1
|
Stoia D, De Sio L, Petronella F, Focsan M. Recent advances towards point-of-care devices for fungal detection: Emphasizing the role of plasmonic nanomaterials in current and future technologies. Biosens Bioelectron 2024; 255:116243. [PMID: 38547645 DOI: 10.1016/j.bios.2024.116243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024]
Abstract
Fungal infections are a significant global health problem, particularly affecting individuals with weakened immune systems. Moreover, as uncontrolled antibiotic and immunosuppressant use increases continuously, fungal infections have seen a dramatic increase, with some strains developing antibiotic resistance. Traditional approaches to identifying fungal strains often rely on morphological characteristics, thus owning limitations, such as struggles in identifying several strains or distinguishing between fungal strains with similar morphologies. This review explores the multifaceted impact of fungi infections on individuals, healthcare providers, and society, highlighting the often-underestimated economic burden and healthcare implications of these infections. In light of the serious constraints of traditional fungal identification methods, this review discusses the potential of plasmonic nanoparticle-based biosensors for fungal infection identification. These biosensors can enable rapid and precise fungal pathogen detection by exploiting several readout approaches, including various spectroscopic techniques, colorimetric and electrochemical assays, as well as lateral-flow immunoassay methods. Moreover, we report the remarkable impact of plasmonic Lab on a Chip technology and microfluidic devices, as they recently emerged as a class of advanced biosensors. Finally, we provide an overview of smartphone-based Point-of-Care devices and the associated technologies developed for detecting and identifying fungal pathogens.
Collapse
Affiliation(s)
- Daria Stoia
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271, Cluj-Napoca, Romania
| | - Luciano De Sio
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, 04100, Latina, Italy
| | - Francesca Petronella
- National Research Council of Italy, Institute of Crystallography CNR-IC, Area della Ricerca Roma 1 Strada Provinciale 35d, n. 9, 00010, Montelibretti (RM), Italy.
| | - Monica Focsan
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, 1 M. Kogalniceanu Street, 400084, Cluj-Napoca, Romania; Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 42 Treboniu Laurian Street, 400271, Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Yang X, Huang R, Xiong L, Chen F, Sun W, Yu L. A Colorimetric Aptasensor for Ochratoxin A Detection Based on Tetramethylrhodamine Charge Effect-Assisted Silver Enhancement. BIOSENSORS 2023; 13:bios13040468. [PMID: 37185543 PMCID: PMC10136965 DOI: 10.3390/bios13040468] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023]
Abstract
A novel colorimetric aptasensor based on charge effect-assisted silver enhancement was developed to detect ochratoxin A (OTA). To achieve this objective, gold nanoparticles (AuNPs), which can catalyze silver reduction and deposition, were used as the carrier of the aptamers tagged with a positively charged tetramethylrhodamine (TAMRA). Due to the mutual attraction of positive and negative charges, the TAMRA attracted and retained the silver lactate around the AuNPs. Thus, the chance of AuNP-catalyzed silver reduction was increased. The charge effect-assisted silver enhancement was verified by tagging different base pair length aptamers with TAMRA. Under optimized conditions, the as-prepared OTA aptasensor had a working range of 1 × 102-1 × 106 pg mL-1. The detection limit was as low as 28.18 pg mL-1. Moreover, the proposed aptasensor has been successfully applied to determine OTA in actual samples with satisfactory results.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Rong Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Lulu Xiong
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Feng Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| | - Wei Sun
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Ling Yu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, Institute for Clean Energy and Advanced Materials, School of Materials and Energy, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Subodh, Ravina, Priyanka, Narang J, Mohan H. Biosensors for phytohormone Abscisic acid and its role in humans: A review. SENSORS INTERNATIONAL 2023. [DOI: 10.1016/j.sintl.2023.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
|
4
|
Yang Y, Ren MY, Xu XG, Han Y, Zhao X, Li CH, Zhao ZL. Recent advances in simultaneous detection strategies for multi-mycotoxins in foods. Crit Rev Food Sci Nutr 2022; 64:3932-3960. [PMID: 36330603 DOI: 10.1080/10408398.2022.2137775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mycotoxin contamination has become a challenge in the field of food safety testing, given the increasing emphasis on food safety in recent years. Mycotoxins are widely distributed, in heavily polluted areas. Food contamination with these toxins is difficult to prevent and control. Mycotoxins, as are small-molecule toxic metabolites produced by several species belonging to the genera Aspergillus, Fusarium, and Penicillium growing in food. They are considered teratogenic, carcinogenic, and mutagenic to humans and animals. Food systems are often simultaneously contaminated with multiple mycotoxins. Due to the additive or synergistic toxicological effects caused by the co-existence of multiple mycotoxins, their individual detection requires reliable, accurate, and high-throughput techniques. Currently available, methods for the detection of multiple mycotoxins are mainly based on chromatography, spectroscopy (colorimetry, fluorescence, and surface-enhanced Raman scattering), and electrochemistry. This review provides a comprehensive overview of advances in the multiple detection methods of mycotoxins during the recent 5 years. The principles and features of these techniques are described. The practical applications and challenges associated with assays for multiple detection methods of mycotoxins are summarized. The potential for future development and application is discussed in an effort, to provide standards of references for further research.
