1
|
Li J, Chen X, Mao C, Xiong M, Ma Z, Zhu J, Li X, Chen W, Ma H, Ye X. Epiberberine ameliorates MNNG-induced chronic atrophic gastritis by acting on the EGFR-IL33 axis. Int Immunopharmacol 2025; 145:113718. [PMID: 39642571 DOI: 10.1016/j.intimp.2024.113718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Chronic atrophic gastritis (CAG) is a prevalent form of chronic gastritis that presents with chronic inflammation of the gastric mucosa, localised gastric mucosal glandular atrophy and intestinal metaplasia. Despite the existence of diagnostic criteria, effective therapeutic strategies for this condition remain to be developed. The objective of this study was to examine the potential therapeutic benefits of epiberberine in mitigating MNNG-induced CAG and to elucidate the underlying mechanisms. MNNG was employed to establish a CAG mouse model and a GES-1 cell model, and EPI was observed to be efficacious in ameliorating the gastric mucosal injury and inflammatory infiltration induced by MNNG in the CAG model mice, a finding that was subsequently validated in the GES-1 model cells. Bioinformatics analysis indicated that EPI may exert a direct effect on EGFR, thereby regulating the expression of IL-33 and thereby achieving the therapeutic effect of CAG. This hypothesis was also validated by molecular docking prediction, CETSA, and overexpression of EGFR in GES-1 model cells, using EGFR agonists and inhibitors to further demonstrate that EPI may act as an antagonist supplement to EGFR for the treatment of CAG.
Collapse
Affiliation(s)
- Juan Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Xiantao Chen
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Changxia Mao
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Mengyuan Xiong
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhengcai Ma
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jianyu Zhu
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuegang Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Wanqun Chen
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400000, China.
| | - Hang Ma
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Li Y, Liu C, Fang B, Chen X, Wang K, Xin H, Wang K, Yang SM. Ferroptosis, a therapeutic target for cardiovascular diseases, neurodegenerative diseases and cancer. J Transl Med 2024; 22:1137. [PMID: 39710702 DOI: 10.1186/s12967-024-05881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
The identification of ferroptosis represents a pivotal advancement in the field of cell death research, revealing an entirely novel mechanism of cellular demise and offering new insights into the initiation, progression, and therapeutic management of various diseases. Ferroptosis is predominantly induced by intracellular iron accumulation, lipid peroxidation, or impairments in the antioxidant defense system, culminating in membrane rupture and consequent cell death. Studies have associated ferroptosis with a wide range of diseases, and by enhancing our comprehension of its underlying mechanisms, we can formulate innovative therapeutic strategies, thereby providing renewed hope for patients.
Collapse
Affiliation(s)
- Yinghui Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Cuiyun Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Bo Fang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xinzhe Chen
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Kai Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China.
| | - Kun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Su-Min Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
3
|
Liu Y, Miao R, Xia J, Zhou Y, Yao J, Shao S. Infection of Helicobacter pylori contributes to the progression of gastric cancer through ferroptosis. Cell Death Discov 2024; 10:485. [PMID: 39622791 PMCID: PMC11612470 DOI: 10.1038/s41420-024-02253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a gram-negative pathogen that colonizes gastric epithelial cells, and its chronic infection is the primary risk factor for the development of gastric cancer (GC). Ferroptosis is an iron-dependent form of cell death characterized by intracellular lipid peroxide accumulation and reactive oxygen species (ROS) imbalance. There is evidence suggesting that pathogens can manipulate ferroptosis to facilitate their replication, transmission, and pathogenesis. However, the interaction between ferroptosis and H. pylori infection requires further elucidation. We reviewed the mechanism of ferroptosis and found that H. pylori virulence factors such as cytotoxin-associated gene A (CagA), vacuolating cytotoxin A (VacA), neutrophil-activating protein A (NapA), superoxide dismutase B (SodB), γ-glutamyl transpeptidase (gGT), lipopolysaccharide (LPS), and outer inflammatory protein A (OipA) affected glutathione (GSH), ROS, and lipid oxidation to regulate ferroptosis. It also affected the progression of GC by regulating ferroptosis-related indicators through abnormal gene expression after H. pylori infected gastric mucosa cells. Finally, we discuss the potential application value of ferroptosis inducers, inhibitors and other drugs in treating H. pylori-infected GC patients while acknowledging that their interactions are still not fully understood.
Collapse
Affiliation(s)
- Yun Liu
- Department of Gastroenterology, Institute of Digestive Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Renjie Miao
- Department of Clinical laboratory, Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jinxuan Xia
- Zhenjiang Mental Health Center, Jiangsu, China
| | - Yong Zhou
- Department of Gastroenterology, Institute of Digestive Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jun Yao
- Department of Gastroenterology, Institute of Digestive Disease, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Shihe Shao
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
4
|
Razi S, Khojini JY, Norioun H, Hayati MJ, Naseri N, Tajbaksh A, Gheibihayat SM. MicroRNA-mediated regulation of Ferroptosis: Implications for disease pathogenesis and therapeutic interventions. Cell Signal 2024; 125:111503. [PMID: 39510403 DOI: 10.1016/j.cellsig.2024.111503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024]
Abstract
Ferroptosis, a form of iron-dependent regulated cell death, is characterized by the accumulation of lipid peroxides and distinctive morphological features. Moreover, the reduction of intracellular antioxidant enzyme expression or activity, specifically glutathione peroxidase 4 (GPX4) results in activation of the endogenous pathway of ferroptosis. In this review, we aimed to explore the intricate interplay between microRNAs (miRNAs) and ferroptosis, shedding light on its implications in various disease pathologies. This review delves into the role of miRNAs in modulating key regulators of ferroptosis, including genes involved in iron metabolism, lipid peroxidation, and antioxidant defenses. Furthermore, the potential of targeting miRNAs for therapeutic interventions in ferroptosis-related diseases, such as cancer, neurodegenerative disorders, and ischemia/reperfusion injury, is highlighted.
Collapse
Affiliation(s)
- Shokufeh Razi
- Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Javad Yaghmoorian Khojini
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamid Norioun
- Medical Genetics Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mohammad Javad Hayati
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasim Naseri
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Amir Tajbaksh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Yazd Cardiovascular Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
5
|
Chu Y, Huang J, Pan D. LOXL3 Silencing Hampers the Metastasis and Angiogenesis of Gastric Cancer Cells Dependent on Ferroptosis Activation. Mol Biotechnol 2024:10.1007/s12033-024-01229-z. [PMID: 39192165 DOI: 10.1007/s12033-024-01229-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/21/2024] [Indexed: 08/29/2024]
Abstract
Gastric cancer (GC) remains a major unmet clinical problem accountable for considerable incidence and fatality rate. Lysyl oxidase-like 3 (LOXL3) has been recognized to be overexpressed in GC. Our work was meant to disclose the significance of LOXL3 in the advancement of GC and the likely action mechanism. LOXL3 expression in GC tissues and its correlation with the outcome of GC patients were investigated through bioinformatics tools. RT-qPCR and western blotting inspected LOXL3 expression in GC cells. CCK-8 method, EDU, as well as colony formation assays assayed cell proliferation. The capacities of cells to migrate and invade were appraised by wound healing and transwell assays, severally. Tube formation assay and ELISA measured angiogenesis. TBARS, C11 BODIPY staining, and FerroOrange estimated ferroptosis. Western blotting examined the expression of proteins implicated in metastasis and ferroptosis. The up-regulation of LOXL3 expression was noticed in GC tissues and cells, which was also associated with the poor outcome of GC patients. When LOXL3 was underexpressed, the proliferation, migration, invasion, epithelial-mesenchymal transition, and angiogenesis of GC cells were all halted. In addition, LOXL3 deletion resulted in the activation of ferroptosis in GC cells, and ferrostatin-1 (Fer-1), the specific ferroptosis inhibitor, compensated the suppressive role of LOXL3 down-regulation in the proliferation, metastasis, and angiogenesis of GC cells in vitro. All in all, knockdown of LOXL3 may serve an activator of ferroptosis to obstruct the aggressive process of GC.
