under diabetic conditions, was confirmed by co-immunoprecipitation assay and immunostaining. RESULTS Higher expression of PRR was found in renal tubules and positively correlated with kidney injuries of DKD patients, in parallel with tubular epithelial cells pyroptosis. Knockdown of PRR in kidneys significantly blunted db/db mice to kidney injury by alleviating renal tubular epithelial cells pyroptosis and the resultant interstitial inflammation. Moreover, silencing of PRR blocked high glucose-induced HK-2 pyroptosis, whereas overexpression of PRR enhanced pyroptotic cell death of HK-2 cells. Mechanistically, PRR selectively bound to cysteine-enrich region of C-terminal of DPP4 and augmented the protein abundance of DPP4, leading to the downstream activation of JNK signaling and suppression of SIRT3 signaling and FGFR1 signaling, and then subsequently mediated pyroptotic cell death. CONCLUSIONS This study identified the significant role of PRR in the pathogenesis of DKD; specifically, PRR promoted tubular epithelial cell pyroptosis via DPP4 mediated signaling, highlighting that PRR could be a promising therapeutic target in DKD.
Collapse
Affiliation(s)
- Shiying Xie
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Shicong Song
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Sirui Liu
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Qiong Li
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Wei Zou
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Jianting Ke
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
- Guangdong Provincial Engineering Research Center of Molecular Imaging Center, The Fifth Affiliated Hospital Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
14
|
Lv C, Cheng T, Zhang B, Sun K, Lu K. Triptolide protects against podocyte injury in diabetic nephropathy by activating the Nrf2/HO-1 pathway and inhibiting the NLRP3 inflammasome pathway. Ren Fail 2023; 45:2165103. [PMID: 36938748 PMCID: PMC10035962 DOI: 10.1080/0886022x.2023.2165103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Objectives: Diabetic nephropathy (DN) is the most common microvascular complication of diabetes mellitus. This study investigated the mechanism of triptolide (TP) in podocyte injury in DN.Methods: DN mouse models were established by feeding with a high-fat diet and injecting with streptozocin and MPC5 podocyte injury models were induced by high-glucose (HG), followed by TP treatment. Fasting blood glucose and renal function indicators, such as 24 h urine albumin (UAlb), serum creatinine (SCr), blood urea nitrogen (BUN), and kidney/body weight ratio of mice were examined. H&E and TUNEL staining were performed for evaluating pathological changes and apoptosis in renal tissue. The podocyte markers, reactive oxygen species (ROS), oxidative stress (OS), serum inflammatory cytokines, nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway-related proteins, and pyroptosis were detected by Western blotting and corresponding kits. MPC5 cell viability and pyroptosis were evaluated by MTT and Hoechst 33342/PI double-fluorescence staining. Nrf2 inhibitor ML385 was used to verify the regulation of TP on Nrf2.Results: TP improved renal function and histopathological injury of DN mice, alleviated podocytes injury, reduced OS and ROS by activating the Nrf2/heme oxygenase-1 (HO-1) pathway, and weakened pyroptosis by inhibiting the nod-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome pathway. In vitro experiments further verified the inhibition of TP on OS and pyroptosis by mediating the Nrf2/HO-1 and NLRP3 inflammasome pathways. Inhibition of Nrf2 reversed the protective effect of TP on MPC5 cells.Conclusions: Overall, TP alleviated podocyte injury in DN by inhibiting OS and pyroptosis via Nrf2/ROS/NLRP3 axis.
