1
|
Li J, Li Y, Tao L, Zhang C, Zuo Z. Diagnostic and Prognostic Value of Cardiac Magnetic Resonance for Cardiotoxicity Caused by Immune Checkpoint Inhibitors: A Systematic Review and Meta-Analysis. Rev Cardiovasc Med 2025; 26:25508. [PMID: 40026491 PMCID: PMC11868891 DOI: 10.31083/rcm25508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 03/05/2025] Open
Abstract
Background The complex process of cardiac magnetic resonance (CMR) and the uncertainty of each parameter in the diagnosis and prognosis of cardiotoxicity limit its promotion in the cardiac evaluation of patients treated with immune checkpoint inhibitors (ICI). Methods A comprehensive search was conducted across PubMed, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), and Cochrane databases for relevant articles published up until September 28, 2024. Results After screening, 8 articles were included in this study. The analysis revealed that following ICI treatment, the left ventricular global longitudinal strain (GLS) increased significantly [weighted mean difference (WMD) 2.33; 95% confidence interval (CI) 1.26, 3.41; p < 0.01], while the global radial strain (GRS) decreased [WMD -4.73; 95% CI -6.74, -2.71; p < 0.01]. Additionally, T1 and T2 values increased [standardized mean difference (SMD) 1.14; 95% CI 0.59, 1.68; p < 0.01] and [SMD 1.11; 95% CI 0.64, 1.58; p < 0.01], respectively. An elevated T2 was associated with a higher occurrence of major adverse cardiovascular events (MACE), with a hazard ratio of 1.36 (95% CI 1.12, 1.64). Conclusions Our findings demonstrate that T1, T2, and GLS increase, while GRS decreases following ICI administration. By consolidating these critical metrics, we propose a streamlined, abbreviated (non-contrast) CMR protocol that can be completed within 15 minutes, thereby facilitating the integration of CMR in cardio-oncology. The PROSPERO registration CRD42023437238, https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023437238.
Collapse
Affiliation(s)
- Jialian Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Yanwei Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Li Tao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Chuan Zhang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| | - Zhong Zuo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, 400016 Chongqing, China
| |
Collapse
|
2
|
Pi JK, Chen XT, Zhang YJ, Chen XM, Wang YC, Xu JY, Zhou JH, Yu SS, Wu SS. Insight of immune checkpoint inhibitor related myocarditis. Int Immunopharmacol 2024; 143:113559. [PMID: 39536487 DOI: 10.1016/j.intimp.2024.113559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
As the understanding of immune-related mechanisms in the development and progression of cancer advances, immunotherapies, notably Immune Checkpoint Inhibitors (ICIs), have become integral in comprehensive cancer treatment strategies. ICIs reactivate T-cell cytotoxicity against tumors by blocking immune suppressive signals on T cells, such as Programmed Death-1 (PD-1) and Cytotoxic T-lymphocyte Antigen-4 (CTLA-4). Despite their beneficial effects, ICIs are associated with immune-related adverse events (irAEs), manifesting as autoimmune side effects across various organ systems. A particularly alarming irAE is life-threatening myocarditis. This rare but severe side effect of ICIs leads to significant long-term cardiac complications, including arrhythmias and heart failure, and has been observed to have a mortality rate of up to 50% in affected patients. This greatly limits the clinical application of ICI-based immunotherapy. In this review, we provide a comprehensive summary of the current knowledge regarding the diagnosis and management of ICI-related myocarditis. We also discuss the utility of preclinical mouse models in understanding and addressing this critical challenge.
Collapse
Affiliation(s)
- Jin-Kui Pi
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiao-Ting Chen
- Animal Experimental Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yan-Jing Zhang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xue-Mei Chen
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yin-Chan Wang
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jia-Yi Xu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jin-Han Zhou
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shuai-Shuai Yu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Si-Si Wu
- Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
3
|
Gao F, Xu T, Zang F, Luo Y, Pan D. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms, Clinical Management and Innovative Treatment. Drug Des Devel Ther 2024; 18:4089-4116. [PMID: 39286288 PMCID: PMC11404500 DOI: 10.2147/dddt.s469331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024] Open
Abstract
With the continuous refinement of therapeutic measures, the survival rate of tumor patients has been improving year by year, while cardiovascular complications related to cancer therapy have become increasingly prominent. Exploring the mechanism and prevention strategy of cancer therapy-related cardiovascular toxicity (CTR-CVT) remains one of the research hotspots in the field of Cardio-Oncology in recent years. Cardiotoxicity of anticancer drugs involves heart failure, myocarditis, hypertension, arrhythmias and vascular toxicity, mechanistically related to vascular endothelial dysfunction, ferroptosis, mitochondrial dysfunction and oxidative stress. To address the cardiotoxicity induced by different anticancer drugs, various therapeutic measures have been put in place, such as reducing the accumulation of anticancer drugs, shifting to drugs with less cardiotoxicity, using cardioprotective drugs, and early detection. Due to the very limited treatments available to ameliorate anticancer drugs-induced cardiotoxicity, a few innovations are being shifted from animal studies to human studies. Examples include mitochondrial transplantation. Mitochondrial transplantation has been proven to be effective in in vivo and in vitro experiments. Several recent studies have demonstrated that intercellular mitochondrial transfer can ameliorate doxorubicin(DOX)-induced cardiotoxicity, laying the foundation for innovative therapies in anticancer drugs-induced cardiotoxicity. In this review, we will discuss the current status of anticancer drugs-induced cardiotoxicity in terms of the pathogenesis and treatment, with a focus on mitochondrial transplantation, and we hope that this review will bring some inspiration to you.