Collapse
Affiliation(s)
- Yinyue Chu
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, 60 Longmen Street, Suizhou, 441300, Hubei, China
| | - Jian Huang
- Department of Gastrointestinal Surgery, Suizhou Hospital, Hubei University of Medicine, Suizhou, 441300, Hubei, China
| | - Dongfeng Pan
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, 60 Longmen Street, Suizhou, 441300, Hubei, China.
| |
Collapse
|
6
|
Zeng L, Liu X, Geng C, Gao X, Liu L. Ferroptosis in cancer (Review). Oncol Lett 2024; 28:304. [PMID: 38774452 PMCID: PMC11106693 DOI: 10.3892/ol.2024.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/05/2024] [Indexed: 05/24/2024] Open
Abstract
Ferroptosis is a type of programmed cell death depending on iron and reactive oxygen species. This unique cell death process has attracted a great deal of attention in the field of cancer research over the past decade. Research on the association of ferroptosis signal pathways and cancer development indicated that targeting ferroptosis has great potential for cancer therapy. In the present study, the latest research progress of ferroptosis was reviewed, focusing on the relationship between ferroptosis and the development of cancer, in order to further promote the clinical application of ferroptosis in cancer.
Collapse
Affiliation(s)
- Liyi Zeng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xiaohui Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Chengjie Geng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xuejuan Gao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Langxia Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
7
|
Jenke R, Oliinyk D, Zenz T, Körfer J, Schäker-Hübner L, Hansen FK, Lordick F, Meier-Rosar F, Aigner A, Büch T. HDAC inhibitors activate lipid peroxidation and ferroptosis in gastric cancer. Biochem Pharmacol 2024; 225:116257. [PMID: 38705532 DOI: 10.1016/j.bcp.2024.116257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Gastric cancer remains among the deadliest neoplasms worldwide, with limited therapeutic options. Since efficacies of targeted therapies are unsatisfactory, drugs with broader mechanisms of action rather than a single oncogene inhibition are needed. Preclinical studies have identified histone deacetylases (HDAC) as potential therapeutic targets in gastric cancer. However, the mechanism(s) of action of HDAC inhibitors (HDACi) are only partially understood. This is particularly true with regard to ferroptosis as an emerging concept of cell death. In a panel of gastric cancer cell lines with different molecular characteristics, tumor cell inhibitory effects of different HDACi were studied. Lipid peroxidation levels were measured and proteome analysis was performed for the in-depth characterization of molecular alterations upon HDAC inhibition. HDACi effects on important ferroptosis genes were validated on the mRNA and protein level. Upon HDACi treatment, lipid peroxidation was found increased in all cell lines. Class I HDACi (VK1, entinostat) showed the same toxicity profile as the pan-HDACi vorinostat. Proteome analysis revealed significant and concordant alterations in the expression of proteins related to ferroptosis induction. Key enzymes like ACSL4, POR or SLC7A11 showed distinct alterations in their expression patterns, providing an explanation for the increased lipid peroxidation. Results were also confirmed in primary human gastric cancer tissue cultures as a relevant ex vivo model. We identify the induction of ferroptosis as new mechanism of action of class I HDACi in gastric cancer. Notably, these findings were independent of the genetic background of the cell lines, thus introducing HDAC inhibition as a more general therapeutic principle.
Collapse
Affiliation(s)
- Robert Jenke
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, Leipzig, Germany; Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena, Germany
| | - Denys Oliinyk
- Jena University Hospital, Functional Proteomics, Research Center Lobeda, Jena, Germany
| | - Tamara Zenz
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany
| | - Justus Körfer
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, Leipzig, Germany; University Hospital Leipzig, Institute for Anatomy, Leipzig, Germany
| | - Linda Schäker-Hübner
- University of Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, Bonn, Germany
| | - Finn K Hansen
- University of Bonn, Pharmaceutical Institute, Department of Pharmaceutical and Cell Biological Chemistry, Bonn, Germany
| | - Florian Lordick
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena, Germany
| | - Florian Meier-Rosar
- Jena University Hospital, Functional Proteomics, Research Center Lobeda, Jena, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena, Germany
| | - Achim Aigner
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena, Germany.
| | - Thomas Büch
- Leipzig University, Medical Faculty, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Leipzig and Jena, Germany
| |
Collapse
|
8
|
Yang Y, Liu X, Yang D, Li L, Li S, Lu S, Li N. Interplay of CD36, autophagy, and lipid metabolism: insights into cancer progression. Metabolism 2024; 155:155905. [PMID: 38548128 DOI: 10.1016/j.metabol.2024.155905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/17/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
CD36, a scavenger receptor B2 that is dynamically distributed between cell membranes and organelle membranes, plays a crucial role in regulating lipid metabolism. Abnormal CD36 activity has been linked to a range of metabolic disorders, such as obesity, nonalcoholic fatty liver disease, insulin resistance and cardiovascular disease. CD36 undergoes various modifications, including palmitoylation, glycosylation, and ubiquitination, which greatly affect its binding affinity to various ligands, thereby triggering and influencing various biological effects. In the context of tumors, CD36 interacts with autophagy to jointly regulate tumorigenesis, mainly by influencing the tumor microenvironment. The central role of CD36 in cellular lipid homeostasis and recent molecular insights into CD36 in tumor development indicate the applicability of CD36 as a therapeutic target for cancer treatment. Here, we discuss the diverse posttranslational modifications of CD36 and their respective roles in lipid metabolism. Additionally, we delve into recent research findings on CD36 in tumors, outlining ongoing drug development efforts targeting CD36 and potential strategies for future development and highlighting the interplay between CD36 and autophagy in the context of cancer. Our aim is to provide a comprehensive understanding of the function of CD36 in both physiological and pathological processes, facilitating a more in-depth analysis of cancer progression and a better development and application of CD36-targeting drugs for tumor therapy in the near future.