Collapse
Affiliation(s)
- Chenlei Lv
- Department of Nephrology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Tianyang Cheng
- Department of Nephrology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bingbing Zhang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ke Sun
- Department of Nephrology, The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Keda Lu
- Department of Nephrology, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Wang T, Li C, Wang X, Liu F. MAGI2 ameliorates podocyte apoptosis of diabetic kidney disease through communication with TGF-β-Smad3/nephrin pathway. FASEB J 2023; 37:e23305. [PMID: 37950637 DOI: 10.1096/fj.202301058r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/27/2023] [Indexed: 11/13/2023]
Abstract
Podocytes, the key component of the glomerular filtration barrier (GFB), are gradually lost during the progression of diabetic kidney disease (DKD), severely compromising kidney functionality. The molecular mechanisms regulating the survival of podocytes in DKD are incompletely understood. Here, we show that membrane-associated guanylate kinase inverted 2 (MAGI2) is specifically expressed in renal podocytes, and promotes podocyte survival in DKD. We found that MAGI2 expression was downregulated in podocytes cultured with high-glucose in vitro, and in kidneys of db/db mice as well as DKD patients. Conversely, we found enforced expression of MAGI2 via AAV transduction protected podocytes from apoptosis, with concomitant improvement of renal functions. Mechanistically, we found that MAGI2 deficiency induced by high glucose levels activates TGF-β signaling to decrease the expression of anti-apoptotic proteins. These results indicate that MAGI2 protects podocytes from cell death, and can be harnessed therapeutically to improve renal function in diabetic kidney disease.
Collapse
Affiliation(s)
- Tingli Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Li
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital & Institute, School of medicine, University of Electronic Science and Technology of China, Chengdu, China
- West China Hospital, Sichuan University, Chengdu, China
| | - Xiaofei Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Liu
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Diabetic Kidney Disease, Centre of Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Wu Y, Deng H, Sun J, Tang J, Li X, Xu Y. Poricoic acid A induces mitophagy to ameliorate podocyte injury in diabetic kidney disease via downregulating FUNDC1. J Biochem Mol Toxicol 2023; 37:e23503. [PMID: 37706594 DOI: 10.1002/jbt.23503] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 09/15/2023]
Abstract
Diabetic kidney disease (DKD) is a devastating complication of diabetes mellitus (DM) and is the most prevalent chronic kidney disease (CKD). Poricoic acid A (PAA), a component isolated from Traditional Chinese Medicine (TCM) Poria cocos, has hypoglycaemic and anti-fibrosis effects. However, the role of PAA in DKD remains largely unclear. To mimics an in vitro model of DKD, the mouse podocyte MPC5 cells were treated with high glucose (25 mM; HG) for 24 h. CCK-8 and flow cytometry assays were conducted for assessing MPC5 cell viability and apoptosis. Meanwhile, streptozotocin (STZ) was used to induce experimental DKD in mice by intraperitoneal injection. PAA notably inhibited the apoptosis and inflammation, reduced the generation of ROS, and elevated the MMP level in HG-treated MPC5 cells. Moreover, PAA obviously reduced blood glucose and urine protein levels, inhibited renal fibrosis in DKD mice. Meanwhile, PAA markedly increased LC3 and ATG5 levels and declined p62 and FUNDC1 levels in HG-treated MPC5 cells and in the kidney tissues of DKD mice, leading to the activation of cell mitophagy. Furthermore, the downregulation of FUNDC1 also inhibited apoptosis, inflammation, and promoted mitophagy in HG-treated MPC5 cells. As expected, the knockdown of FUNDC1 further enhanced the protective role of PAA in MPC5 cells following HG treatment, indicating that induction of mitophagy could attenuate podocyte injury. Collectively, PAA could exert beneficial effects on podocyte injury in DKD by promoting mitophagy via downregulating FUNDC1. These findings suggested that PAA may have great potential in alleviating kidney injury in DKD.