Collapse
Affiliation(s)
- Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Meng-Yu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xiao-Guang Xu
- School of Traditional Chinese Medicine, Hebei University, Baoding, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Xin Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Chun-Hua Li
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| | - Zhi-Lei Zhao
- School of Quality and Technical Supervision, Hebei University, Baoding, China
- National & Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding, China
- Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding, China
| |
Collapse
|
5
|
Geleta GS. A colorimetric aptasensor based on gold nanoparticles for detection of microbial toxins: an alternative approach to conventional methods. Anal Bioanal Chem 2022; 414:7103-7122. [PMID: 35902394 DOI: 10.1007/s00216-022-04227-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/01/2022]
Abstract
Frequent contamination of foods with microbial toxins produced by microorganisms such as bacteria, fungi, and algae represents an increasing public health problem that requires the development of quick and easy tools to detect them at trace levels. Recently, it has been found that colorimetric detection methods may replace traditional methods in the field because of their ease of use, quick response, ease of manufacture, low cost, and naked-eye visibility. Therefore, it is suitable for fieldwork, especially for work in remote areas of the world. However, the development of colorimetric detection methods with low detection limits is a challenge that limits their wide applicability in the detection of food contaminants. To address these challenges, nanomaterial-based transduction systems are used to construct colorimetric biosensors. For example, gold nanoparticles (AuNPs) provide an excellent platform for the development of colorimetric biosensors because they offer the advantages of easy synthesis, biocompatibility, advanced surface functionality, and adjustable physicochemical properties. The selectivity of the colorimetric biosensor can be achieved by the combination of aptamers and gold nanoparticles, which provides an unprecedented opportunity to detect microbial toxins. Compared to antibodies, aptamers have significant advantages in the analysis of microbial toxins due to their smaller size, higher binding affinity, reproducible chemical synthesis and modification, stability, and specificity. Two colorimetric mechanisms for the detection of microbial toxins based on AuNPs have been described. First, sensors that use the localized surface plasmon resonance (LSPR) phenomenon of gold nanoparticles can exhibit very strong colors in the visible range because of changes caused by aggregation or disaggregation. Second, the detection mechanism of AuNPs is based on their enzyme mimetic properties and it is possible to construct a colorimetric biosensor based on the 3,3',5,5'-tetramethylbenzidine/Hydrogen peroxide, TMB/H2O2 reaction to detect microbial toxins. Therefore, this review summarizes the recent applications of AuNP-based colorimetric aptasensors for detecting microbial toxins, including bacterial toxins, fungal toxins, and algal toxins focusing on selectivity, sensitivity, and practicality. Finally, the most important current challenges in this field and future research opportunities are discussed.
Collapse
Affiliation(s)
- Girma Salale Geleta
- Department of Chemistry, College of Natural Sciences, Salale University, P.O. Box 245, Oromia, Fiche, Ethiopia.