Collapse
Affiliation(s)
- Yuxuan Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaokun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Di Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lianhui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sheng Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sen Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
9
|
Hou J, Wang B, Li J, Liu W. Ferroptosis and its role in gastric and colorectal cancers. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:183-196. [PMID: 38682167 PMCID: PMC11058540 DOI: 10.4196/kjpp.2024.28.3.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 05/01/2024]
Abstract
Ferroptosis is a novel mechanism of programmed cell death, characterized by intracellular iron overload, intensified lipid peroxidation, and abnormal accumulation of reactive oxygen species, which ultimately resulting in cell membrane impairment and demise. Research has revealed that cancer cells exhibit a greater demand for iron compared to normal cells, indicating a potential susceptibility of cancer cells to ferroptosis. Stomach and colorectal cancers are common gastrointestinal malignancies, and their elevated occurrence and mortality rates render them a global health concern. Despite significant advancements in medical treatments, certain unfavorable consequences and drug resistance persist. Consequently, directing attention towards the phenomenon of ferroptosis in gastric and colorectal cancers holds promise for enhancing therapeutic efficacy. This review aims to elucidate the intricate cellular metabolism associated with ferroptosis, encompassing lipid and amino acid metabolism, as well as iron metabolic processes. Furthermore, the significance of ferroptosis in the context of gastric and colorectal cancer is thoroughly examined and discussed.
Collapse
Affiliation(s)
- Jinxiu Hou
- School of Anesthesiology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Bo Wang
- School of Anesthesiology, Weifang Medical University, Weifang 261053, Shandong, China
| | - Jing Li
- Department of Gastroenterology, Weifang People’s Hospital, Weifang 261041, Shandong, China
| | - Wenbo Liu
- Central Laboratory, The First Affiliated Hospital of Weifang Medical University, Weifang 261041, Shandong, China
| |
Collapse
|
10
|
Lei P, Cao L, Zhang H, Fu J, Wei X, Zhou F, Cheng J, Ming J, Lu H, Jiang T. Polyene phosphatidylcholine enhances the therapeutic response of oxaliplatin in gastric cancer through Nrf2/HMOX1 mediated ferroptosis. Transl Oncol 2024; 43:101911. [PMID: 38377934 PMCID: PMC10891348 DOI: 10.1016/j.tranon.2024.101911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Oxaliplatin (OXA)-based chemotherapy is one of the first-line treatments for advanced gastric cancer. However, the potential risk for chemotherapy-induced hepatic injury can hinder its effectiveness. Polyene phosphatidylcholine (PPC) is often used as a hepatoprotective agent to counter OXA-induced hepatic injury; however, its impact on the antitumour effectiveness of OXA remains uncertain. Our retrospective study examined 98 patients with stage IV gastric cancer to assess the impact of PPC on progression-free survival (PFS) and disease control rate (DCR). Furthermore, in vitro and in vivo assays were conducted to elucidate the combined biological effects of OXA and PPC (OXA+PPC) on gastric cancer. RNA sequencing, luciferase reporter assays, live/dead cell assays, immunofluorescence, and western blotting were used to identify the activated signalling pathways and downstream factors post OXA+PPC treatment. The findings indicated that PPC served as an independent prognostic factor, correlating with prolonged PFS and improved DCR in patients with gastric cancer. The combination of OXA and PPC significantly inhibited tumour cell growth both in vitro and in vivo. RNA sequencing revealed that OXA+PPC treatment amplified reactive oxygen species and ferroptosis signalling pathways. Mechanistically, OXA+PPC upregulated the expression of haem oxygenase-1 by promoting the nuclear migration of nuclear factor erythroid 2-related factor (Nrf2), thereby enhancing its transcriptional activity. Drug-molecule docking analysis demonstrated that PPC competitively bound to the peptide structural domains of both Nrf2 and Kelch-like ECH-associated protein 1 (KEAP1), accounting for the increased translocation of Nrf2. In conclusion, our study reveals the synergistic antitumour potential of PPC and OXA while protecting patients against hepatic injury. This suggests a promising combined treatment approach for patients with advanced gastric cancer.
Collapse
Affiliation(s)
- Peijie Lei
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China; Department of Medicine, Qingdao University, Qingdao 266000, China
| | - Lianjing Cao
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hongjun Zhang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jialei Fu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xiaojuan Wei
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Fei Zhou
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jingjing Cheng
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jie Ming
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Haijun Lu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Tao Jiang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
11
|
Niu L, Li Y, Huang G, Huang W, Fu J, Feng L. FAM120A deficiency improves resistance to cisplatin in gastric cancer by promoting ferroptosis. Commun Biol 2024; 7:399. [PMID: 38565940 PMCID: PMC10987584 DOI: 10.1038/s42003-024-06097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
The occurrence of chemoresistance is an inescapable obstacle affecting the clinical efficacy of cisplatin in gastric cancer (GC). Exploring the regulatory mechanism of cisplatin resistance will help to provide potential effective targets for improving the prognosis of gastric cancer patients. Here, we find that FAM120A is upregulated in GC tissues and higher in cisplatin-resistant GC tissues, and its high expression is positively correlated with the poor outcome of GC patients. Functional studies indicate that FAM120A confers chemoresistance to GC cells by inhibiting ferroptosis. Mechanically, METTL3-induced m6A modification and YTHDC1-induced stability of FAM120A mRNA enhance FAM120A expression. FAM120A inhibits ferroptosis by binding SLC7A11 mRNA and enhancing its stability. FAM120A deficiency enhances cisplatin sensitivity by promoting ferroptosis in vivo. These results reveal the function of FAM120A in chemotherapy tolerance and targeting FAM120A is an effective strategy to alleviate cisplatin resistance in GC.
Collapse
Affiliation(s)
- Liangbo Niu
- Department of Emergency surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Yi Li
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Guixiang Huang
- Department of Emergency surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China
| | - Wei Huang
- Department of Geriatric Medicine and Gastroenterology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| | - Jing Fu
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| | - Lu Feng
- Department of Emergency surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
12
|
He L, Ye Q, Zhu Y, Zhong W, Xu G, Wang L, Wang Z, Zou X. Lipid Metabolism-Related Gene Signature Predicts Prognosis and Indicates Immune Microenvironment Infiltration in Advanced Gastric Cancer. Gastroenterol Res Pract 2024; 2024:6639205. [PMID: 38440405 PMCID: PMC10911888 DOI: 10.1155/2024/6639205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/05/2024] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
Objective Abnormal lipid metabolism is known to influence the malignant behavior of gastric cancer. However, the underlying mechanism remains elusive. In this study, we comprehensively analyzed the biological significance of genes involved in lipid metabolism in advanced gastric cancer (AGC). Methods We obtained gene expression profiles from The Cancer Genome Atlas (TCGA) database for early and advanced gastric cancer samples and performed differential expression analysis to identify specific lipid metabolism-related genes in AGC. We then used consensus cluster analysis to classify AGC patients into molecular subtypes based on lipid metabolism and constructed a diagnostic model using least absolute shrinkage and selection operator- (LASSO-) Cox regression analysis and Gene Set Enrichment Analysis (GSEA). We evaluated the discriminative ability and clinical significance of the model using the Kaplan-Meier (KM) curve, ROC curve, DCA curve, and nomogram. We also estimated immune levels based on immune microenvironment expression, immune checkpoints, and immune cell infiltration and obtained hub genes by weighted gene co-expression network analysis (WGCNA) of differential genes from the two molecular subtypes. Results We identified 6 lipid metabolism genes that were associated with the prognosis of AGC and used consistent clustering to classify AGC patients into two subgroups with significantly different overall survival and immune microenvironment. Our risk model successfully classified patients in the training and validation sets into high-risk and low-risk groups. The high-risk score predicted poor prognosis and indicated low degree of immune infiltration. Subgroup analysis showed that the risk model was an independent predictor of prognosis in AGC. Furthermore, our results indicated that most chemotherapeutic agents are more effective for AGC patients in the low-risk group than in the high-risk group, and risk scores for AGC are strongly correlated with drug sensitivity. Finally, we performed qRT-PCR experiments to verify the relevant results. Conclusion Our findings suggest that lipid metabolism-related genes play an important role in predicting the prognosis of AGC and regulating immune invasion. These results have important implications for the development of targeted therapies for AGC patients.