Collapse
Affiliation(s)
- Yuwen Wu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Haohua Deng
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jiazhong Sun
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jun Tang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Li
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yancheng Xu
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
17
|
Hu J, Zhang Z, Hu H, Yang K, Zhu Z, Yang Q, Liang W. LRH-1 activation alleviates diabetes-induced podocyte injury by promoting GLS2-mediated glutaminolysis. Cell Prolif 2023; 56:e13479. [PMID: 37057309 PMCID: PMC10623971 DOI: 10.1111/cpr.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023] Open
Abstract
Alteration of metabolic phenotype in podocytes directly contributes to the development of albuminuria and renal injury in conditions of diabetic kidney disease (DKD). This study aimed to identify and evaluate liver receptor homologue-1 (LRH-1) as a possible therapeutic target that alleviates glutamine (Gln) metabolism disorders and mitigates podocyte injury in DKD. Metabolomic and transcriptomic analyses were performed to characterize amino acid metabolism changes in the glomeruli of diabetic mice. Next, Western blotting, immunohistochemistry assays, and immunofluorescence staining were used to detect the expression of different genes in vitro and in vivo. Furthermore, Gln and glutamate (Glu) content as well as ATP generation were examined. A decrease in LRH-1 and glutaminase 2 (GLS2) expression was detected in diabetic podocytes. Conversely, the administration of LRH-1 agonist (DLPC) upregulated the expression of GLS2 and promoted glutaminolysis, with an improvement in mitochondrial dysfunction and less apoptosis in podocytes compared to those in vehicle-treated db/db mice. Our study indicates the essential role of LRH-1 in governing the Gln metabolism of podocytes, targeting LRH-1 could restore podocytes from diabetes-induced disturbed glutaminolysis in mitochondria.
Collapse
Affiliation(s)
- Jijia Hu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Zongwei Zhang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Hongtu Hu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Keju Yang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- The First College of Clinical Medical Science, China Three Gorges UniversityYichangHubeiChina
| | - Zijing Zhu
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
| | - Qian Yang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| | - Wei Liang
- Division of NephrologyRenmin Hospital of Wuhan UniversityWuhanHubeiChina
- Nephrology and Urology Research Institute of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|
18
|
Lu J, Li XQ, Chen PP, Zhang JX, Liu L, Wang GH, Liu XQ, Jiang TT, Wang MY, Liu WT, Ruan XZ, Ma KL. Activation of acetyl-CoA synthetase 2 mediates kidney injury in diabetic nephropathy. JCI Insight 2023; 8:e165817. [PMID: 37870960 PMCID: PMC10619493 DOI: 10.1172/jci.insight.165817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 09/05/2023] [Indexed: 10/25/2023] Open
Abstract
Albuminuria and podocyte injury are the key cellular events in the progression of diabetic nephropathy (DN). Acetyl-CoA synthetase 2 (ACSS2) is a nucleocytosolic enzyme responsible for the regulation of metabolic homeostasis in mammalian cells. This study aimed to investigate the possible roles of ACSS2 in kidney injury in DN. We constructed an ACSS2-deleted mouse model to investigate the role of ACSS2 in podocyte dysfunction and kidney injury in diabetic mouse models. In vitro, podocytes were chosen and transfected with ACSS2 siRNA and ACSS2 inhibitor and treated with high glucose. We found that ACSS2 expression was significantly elevated in the podocytes of patients with DN and diabetic mice. ACSS2 upregulation promoted phenotype transformation and inflammatory cytokine expression while inhibiting podocytes' autophagy. Conversely, ACSS2 inhibition improved autophagy and alleviated podocyte injury. Furthermore, ACSS2 epigenetically activated raptor expression by histone H3K9 acetylation, promoting activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway. Pharmacological inhibition or genetic depletion of ACSS2 in the streptozotocin-induced diabetic mouse model greatly ameliorated kidney injury and podocyte dysfunction. To conclude, ACSS2 activation promoted podocyte injury in DN by raptor/mTORC1-mediated autophagy inhibition.