| |
Collapse
|
6
|
Park JA, Amri C, Kwon Y, Lee JH, Lee T. Recent Advances in DNA Nanotechnology for Plasmonic Biosensor Construction. BIOSENSORS 2022; 12:bios12060418. [PMID: 35735565 PMCID: PMC9220935 DOI: 10.3390/bios12060418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Since 2010, DNA nanotechnology has advanced rapidly, helping overcome limitations in the use of DNA solely as genetic material. DNA nanotechnology has thus helped develop a new method for the construction of biosensors. Among bioprobe materials for biosensors, nucleic acids have shown several advantages. First, it has a complementary sequence for hybridizing the target gene. Second, DNA has various functionalities, such as DNAzymes, DNA junctions or aptamers, because of its unique folded structures with specific sequences. Third, functional groups, such as thiols, amines, or other fluorophores, can easily be introduced into DNA at the 5′ or 3′ end. Finally, DNA can easily be tailored by making junctions or origami structures; these unique structures extend the DNA arm and create a multi-functional bioprobe. Meanwhile, nanomaterials have also been used to advance plasmonic biosensor technologies. Nanomaterials provide various biosensing platforms with high sensitivity and selectivity. Several plasmonic biosensor types have been fabricated, such as surface plasmons, and Raman-based or metal-enhanced biosensors. Introducing DNA nanotechnology to plasmonic biosensors has brought in sight new horizons in the fields of biosensors and nanobiotechnology. This review discusses the recent progress of DNA nanotechnology-based plasmonic biosensors.
Collapse
Affiliation(s)
- Jeong Ah Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (J.A.P.); (Y.K.)
| | - Chaima Amri
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Korea;
| | - Yein Kwon
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (J.A.P.); (Y.K.)
| | - Jin-Ho Lee
- Department of Convergence Medical Sciences, School of Medicine, Pusan National University, Yangsan 50612, Korea;
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea
- Correspondence: (J.-H.L.); (T.L.); Tel.: +82-51-510-8547 (J.-H.L.); +82-2-940-5771 (T.L.)
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Korea; (J.A.P.); (Y.K.)
- Correspondence: (J.-H.L.); (T.L.); Tel.: +82-51-510-8547 (J.-H.L.); +82-2-940-5771 (T.L.)
| |
Collapse
|
7
|
Xiong Y, Li W, Wen Q, Xu D, Ren J, Lin Q. Aptamer-engineered nanomaterials to aid in mycotoxin determination. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Nanomaterial-based aptamer biosensors for ochratoxin A detection: a review. Anal Bioanal Chem 2022; 414:2953-2969. [PMID: 35296913 DOI: 10.1007/s00216-022-03960-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 01/01/2023]
Abstract
Ochratoxin A (OTA) is a widely distributed mycotoxin that often contaminates food, grains and animal feed. It poses a serious threat to human health because of its high toxicity and persistence. Therefore, the development of an inexpensive, highly sensitive, accurate and rapid method for OTA detection is imperative. In recent years, various nanomaterials used in the establishment of aptasensors have attracted great attention due to their large surface-to-volume ratio, good stability and facile preparation. This review summarizes the development of nanomaterial-based aptasensors for OTA determination and sample treatment over the past 5 years. The nanomaterials used in OTA aptasensors include metal, carbon, luminescent, magnetic and other nanomaterials. Finally, the limitations and future challenges in the development of nanomaterial-based OTA aptasensors are reviewed and discussed.
Collapse
|
9
|
Cao J, Lv P, Shu Y, Wang J. Aptamer/AuNPs encoders endow precise identification and discrimination of lipoprotein subclasses. Biosens Bioelectron 2022; 196:113743. [PMID: 34740115 DOI: 10.1016/j.bios.2021.113743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 12/29/2022]
Abstract
Lipoproteins are composed of lipid and apolipoproteins in conjunction with noncovalent bonds. Different lipoprotein categories, particularly Low-Density Lipoprotein (LDL), High-Density Lipoprotein (HDL) and Very Low-Density Lipoprotein (VLDL) disagree in roles for the occurrence and development of cardiovascular disease, and their exact discrimination are critically required. Herein, a multiplexed sensor platform combined with an encoder system is introduced for accurate analysis of multiple lipoproteins in complex matrix. Three encoders, i.e., bare AuNPs, AuNPs-anti-LDL aptamer (AuNPs-apt) and AuNPs-non-aptamer DNA (AuNPs-n), facilitate precise discrimination for lipoprotein subclasses at a fairly low level of 0.490 nM. The binding of single-stranded DNA (ssDNA) with AuNPs prevents them from gathering in a relatively higher level of salt. In targets stimuli, the weaker binding between ssDNA and AuNPs is destroyed to certain degrees depending on the differential affinities among DNA, AuNPs, and multifarious proteins. It results in distinct aggregation states of encoders to cause diverse ultraviolet absorption, which may be statistically characterized to achieve highly facile and precise identification for lipoprotein subclasses. Remarkably, LDL at 0.05-37.5 μg/mL could be identified by the encoder system. 11 typical proteins including three lipoprotein subclasses in human serum were also precisely discriminated. Furthermore, the accurate identification of lipoprotein subclasses with different molar ratios from real clinical serum samples were obtained.