Collapse
Affiliation(s)
- Feiyu Gao
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Tao Xu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Fangnan Zang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yuanyuan Luo
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Defeng Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| |
Collapse
|
4
|
He Y, Liu X, Wang M, Ke H, Ge C. Neutrophil-to-lymphocyte ratio as a predictor of cardiovascular mortality in cancer survivors. Sci Rep 2024; 14:20980. [PMID: 39251691 PMCID: PMC11385526 DOI: 10.1038/s41598-024-72027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
This study aims to evaluate the neutrophil-to-lymphocyte ratio (NLR) as a predictive biomarker for cardiovascular mortality among cancer patients, utilizing data from the National Health and Nutrition Examination Survey (NHANES). From the NHANES dataset (2007-2018), we analyzed 4974 cancer survivors, investigating the prognostic significance of NLR for all-cause, cardiovascular, and cancer-specific mortality. Survival outcomes were analyzed using Cox regression and Kaplan-Meier methods. Optimal NLR cutoffs were identified as 2.61 for differentiating the higher NLR group from lower NLR group. Elevated NLR levels significantly correlated with increased all-cause mortality (HR 1.11, 95% CI 1.07-1.14, P < 0.001) and cardiovascular mortality (HR 1.14, 95% CI 1.08-1.21, P < 0.001) in adjusted models. Subgroup analyses revealed that age, sex, smoking status, and hypertension significantly influence NLR's association with cardiovascular mortality. Specific cancers including breast, prostate, non-melanoma skin, colon and melanoma experience increased all-cause and cardiovascular mortality in the higher NLR group compared to lower NLR group. Elevated NLR is a significant predictor of increased mortality in cancer patients, particularly for cardiovascular outcomes. These findings support that NLR acts as a pivotal prognostic tool with significant implications for clinical practice in the realm of cardio-oncology.
Collapse
Affiliation(s)
- Yan He
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Xing Liu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Min Wang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Honghong Ke
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Chenliang Ge
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Qingxiu District, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
5
|
Li Y, Zhai B, Yang B, Wang B, Wang Y, Qu M, Tang Y. Immune myocarditis induced by sintilimab therapy: A case report. Exp Ther Med 2024; 28:333. [PMID: 39006500 PMCID: PMC11240266 DOI: 10.3892/etm.2024.12622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/09/2024] [Indexed: 07/16/2024] Open
Abstract
Immunotherapy is a potent tool used in cancer treatment, but the occurrence of immune-related adverse events induced by immune checkpoint inhibitors (ICIs) cannot be overlooked. This is particularly true for rare but potentially fatal cardiovascular complications, such as myocarditis; heart muscle inflammation may lead to heart dysfunction and arrhythmia. The present case is a 68-year-old female breast cancer patient who developed palpitations and elevated cardiac enzyme levels after 1 day of ICI therapy, and the patient was eventually diagnosed with immune myocarditis. After receiving hormonal shock therapy, Ctn I, CK, CK-MB and other cardiac enzyme-related markers improved significantly, and electrocardiogram test returned to normal, and the patient recovered during hospitalization without any major adverse cardiac events. Furthermore, the present study reviewed the mechanism of immune myocarditis induced by ICI therapy, with the aim of providing a clinical foundation for the prevention and diagnosis of cardiovascular adverse events in ICI therapy.
Collapse
Affiliation(s)
- Yu Li
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, Shandong 261041, P.R. China
- Department of Cardiology, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, Shandong 261041, P.R. China
| | - Baowei Zhai
- Department of Cardiology, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, Shandong 261041, P.R. China
| | - Ben Yang
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, Shandong 261041, P.R. China
| | - Bin Wang
- Department of Cardiology, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, Shandong 261041, P.R. China
| | - Yubing Wang
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, Shandong 261041, P.R. China
| | - Meihua Qu
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, Shandong 261041, P.R. China
| | - Yuanyuan Tang
- Translational Medical Center, Weifang Second People's Hospital, Weifang Respiratory Disease Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
6
|
Pozzessere C, Mazini B, Omoumi P, Jreige M, Noirez L, Digklia A, Fasquelle F, Sempoux C, Dromain C. Immune-Related Adverse Events Induced by Immune Checkpoint Inhibitors and CAR-T Cell Therapy: A Comprehensive Imaging-Based Review. Cancers (Basel) 2024; 16:2585. [PMID: 39061225 PMCID: PMC11274393 DOI: 10.3390/cancers16142585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Immunotherapy has revolutionized oncology care, improving patient outcomes in several cancers. However, these therapies are also associated with typical immune-related adverse events due to the enhanced inflammatory and immune response. These toxicities can arise at any time during treatment but are more frequent within the first few months. Any organ and tissue can be affected, ranging from mild to life-threatening. While some manifestations are common and more often mild, such as dermatitis and colitis, others are rarer and more severe, such as myocarditis. Management depends on the severity, with treatment being held for >grade 2 toxicities. Steroids are used in more severe cases, and immunosuppressive treatment may be considered for non-responsive toxicities, along with specific organ support. A multidisciplinary approach is mandatory for prompt identification and management. The diagnosis is primarily of exclusion. It often relies on imaging features, and, when possible, cytologic and/or pathological analyses are performed for confirmation. In case of clinical suspicion, imaging is required to assess the presence, extent, and features of abnormalities and to evoke and rule out differential diagnoses. This imaging-based review illustrates the diverse system-specific toxicities associated with immune checkpoint inhibitors and chimeric antigen receptor T-cells with a multidisciplinary perspective. Clinical characteristics, imaging features, cytological and histological patterns, as well as the management approach, are presented with insights into radiological tips to distinguish these toxicities from the most important differential diagnoses and mimickers-including tumor progression, pseudoprogression, inflammation, and infection-to guide imaging and clinical specialists in the pathway of diagnosing immune-related adverse events.