Collapse
Affiliation(s)
- Lijian He
- Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Medicine, Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Gastroenterology, Tongling People's Hospital, Tongling, Anhui Province, China
| | - Qiange Ye
- Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Medicine, Jiangsu University, Nanjing, Jiangsu Province, China
| | - Yanmei Zhu
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Wenqi Zhong
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical, Nanjing, Jiangsu Province, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical, Nanjing, Jiangsu Province, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical, Nanjing, Jiangsu Province, China
| | - Zhangding Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical, Nanjing, Jiangsu Province, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, School of Medicine, Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical, Nanjing, Jiangsu Province, China
- Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
| |
Collapse
|
13
|
Shi TM, Chen XF, Ti H. Ferroptosis-Based Therapeutic Strategies toward Precision Medicine for Cancer. J Med Chem 2024; 67:2238-2263. [PMID: 38306267 DOI: 10.1021/acs.jmedchem.3c01749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Ferroptosis is a type of iron-dependent programmed cell death characterized by the dysregulation of iron metabolism and the accumulation of lipid peroxides. This nonapoptotic mode of cell death is implicated in various physiological and pathological processes. Recent findings have underscored its potential as an innovative strategy for cancer treatment, particularly against recalcitrant malignancies that are resistant to conventional therapies. This article focuses on ferroptosis-based therapeutic strategies for precision cancer treatment, covering the molecular mechanisms of ferroptosis, four major types of ferroptosis inducers and their inhibitory effects on diverse carcinomas, the detection of ferroptosis by fluorescent probes, and their implementation in image-guided therapy. These state-of-the-art tactics have manifested enhanced selectivity and efficacy against malignant carcinomas. Given that the administration of ferroptosis in cancer therapy is still at a burgeoning stage, some major challenges and future perspectives are discussed for the clinical translation of ferroptosis into precision cancer treatment.
Collapse
Affiliation(s)
- Tong-Mei Shi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Institute of Analysis, Guangdong Academy of Sciences, China National Analytical Center, Guangzhou, Guangzhou 510070, P. R. China
| | - Huihui Ti
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| |
Collapse
|
14
|
Xiao P, Li C, Liu Y, Gao Y, Liang X, Liu C, Yang W. The role of metal ions in the occurrence, progression, drug resistance, and biological characteristics of gastric cancer. Front Pharmacol 2024; 15:1333543. [PMID: 38370477 PMCID: PMC10869614 DOI: 10.3389/fphar.2024.1333543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Metal ions exert pivotal functions within the human body, encompassing essential roles in upholding cell structure, gene expression regulation, and catalytic enzyme activity. Additionally, they significantly influence various pathways implicated in divergent mechanisms of cell death. Among the prevailing malignant tumors of the digestive tract worldwide, gastric cancer stands prominent, exhibiting persistent high mortality rates. A compelling body of evidence reveals conspicuous ion irregularities in tumor tissues, encompassing gastric cancer. Notably, metal ions have been observed to elicit distinct contributions to the progression, drug resistance, and biological attributes of gastric cancer. This review consolidates pertinent literature on the involvement of metal ions in the etiology and advancement of gastric cancer. Particular attention is directed towards metal ions, namely, Na, K, Mg, Ca, Fe, Cu, Zn, and Mn, elucidating their roles in the initiation and progression of gastric cancer, cellular demise processes, drug resistance phenomena, and therapeutic approaches.
Collapse
Affiliation(s)
- Pengtuo Xiao
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changfeng Li
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuanda Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yan Gao
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaojing Liang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang Liu
- Department of Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
15
|
Wang J, Jia Q, Jiang S, Lu W, Ning H. POU6F1 promotes ferroptosis by increasing lncRNA-CASC2 transcription to regulate SOCS2/SLC7A11 signaling in gastric cancer. Cell Biol Toxicol 2024; 40:3. [PMID: 38267746 PMCID: PMC10808632 DOI: 10.1007/s10565-024-09843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/22/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVE This study investigated the effect and mechanism of POU6F1 and lncRNA-CASC2 on ferroptosis of gastric cancer (GC) cells. METHODS GC cells treated with erastin and RSL3 were detected for ferroptosis, reactive oxygen species (ROS) level, and cell viability. The expression levels of POU6F1, lncRNA-CASC2, SOCS2, and ferroptosis-related molecules (GPX4 and SLC7A11) were also measured. The regulations among POU6F1, lncRNA-CASC2, FMR1, SOCS2, and SLC7A11 were determined. Subcutaneous tumor models were established, in which the expressions of Ki-67, SOCS2, and GPX4 were detected by immunohistochemistry. RESULTS GC patients with decreased expressions of POU6F1 and lncRNA-CASC2 had lower survival rate. Overexpression of POU6F1 or lncRNA-CASC2 decreased cell proliferation and GSH levels in GC cells, in addition to increasing total iron, Fe2+, MDA, and ROS levels. POU6F1 directly binds to the lncRNA-CASC2 promoter to promote its transcription. LncRNA-CASC2 can target FMR1 and increase SOCS2 mRNA stability to promote SLC7A11 ubiquitination degradation and activate ferroptosis signaling. Knockdown of SOCS2 inhibited the ferroptosis sensitivity of GC cells and reversed the effects of POU6F1 and lncRNA-CASC2 overexpression on ferroptosis in GC cells. CONCLUSION Transcription factor POU6F1 binds directly to the lncRNA-CASC2 promoter to promote its expression, while upregulated lncRNA-CASC2 increases SOCS2 stability and expression by targeting FMR1, thereby inhibiting SLC7A11 signaling to promote ferroptosis in GC cells and inhibit GC progression.
