1
|
Revol-Cavalier J, Quaranta A, Newman JW, Brash AR, Hamberg M, Wheelock CE. The Octadecanoids: Synthesis and Bioactivity of 18-Carbon Oxygenated Fatty Acids in Mammals, Bacteria, and Fungi. Chem Rev 2025; 125:1-90. [PMID: 39680864 PMCID: PMC11719350 DOI: 10.1021/acs.chemrev.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The octadecanoids are a broad class of lipids consisting of the oxygenated products of 18-carbon fatty acids. Originally referring to production of the phytohormone jasmonic acid, the octadecanoid pathway has been expanded to include products of all 18-carbon fatty acids. Octadecanoids are formed biosynthetically in mammals via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) activity, as well as nonenzymatically by photo- and autoxidation mechanisms. While octadecanoids are well-known mediators in plants, their role in the regulation of mammalian biological processes has been generally neglected. However, there have been significant advancements in recognizing the importance of these compounds in mammals and their involvement in the mediation of inflammation, nociception, and cell proliferation, as well as in immuno- and tissue modulation, coagulation processes, hormone regulation, and skin barrier formation. More recently, the gut microbiome has been shown to be a significant source of octadecanoid biosynthesis, providing additional biosynthetic routes including hydratase activity (e.g., CLA-HY, FA-HY1, FA-HY2). In this review, we summarize the current field of octadecanoids, propose standardized nomenclature, provide details of octadecanoid preparation and measurement, summarize the phase-I metabolic pathway of octadecanoid formation in mammals, bacteria, and fungi, and describe their biological activity in relation to mammalian pathophysiology as well as their potential use as biomarkers of health and disease.
Collapse
Affiliation(s)
- Johanna Revol-Cavalier
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Alessandro Quaranta
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - John W. Newman
- Western
Human Nutrition Research Center, Agricultural
Research Service, USDA, Davis, California 95616, United States
- Department
of Nutrition, University of California, Davis, Davis, California 95616, United States
- West
Coast Metabolomics Center, Genome Center, University of California, Davis, Davis, California 95616, United States
| | - Alan R. Brash
- Department
of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Mats Hamberg
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Larodan
Research Laboratory, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Craig E. Wheelock
- Unit
of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department
of Respiratory Medicine and Allergy, Karolinska
University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
2
|
Vigor C, Balas L, Guy A, Bultel-Poncé V, Reversat G, Galano JM, Durand T, Oger C. Isoprostanoids, Isofuranoids and Isoketals ‐ From Synthesis to Lipidomics. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Claire Vigor
- Institut des Biomolecules Max Mousseron Bioactive Lipid Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Laurence Balas
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Alexandre Guy
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Valérie Bultel-Poncé
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard1919 route de Mende 34293 Montpellier FRENCH POLYNESIA
| | - Guillaume Reversat
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Jean-Marie Galano
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Thierry Durand
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| | - Camille Oger
- Institut des Biomolecules Max Mousseron Bioactive Lipids Synthesis Pôle Chimie Balard Recherche1919 route de Mende 34293 Montpellier FRANCE
| |
Collapse
|
3
|
Martínez Sánchez S, Domínguez-Perles R, Montoro-García S, Gabaldón JA, Guy A, Durand T, Oger C, Ferreres F, Gil-Izquierdo A. Bioavailable phytoprostanes and phytofurans from Gracilaria longissima have anti-inflammatory effects in endothelial cells. Food Funct 2021; 11:5166-5178. [PMID: 32432610 DOI: 10.1039/d0fo00976h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND An array of bioactive compounds with health-promoting effects has been described in several species of macroalgae. Among them, phytoprostanes (PhytoPs) and phytofurans (PhytoFs), both autoxidation products of α-linolenic acid, have been seen to exert immunomodulatory and antiinflammatory activities in vitro. The purpose of this study was to explore the bioaccesibility, bioavailability, and bioactivity of PhytoPs and PhytoFs obtained from the edible red algae Gracilaria longissima, and to gain insight into the anti-inflammatory activity of their bioavailable fraction in human endothelial cells. METHODS The PhytoPs and PhytoFs profile and concentration of G. longissima were determined by UHPLC-QqQ-MS/MS. Algal samples were processed following a standardised digestion method including gastric, intestinal, and gastrointestinal digestion. The bioavailability of the PhytoPs and PhytoFs in the characterized fractions was assessed in a Caco-2 cell monolayer model of the intestinal barrier. The inflammation response of these prostaglandin-like compounds in human endothelial cells, after intestinal absorption, was investigated in vitro. RESULTS Simulated digestions significantly reduced the concentration of PhytoPs and PhytoFs up to 1.17 and 0.42 μg per 100 g, respectively, on average, although permeability through the Caco-2 cell monolayer was high (up to 88.2 and 97.7%, on average, respectively). PhytoP and PhytoF-enriched extracts of raw algae impaired the expression of ICAM-1 and IL-6 inflammation markers. The inflammation markers progressed in contrast to the relative concentrations of bioactive oxylipins, suggesting pro- or anti-inflammatory activity on their part. In this aspect, the cross-reactivity of these compounds with diverse receptors, and their relative concentration could explain the diversity of the effects found in the current study. CONCLUSIONS The results indicate that PhytoPs and PhytoFs display complex pharmacological profiles probably mediated through their different actions and affinities in the endothelium.