Collapse
Affiliation(s)
- Jian Lu
- Department of Nephrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xue Qi Li
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Pei Pei Chen
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jia Xiu Zhang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Liang Liu
- Department of Intensive Care Unit, People’s Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Gui Hua Wang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao Qi Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Ting Ting Jiang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Meng Ying Wang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wen Tao Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiong Zhong Ruan
- John Moorhead Research Laboratory, Department of Renal Medicine, University College London Medical School, Royal Free Campus, London, United Kingdom
| | - Kun Ling Ma
- Department of Nephrology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Yang C, Zhang Z, Liu J, Chen P, Li J, Shu H, Chu Y, Li L. Research progress on multiple cell death pathways of podocytes in diabetic kidney disease. Mol Med 2023; 29:135. [PMID: 37828444 PMCID: PMC10571269 DOI: 10.1186/s10020-023-00732-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Diabetic kidney disease (DKD) is the main cause of end-stage renal disease, and its clinical manifestations are progressive proteinuria, decreased glomerular filtration rate, and renal failure. The injury and death of glomerular podocytes are the keys to DKD. Currently, a variety of cell death modes have been identified in podocytes, including apoptosis, autophagy, endoplasmic reticulum (ER) stress, pyroptosis, necroptosis, ferroptosis, mitotic catastrophe, etc. The signaling pathways leading to these cell death processes are interconnected and can be activated simultaneously or in parallel. They are essential for cell survival and death that determine the fate of cells. With the deepening of the research on the mechanism of cell death, more and more researchers have devoted their attention to the underlying pathologic research and the drug therapy research of DKD. In this paper, we discussed the podocyte physiologic role and DKD processes. We also provide an overview of the types and specific mechanisms involved in each type of cell death in DKD, as well as related targeted therapy methods and drugs are reviewed. In the last part we discuss the complexity and potential crosstalk between various modes of cell death, which will help improve the understanding of podocyte death and lay a foundation for new and ideal targeted therapy strategies for DKD treatment in the future.
Collapse
Affiliation(s)
- Can Yang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Jieting Liu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Peijian Chen
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Jialing Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Haiying Shu
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yanhui Chu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China.
| | - Luxin Li
- Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, 157000, China.
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157000, China.
| |
Collapse
|
20
|
Li H, Zheng J, Wu Y, Zhou H, Zeng S, Li Q. Dendrobium officinale polysaccharide decreases podocyte injury in diabetic nephropathy by regulating IRS-1/AKT signal and promoting mitophagy. Aging (Albany NY) 2023; 15:10291-10306. [PMID: 37812195 PMCID: PMC10599763 DOI: 10.18632/aging.205075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUNDS High glucose (HG) caused oxidative stress and mitochondrial dysfunction, resulting in insulin resistance in podocytes, a key mechanism of diabetic nephropathy. Dendrobium officinale polysaccharide (DOP) was able to improve insulin resistance and antioxidant capability. OBJECTIVE The purpose of this study is to explore the mechanism by which DOP decreases the podocyte injury induced by HG. METHODS MPC5 cells were treated with HG, DOP, and IRS-1/2 inhibitor NT157. Afterwards, glucose consumption, generations of ROS and MDA were measured using the detection kits. Mitophagy was monitored using both MtphagTracyker and LysoTracker. The mitochondrial membrane potential was evaluated by JC-1 staining. DOP was also used in a mouse model of diabetes, with the measurements of urine albumin, blood creatinine and blood urea nitrogen. RESULTS Treatment with DOP suppressed the HG-induced reduction of glucose consumption, the phosphorylation of IRS-1 (phospho Y632), AKT (phospho Ser473 and Thr308) and Nephrin. In addition, HG-induced augment of ROS and MDA, formation of γ-H2A.X foci and translocation of AKT to nucleus were inhibited by DOP. DOP enhanced mitophagy, which was associated with decreased mitochondrial membrane potential and ROS production. DOP conferred protective effect on podocyte in the diabetic mouse by reducing the albumin/creatinine ratio and blood urea nitrogen, and restoring Nephrin expression in podocytes. CONCLUSIONS DOP alleviates HG-induced podocyte injuryby regulating IRS-1/AKT signal and promoting mitophagy.