Collapse
Affiliation(s)
- Jingyun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan, 450000, People's Republic of China
| | - Qiaoyu Jia
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan, 450000, People's Republic of China
| | - Shuqin Jiang
- Department of Child Development and Behavior, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, People's Republic of China
| | - Wenquan Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, No.2 JingBa Road, Jinshui District, Zhengzhou, Henan, 450014, People's Republic of China
| | - Hanbing Ning
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Erqi District, Zhengzhou, Henan, 450000, People's Republic of China.
| |
Collapse
|
16
|
Consoli V, Fallica AN, Sorrenti V, Pittalà V, Vanella L. Novel Insights on Ferroptosis Modulation as Potential Strategy for Cancer Treatment: When Nature Kills. Antioxid Redox Signal 2024; 40:40-85. [PMID: 37132605 PMCID: PMC10824235 DOI: 10.1089/ars.2022.0179] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
Significance: The multifactorial nature of the mechanisms implicated in cancer development still represents a major issue for the success of established antitumor therapies. The discovery of ferroptosis, a novel form of programmed cell death distinct from apoptosis, along with the identification of the molecular pathways activated during its execution, has led to the uncovering of novel molecules characterized by ferroptosis-inducing properties. Recent advances: As of today, the ferroptosis-inducing properties of compounds derived from natural sources have been investigated and interesting findings have been reported both in vitro and in vivo. Critical Issues: Despite the efforts made so far, only a limited number of synthetic compounds have been identified as ferroptosis inducers, and their utilization is still limited to basic research. In this review, we analyzed the most important biochemical pathways involved in ferroptosis execution, with particular attention to the newest literature findings on canonical and non-canonical hallmarks, together with mechanisms of action of natural compounds identified as novel ferroptosis inducers. Compounds have been classified based on their chemical structure, and modulation of ferroptosis-related biochemical pathways has been reported. Future Directions: The outcomes herein collected represent a fascinating starting point from which to take hints for future drug discovery studies aimed at identifying ferroptosis-inducing natural compounds for anticancer therapies. Antioxid. Redox Signal. 40, 40-85.
Collapse
Affiliation(s)
- Valeria Consoli
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
| | | | - Valeria Sorrenti
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Valeria Pittalà
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Sciences, University of Catania, Catania, Italy
- Department of Drug and Health Sciences, CERNUT—Research Centre on Nutraceuticals and Health Products, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Zhao Q, Yu M, Du X, Li Y, Lv J, Jiang X, Chen X, Wang A, Yang X. The Role of Cuproptosis Key Factor FDX1 in Gastric Cancer. Curr Pharm Biotechnol 2024; 26:132-142. [PMID: 38918976 DOI: 10.2174/0113892010301997240527162423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Gastric cancer is a common malignant tumor of the digestive tract, both domestically and internationally. It has high incidence and mortality rates, posing a significant threat to human health. The levels of blood copper are elevated in patients with gastric cancer. However, the exact relationship between copper overload and the malignant phenotype of gastric cancer is still unclear. This study aims to investigate the role of the Cuproptosis-related factor FDX1 in the conversion of gastric cancer to a malignant phenotype. METHODS Firstly, the relative mRNA and protein expression levels of FDX1 in gastric cancer were detected. Secondly, lentiviral transfection of gastric cancer cell lines was performed, and the effects of FDX1 functional intervention on the proliferation, invasion and migration of gastric cancer cells were assessed by CCK-8, colony formation, EdU proliferation, cell scratch and Transwell assays. Thirdly, the differential alteration of genes after overexpression of FDX1 was also analyzed by transcriptome sequencing. Finally, we assessed the tumour-forming capacity in vivo by the xenograft model. RESULTS FDX1 is significantly upregulated in gastric cancer. The inhibition of FDX1 function results in the suppression of malignant phenotypic transformation in gastric cancer cells. Conversely, overexpression of FDX1 function leads to alterations in tumor-related signaling pathways and the tumor microenvironment. CONCLUSION FDX1 plays a significant role in the malignant phenotypic transformation of gastric cancer cells. Further investigation into the regulatory mechanism of FDX1 in the malignant transformation of gastric cancer will enhance our understanding of the involvement of Cuproptosis in gastric cancer.
Collapse
Affiliation(s)
- Qiqi Zhao
- Clinical Medical College of Ningxia Medical University, 1160 Shengli Street Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- Department of General Surgery, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Miao Yu
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Phase Ⅰ Clinical & Research Ward, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, China
| | - Xueqin Du
- Department of General Surgery, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Yuan Li
- Department of General Surgery, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Juantao Lv
- Department of Pharmacy, Gansu Provincial Hospital, 204 West Donggang Road,Lanzhou 730000, Gansu, China
| | - Xianglai Jiang
- School of Basic Medicine Sciences and Life Sciences Hainan Medical University, 3 College Road, Haikou 571199, Hainan, China
| | - Xiaomei Chen
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Anqi Wang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| | - Xiaojun Yang
- Department of General Surgery, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province, Gansu Provincial Hospital, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- The First Clinical Medical College of Lanzhou University, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Gansu Research Center of Prevention and Control Project for Digestive Oncology, 204 West Donggang Road, Lanzhou 730000, Gansu, China
- Key Laboratory of Gastrointestinal Tumor Diagnosis and Treatment, National Health and Wellness Commission, 204 West Donggang Road, Lanzhou 730000, Gansu, China
| |
Collapse
|
18
|
Le J, Pan G, Zhang C, Chen Y, Tiwari AK, Qin JJ. Targeting ferroptosis in gastric cancer: Strategies and opportunities. Immunol Rev 2024; 321:228-245. [PMID: 37903748 DOI: 10.1111/imr.13280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 11/01/2023]
Abstract
Ferroptosis is a novel form of programmed cell death morphologically, genetically, and biochemically distinct from other cell death pathways and characterized by the accumulation of iron-dependent lipid peroxides and oxidative damage. It is now understood that ferroptosis plays an essential role in various biological processes, especially in the metabolism of iron, lipids, and amino acids. Gastric cancer (GC) is a prevalent malignant tumor worldwide with low early diagnosis rates and high metastasis rates, accounting for its relatively poor prognosis. Although chemotherapy is commonly used to treat GC, drug resistance often leads to poor therapeutic outcomes. In the last several years, extensive research on ferroptosis has highlighted its significant potential in GC therapy, providing a promising strategy to address drug resistance associated with standard cancer therapies. In this review, we offer an extensive summary of the key regulatory factors related to the mechanisms underlying ferroptosis. Various inducers and inhibitors specifically targeting ferroptosis are uncovered. Additionally, we explore the prospective applications and outcomes of these agents in the field of GC therapy, emphasizing their capacity to improve the outcomes of this patient population.