Collapse
Affiliation(s)
- S Martínez Sánchez
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - R Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100 Espinardo, Spain.
| | - S Montoro-García
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - J A Gabaldón
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - A Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - T Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - C Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 - CNRS, University of Montpellier - ENSCM, Faculty of Pharmacy, Montpellier, France
| | - F Ferreres
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, San Antonio Catholic University, Campus Los Jerónimos, s/n. 30107 Murcia, Spain
| | - A Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100 Espinardo, Spain.
| |
Collapse
|
4
|
Campillo M, Medina S, Fanti F, Gallego-Gómez JI, Simonelli-Muñoz A, Bultel-Poncé V, Durand T, Galano JM, Tomás-Barberán FA, Gil-Izquierdo Á, Domínguez-Perles R. Phytoprostanes and phytofurans modulate COX-2-linked inflammation markers in LPS-stimulated THP-1 monocytes by lipidomics workflow. Free Radic Biol Med 2021; 167:335-347. [PMID: 33722629 DOI: 10.1016/j.freeradbiomed.2021.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Inflammation is a fundamental pathophysiological process which occurs in the course of several diseases. The present work describes the capacity of phytoprostanes (PhytoPs) and phytofurans (PhytoFs) (plant oxylipins), present in plant-based foods, to modulate inflammatory processes mediated by prostaglandins (PGs, human oxylipins) in lipopolysaccharide (LPS)-stimulated THP-1 monocytic cells, through a panel of 21 PGs and PG's metabolites, analyzed by UHPLC-QqQ-ESI-MS/MS. Also, the assessment of the cytotoxicity of PhytoPs and PhytoFs on THP-1 cells evidenced percentages of cell viability higher than 90% when treated with up to 100 μM. Accordingly, 50 μM of the individual PhytoPs and PhytoFs 9-F1t-PhytoP, 9-epi-9-F1t-PhytoP, ent-16-F1t-PhytoP, ent-16-epi-16-F1t-PhytoP, ent-9-D1t-PhytoP, 16-B1-PhytoP, 9-L1-PhytoP, ent-16(RS)-9-epi-ST-Δ14-10-PhytoF, ent-9(RS)-12-epi-ST-Δ10-13-PhytoF, and ent-16(RS)-13-epi-ST-Δ14-9-PhytoF were evaluated on their capacity to modulate the expression of inflammatory markers. The results obtained demonstrated the presence of 7 metabolites (15-keto-PGF2α, PGF2α, 11β-PGF2α, PGE2, PGD2, PGDM, and PGF1α) in THP-1 monocytic cells, which expression was significantly modulated when exposed to LPS. The evaluation of the capacity of the individual PhytoPs and PhytoFs to revert the modification of the quantitative profile of PGs induced by LPS revealed the anti-inflammatory ability of 9-F1t-PhytoP, ent-9-D1t-PhytoP, 16-B1-PhytoP, 9-L1-PhytoP, and ent-9(RS)-12-epi-ST-Δ10-13-PhytoF, as evidenced by their capacity to prevent the up-regulation of 15-keto-PGF2α, PGF2α, PGE2, PGF1α, PGDM, and PGD2 induced by LPS. These results indicated that specific plant oxylipins can protect against inflammatory events, encouraging further investigations using plant-based foods rich in these oxylipins or enriched extracts, to identify specific bioactivities of the diverse individual molecules, which can be useful for nutrition and health in the frame of well-defined pathophysiological processes.