Collapse
Affiliation(s)
- Huahua Li
- Department of Geriatric, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Furong, Changsha 410005, P.R. China
| | - Jin Zheng
- Department of Geriatric, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Furong, Changsha 410005, P.R. China
| | - Yacen Wu
- Department of Rehabilitation, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Furong, Changsha 410005, P.R. China
| | - Hong Zhou
- Department of Geriatric, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Furong, Changsha 410005, P.R. China
| | - Suli Zeng
- Department of Geriatric, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Furong, Changsha 410005, P.R. China
| | - Quanqing Li
- Department of Geriatric, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Furong, Changsha 410005, P.R. China
| |
Collapse
|
21
|
Baek J, Lee YH, Jeong HY, Lee SY. Mitochondrial quality control and its emerging role in the pathogenesis of diabetic kidney disease. Kidney Res Clin Pract 2023; 42:546-560. [PMID: 37448292 PMCID: PMC10565453 DOI: 10.23876/j.krcp.22.233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 07/15/2023] Open
Abstract
Most eukaryotic cells have mitochondrial networks that can change in shape, distribution, and size depending on cellular metabolic demands and environments. Mitochondrial quality control is critical for various mitochondrial functions including energy production, redox homeostasis, intracellular calcium handling, cell differentiation, proliferation, and cell death. Quality control mechanisms within mitochondria consist of antioxidant defenses, protein quality control, DNA damage repair systems, mitochondrial fusion and fission, mitophagy, and mitochondrial biogenesis. Defects in mitochondrial quality control and disruption of mitochondrial homeostasis are common characteristics of various kidney cell types under hyperglycemic conditions. Such defects contribute to diabetes-induced pathologies in renal tubular cells, podocytes, endothelial cells, and immune cells. In this review, we focus on the roles of mitochondrial quality control in diabetic kidney disease pathogenesis and discuss current research evidence and future directions.
Collapse
Affiliation(s)
- Jihyun Baek
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
- Department of Biomedical Science, College of Life Science, CHA University, Pocheon, Republic of Korea
| | - Yu Ho Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Hye Yun Jeong
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - So-Young Lee
- Division of Nephrology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| |
Collapse
|
22
|
Liu T, Jin Q, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Regulation of autophagy by natural polyphenols in the treatment of diabetic kidney disease: therapeutic potential and mechanism. Front Endocrinol (Lausanne) 2023; 14:1142276. [PMID: 37635982 PMCID: PMC10448531 DOI: 10.3389/fendo.2023.1142276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes and a leading cause of end-stage renal disease worldwide. Autophagy plays an important role in maintaining cellular homeostasis in renal physiology. In DKD, the accumulation of advanced glycation end products induces decreased renal autophagy-related protein expression and transcription factor EB (TFEB) nuclear transfer, leading to impaired autophagy and lysosomal function and blockage of autophagic flux. This accelerates renal resident cell injury and apoptosis, mediates macrophage infiltration and phenotypic changes, ultimately leading to aggravated proteinuria and fibrosis in DKD. Natural polyphenols show promise in treating DKD by regulating autophagy and promoting nuclear transfer of TFEB and lysosomal repair. This review summarizes the characteristics of autophagy in DKD, and the potential application and mechanisms of some known natural polyphenols as autophagy regulators in DKD, with the goal of contributing to a deeper understanding of natural polyphenol mechanisms in the treatment of DKD and promoting the development of their applications. Finally, we point out the limitations of polyphenols in current DKD research and provide an outlook for their future research.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Jin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Yongli Zhan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Li Y, Fan J, Zhu W, Niu Y, Wu M, Zhang A. Therapeutic Potential Targeting Podocyte Mitochondrial Dysfunction in Focal Segmental Glomerulosclerosis. KIDNEY DISEASES (BASEL, SWITZERLAND) 2023; 9:254-264. [PMID: 37900001 PMCID: PMC10601935 DOI: 10.1159/000530344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/18/2023] [Indexed: 10/31/2023]
Abstract
Background Podocytes are essential components of the glomerular filtration barrier and essential for the proper filtration function of the glomerulus. Podocyte injury under various stress conditions is the primary pathogenesis and key determinant of focal segmental glomerulosclerosis (FSGS) with prominent clinical manifestations of proteinuria or nephrotic syndrome. Summary Under physiological conditions, a highly coordinated mitochondrial quality control system, including antioxidant defenses, mitochondrial dynamics (fusion, fission, and mitophagy), and mitochondrial biogenesis, guarantees the sophisticated structure and various functions of podocytes. However, under FSGS pathological conditions, mitochondria encounter oxidative stress, dynamics disturbances, and defective mitochondrial biogenesis. Moreover, mutations in mitochondrial DNA and mitochondria-related genes are also strongly associated with FSGS. Based on these pieces of evidence, bioactive agents that function to relieve mitochondrial oxidative stress and promote mitochondrial biogenesis have been proven effective in preclinical FSGS models. Targeting the mitochondrial network is expected to provide new therapeutic strategies for the treatment of FSGS and delay its progression to end-stage renal disease. Key Messages Mitochondrial dysfunction plays a key role in podocyte injury and FSGS progression. This review summarized recent advances in the study of mitochondrial homeostatic imbalance and dysfunction in FSGS and discussed the potential of mitochondria-targeted therapeutics in improving FSGS and retarding its progression to end-stage renal disease.