Collapse
Affiliation(s)
- Jianfang Cao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Peiying Lv
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
10
|
Zhang N, Li J, Liu B, Zhang D, Zhang C, Guo Y, Chu X, Wang W, Wang H, Yan X, Li Z. Signal enhancing strategies in aptasensors for the detection of small molecular contaminants by nanomaterials and nucleic acid amplification. Talanta 2022; 236:122866. [PMID: 34635248 DOI: 10.1016/j.talanta.2021.122866] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/05/2021] [Accepted: 09/08/2021] [Indexed: 12/20/2022]
Abstract
Small molecular contaminants (such as mycotoxins, antibiotics, pesticide residues, etc.) in food and environment have given rise to many biological and ecological toxicities, which has attracted worldwide attention in recent years. Meanwhile, due to the advantages of aptamers such as high specificity and stability, easy synthesis and modification, as well as low cost and immunogenicity, various aptasensors for the detection of small molecular contaminants have been flourishing. An aptasensor as a whole is composed of an aptamer-based target recognizer and a signal transducer, which are fields of concentrated research. In the practical detection applications, in order to achieve the quantitative detection of small molecular contaminants at low abundance in real samples, a large number of signal enhancing strategies have been utilized in the development of aptasensors. Recent years is a vintage period for efficient signal enhancing strategies of aptasensors by the aid of nanomaterials and nucleic acid amplification that are applied in the elements for target recognition and signal conversion. Therefore, this paper meticulously reviews the signal enhancing strategies based on nanomaterials (including the (quasi-)zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanomaterials) and nucleic acid amplification (including enzyme-assisted nucleic acid amplification and enzyme-free nucleic acid amplification). Furthermore, the challenges and future trends of the abovementioned signal enhancing strategies for application are also discussed in order to inspire the practitioners in the research and development of aptasensors for small molecular contaminants.
Collapse
Affiliation(s)
- Nan Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jingrong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Boshi Liu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chengyu Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuheng Guo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinhong Chu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Wenting Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Haixia Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
11
|
Histidine Functionalized Gold Nanoparticles for Screening Aminoglycosides and Nanomolar Level Detection of Streptomycin in Water, Milk, and Whey. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9120358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aminoglycoside (AMG) antibiotics are being applied to treat infections caused by Gram-negative bacteria, mainly in livestock, and are prescribed only in severe cases because of their adverse impacts on human health and the environment. Monitoring antibiotic residues in dairy products relies on the accessibility of portable and efficient analytical techniques. Presently, high-throughput screening techniques have been proposed to detect several antimicrobial drugs having identical structural and functional features. The L-histidine functionalized gold nanoparticles (His@AuNPs) do not form a complex with other tested antibiotic classes but show high selectivity for AMG antibiotics. We used ligand-induced aggregation of His@AuNPs as a rapid and sensitive localized surface plasmon resonance (LSPR) assay for AMG antibiotics, producing longitudinal extinction shifts at 660 nm. Herein, we explore the practical application of His@AuNPs to detect streptomycin spiked in water, milk, and whey fraction of milk with nanomolar level sensitivity. The ability of the analytical method to recognize target analytes sensitively and rapidly is of great significance to perform monitoring, thus would certainly reassure widespread use of AMG antibiotics. The biosynthesis of hybrid organic–inorganic metal nanoparticles like His@AuNPs with desired size distribution, stability, and specific host–guest recognition proficiency, would further facilitate applications in various other fields.