Collapse
Affiliation(s)
- María Campillo
- Departamento de Enfermería, Universidad Católica de Murcia, UCAM, 3010, Murcia, Spain
| | - Sonia Medina
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain.
| | - Federico Fanti
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain; University of Teramo, Faculty of Bioscience and Technology for Food, Agriculture and Environment, 64100, TE, Italy
| | - Juana I Gallego-Gómez
- Departamento de Enfermería, Universidad Católica de Murcia, UCAM, 3010, Murcia, Spain
| | | | - Valérie Bultel-Poncé
- Institut des Biomolécules Max Mousseron (IBMM), UMR, 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR, 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Jean Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR, 5247, CNRS, University of Montpellier, ENSCM, Faculty of Pharmacy, Montpellier, France
| | - Francisco A Tomás-Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain; Department of Biotechnology, College of Science, Taif University, Saudi Arabia
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain.
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo - Edif. 25, 30100, Espinardo, Spain
| |
Collapse
|
5
|
Yu B, Gao B, Zhang X, Zhang H, Huang H. Palladium‐Catalyzed
Aminomethylation of Nitrodienes and Dienones
via
Double C—N Bond Activation. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bangkui Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
| | - Bao Gao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
| | - Xuexia Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
| | - Haocheng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
- Center for Excellence in Molecular Synthesis of CAS Hefei Anhui 230026 China
| |
Collapse
|
6
|
Roy J, Vigor C, Vercauteren J, Reversat G, Zhou B, Surget A, Larroquet L, Lanuque A, Sandres F, Terrier F, Oger C, Galano JM, Corraze G, Durand T. Characterization and modulation of brain lipids content of rainbow trout fed with 100% plant based diet rich in omega-3 long chain polyunsaturated fatty acids DHA and EPA. Biochimie 2020; 178:137-147. [PMID: 32623048 DOI: 10.1016/j.biochi.2020.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
Brain functions are known to be mainly modulated by adequate dietary intake. Inadequate intake as can be an excess or significant deficiency affect cognitive processes, behavior, neuroendocrine functions and synaptic plasticity with protective or harmful effects on neuronal physiology. Lipids, in particular, ω-6 and ω-3 long chain polyunsaturated fatty acids (LC-PUFAs) play structural roles and govern the different functions of the brain. Hence, the goal of this study was to characterize the whole brain fatty acid composition (precursors, enzymatic and non-enzymatic oxidation metabolites) of fish model of rainbow trout fed with three experimental plant-based diet containing distinct levels of eicosapentaenoic acid (EPA, 20:5 ω-3) and docosahexaenoic acid (DHA, 22:6 ω-3) (0% for low, 15.7% for medium and 33.4% for high, total fatty acid content) during nine weeks. Trout fed with the diet devoid of DHA and EPA showed reduced brain content of total ω-3 LC-PUFAs, with diminution of EPA and DHA. Selected enzymatic (cyclooxygenases and lipoxygenases) oxidation metabolites of arachidonic acid (AA, 20:4 ω-6) decrease in medium and high ω-3 LC-PUFAs diets. On the contrary, total selected enzymatic oxidation metabolites of DHA and EPA increased in high ω-3 LC-PUFAs diet. Total selected non-enzymatic oxidation metabolites of DHA (not detected for EPA) increased in medium and high ω-3 LC-PUFAs diets. In conclusion, this work revealed for the first time in fish model the presence of some selected enzymatic and non-enzymatic oxidation metabolites in brain and the modulation of brain lipid content by dietary DHA and EPA levels.
Collapse
Affiliation(s)
- Jérôme Roy
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France.