Collapse
Affiliation(s)
- Jiahan Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Guangzhao Pan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
| | - Che Zhang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Yitao Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Amit K Tiwari
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| |
Collapse
|
19
|
Liu B, Li Y, Xu Y, Xue W, Jin Z. Jian Yun Qing Hua Decoction inhibits malignant behaviors of gastric carcinoma cells via COL12A1 mediated ferroptosis signal pathway. Chin Med 2023; 18:118. [PMID: 37700383 PMCID: PMC10496189 DOI: 10.1186/s13020-023-00799-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/12/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Jian Yun Qing Hua Decoction (JYQHD), a traditional Chinese medicine decoction, which has been applied in the treatment of gastric cancer (GC). We attempt to confirm the anti-gastric cancer effect of JYQHD and explore the mechanism of JYQHD. METHODS Acute toxicity test was used to understand the toxicity of JYQHD. We studied the expression and prognostic outcome of COL12A1 within GC tissues through the network databases. Using several web-based databases, we analyzed the major components and targets of JYQHD, as well as known therapeutic targets in gastric cancer. The Venn diagram was utilized to obtain the overlapped genes. Lentiviral vector, shRNAs and plasmids, were used to transfect GC cells. Cell counting kit-8 (CCK8), sphere formation, malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS), Fe2+, transmission electron microscopy (TEM), quantitative Real-Time Polymerase Chain Reaction (qRT-PCR), Western-Blot (WB), and immunohistochemical (IHC) assays were employed to investigate the role and mechanism of COL12A1 and JYQHD in GC. RESULTS The results showed that JYQHD was non-toxic and safe. JYQHD inhibited growth and sphere formation ability through inducing the ferroptosis of GC cells, and suppressed the GC cells induced subcutaneous xenograft tumor growth. COL12A1 was highly expressed in gastric cancer tissues, indicating poor prognosis. COL12A1 specifically enhanced GC cell progression and stemness via suppressing ferroptosis. JYQHD down-regulated COL12A1 in order to suppress the stemness of GC cells via inducing ferroptosis. CONCLUSION COL12A1 inhibited ferroptosis and enhanced stemness in GC cells. JYQHD inhibited the development of GC cells by inhibiting cancer cell stemness via the ferroptosis pathway mediated by COL12A1.
Collapse
Affiliation(s)
- Baoxinzi Liu
- Department of Medical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yu Li
- Department of Medical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yuanyuan Xu
- Department of Medical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Weiwei Xue
- Department of Medical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Zhichao Jin
- Department of Medical Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
20
|
Sah DK, Arjunan A, Lee B, Jung YD. Reactive Oxygen Species and H. pylori Infection: A Comprehensive Review of Their Roles in Gastric Cancer Development. Antioxidants (Basel) 2023; 12:1712. [PMID: 37760015 PMCID: PMC10525271 DOI: 10.3390/antiox12091712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer worldwide and makes up a significant component of the global cancer burden. Helicobacter pylori (H. pylori) is the most influential risk factor for GC, with the International Agency for Research on Cancer classifying it as a Class I carcinogen for GC. H. pylori has been shown to persist in stomach acid for decades, causing damage to the stomach's mucosal lining, altering gastric hormone release patterns, and potentially altering gastric function. Epidemiological studies have shown that eliminating H. pylori reduces metachronous cancer. Evidence shows that various molecular alterations are present in gastric cancer and precancerous lesions associated with an H. pylori infection. However, although H. pylori can cause oxidative stress-induced gastric cancer, with antioxidants potentially being a treatment for GC, the exact mechanism underlying GC etiology is not fully understood. This review provides an overview of recent research exploring the pathophysiology of H. pylori-induced oxidative stress that can cause cancer and the antioxidant supplements that can reduce or even eliminate GC occurrence.
Collapse
Affiliation(s)
| | | | - Bora Lee
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Jeonnam, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Seoyang Ro 264, Jeonnam, Hwasun 58128, Republic of Korea; (D.K.S.); (A.A.)
| |
Collapse
|
21
|
Wu X, Deng Q, Han Z, Ni F, Sun D, Xu Y. Screening and identification of genes related to ferroptosis in keratoconus. Sci Rep 2023; 13:13956. [PMID: 37626095 PMCID: PMC10457308 DOI: 10.1038/s41598-023-41194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023] Open
Abstract
Corneal keratoconus (KC) is a dilated (ectatic) corneal disease characterized by a central thinning of the cornea, which causes protrusion into a conical shape that seriously affects vision. However, due to the complex etiology of keratoconus, its entire mechanism remains unclear and there is no mechanism-directed treatment method. Ferroptosis is a novel programmed cell death mechanism related to lipid peroxidation, stress, and amino acid metabolism, which plays a crucial role in various diseases. This study aimed to explore the relationship between keratoconus and ferroptosis, to provide new insights into the mechanism of keratoconus development, and potential treatment options based on further elucidation of this mechanism. The corresponding mRNA microarray expression matrix data of KC patients were obtained from GEO database (GSE204791). Weighted co-expression network analysis (WGCNA) and support vector machine recursive feature elimination (SVM-RFE) were selected to screen hub genes, which were overlapped with ferroptosis genes (FRGs) from FerrDb. GO and GSEA were performed to analyze differential pathways, ssGSEA was used to determine immune status, and then, feasible drugs were predicted by gene-drug network. Additionally, we predicted the miRNA and IncRNA of hub genes to identify the underlying mechanism of disease so as to predict treatment for the disease. The epithelial transcriptome from keratoconus tissue mRNA microarray data (GSE204791) was extracted for the main analysis, including eight epithelial cells and eight epithelial control cells. The differential genes that were overlapped by WGCAN, SVM-RFE and FRGs were mainly related to oxidative stress, immune regulation, cellular inflammation, and metal ion transport. Through further analysis, aldo-keto reductase family 1 member C3 (AKR1C3) was selected, and negatively correlated with mature CD56 natural killer (NK) cells and macrophages. Then, gene-drug interaction network analysis and miRNA prediction were performed through the website. It was concluded that four immune-related drugs (INDOMETHACIN, DAUNORUBICIN, DOXORUBICIN, DOCETAXEL) and a miRNA (has-miR-184) were screened to predict potential drugs and targets for disease treatment. To our knowledge, this was the first report of KC being associated with ferroptosis and prompted search for differential genes to predict drug targets of gene immunotherapy. Our findings provided insight and a solid basis for the analysis and treatment of KC.
Collapse
Affiliation(s)
- Xiaojun Wu
- School of Pharmacology, Binzhou Medical University, Guanhai Rd 346, Yantai, 264003, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai, 264003, China
| | - Qing Deng
- School of Pharmacology, Binzhou Medical University, Guanhai Rd 346, Yantai, 264003, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai, 264003, China
| | - Zhe Han
- School of Pharmacology, Binzhou Medical University, Guanhai Rd 346, Yantai, 264003, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai, 264003, China
| | - Feixue Ni
- School of Pharmacology, Binzhou Medical University, Guanhai Rd 346, Yantai, 264003, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai, 264003, China
| | - Daxi Sun
- School of Pharmacology, Binzhou Medical University, Guanhai Rd 346, Yantai, 264003, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai, 264003, China
| | - Yuxue Xu
- School of Pharmacology, Binzhou Medical University, Guanhai Rd 346, Yantai, 264003, China.