Collapse
Affiliation(s)
- Chiara Pozzessere
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Bianca Mazini
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Patrick Omoumi
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Mario Jreige
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Leslie Noirez
- Department of Pulmonology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Antonia Digklia
- Department of Oncology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - François Fasquelle
- Department of Pathology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Christine Sempoux
- Department of Pathology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| | - Clarisse Dromain
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), CH-1011 Lausanne, Switzerland
| |
Collapse
|
7
|
Rubio-Infante N, Castillo EC, Alves-Figueiredo H, Ramos-González M, Salazar-Ramírez F, Salas-Treviño D, Soto-Domínguez A, Lozano O, García-Rivas G, Torre-Amione G. Previous cardiovascular injury is a prerequisite for immune checkpoint inhibitor-associated lethal myocarditis in mice. ESC Heart Fail 2024; 11:1249-1257. [PMID: 38049390 DOI: 10.1002/ehf2.14614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023] Open
Abstract
AIMS Immune checkpoint inhibitors (ICIs) are antineoplastic drugs designed to activate the immune system's response against cancer cells. Evidence suggests that they may lead to immune-related adverse events, particularly when combined (e.g., anti-CTLA-4 plus anti-PD-1), sometimes resulting in severe conditions such as myocarditis. We aimed to investigate whether a previously sustained cardiac injury, such as pathological remodelling due to hypertension, is a prerequisite for ICI therapy-induced myocarditis. METHODS We evaluated the cardiotoxicity of ICIs in a hypertension (HTN) mouse model (C57BL/6). Weekly doses were administered up to day 21 after the first administration. Our analysis encompassed the following parameters: (i) survival and cardiac pathological remodelling, (ii) cardiac function assessed using pressure-volume (PV)-loops, with brain natriuretic peptide (BNP) serving as a marker of haemodynamic dysfunction and (iii) cardiac inflammation (cytokine levels, infiltration, and cardiac antigen autoantibodies). RESULTS After the first administration of ICI combined therapy, the treated HTN group showed a 30% increased mortality (P = 0.0002) and earlier signs of hypertrophy and pathological remodelling compared with the untreated HTN group. BNP (P = 0.01) and TNF-α (<0.0001) increased 2.5- and 1.7-fold, respectively, in the treated group, while IL-6 (P = 0.8336) remained unchanged. Myocarditis only developed in the HTN group treated with ICIs on day 21 (score >3), characterised by T cell infiltration and increased cardiac antigen antibodies (86% showed a titre of 1:160). The control group treated with ICI was unaffected in any evaluated feature. CONCLUSIONS Our findings indicate that pre-existing sustained cardiac damage is a necessary condition for ICI-induced myocarditis.