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Bingqing Zhou
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Anne Surget
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Laurence Larroquet
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Anthony Lanuque
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Franck Sandres
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Frederic Terrier
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Geneviève Corraze
- INRAE, Univ Pau & Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310, Saint-Pée-sur-Nivelle, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Université de Montpellier, ENSCM, Montpellier, France
| |
Collapse
|
7
|
Domínguez-Perles R, Sánchez-Martínez I, Rodríguez-Hernández MD, López-González I, Oger C, Guy A, Durand T, Galano JM, Ferreres F, Gil-Izquierdo A. Optimization of Free Phytoprostane and Phytofuran Production by Enzymatic Hydrolysis of Pea Extracts Using Esterases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3445-3455. [PMID: 32078311 DOI: 10.1021/acs.jafc.9b06624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Given the growing interest in phytoprostanes (PhytoPs) and phytofurans (PhytoFs) in the fields of plant physiology, biotechnology, and biological function, the present study aims to optimize a method of enzymatic hydrolysis that utilizes bacterial and yeast esterases that allow the appropriate quantification of PhytoPs and PhytoFs. To obtain the highest concentration of PhytoPs and PhytoFs, a response surface methodology/Box-Behnken design was used to optimize the hydrolysis conditions. Based on the information available in the literature on the most critical parameters that influence the activity of esterases, the three variables selected for the study were temperature (°C), time (min), and enzyme concentration (%). The optimal hydrolysis conditions retrieved differed between PhytoPs (21.5 °C, 5.7 min, and 0.61 μg of enzyme per reaction) and PhytoFs (20.0 °C, 5.0 min, and 2.17 μg of enzyme per reaction) and provided up to 25.1- and 1.7-fold higher contents relative to nonhydrolyzed extracts. The models were validated by comparing theoretical and experimental values for PhytoP and PhytoF yields (1.01 and 1.06 theoretical/experimental rates, respectively). The optimal conditions were evaluated for their relative influence on the yield of individual nonesterified PhytoPs and PhytoFs to define the limitations of the models for obtaining the highest concentration of most considered compounds. In conclusion, the models developed provided valuable alternatives to the currently applied methods using unspecific alkaline hydrolysis to obtain free nonesterified PhytoPs and PhytoFs, which give rise to more specific hydrolysis of PhytoP and PhytoF esters, reducing the degradation of free compounds by classical chemical procedures.
Collapse
Affiliation(s)
- R Domínguez-Perles
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - I Sánchez-Martínez
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - M D Rodríguez-Hernández
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - I López-González
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - C Oger
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, University of Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - A Guy
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, University of Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - T Durand
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, University of Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - J M Galano
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, University of Montpellier, CNRS, ENSCM, 34090 Montpellier, France
| | - F Ferreres
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| | - A Gil-Izquierdo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, (CEBAS-CSIC), University Campus of Espinardo, Edif. 25, 30100 Murcia, Spain
| |
Collapse
|
8
|
Phenolic, oxylipin and fatty acid profiles of the Chilean hazelnut (Gevuina avellana): Antioxidant activity and inhibition of pro-inflammatory and metabolic syndrome-associated enzymes. Food Chem 2019; 298:125026. [DOI: 10.1016/j.foodchem.2019.125026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 11/24/2022]
|
9
|
Pinciroli M, Domínguez-Perles R, Garbi M, Abellán A, Oger C, Durand T, Galano JM, Ferreres F, Gil-Izquierdo A. Impact of Salicylic Acid Content and Growing Environment on Phytoprostane and Phytofuran (Stress Biomarkers) in Oryza sativa L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12561-12570. [PMID: 30384603 DOI: 10.1021/acs.jafc.8b04975] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) are oxylipins synthesized by nonenzymatic peroxidation of α-linolenic acid. These compounds are biomarkers of oxidative degradation in plant foods. In this research, the effect of environment and supplementation with salicylic acid (SA) on PhytoPs and PhytoFs was monitored by ultra-high-performance liquid chromatography coupled to electrospray ionization and triple quadrupole mass spectrometry (UHPLC-ESI-QqQ-MS/MS) on seven rice genotypes from Oryza sativa L. subsp. japonica. The plastic cover environment and spray application with 1 and 15 mM SA produced a reduction in the concentration of most of these newly established stress biomarkers [9-F1t-PhytoP, ent-16-F1t-PhytoP, ent-16- epi-16-F1t-PhytoP, 9-D1t-PhytoP, 9- epi-9-D1t-PhytoP, 16-B1-PhytoP, 9-L1-PhytoP, ent-16( RS)-9- epi-ST-Δ14-10-PhytoF, ent-9( RS)-12- epi-ST-Δ10-13-PhytoF, and ent-16( RS)-13- epi-ST-Δ14-9-PhytoF] by 60.7% on average. The modification observed in the level of PhytoPs and PhytoFs differed according to the specific oxylipins and genotype, demonstrating a close linkage between genetic features and resistance to abiotic stress, to some extent mediated by the sensitivity of plants to the plant hormone SA that participates in the physiological response of higher plants to stress. Thus, in plants exposed to stressing factors, SA contribute to modulating the redox balance, minimizing the oxidation of fatty acids and thus the syntheis of oxylipins. These results indicated that SA could be a promising tool for managing the thermotolerance of rice crop. However, it remains necessary to study the mechanism of action of PhytoPs and PhytoFs in biochemical processes related to the defense of plants and define their role as stress biomarkers through a nonenzymatic pathway.