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai, 264003, China.
| |
Collapse
|
22
|
Yang J, Jin F, Li H, Shen Y, Shi W, Wang L, Zhong L, Wu G, Wu Q, Li Y. Identification of mitochondrial respiratory chain signature for predicting prognosis and immunotherapy response in stomach adenocarcinoma. Cancer Cell Int 2023; 23:69. [PMID: 37062830 PMCID: PMC10105960 DOI: 10.1186/s12935-023-02913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/29/2023] [Indexed: 04/18/2023] Open
Abstract
Stomach adenocarcinoma (STAD) is the third leading cause of cancer-related deaths and the fifth most prevalent malignancy worldwide. Mitochondrial respiratory chain complexes play a crucial role in STAD pathogenesis. However, how mitochondrial respiratory chain complex genes (MRCCGs) affect the prognosis and tumor microenvironment in STAD remains unclear. In this study, we systematically analyzed genetic alterations and copy number variations of different expression densities of MRCCGs, based on 806 samples from two independent STAD cohorts. Then we employed the unsupervised clustering method to classify the samples into three expression patterns based on the prognostic MRCCG expressions, and found that they were involved in different biological pathways and correlated with the clinicopathological characteristics, immune cell infiltration, and prognosis of STAD. Subsequently, we conducted a univariate Cox regression analysis to identify the prognostic value of 1175 subtype-related differentially expressed genes (DEGs) and screened out 555 prognostic-related genes. Principal component analysis was performed and developed the MG score system to quantify MRCCG patterns of STAD. The prognostic significance of MG Score was validated in three cohorts. The low MG score group, characterized by increased microsatellite instability-high (MSI-H), tumor mutation burden (TMB), PD-L1 expression, had a better prognosis. Interestingly, we demonstrated MRCCG patterns score could predict the sensitivity to ferroptosis inducing therapy. Our comprehensive analysis of MRCCGs in STAD demonstrated their potential roles in the tumor-immune-stromal microenvironment, clinicopathological features, and prognosis. Our findings highlight that MRCCGs may provide a new understanding of immunotherapy strategies for gastric cancer and provide a new perspective on the development of personalized immune therapeutic strategies for patients with STAD.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory Medicine Center, Department of Laboratory Medicine, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Feifan Jin
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huanjuan Li
- Laboratory Medicine Center, Department of Laboratory Medicine, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Laboratory Medicine, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Weilin Shi
- Department of Medicine, Taizhou Luqiao District Second People's Hospital, Taizhou, Zhejiang, 318058, China
| | - Lina Wang
- Department of Medicine, Taizhou Luqiao District Second People's Hospital, Taizhou, Zhejiang, 318058, China
| | - Lei Zhong
- Department of Clinical Laboratory, Tongxiang Hospital of Traditional Chinese Medicine, Jiaxing, Zhejiang, 314599, China
| | - Gongqiang Wu
- Department of Hematology, Dongyang People's Hospital, Dongyang Hospital Affiliated to Wenzhou Medical University, Dongyang, Zhejiang, 322100, China.
| | - Qiaoliang Wu
- Department of Hematology, Jiashan first people's Hospital, Jiaxing, Zhejiang, 314199, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
23
|
Cao Y, Xiao W, Liu S, Zeng Y. Ferroptosis: Underlying mechanism and the crosstalk with other modes of neuronal death after intracerebral hemorrhage. Front Cell Neurosci 2023; 17:1080344. [PMID: 36814866 PMCID: PMC9939649 DOI: 10.3389/fncel.2023.1080344] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a serious cerebrovascular disease with high rates of morbidity, mortality, and disability. Optimal treatment of ICH is a major clinical challenge, as the underlying mechanisms remain unclear. Ferroptosis, a newly identified form of non-apoptotic programmed cell death, is characterized by the iron-induced accumulation of lipid reactive oxygen species (ROS), leading to intracellular oxidative stress. Lipid ROS causes damage to nucleic acids, proteins, and cell membranes, eventually resulting in ferroptosis. In the past 10 years, ferroptosis has resulted in plenty of discoveries and breakthroughs in cancer, neurodegeneration, and other diseases. Some studies have also reported that ferroptosis does occur after ICH in vitro and in vivo and contribute to neuronal death. However, the studies on ferroptosis following ICH are still in the preliminary stage. In this review, we will summarize the current evidence on the mechanism underlying ferroptosis after ICH. And review the traditional modes of neuronal death to identify the crosstalk with ferroptosis in ICH, including apoptosis, necroptosis, and autophagy. Additionally, we also aim to explore the promising therapeutic application of ferroptosis in cell death-based ICH.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Wenbiao Xiao
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shuzhen Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yi Zeng
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China,*Correspondence: Yi Zeng,
| |
Collapse
|
24
|
Gao L, Zhang C, Zheng Y, Wu D, Chen X, Lan H, Zheng X, Wu H, Li S. Glycine regulates lipid peroxidation promoting porcine oocyte maturation and early embryonic development. J Anim Sci 2023; 101:skac425. [PMID: 36573588 PMCID: PMC9904182 DOI: 10.1093/jas/skac425] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
In vitro-cultured oocytes are separated from the follicular micro-environment in vivo and are more vulnerable than in vivo oocytes to changes in the external environment. This vulnerability disrupts the homeostasis of the intracellular environment, affecting oocyte meiotic completion, and subsequent embryonic developmental competence in vitro. Glycine, one of the main components of glutathione (GSH), plays an important role in the protection of porcine oocytes in vitro. However, the protective mechanism of glycine needs to be further clarified. Our results showed that glycine supplementation promoted cumulus cell expansion and oocyte maturation. Detection of oocyte development ability showed that glycine significantly increased the cleavage rate and blastocyst rate during in vitro fertilization (IVF). SMART-seq revealed that this effect was related to glycine-mediated regulation of cell membrane structure and function. Exogenous addition of glycine significantly increased the levels of the anti-oxidant GSH and the expression of anti-oxidant-related genes (glutathione peroxidase 4 [GPX4], catalase [CAT], superoxide dismutase 1 [SOD1], superoxide dismutase 2 [SOD2], and mitochondrial solute carrier family 25, member 39 [SLC25A39]), decreased the lipid peroxidation caused by reactive oxygen species (ROS) and reduced the level of malondialdehyde (MDA) by enhancing the functions of mitochondria, peroxisomes and lipid droplets (LDs) and the levels of lipid metabolism-related factors (peroxisome proliferator activated receptor coactivator 1 alpha [PGC-1α], peroxisome proliferator-activated receptor γ [PPARγ], sterol regulatory element binding factor 1 [SREBF1], autocrine motility factor receptor [AMFR], and ATP). These effects further reduced ferroptosis and maintained the normal structure and function of the cell membrane. Our results suggest that glycine plays an important role in oocyte maturation and later development by regulating ROS-induced lipid metabolism, thereby protecting against biomembrane damage.
Collapse
Affiliation(s)
- Lepeng Gao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Chang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yingying Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Changchun 130118, China
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Changchun 130118, China
| | - Deyi Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xinyuan Chen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hainan Lan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hao Wu
- COFCO Corporation, Beijing 100020, China
| | - Suo Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
25
|
Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist Updat 2023; 66:100916. [PMID: 36610291 DOI: 10.1016/j.drup.2022.100916] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Development of resistance to chemotherapy in cancer continues to be a major challenge in cancer management. Ferroptosis, a unique type of cell death, is mechanistically and morphologically different from other forms of cell death. Ferroptosis plays a pivotal role in inhibiting tumour growth and has presented new opportunities for treatment of chemotherapy-insensitive tumours in recent years. Emerging studies have suggested that ferroptosis can regulate the therapeutic responses of tumours. Accumulating evidence supports ferroptosis as a potential target for chemotherapy resistance. Pharmacological induction of ferroptosis could reverse drug resistance in tumours. In this review article, we first discuss the key principles of chemotherapeutic resistance in cancer. We then provide a brief overview of the core mechanisms of ferroptosis in cancer chemotherapeutic drug resistance. Finally, we summarise the emerging data that supports the fact that chemotherapy resistance in different types of cancers could be subdued by pharmacologically inducing ferroptosis. This review article suggests that pharmacological induction of ferroptosis by bioactive compounds (ferroptosis inducers) could overcome chemotherapeutic drug resistance. This article also highlights some promising therapeutic avenues that could be used to overcome chemotherapeutic drug resistance in cancer.