Collapse
Affiliation(s)
- Nestor Rubio-Infante
- Tecnologico de Monterrey, Cátedra de Cardiología y Medicina Vasular, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza García, Mexico
| | - Elena Cristina Castillo
- Tecnologico de Monterrey, Cátedra de Cardiología y Medicina Vasular, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza García, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, Mexico
| | - Hugo Alves-Figueiredo
- Tecnologico de Monterrey, Cátedra de Cardiología y Medicina Vasular, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza García, Mexico
| | - Martin Ramos-González
- Tecnologico de Monterrey, Cátedra de Cardiología y Medicina Vasular, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza García, Mexico
| | - Felipe Salazar-Ramírez
- Tecnologico de Monterrey, Cátedra de Cardiología y Medicina Vasular, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza García, Mexico
| | - Daniel Salas-Treviño
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Adolfo Soto-Domínguez
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Omar Lozano
- Tecnologico de Monterrey, Cátedra de Cardiología y Medicina Vasular, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza García, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, Mexico
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Cátedra de Cardiología y Medicina Vasular, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza García, Mexico
- Tecnologico de Monterrey, Institute for Obesity Research, Hospital Zambrano Hellion, TecSalud, San Pedro Garza García, Mexico
| | - Guillermo Torre-Amione
- Tecnologico de Monterrey, Cátedra de Cardiología y Medicina Vasular, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza García, Mexico
- The Methodist Hospital, Cornell University, Houston, Texas, USA
| |
Collapse
|
8
|
Li MT, He Y, Huang SY, Hu X, Chen JS. Clinical characteristics, diagnosis and management of nivolumab-induced myocarditis. Invest New Drugs 2024; 42:116-126. [PMID: 38253746 DOI: 10.1007/s10637-024-01421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Nivolumab can cause fatal myocarditis. We aimed to analyze the clinical characteristics of nivolumab-induced myocarditis and provide evidence for clinical diagnosis, treatment, and prevention. Studies involving nivolumab-induced myocarditis were identified in electronic databases from 2000 to 2023 for retrospective analysis. A total of 66 patients were included, with a median age of 68 years. The median onset time of myocarditis is 11.5 days. The main organs affected in persons presented with myocarditis are heart (100.0%) and skeletal muscle (22.7%). The main clinical manifestations are dyspnea (49.2%), fatigue (47.6%), and myalgias (25.4%). The levels of troponin, troponin T, troponin I, creatine kinase, creatine kinase myocardial band, creatine phosphokinase, C-reactive protein, brain natriuretic peptide, and N-terminal brain natriuretic peptide precursor were significantly increased. Histopathology often shows lymphocyte infiltration, myocardial necrosis, and fibrosis. Myocardial immunological parameters usually present positive. Cardiac imaging often suggests complete heart block, intraventricular conduction delay, arrhythmia, myocardial infarction, edema, left ventricular ejection fractions reduction, ventricular dysfunction, and other symptoms of myocarditis. Forty-two (63.6%) patients achieved remission within a median time of 8 days after discontinuation of nivolumab and treatment with systemic corticosteroids, immunoglobulins, plasmapheresis, and immunosuppressant. Thirty-five patients eventually died attributed to myocarditis (68.6%), cancer (20.0%), respiratory failure (5.7%), and other reasons (5.7%). Nivolumab-induced myocarditis should be comprehensively diagnosed based on clinical symptoms, histopathological manifestations, immunological parameters, and cardiac function imaging examinations. Nivolumab should be discontinued immediately, plasmapheresis and systemic corticosteroids combined with immunoglobulins or immunosuppressants may be an effective treatment.
Collapse
Affiliation(s)
- Meng-Ting Li
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou City, 510080, Guangdong Province, China
| | - Yang He
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Si-Yong Huang
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou City, 510080, Guangdong Province, China
| | - Xiao Hu
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou City, 510080, Guangdong Province, China
| | - Ji-Sheng Chen
- Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou City, 510080, Guangdong Province, China.
| |
Collapse
|
9
|
Salloum FN, Tocchetti CG, Ameri P, Ardehali H, Asnani A, de Boer RA, Burridge P, Cabrera JÁ, de Castro J, Córdoba R, Costa A, Dent S, Engelbertsen D, Fernández-Velasco M, Fradley M, Fuster JJ, Galán-Arriola C, García-Lunar I, Ghigo A, González-Neira A, Hirsch E, Ibáñez B, Kitsis RN, Konety S, Lyon AR, Martin P, Mauro AG, Mazo Vega MM, Meijers WC, Neilan TG, Rassaf T, Ricke-Hoch M, Sepulveda P, Thavendiranathan P, van der Meer P, Fuster V, Ky B, López-Fernández T. Priorities in Cardio-Oncology Basic and Translational Science: GCOS 2023 Symposium Proceedings: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2023; 5:715-731. [PMID: 38205010 PMCID: PMC10774781 DOI: 10.1016/j.jaccao.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 01/12/2024] Open
Abstract
Despite improvements in cancer survival, cancer therapy-related cardiovascular toxicity has risen to become a prominent clinical challenge. This has led to the growth of the burgeoning field of cardio-oncology, which aims to advance the cardiovascular health of cancer patients and survivors, through actionable and translatable science. In these Global Cardio-Oncology Symposium 2023 scientific symposium proceedings, we present a focused review on the mechanisms that contribute to common cardiovascular toxicities discussed at this meeting, the ongoing international collaborative efforts to improve patient outcomes, and the bidirectional challenges of translating basic research to clinical care. We acknowledge that there are many additional therapies that are of significance but were not topics of discussion at this symposium. We hope that through this symposium-based review we can highlight the knowledge gaps and clinical priorities to inform the design of future studies that aim to prevent and mitigate cardiovascular disease in cancer patients and survivors.