Collapse
Affiliation(s)
- M Pinciroli
- Cátedra de Climatología y Fenología Agrícola, Facultad de Ciencias Agrarias y Forestales , Universidad Nacional de la Plata , Calle 60 y 119 , 1900 La Plata , Buenos Aires , Argentina
| | - R Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology , Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas , Campus de Espinardo 25 , 30100 Espinardo , Spain
| | - M Garbi
- Cátedra de Climatología y Fenología Agrícola, Facultad de Ciencias Agrarias y Forestales , Universidad Nacional de la Plata , Calle 60 y 119 , 1900 La Plata , Buenos Aires , Argentina
| | - A Abellán
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology , Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas , Campus de Espinardo 25 , 30100 Espinardo , Spain
| | - C Oger
- Institut des Biomolécules Max Mousseron, Unité Mixte de Recherche 5247 , University of Montpellier, Centre National de la Recherche Scientifique, and École Nationale Supérieure de Chimie de Montpellier , Montpellier , France
| | - T Durand
- Institut des Biomolécules Max Mousseron, Unité Mixte de Recherche 5247 , University of Montpellier, Centre National de la Recherche Scientifique, and École Nationale Supérieure de Chimie de Montpellier , Montpellier , France
| | - J M Galano
- Institut des Biomolécules Max Mousseron, Unité Mixte de Recherche 5247 , University of Montpellier, Centre National de la Recherche Scientifique, and École Nationale Supérieure de Chimie de Montpellier , Montpellier , France
| | - F Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology , Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas , Campus de Espinardo 25 , 30100 Espinardo , Spain
| | - A Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods. Department of Food Science and Technology , Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas , Campus de Espinardo 25 , 30100 Espinardo , Spain
| |
Collapse
|
10
|
Lupette J, Jaussaud A, Vigor C, Oger C, Galano JM, Réversat G, Vercauteren J, Jouhet J, Durand T, Maréchal E. Non-Enzymatic Synthesis of Bioactive Isoprostanoids in the Diatom Phaeodactylum following Oxidative Stress. PLANT PHYSIOLOGY 2018; 178:1344-1357. [PMID: 30237205 PMCID: PMC6236624 DOI: 10.1104/pp.18.00925] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/11/2018] [Indexed: 05/08/2023]
Abstract
The ecological success of diatoms requires a remarkable ability to survive many types of stress, including variations in temperature, light, salinity, and nutrient availability. On exposure to these stresses, diatoms exhibit common responses, including growth arrest, impairment of photosynthesis, production of reactive oxygen species, and accumulation of triacylglycerol (TAG). We studied the production of cyclopentane oxylipins derived from fatty acids in the diatom Phaeodactylum tricornutum in response to oxidative stress. P. tricornutum lacks the enzymatic pathway for producing cyclopentane-oxylipins, such as jasmonate, prostaglandins, or thromboxanes. In cells subjected to increasing doses of hydrogen peroxide (H2O2), we detected nonenzymatic production of isoprostanoids, including six phytoprostanes, three F2t-isoprostanes, two F3t-isoprostanes, and three F4t-neuroprostanes, by radical peroxidation of α-linolenic, arachidonic, eicosapentaenoic, and docosahexanoic acids, respectively. H2O2 also triggered photosynthesis impairment and TAG accumulation. F1t-phytoprostanes constitute the major class detected (300 pmol per 1 million cells; intracellular concentration, ∼4 µm). Only two glycerolipids, phosphatidylcholine and diacylglycerylhydroxymethyl-trimethyl-alanine, could provide all substrates for these isoprostanoids. Treatment of P. tricornutum with nine synthetic isoprostanoids produced an effect in the micromolar range, marked by the accumulation of TAG and reduced growth, without affecting photosynthesis. Therefore, the emission of H2O2 and free radicals upon exposure to stresses can lead to glycerolipid peroxidation and nonenzymatic synthesis of isoprostanoids, inhibiting growth and contributing to the induction of TAG accumulation via unknown processes. This characterization of nonenzymatic oxylipins in P. tricornutum opens a field of research on the study of processes controlled by isoprostanoid signaling in various physiological and environmental contexts in diatoms.