Collapse
Affiliation(s)
- Yuting Li
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jiaojiao Fan
- School of Medicine, Southeast University, Nanjing, China
| | - Wenping Zhu
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yujia Niu
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Mengqiu Wu
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Kim D, Ban KY, Lee GH, Jun HS. Lysophosphatidic Acid Induces Podocyte Pyroptosis in Diabetic Nephropathy by an Increase of Egr1 Expression via Downregulation of EzH2. Int J Mol Sci 2023; 24:9968. [PMID: 37373116 DOI: 10.3390/ijms24129968] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Podocyte damage and renal inflammation are the main features and pathogenesis of diabetic nephropathy (DN). Inhibition of lysophosphatidic acid (LPA) receptor 1 (LPAR1) suppresses glomerular inflammation and improves DN. Herein, we investigated LPA-induced podocyte damage and its underlying mechanisms in DN. We investigated the effects of AM095, a specific LPAR1 inhibitor, on podocytes from streptozotocin (STZ)-induced diabetic mice. E11 cells were treated with LPA in the presence or absence of AM095, and the expression of NLRP3 inflammasome factors and pyroptosis were measured. A chromatin immunoprecipitation assay and Western blotting were performed to elucidate underlying molecular mechanisms. Gene knockdown by transfecting small interfering RNA was used to determine the role of the transcription factor Egr1 (early growth response protein 1) and histone methyltransferase EzH2 (Enhancer of Zeste Homolog 2) in LPA-induced podocyte injury. AM095 administration inhibited podocyte loss, NLRP3 inflammasome factor expression, and cell death in STZ-induced diabetic mice. In E11 cells, LPA increased NLRP3 inflammasome activation and pyroptosis via LPAR1. Egr1 mediated NLRP3 inflammasome activation and pyroptosis in LPA-treated E11 cells. LPA decreased H3K27me3 enrichment at the Egr1 promoter in E11 cells by downregulating EzH2 expression. EzH2 knockdown further increased LPA-induced Egr1 expression. In podocytes from STZ-induced diabetic mice, AM095 suppressed Egr1 expression increase and EzH2/H3K27me3 expression reduction. Collectively, these results demonstrate that LPA induces NLRP3 inflammasome activation by downregulating EzH2/H3K27me3 and upregulating Egr1 expression, resulting in podocyte damage and pyroptosis, which may be a potential mechanism of DN progression.