Collapse
Affiliation(s)
- Fadi N. Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Carlo G. Tocchetti
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research, Interdepartmental Center of Clinical and Translational Sciences, Interdepartmental Hypertension Research Center, Federico II University, Naples, Italy
| | - Pietro Ameri
- Cardiac, Thoracic and Vascular Department, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, Illinois, USA
| | - Aarti Asnani
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Rudolf A. de Boer
- Cardiovascular Institute, Thorax Center, Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Paul Burridge
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - José-Ángel Cabrera
- Cardiology Department, Hospital Universitario Quirónsalud Madrid, European University of Madrid, Madrid, Spain
| | - Javier de Castro
- Medical Oncology Department, Hospital La Paz Institute for Health Research, La Paz University Hospital, Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Raúl Córdoba
- Health Research Institute, Instituto de Investigación Sanitaria Fundación Jimenez Diaz, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Ambra Costa
- Cardiac, Thoracic and Vascular Department, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Susan Dent
- Duke Cancer Institute, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Daniel Engelbertsen
- Cardiovascular Research - Immune Regulation, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - María Fernández-Velasco
- Hospital La Paz Institute for Health Research, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Mike Fradley
- Thalheimer Center for Cardio-Oncology, Abramson Cancer Center and Division of Cardiology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - José J. Fuster
- Centro Nacional de Investigaciones Cardiovasculares, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Inés García-Lunar
- Centro Nacional de Investigaciones Cardiovasculares, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Alessandra Ghigo
- Molecular Biotechnology Center Guido Tarone, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Anna González-Neira
- Human Genotyping Unit, Spanish National Genotyping Centre, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Emilio Hirsch
- Molecular Biotechnology Center Guido Tarone, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Richard N. Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, New York USA
| | - Suma Konety
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alexander R. Lyon
- Cardio-Oncology Service, Royal Brompton Hospital, London, United Kingdom
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Adolfo G. Mauro
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Manuel M. Mazo Vega
- Division of Advanced Technologies, Cima Universidad de Navarra, Pamplona, Spain
| | - Wouter C. Meijers
- Cardiovascular Institute, Thorax Center, Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Tomas G. Neilan
- Cardio-Oncology Program, Massachusetts General Hospital, Harvard Medical School. Boston, Massachusetts, USA
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Pilar Sepulveda
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Carlos III Institute of Health, Madrid, Spain
| | - Paaladinesh Thavendiranathan
- Division of Cardiology, Department of Medicine, Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Valentin Fuster
- Centro Nacional de Investigaciones Cardiovasculares, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York
| | - Bonnie Ky
- Thalheimer Center for Cardio-Oncology, Abramson Cancer Center and Division of Cardiology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Teresa López-Fernández
- Cardiology Department, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - International Cardio-Oncology Society
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research, Interdepartmental Center of Clinical and Translational Sciences, Interdepartmental Hypertension Research Center, Federico II University, Naples, Italy
- Cardiac, Thoracic and Vascular Department, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genova, Genova, Italy
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, Illinois, USA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Institute, Thorax Center, Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Cardiology Department, Hospital Universitario Quirónsalud Madrid, European University of Madrid, Madrid, Spain
- Medical Oncology Department, Hospital La Paz Institute for Health Research, La Paz University Hospital, Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
- Health Research Institute, Instituto de Investigación Sanitaria Fundación Jimenez Diaz, Fundación Jimenez Diaz University Hospital, Madrid, Spain
- Duke Cancer Institute, Department of Medicine, Duke University, Durham, North Carolina, USA
- Cardiovascular Research - Immune Regulation, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Hospital La Paz Institute for Health Research, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
- Thalheimer Center for Cardio-Oncology, Abramson Cancer Center and Division of Cardiology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Centro Nacional de Investigaciones Cardiovasculares, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
- Molecular Biotechnology Center Guido Tarone, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Human Genotyping Unit, Spanish National Genotyping Centre, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, New York USA
- Cardio-Oncology Service, Royal Brompton Hospital, London, United Kingdom
- Division of Advanced Technologies, Cima Universidad de Navarra, Pamplona, Spain
- Cardio-Oncology Program, Massachusetts General Hospital, Harvard Medical School. Boston, Massachusetts, USA
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Carlos III Institute of Health, Madrid, Spain
- Division of Cardiology, Department of Medicine, Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York
- Cardiology Department, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
10
|
Matsumori A. Nuclear Factor-κB is a Prime Candidate for the Diagnosis and Control of Inflammatory Cardiovascular Disease. Eur Cardiol 2023; 18:e40. [PMID: 37456770 PMCID: PMC10345985 DOI: 10.15420/ecr.2023.10] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/17/2023] [Indexed: 07/18/2023] Open
Abstract
Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is responsible for the regulation of genes involved in inflammation and immune responses. NF-κB may play an important role in cardiovascular diseases (CVDs), atherosclerosis and diabetes. Several therapeutic agents used for the treatment of CVDs and diabetes, such as pimobendan and sodium-glucose cotransporter 2 inhibitors, exert anti-inflammatory effects by inhibiting NF-κB activation; anti-inflammatory therapy may have beneficial effects in CVDs and diabetes. Several pharmacological agents and natural compounds may inhibit NF-κB, and these agents alone or in combination may be used to treat various inflammatory diseases. Immunoglobulin-free light chains could be surrogate biomarkers of NF-κB activation and may be useful for evaluating the efficacy of these agents. This review discusses recent advances in our understanding of how the NF-κB signalling pathway controls inflammation, metabolism and immunity, and how improved knowledge of these pathways may lead to better diagnostics and therapeutics for various human diseases.