Collapse
|
26
|
Wen J, Yang F, Fang CX, Chen HL, Yang L. Sulforaphane triggers iron overload-mediated ferroptosis in gastric carcinoma cells by activating the PI3K/IRP2/DMT1 pathway. Hum Exp Toxicol 2023; 42:9603271231177295. [PMID: 37201195 DOI: 10.1177/09603271231177295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
OBJECTIVE Increasing evidence indicates that prolonged exposure to sulforaphane (SFN) can improve malignancies. However, the role of iron in SFN-triggered death in gastric carcinoma cells and the underlying molecular mechanisms remain unclear. Thus, the current study explored the effects of SFN on iron overload-mediated ferroptosis and the PI3K/IRP2/DMT1 pathway in gastric carcinoma cells. METHODS We utilized the MGC-803 cell line to assess whether SFN affected iron metabolism and whether this effect contributed to cell death. Pharmacological inhibition of iron metabolism also was performed to determine the molecular mechanism underlying SFN-triggered iron overload and the disturbance in iron metabolism. RESULTS Our data revealed that SFN treatment altered iron homeostasis and led to iron overload in vitro. Interestingly, SFN-stimulated cell death resulted from ferroptosis, a recently identified iron-dependent form of regulated cell death. Furthermore, an iron chelator, deferiprone, ameliorated the SFN-triggered mitochondrial dysfunction and reduced the iron overload. In addition, we found that the SFN-triggered iron overload was regulated by the PI3K/IRP2/DMT1 signaling pathway. CONCLUSION We discovered that disturbance in iron metabolism might be involved in the SFN-triggered cell death in gastric carcinoma cells. Blockade of the PI3K/IRP2/DMT1 axis could provide a feedback effect on SFN-induced ferroptosis to protect tumor cells from growth.
Collapse
Affiliation(s)
- Jing Wen
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R.China
| | - Fan Yang
- Department of General Surgery II, Minda Hospital of Hubei Minzu University, Enshi, P.R.China
| | - Cheng-Xiang Fang
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R.China
| | - Hong-Liu Chen
- Department of General Surgery II, Minda Hospital of Hubei Minzu University, Enshi, P.R.China
| | - Li Yang
- Department of Oncology, Minda Hospital of Hubei Minzu University, Enshi, P.R.China
| |
Collapse
|
27
|
Song B, Li T, Zhang Y, Yang Q, Pei B, Liu Y, Wang J, Dong G, Sun Q, Fan S, Li X. Identification and verification of ferroptosis-related genes in gastric intestinal metaplasia. Front Genet 2023; 14:1152414. [PMID: 37144125 PMCID: PMC10151495 DOI: 10.3389/fgene.2023.1152414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023] Open
Abstract
Background: Gastric intestinal metaplasia (IM) is the key link of gastric precancerous lesions. Ferroptosis is a novel form of programmed cell death. However, its impact on IM is unclear. The focus of this study is to identify and verify ferroptosis-related genes (FRGs) that may be involved in IM by bioinformatics analysis. Materials and methods: Differentially expressed genes (DEGs) were obtained from microarray dataset GSE60427 and GSE78523 downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed ferroptosis-related genes (DEFRGs) were obtained from overlapping genes of DEGs and FRGs got from FerrDb. DAVID database was used for functional enrichment analysis. Protein-protein interaction (PPI) analysis and Cytoscape software were used to screen hub gene. In addition, we built a receiver operating characteristic (ROC) curve and verified the relative mRNA expression by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Finally, the CIBERSORT algorithm was used to analyze the immune infiltration in IM. Results: First, a total of 17 DEFRGs were identified. Second, a gene module identified by Cytoscape software was considered as hub gene: PTGS2, HMOX1, IFNG, and NOS2. Third, ROC analysis showed that HMOX1 and NOS2 had good diagnostic characteristics. qRT-PCR experiments confirmed the differential expression of HMOX1 in IM and normal gastric tissues. Finally, immunoassay showed that the proportion of T cells regulatory (Tregs) and macrophages M0 in IM was relatively higher, while the proportion of T cells CD4 memory activated and dendritic cells activated was lower. Conclusion: We found significant associations between FRGs and IM, and HMOX1 may be diagnostic biomarkers and therapeutic targets for IM. These results may enhance our understanding of IM and may contribute to its treatment.
Collapse
Affiliation(s)
- Biao Song
- The Graduated School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Tingting Li
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yi Zhang
- The Graduated School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Qi Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Bei Pei
- The Graduated School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yun Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jieyu Wang
- The Graduated School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Gang Dong
- The Graduated School, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Qin Sun
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| | | | - Xuejun Li
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- *Correspondence: Xuejun Li,
| |
Collapse
|
28
|
The Ferroptosis Molecular Subtype Reveals Characteristics of the Tumor Microenvironment, Immunotherapeutic Response, and Prognosis in Gastric Cancer. Int J Mol Sci 2022; 23:ijms23179767. [PMID: 36077165 PMCID: PMC9456108 DOI: 10.3390/ijms23179767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Ferroptosis is a relatively new form of programmed cell death, which can enhance the efficacy of tumor immunotherapy by regulating the tumor microenvironment (TME). In the face of the dilemma of a great difference in the efficacy of immunotherapy for gastric cancer (GC) patients, the exploration of ferroptosis may assist us in predicting immunotherapy efficacy prior to treatment. The potential role of ferroptosis in TME still needs further elucidation. Based on ferroptosis-related genes (FRGs), we systematically evaluated ferroptosis molecular subtypes in gastric cancer. Additionally, the association between these molecular subtypes and the characteristics of TME was examined. A ferroptosis score was constructed to further explore the predictive efficacy of ferroptosis on the immunotherapy response in gastric cancer. There were also 32 other cancers that were evaluated. Three molecular subtypes of ferroptosis in gastric cancer were identified. The three immunophenotypes of tumor immune inflamed, immune excluded, as well as immune desert were mostly in agreement with the TME features of these three subtypes. The individual tumor genetic variation, TME characteristics, immunotherapy response, and prognosis could be assessed by a ferroptosis score. High ferroptosis scores in gastric cancer suggest stromal activation and immunosuppression. It is noted that tumors with a low ferroptosis score are characterized by extensive tumor mutations as well as an immune activation, which are associated with an enhanced immunotherapy response and an improved prognosis. This study reveals that ferroptosis plays an integral role in the regulation of the tumor immune microenvironment. The ferroptosis score may serve as an independent prognostic factor for GC and will deepen our understanding of the TME infiltration mechanisms as well as lead to more rational immunotherapy regimens.
Collapse
|