Collapse
Affiliation(s)
- Josselin Lupette
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, Institut de Biosciences Biotechnologies de Grenoble, Commissariat à l'Energie Atomique Grenoble, 38000 Grenoble, France
| | - Antoine Jaussaud
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, Institut de Biosciences Biotechnologies de Grenoble, Commissariat à l'Energie Atomique Grenoble, 38000 Grenoble, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron, Unité Mixte de Recherche 5247, Université de Montpellier, Centre National de la Recherche Scientifique, Ecole Nationale Supérieure de Chimie de Montpellier, F-34093 Montpellier cedex 05, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, Unité Mixte de Recherche 5247, Université de Montpellier, Centre National de la Recherche Scientifique, Ecole Nationale Supérieure de Chimie de Montpellier, F-34093 Montpellier cedex 05, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, Unité Mixte de Recherche 5247, Université de Montpellier, Centre National de la Recherche Scientifique, Ecole Nationale Supérieure de Chimie de Montpellier, F-34093 Montpellier cedex 05, France
| | - Guillaume Réversat
- Institut des Biomolécules Max Mousseron, Unité Mixte de Recherche 5247, Université de Montpellier, Centre National de la Recherche Scientifique, Ecole Nationale Supérieure de Chimie de Montpellier, F-34093 Montpellier cedex 05, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron, Unité Mixte de Recherche 5247, Université de Montpellier, Centre National de la Recherche Scientifique, Ecole Nationale Supérieure de Chimie de Montpellier, F-34093 Montpellier cedex 05, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, Institut de Biosciences Biotechnologies de Grenoble, Commissariat à l'Energie Atomique Grenoble, 38000 Grenoble, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, Unité Mixte de Recherche 5247, Université de Montpellier, Centre National de la Recherche Scientifique, Ecole Nationale Supérieure de Chimie de Montpellier, F-34093 Montpellier cedex 05, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, Institut de Biosciences Biotechnologies de Grenoble, Commissariat à l'Energie Atomique Grenoble, 38000 Grenoble, France
| |
Collapse
|
11
|
Vigor C, Reversat G, Rocher A, Oger C, Galano JM, Vercauteren J, Durand T, Tonon T, Leblanc C, Potin P. Isoprostanoids quantitative profiling of marine red and brown macroalgae. Food Chem 2018; 268:452-462. [PMID: 30064783 DOI: 10.1016/j.foodchem.2018.06.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 12/26/2022]
Abstract
With the increasing demand for direct human and animal consumption seaweed farming is rapidly expanding worldwide. Macroalgae have colonized aquatic environments in which they are submitted to frequent changes in biotic and abiotic factors that can trigger oxidative stress (OS). Considering that isoprostanoid derivatives may constitute the most relevant OS biomarkers, we were interested to establish their profile in two red and four brown macroalgae. Seven phytoprostanes, three phytofuranes, and four isoprostanes were quantified through a new micro-LC-MS/MS method. The isoprostanoid contents vary greatly among all the samples, the ent-16(RS)-9-epi-ST-Δ14-10-PhytoF and the sum of 5-F2t-IsoP and 5-epi-5F2t-IsoP being the major compounds for most of the macroalgae studied. We further quantified these isoprostanoids in macroalgae submitted to heavy metal (copper) exposure. In most of the cases, their concentrations increased after 24 h of copper stress corroborating the original hypothesis. One exception is the decrease of ent-9-L1-PhytoP content in L. digitata.