Collapse
Affiliation(s)
- Akira Matsumori
- Clinical Research Institute, National Hospital Organization, Kyoto Medical Center Kyoto, Japan
| |
Collapse
|
11
|
Matsumori A. Myocarditis and Autoimmunity. Expert Rev Cardiovasc Ther 2023. [PMID: 37243585 DOI: 10.1080/14779072.2023.2219895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Autoimmune myocarditis may develop due to heterogeneous causes. Myocarditis is often caused by viral infections, but it can also be caused by systemic autoimmune diseases. Immune checkpoint inhibitors and virus vaccines induce immune activation, and they can cause the development of myocarditis, as well as several immune-related adverse events. The development of myocarditis is dependent on the genetic factors of the host, and the major histocompatibility complex (MHC) may be an important determinant of the type and severity of the disease. However, non-MHC immunoregulatory genes may also play a role in determining susceptibility. AREA COVERED This review summarizes the current knowledge of the etiology, pathogenesis, diagnosis and treatment of autoimmune myocarditis with a particular focus on viral infection and autoimmunity, and biomarkers of myocarditis. EXPERT OPINION An endomyocardial biopsy may not be the gold standard for the diagnosis of myocarditis. Cardiac magnetic resonance imaging is useful in diagnosing autoimmune myocarditis. Recently identified biomarkers of inflammation and myocyte injury are promising for the diagnosis of myocarditis when measured simultaneously. Future treatments should focus on the appropriate diagnosis of the etiologic agent, as well as on the specific stage of the evolution of immune and inflammatory processes.
Collapse
Affiliation(s)
- Akira Matsumori
- Clinical Research Institute, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| |
Collapse
|
12
|
Behbehani R. Ocular Myasthenia Gravis: A Current Overview. Eye Brain 2023; 15:1-13. [PMID: 36778719 PMCID: PMC9911903 DOI: 10.2147/eb.s389629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Ocular myasthenia gravis (OMG) is a neuromuscular disease characterized by autoantibody production against post-synaptic proteins in the neuromuscular junction. The pathophysiological auto-immune mechanisms of myasthenia are diverse, and this is governed primarily by the type of autoantibody production. The diagnosis of OMG relies mainly on clinical assessment, the use of serological antibody assays for acetylcholine receptors (AchR), muscle-specific tyrosine kinase (MusK), and low-density lipoprotein 4 (LPR4). Other autoantibodies against post-synaptic proteins, such as cortactin and agrin, have been detected; however, their diagnostic value and pathogenic effect are not yet clearly defined. Clinical tests such as the ice test and electrophysiologic tests, particularly single-fiber electromyography, have a valuable role in diagnosis. The treatment of OMG is primarily through cholinesterase inhibitors (pyridostigmine), and steroids are frequently required in cases of ophthalmoplegia. Other immunosuppressive therapies include antimetabolites (azathioprine, mycophenolate mofetil, methotrexate) and biological agents such as B-cell depleting agents (Rituximab) and complement inhibitors (eculizumab). Evidence is scarce on the effect of immunosuppressive therapy on altering the natural course of OMG. Clinicians must be vigilant of a myasthenic syndrome in patients using immune-check inhibitors. Reliable and consistent biomarkers are required to assess disease severity and response to therapy to optimize the management of OMG. The purpose of this review is to summarize the current trends and the latest developments in diagnosing and treating OMG.
Collapse
Affiliation(s)
- Raed Behbehani
- Neuroophthalmology Unit, Ibn Sina Hospital, Kuwait City, Kuwait,Correspondence: Raed Behbehani, Ibn Sina Hospital, P.O Box 1180, Tel +965 2224 2999, Fax +965 2249 2406, Email
| |
Collapse
|
13
|
Dora D, Bokhari SMZ, Aloss K, Takacs P, Desnoix JZ, Szklenárik G, Hurley PD, Lohinai Z. Implication of the Gut Microbiome and Microbial-Derived Metabolites in Immune-Related Adverse Events: Emergence of Novel Biomarkers for Cancer Immunotherapy. Int J Mol Sci 2023; 24:ijms24032769. [PMID: 36769093 PMCID: PMC9916922 DOI: 10.3390/ijms24032769] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have changed how we think about tumor management. Combinations of anti-programmed death ligand-1 (PD-L1) immunotherapy have become the standard of care in many advanced-stage cancers, including as a first-line therapy. Aside from improved anti-tumor immunity, the mechanism of action of immune checkpoint inhibitors (ICIs) exposes a new toxicity profile known as immune-related adverse effects (irAEs). This novel toxicity can damage any organ, but the skin, digestive and endocrine systems are the most frequently afflicted. Most ICI-attributed toxicity symptoms are mild, but some are severe and necessitate multidisciplinary side effect management. Obtaining knowledge on the various forms of immune-related toxicities and swiftly changing treatment techniques to lower the probability of experiencing severe irAEs has become a priority in oncological care. In recent years, there has been a growing understanding of an intriguing link between the gut microbiome and ICI outcomes. Multiple studies have demonstrated a connection between microbial metagenomic and metatranscriptomic patterns and ICI efficacy in malignant melanoma, lung and colorectal cancer. The immunomodulatory effect of the gut microbiome can have a real effect on the biological background of irAEs as well. Furthermore, specific microbial signatures and metabolites might be associated with the onset and severity of toxicity symptoms. By identifying these biological factors, novel biomarkers can be used in clinical practice to predict and manage potential irAEs. This comprehensive review aims to summarize the clinical aspects and biological background of ICI-related irAEs and their potential association with the gut microbiome and metabolome. We aim to explore the current state of knowledge on the most important and reliable irAE-related biomarkers of microbial origin and discuss the intriguing connection between ICI efficacy and toxicity.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
- Correspondence: (D.D.); (Z.L.)