Collapse
|
12
|
Comparison study of nanofibers, composite nano/microfiber materials, molecularly imprinted polymers, and core-shell sorbents used for on-line extraction-liquid chromatography of ochratoxins in Tokaj wines. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Kim DM, Park JS, Jung SW, Yeom J, Yoo SM. Biosensing Applications Using Nanostructure-Based Localized Surface Plasmon Resonance Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:3191. [PMID: 34064431 PMCID: PMC8125509 DOI: 10.3390/s21093191] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/06/2023]
Abstract
Localized surface plasmon resonance (LSPR)-based biosensors have recently garnered increasing attention due to their potential to allow label-free, portable, low-cost, and real-time monitoring of diverse analytes. Recent developments in this technology have focused on biochemical markers in clinical and environmental settings coupled with advances in nanostructure technology. Therefore, this review focuses on the recent advances in LSPR-based biosensor technology for the detection of diverse chemicals and biomolecules. Moreover, we also provide recent examples of sensing strategies based on diverse nanostructure platforms, in addition to their advantages and limitations. Finally, this review discusses potential strategies for the development of biosensors with enhanced sensing performance.
Collapse
Affiliation(s)
- Dong Min Kim
- Center for Applied Life Science, Hanbat National University, Daejeon 34158, Korea;
| | - Jong Seong Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| | - Seung-Woon Jung
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| | - Jinho Yeom
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| | - Seung Min Yoo
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea; (J.S.P.); (S.-W.J.); (J.Y.)
| |
Collapse
|
14
|
Singh AK, Lakshmi GBVS, Dhiman TK, Kaushik A, Solanki PR. Bio-Active Free Direct Optical Sensing of Aflatoxin B1 and Ochratoxin A Using a Manganese Oxide Nano-System. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2020.621681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aflatoxins-B1 (AFB1) and Ochratoxin-A (OchA) are the two types of major mycotoxin produced by Aspergillus flavus, Aspergillus parasiticus fungi, Aspergillus carbonarius, Aspergillus niger, and Penicillium verrocusumv. These toxins are mainly found in metabolite cereals, corn, coffee beans, and other oil-containing food items. Excessive consumption of these toxins can be carcinogenic and lead to cancer. Thus, their rapid testing became essential for food quality control. Herein, manganese oxide nanoparticles (MnO2 nps) have been proposed to explore the interaction with AFB1 and OchA using UV-visible spectroscopy. MnO2 nps were synthesized using the co-precipitation method. They were pure and crystalline with an average crystallite size of 5–6 nm. In the UV-vis study, the maximum absorbance for MnO2 nps was observed around 260 nm. The maximum absorbance for AFB1 and OchA was observed at 365 and 380 nm, respectively, and its intensity enhanced with the addition of MnO2 nps. Sequential changes were observed with varying the concentration of AFB1 and OchA with a fixed concentration of MnO2 nps, resulting in proper interaction. The binding constant (kb) and Gibbs free energy for MnO2 nps-AFB1 and OchA were observed as 1.62 × 104 L g−1 and 2.67 × 104 L g−1, and −24.002 and −25.256 kJ/mol, respectively. The limit of detection for AFB1 and OchA was measured as 4.08 and 10.84 ng/ml, respectively. This bio‐active free direct sensing approach of AFB1 and OchA sensing can be promoted as a potential analytical tool to estimate food quality rapidly and affordable manner at the point of use.
Collapse
|
15
|
Kuitio C, Klangprapan S, Chingkitti N, Boonthavivudhi S, Choowongkomon K. Aptasensor for paraquat detection by gold nanoparticle colorimetric method. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2021; 56:370-377. [PMID: 33616003 DOI: 10.1080/03601234.2021.1888615] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This study aimed to develop an aptasensor for paraquat detection by gold nanoparticles. The specific aptamer for paraquat was selected by using the SELEX process via capillary electrophoresis. Sixty-three aptamer candidates were amplified by asymmetric PCR and screened for paraquat binding using gold nanoparticles (AuNPs). Aggregation of AuNPs was specifically induced by desorption of paraquat binding aptamers from the surface of AuNPs as a result of aptamer-target interaction leading to the color change from red to purple. Aptamer 77F with the following sequence: 5'-AGGCTTACACCTGAAAAGCGGCTTAATTTACACTACTGTAT-3' was selected as a highly specific aptamer for paraquat. The detection limit of paraquat was 0.267 µg/mL by colorimetry and 1.573 µg/mL by the quartz crystal microbalance (QCM) technique. This aptamer showed specificity for paraquat by colorimetry. Dimethyl phophite, diethyl phophite and O,O diethyl thiophosphate potassium salt did not react by colorimetry but, exhibited a weak nonspecific reaction by QCM. This is first time that an aptasensor was used for detection of paraquat based on QCM. However, the aptasensor based on the colorimetric method simply uses a generation of a signal that can be detected by the naked eye. This technique is rapid, low cost easy to use and suitable for on-site detection of herbicide residue.