Collapse
Affiliation(s)
- Donghee Kim
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Ka-Yun Ban
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Geon-Ho Lee
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon 21936, Republic of Korea
- Gachon Medical Research Institute, Gil Hospital, Incheon 21565, Republic of Korea
| |
Collapse
|
25
|
Wu Q, Yan R, Yang H, Wang Y, Zhang C, Zhang J, Cui Z, Wang Y, Sun W. Qing-Re-Xiao-Zheng-Yi-Qi formula relieves kidney damage and activates mitophagy in diabetic kidney disease. Front Pharmacol 2022; 13:992597. [PMID: 36605399 PMCID: PMC9807870 DOI: 10.3389/fphar.2022.992597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: Qing-Re-Xiao-Zheng-Yi-Qi Formula is an effective prescription in diabetic kidney disease treatment, we have confirmed the efficacy of Qing-Re-Xiao-Zheng therapy in diabetic kidney disease through clinical trials. In this study, we investigated the mechanisms of Qing-Re-Xiao-Zheng-Yi-Qi Formula in the treatment of diabetic kidney disease. Methods: We used Vanquish UHPLCTM to analyze the chemical profiling of Qing-Re-Xiao-Zheng-Yi-Qi Formula freeze-dried powder. We constructed diabetic kidney disease rat models induced by unilateral nephrectomy and high-dose streptozocin injection. We examined blood urea nitrogen, serum creatinine, serum glucose, total cholesterol, triglyceride, serum total protein, albumin, alanine aminotransferase, aspartate aminotransferase and 24 h urinary total protein in diabetic kidney disease rats. The renal pathological changes were observed by HE, Masson, PAS stanning and transmission electron microscopy. The levels of fibrosis-related proteins and mitophagy-related proteins were detected by western blot analysis. We also conducted an immunofluorescence co-localization analysis on podocytes to further investigate the effect of Qing-Re-Xiao-Zheng-Yi-Qi Formula treatment on mitophagy. Results: A total of 27 constituents in Qing-Re-Xiao-Zheng-Yi-Qi Formula were tentatively identified. We found PINK1/Parkin-mediated mitophagy was inhibited in diabetic kidney disease. Qing-Re-Xiao-Zheng-Yi-Qi Formula treatment could raise body weight and reduce renal index, reduce proteinuria, improve glycolipid metabolic disorders, ameliorate renal fibrosis, and reduce the expression of Col Ⅳ and TGF-β1 in diabetic kidney disease rats. Qing-Re-Xiao-Zheng-Yi-Qi Formula treatment could also increase the expression of nephrin, activate mitophagy and protect podocytes in diabetic kidney disease rats and high glucose cultured podocytes. Conclusion: PINK1/Parkin-mediated mitophagy was inhibited in diabetic kidney disease, and Qing-Re-Xiao-Zheng-Yi-Qi Formula treatment could not only ameliorate pathological damage, but also promote mitophagy to protect podocytes in diabetic kidney disease.
Collapse
Affiliation(s)
- Qiaoru Wu
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Runze Yan
- Department of Nephrology, Beijing Dongcheng First People’s Hospital, Beijing, BJ, China
| | - Hanwen Yang
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Yixuan Wang
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Chao Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Jiale Zhang
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Zhaoli Cui
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, BJ, China
| | - Yaoxian Wang
- Beijing University of Chinese Medicine, Beijing, BJ, China,*Correspondence: Yaoxian Wang, ; Weiwei Sun,
| | - Weiwei Sun
- Department of Nephrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, BJ, China,*Correspondence: Yaoxian Wang, ; Weiwei Sun,
| |
Collapse
|
26
|
Qi W, Hu C, Zhao D, Li X. SIRT1-SIRT7 in Diabetic Kidney Disease: Biological Functions and Molecular Mechanisms. Front Endocrinol (Lausanne) 2022; 13:801303. [PMID: 35634495 PMCID: PMC9136398 DOI: 10.3389/fendo.2022.801303] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/15/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetic kidney disease (DKD) is a severe microvascular complication in patients with diabetes and is one of the main causes of renal failure. The current clinical treatment methods for DKD are not completely effective, and further exploration of the molecular mechanisms underlying the pathology of DKD is necessary to improve and promote the treatment strategy. Sirtuins are class III histone deacetylases, which play an important role in many biological functions, including DNA repair, apoptosis, cell cycle, oxidative stress, mitochondrial function, energy metabolism, lifespan, and aging. In the last decade, research on sirtuins and DKD has gained increasing attention, and it is important to summarize the relationship between DKD and sirtuins to increase the awareness of DKD and improve the cure rates. We have found that miRNAs, lncRNAs, compounds, or drugs that up-regulate the activity and expression of sirtuins play protective roles in renal function. Therefore, in this review, we summarize the biological functions, molecular targets, mechanisms, and signaling pathways of SIRT1-SIRT7 in DKD models. Existing research has shown that sirtuins have the potential as effective targets for the clinical treatment of DKD. This review aims to lay a solid foundation for clinical research and provide a theoretical basis to slow the development of DKD in patients.
Collapse
Affiliation(s)
- Wenxiu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Wenxiu Qi,
| | - Cheng Hu
- College of Laboratory Medicine, Jilin Medical University, Jilin City, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|