| | | | - Kenan Aloss
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
| | - Peter Takacs
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
| | - Juliane Zsuzsanna Desnoix
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Tuzolto St. 58, 1094 Budapest, Hungary
| | - György Szklenárik
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
| | | | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, 1094 Budapest, Hungary
- National Korányi Institute of Pulmonology, Pihenő út 1-3, 1121 Budapest, Hungary
- Correspondence: (D.D.); (Z.L.)
| |
Collapse
|
14
|
Zhang X, Gan Y, Zhu H, Liu Z, Yao X, Cheng C, Liu Z, Su C, Zou J. Role of mitochondrial metabolism in immune checkpoint inhibitors-related myocarditis. Front Cardiovasc Med 2023; 10:1112222. [PMID: 36760573 PMCID: PMC9902768 DOI: 10.3389/fcvm.2023.1112222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Background Immune checkpoint inhibitor-related myocarditis is the deadliest complication of immunotherapy. However, the underlying pathophysiological mechanisms of its occurrence and development remain unclear. Due to the long-term lack of effective early diagnosis and treatment options, it is of great significance to understand the pathophysiological mechanism of immune checkpoint inhibitor-related myocarditis. Methods Tissue samples from three patients with immune checkpoint inhibitor-related myocarditis and three control tissue samples were collected for protein analysis. Differentially expressed proteins were screened out using quantitative proteomics technology based on TMT markers. Protein-protein interaction (PPI) and Gene Ontology (GO) functional enrichment analyses of cross-factors were subsequently performed. Combined with the PD-L1 subcellular organelle- level protein interaction network, we searched for hub proteins involved in immune checkpoint inhibitor-related myocarditis and explored potential drug sensitivity and disease correlation. Results A total of 306 differentially expressed proteins were identified in immune checkpoint inhibitor-related myocarditis. Enrichment analysis showed that the differentially expressed proteins were closely related to mitochondrial metabolism. By analyzing mitochondria-related proteins and PD-L1-related proteins, we found four hub proteins, mammalian target of rapamycin (mTOR), Glycogen synthase kinase 3β (GSK3β), Protein tyrosine phosphatase non-receptor type 11 (PTPN11), and Mitofusin 2 (MFN2), indicating that they are closely related to immune checkpoint inhibitor-related myocarditis. Finally, we explored potential drugs for the treatment of immune checkpoint inhibitor-related myocarditis. Conclusion Mitochondrial metabolism is involved in the process of immune checkpoint inhibitor-related myocarditis, and we identified four hub proteins, which may become new biomarkers for the early diagnosis and treatment of immune checkpoint inhibitor-related myocarditis.
Collapse
|
15
|
Combination of Spirulina platensis, Ganoderma lucidum and Moringa oleifera Improves Cardiac Functions and Reduces Pro-Inflammatory Biomarkers in Preclinical Models of Short-Term Doxorubicin-Mediated Cardiotoxicity: New Frontiers in Cardioncology? J Cardiovasc Dev Dis 2022; 9:jcdd9120423. [PMID: 36547420 PMCID: PMC9780956 DOI: 10.3390/jcdd9120423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Anthracyclines are essential adjuvant therapies for a variety of cancers, particularly breast, gastric and esophageal cancers. Whilst prolonging cancer-related survival, these agents can induce drug-related cardiotoxicity. Spirulina, Reishi (Ganoderma lucidum) and Moringa are three nutraceuticals with anti-inflammatory effects that are currently used in cancer patients as complementary and alternative medicines to improve quality of life and fatigue. We hypothesize that the nutraceutical combination of Spirulina, Reishi and Moringa (Singo) could reduce inflammation and cardiotoxicity induced by anthracyclines. Female C57Bl/6 mice were untreated (Sham, n = 6) or treated for 7 days with short-term doxorubicin (DOXO, n = 6) or Singo (Singo, n = 6), or pre-treated with Singo for 3 days and associated with DOXO for remaining 7 days (DOXO−Singo, n = 6). The ejection fraction and radial and longitudinal strain were analyzed through transthoracic echocardiography (Vevo 2100, Fujifilm, Tokyo, Japan). The myocardial expressions of NLRP3, DAMPs (galectin-3 and calgranulin S100) and 13 cytokines were quantified through selective mouse ELISA methods. Myocardial fibrosis, necrosis and hypertrophy were analyzed through immunohistochemistry (IHC). Human cardiomyocytes were exposed to DOXO (200 nM) alone or in combination with Singo (at 10, 25 and 50 µg/mL) for 24 and 48 h. Cell viability and inflammation studies were also performed. In preclinical models, Singo significantly improved ejection fraction and fractional shortening. Reduced expressions of myocardial NLRP3 and NF-kB levels in cardiac tissues were seen in DOXO−Singo mice vs. DOXO (p < 0.05). The myocardial levels of calgranulin S100 and galectin-3 were strongly reduced in DOXO−Singo mice vs. DOXO (p < 0.05). Immunohistochemistry analysis indicates that Singo reduces fibrosis and hypertrophy in the myocardial tissues of mice during exposure to DOXO. In conclusion, in the preclinical model of DOXO-induced cardiotoxicity, Singo is able to improve cardiac function and reduce biomarkers involved in heart failure and fibrosis.