Collapse
Affiliation(s)
- Chakpetch Kuitio
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Supaporn Klangprapan
- Genetic Engineering Interdisciplinary Program, Graduate School, Kasetsart University, Chatuchak, Bangkok, Thailand
| | - Netnapa Chingkitti
- Division of Occupational and Environmental Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Sornsamat Boonthavivudhi
- Division of Occupational and Environmental Diseases, Department of Disease Control, Ministry of Public Health, Nonthaburi, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
16
|
Majdinasab M, Ben Aissa S, Marty JL. Advances in Colorimetric Strategies for Mycotoxins Detection: Toward Rapid Industrial Monitoring. Toxins (Basel) 2020; 13:13. [PMID: 33374434 PMCID: PMC7823678 DOI: 10.3390/toxins13010013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mycotoxins contamination is a global public health concern. Therefore, highly sensitive and selective techniques are needed for their on-site monitoring. Several approaches are conceivable for mycotoxins analysis, among which colorimetric methods are the most attractive for commercialization purposes thanks to their visual read-out, easy operation, cost-effectiveness, and rapid response. This review covers the latest achievements in the last five years for the development of colorimetric methods specific to mycotoxins analysis, with a particular emphasis on their potential for large-scale applications in food industries. Gathering all types of (bio)receptors, main colorimetric methods are critically discussed, including enzyme-linked assays, lateral flow-assays, microfluidic devices, and homogenous in-solution strategies. This special focus on colorimetry as a versatile transduction method for mycotoxins analysis is comprehensively reviewed for the first time.
Collapse
Affiliation(s)
- Marjan Majdinasab
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran;
| | - Sondes Ben Aissa
- BAE-LBBM Laboratory, University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France;
| | - Jean Louis Marty
- BAE-LBBM Laboratory, University of Perpignan via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France;
| |
Collapse
|
17
|
Natarajan P, Tomich JM. Understanding the influence of experimental factors on bio-interactions of nanoparticles: Towards improving correlation between in vitro and in vivo studies. Arch Biochem Biophys 2020; 694:108592. [PMID: 32971033 PMCID: PMC7503072 DOI: 10.1016/j.abb.2020.108592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Bionanotechnology has developed rapidly over the past two decades, owing to the extensive and versatile, functionalities and applicability of nanoparticles (NPs). Fifty-one nanomedicines have been approved by FDA since 1995, out of the many NPs based formulations developed to date. The general conformation of NPs consists of a core with ligands coating their surface, that stabilizes them and provides them with added functionalities. The physicochemical properties, especially the surface composition of NPs influence their bio-interactions to a large extent. This review discusses recent studies that help understand the nano-bio interactions of iron oxide and gold NPs with different surface compositions. We discuss the influence of the experimental factors on the outcome of the studies and, thus, the importance of standardization in the field of nanotechnology. Recent studies suggest that with careful selection of experimental parameters, it is possible to improve the positive correlation between in vitro and in vivo studies. This provides a fundamental understanding of the NPs which helps in assessing their potential toxic side effects and may aid in manipulating them further to improve their biocompatibility and biosafety.
Collapse
|
18
|
Using Aptamers as a Novel Method for Determining GnRH/LH Pulsatility. Int J Mol Sci 2020; 21:ijms21197394. [PMID: 33036411 PMCID: PMC7582658 DOI: 10.3390/ijms21197394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 11/26/2022] Open
Abstract
Aptamers are a novel technology enabling the continuous measurement of analytes in blood and other body compartments, without the need for repeated sampling and the associated reagent costs of traditional antibody-based methodologies. Aptamers are short single-stranded synthetic RNA or DNA that recognise and bind to specific targets. The conformational changes that can occur upon aptamer–ligand binding are transformed into chemical, fluorescent, colour changes and other readouts. Aptamers have been developed to detect and measure a variety of targets in vitro and in vivo. Gonadotropin-releasing hormone (GnRH) is a pulsatile hypothalamic hormone that is essential for normal fertility but difficult to measure in the peripheral circulation. However, pulsatile GnRH release results in pulsatile luteinizing hormone (LH) release from the pituitary gland. As such, LH pulsatility is the clinical gold standard method to determine GnRH pulsatility in humans. Aptamers have recently been shown to successfully bind to and measure GnRH and LH, and this review will focus on this specific area. However, due to the adaptability of aptamers, and their suitability for incorporation into portable devices, aptamer-based technology is likely to be used more widely in the future.