Collapse
Affiliation(s)
- Claire Vigor
- Institut des Biomolécules Max Mousseron IBMM - UMR 5247 - CNRS - UM - ENSCM, Faculté de pharmacie 15, Avenue Charles Flahault, 34060 Montpellier CEDEX 2, France.
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron IBMM - UMR 5247 - CNRS - UM - ENSCM, Faculté de pharmacie 15, Avenue Charles Flahault, 34060 Montpellier CEDEX 2, France
| | - Amandine Rocher
- Institut des Biomolécules Max Mousseron IBMM - UMR 5247 - CNRS - UM - ENSCM, Faculté de pharmacie 15, Avenue Charles Flahault, 34060 Montpellier CEDEX 2, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron IBMM - UMR 5247 - CNRS - UM - ENSCM, Faculté de pharmacie 15, Avenue Charles Flahault, 34060 Montpellier CEDEX 2, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron IBMM - UMR 5247 - CNRS - UM - ENSCM, Faculté de pharmacie 15, Avenue Charles Flahault, 34060 Montpellier CEDEX 2, France
| | - Joseph Vercauteren
- Institut des Biomolécules Max Mousseron IBMM - UMR 5247 - CNRS - UM - ENSCM, Faculté de pharmacie 15, Avenue Charles Flahault, 34060 Montpellier CEDEX 2, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron IBMM - UMR 5247 - CNRS - UM - ENSCM, Faculté de pharmacie 15, Avenue Charles Flahault, 34060 Montpellier CEDEX 2, France
| | - Thierry Tonon
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Philippe Potin
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| |
Collapse
|
12
|
Domínguez-Perles R, Abellán Á, León D, Ferreres F, Guy A, Oger C, Galano JM, Durand T, Gil-Izquierdo Á. Sorting out the phytoprostane and phytofuran profile in vegetable oils. Food Res Int 2018; 107:619-628. [PMID: 29580528 DOI: 10.1016/j.foodres.2018.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/01/2018] [Accepted: 03/04/2018] [Indexed: 10/17/2022]
Abstract
Phytoprostanes (PhytoPs) and phytofurans (PhytoFs) are prostaglandin-like compounds, contributing to defense signaling and prevention of cellular damage. These plant oxylipins result from autoxidation of α-linolenic acid (ALA) and have been proposed as new bioactive compounds due to their structural analogies with isoprostanes (IsoPs) and prostanoids derived from arachidonic acid in mammals, which have demonstrated diverse biological activities. The present work assesses a wide range of vegetable oils - including extra virgin olive oils (n = 7) and flax, sesame, argan, safflower seed, grapeseed, and palm oils - for their content of PhytoPs and PhytoFs. Flax oil displayed the highest concentrations, being notable the presence of 9-epi-9-D1t-PhytoP, 9-D1t-PhytoP, 16-B1-PhytoP, and 9-L1-PhytoP (7.54, 28.09, 28.67, and 19.22 μg mL-1, respectively), which contributed to a total PhytoPs concentration of 119.15 μg mL-1, and of ent-16-(RS)-9-epi-ST-Δ14-10-PhytoF (21.46 μg mL-1). Palm and grapeseed oils appeared as the most appropriate negative controls, given the near absence of PhytoPs and PhytoFs (lower than 0.15 μg mL-1). These data inform on the chance to develop nutritional trials using flax and grapeseed oils as food matrices that would provide practical information to design further assays intended to determine the actual bioavailability/bioactivity in vivo.
Collapse
Affiliation(s)
- Raúl Domínguez-Perles
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Ángel Abellán
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Daniel León
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Federico Ferreres
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain
| | - Alexander Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Jean Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Ángel Gil-Izquierdo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, University Campus of Espinardo, Edif. 25, 30100, Espinardo, Murcia, Spain.