Collapse
|
16
|
Chen R, Zhou M, Zhu F. Immune Checkpoint Inhibitors Related to Cardiotoxicity. J Cardiovasc Dev Dis 2022; 9:jcdd9110378. [PMID: 36354777 PMCID: PMC9697232 DOI: 10.3390/jcdd9110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have now emerged as a mainstay of treatment for various cancers. Along with development of ICIs, immune-related adverse effects (irAEs) have aroused wide attention. The cardiac irAE, one of the rare but potentially fatal effects, have been reported recently. However, the clinical comprehension of cardiac irAEs remains limited and guidelines are inadequate for cardio-oncologists to tackle the problem. In this review, we have summarized current classifications of, manifestations of, potential mechanisms of, and treatment for ICI-related myocardial injury in order to provide some clues for the understanding of cardiac irAEs in clinical work.
Collapse
Affiliation(s)
- Ru Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Zhou
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Key Laboratory of Respiratory Diseases, National Ministry of Health of the People’s Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan 430022, China
- Correspondence: (M.Z.); (F.Z.)
| | - Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (M.Z.); (F.Z.)
| |
Collapse
|
17
|
Jiménez-Alejandre R, Ruiz-Fernández I, Martín P. Pathophysiology of Immune Checkpoint Inhibitor-Induced Myocarditis. Cancers (Basel) 2022; 14:4494. [PMID: 36139654 PMCID: PMC9497311 DOI: 10.3390/cancers14184494] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have recently emerged as strong therapies for a broad spectrum of cancers being the first-line treatment for many of them, even improving the prognosis of malignancies that were considered untreatable. This therapy is based on the administration of monoclonal antibodies targeting inhibitory T-cell receptors, which boost the immune system and prevent immune evasion. However, non-specific T-cell de-repression can result in a wide variety of immune-related adverse events (irAEs), including gastrointestinal, endocrine, and dermatologic, with a smaller proportion of these having the potential for fatal outcomes such as neurotoxicity, pulmonary toxicity, and cardiotoxicity. In recent years, alarm has been raised about cardiotoxicity as it has the highest mortality rate when myocarditis develops. However, due to the difficulty in diagnosing this cardiac condition and the lack of clinical guidelines for the management of cardiovascular disease in patients on therapy with ICIs, early detection of myocarditis has become a challenge in these patients. In this review we outline the mechanisms of tolerance by which this fatal cardiomyopathy may develop in selected cancer patients treated with ICIs, summarize preclinical models of the disease that will allow the development of more accurate strategies for its detection and treatment, and discuss the challenges in the future to decrease the risks of its development with better decision making in susceptible patients.
Collapse
Affiliation(s)
| | | | - Pilar Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBER-CV), 28029 Madrid, Spain
| |
Collapse
|
18
|
Liu M, Cheng X, Ni R, Zheng B, Huang S, Yang J. Cardiotoxicity of immune checkpoint inhibitors: A frequency network meta-analysis. Front Immunol 2022; 13:1006860. [PMID: 36189211 PMCID: PMC9515416 DOI: 10.3389/fimmu.2022.1006860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) in combination withother anti-cancer treatments have been approved for a variety of cancers. While the difference in the incidence of cardiovascular adverse events has not been fully investigated. We aimed to assess the the differences in cardiotoxicity among cancer patients receiving different ICI therapies. PubMed, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov. websites were searched for all randomized controlled trials (RCTs) of ICI. The primary outcomes were any grade cardiotoxicity and Grade 3-5 cardiotoxicity, the secondary outcomes were any grade myocarditis and Grade 3-5 myocarditis, with sub-analyses based on cancer type and does of ICI. A systematic review and frequency network meta-analysis were then performed for cardiotoxicity events. 91 RCTs (n=52247) involving 12 treatment arms were finally included. We observed that PD-L1 + CTLA-4 had the highest risk among all therapies inducing any grade cardiotoxicity, and the differences were significant except PD-1 + CTLA-4, PD-1 + TTD and PD-L1 + TTD. In addition, CTLA-4 had a higher risk of Grade 3-5 cardiotoxicity than PD-1 and anit-PD-L1. For Grade 1-5 myocarditis and Grade 3-5 myocarditis, no significant difference was found among differences therapies. No differences were observed in subgroup analyses according to does and cancer type. There were differences in the incidence of cardiotoxicity among different ICI therapies. For ICI monotherapy, CTLA-4 may be linked to Grade 3-5 cardiotoxicity than PD-1 or PD-L1. For dual therapy, the cardiotoxicity of dual ICI therapy seems to be higher than that of chemotherapy or targeted therapy.
Collapse
Affiliation(s)
- Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xitong Cheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Ruping Ni
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Bin Zheng
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Shunmin Huang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jing Yang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, China
- College of Pharmacy, Fujian Medical University, Fuzhou, China
- *Correspondence: Jing Yang,
| |
Collapse
|