| |
Collapse
|
13
|
Smrček J, Pohl R, Jahn U. Total syntheses of all tri-oxygenated 16-phytoprostane classes via a common precursor constructed by oxidative cyclization and alkyl-alkyl coupling reactions as the key steps. Org Biomol Chem 2017; 15:9408-9414. [PMID: 29095476 DOI: 10.1039/c7ob02505j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unified strategy for the total synthesis of the methyl esters of all phytoprostane (PhytoP) classes bearing two ring-oxygen atoms based on an orthogonally protected common precursor is described. Racemic 16-F1t-, 16-E1-PhytoP and their C-16 epimers, which also occur as racemates in Nature, were successfully obtained. The first total synthesis of very sensitive 16-D1t-PhytoP succeeded, however, it quickly isomerized to more stable, but so far also unknown Δ13-16-D1t-PhytoP, which may serve as a more reliable biomarker for D-type PhytoP. The dioxygenated cyclopentane ring carrying the ω-chain with the oxygen functionality in the 16-position was approached by a radical oxidative cyclization mediated by ferrocenium hexafluorophosphate and TEMPO. The α-chain was introduced by a new copper-catalyzed alkyl-alkyl coupling of a 6-heptenyl Grignard reagent with a functionalized cyclopentylmethyl triflate.
Collapse
Affiliation(s)
- Jakub Smrček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610 Prague 6, Czech Republic.
| | | | | |
Collapse
|
14
|
Pinciroli M, Domínguez-Perles R, Abellán A, Guy A, Durand T, Oger C, Galano JM, Ferreres F, Gil-Izquierdo A. Comparative Study of the Phytoprostane and Phytofuran Content of indica and japonica Rice (Oryza sativa L.) Flours. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8938-8947. [PMID: 28931281 DOI: 10.1021/acs.jafc.7b03482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phytoprostanes and phytofurans (PhytoPs and PhytoFs, respectively) are nonenzymatic lipid peroxidation products derived from α-linolenic acid (C18:3 n-3), considered biomarkers of oxidative degradation in plant foods. The present work profiled these compounds in white and brown grain flours and rice bran from 14 rice cultivars of the subspecies indica and japonica by ultrahigh performance liquid chromatography coupled to electrospray ionization and triple quadrupole mass spectrometry. For PhytoPs, the average concentrations were higher in rice bran (0.01-9.35 ng g-1) than in white and brown grain flours (0.01-1.17 ng g-1). In addition, the evaluation of rice flours for the occurrence PhytoFs evidenced average values 1.77, 4.22, and 10.30 ng g-1 dw in rice bran, brown grain flour, and white grain flour, respectively. A significant correlation was observed between total and individual compounds. The concentrations retrieved suggest rice bran as a valuable source of PhytoPs and PhytoFs that should be considered in further studies on bioavailability and bioactivity of such compounds.
Collapse
Affiliation(s)
- M Pinciroli
- Programa Arroz, Facultad de Ciencias Agrarias y Forestales Universidad Nacional de la Plata . Calle 60 y 119, 1900 La Plata, Buenos Aires, Argentina
| | - R Domínguez-Perles
- Research Group on Quality, Safety and Bioactivity of Plant Foods.Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, 30100 Espinardo, Spain
| | - A Abellán
- Research Group on Quality, Safety and Bioactivity of Plant Foods.Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, 30100 Espinardo, Spain
| | - A Guy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , 34090 Montpellier, France
| | - T Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , 34090 Montpellier, France
| | - C Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , 34090 Montpellier, France
| | - J M Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, University of Montpellier, ENSCM , 34090 Montpellier, France
| | - F Ferreres
- Research Group on Quality, Safety and Bioactivity of Plant Foods.Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, 30100 Espinardo, Spain
| | - A Gil-Izquierdo
- Research Group on Quality, Safety and Bioactivity of Plant Foods.Department of Food Science and Technology, CEBAS-CSIC , Campus de Espinardo 25, 30100 Espinardo, Spain
| |
Collapse
|
15
|
Medina S, Collado-González J, Ferreres F, Londoño-Londoño J, Jiménez-Cartagena C, Guy A, Durand T, Galano JM, Gil-Izquierdo A. Quantification of phytoprostanes – bioactive oxylipins – and phenolic compounds of Passiflora edulis Sims shell using UHPLC-QqQ-MS/MS and LC-IT-DAD-MS/MS. Food Chem 2017; 229:1-8. [DOI: 10.1016/j.foodchem.2017.02.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/08/2017] [Accepted: 02/10/2017] [Indexed: 12/20/2022]
|
16
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2015. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|