Collapse
|
19
|
Recent advances in aptasensors for mycotoxin detection: On the surface and in the colloid. Talanta 2020; 223:121729. [PMID: 33303172 DOI: 10.1016/j.talanta.2020.121729] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 01/08/2023]
Abstract
Mycotoxins are a great potential threat to human health, and the progress in the development of mycotoxin detection methods is of an escalating importance with the increasing emphasis on food safety. Aptamer, performing the same function as antibody in specific binding with targets, exhibits profound potential in biosensing since its debut in 1990. Recent years have witnessed the rapid development of aptasensors for mycotoxin detection with the achievement of ultralow limit of detection and high sensitivity in the lab. However, there is still no officially approved aptasensing methods in mycotoxin detection application. In order to provide researchers with inspirations in the design and development of aptasensors for mycotoxin detection, we divide these aptasensors into two types, namely "on the surface" and "in the colloid", according to the location where the key sensing reaction occurs. We also systematically review aptasensors reported in the past 5 years under the abovementioned criterion of classification, and compare the advantages and disadvantages of each kind of aptasensors. Finally, we discuss prospective directions in the development of aptasensors for mycotoxin detection. This paper will offer insight and motivation to practitioners working on the research and practical application of aptasensors in the detection of mycotoxins and other substances.
Collapse
|
20
|
Zhang F, Huang PJJ, Liu J. Sensing Adenosine and ATP by Aptamers and Gold Nanoparticles: Opposite Trends of Color Change from Domination of Target Adsorption Instead of Aptamer Binding. ACS Sens 2020; 5:2885-2893. [PMID: 32847353 DOI: 10.1021/acssensors.0c01169] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The 27 mer DNA aptamer for adenosine and adenosine 5'-triphosphate (ATP) is a popular model system for designing biosensors. Various strategies have been reported for label-free colorimetric detection using gold nanoparticles (AuNPs). It is generally accepted that free aptamers can protect AuNPs against salt-induced aggregation, whereas target-bound aptamers cannot. However, these studies only considered the aptamer binding to its target, and the adsorption of the aptamer on AuNPs, but none considered the adsorption of target molecules by AuNPs. We herein report that the adsorption of adenosine destabilized citrate-capped AuNPs with an apparent Kd of just 7.7 μM adenosine, whereas that of ATP stabilized the AuNPs because of the negative charges from the triphosphate group. The adsorbed ATP inhibited the adsorption of DNA. Using the aptamer and a nonbinding mutant, ATP and guanosine 5'-triphosphate (GTP) had the same colorimetric response, and so did adenosine and guanosine, regardless of the DNA sequence, indicating that the color change mainly reflected the adsorption of the nucleosides and nucleotides instead of aptamer binding. The related literature examples using this aptamer were classified into three types and individually analyzed, where the reported color changes can all be explained by the adsorption of target analytes.
Collapse
Affiliation(s)
- Fang Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People’s Republic of China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| |
Collapse
|
21
|
Baek SH, Song HW, Lee S, Kim JE, Kim YH, Wi JS, Ok JG, Park JS, Hong S, Kwak MK, Lee HJ, Nam SW. Gold Nanoparticle-Enhanced and Roll-to-Roll Nanoimprinted LSPR Platform for Detecting Interleukin-10. Front Chem 2020; 8:285. [PMID: 32528922 PMCID: PMC7264386 DOI: 10.3389/fchem.2020.00285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
Localized surface plasmon resonance (LSPR) is a powerful platform for detecting biomolecules including proteins, nucleotides, and vesicles. Here, we report a colloidal gold (Au) nanoparticle-based assay that enhances the LSPR signal of nanoimprinted Au strips. The binding of the colloidal Au nanoparticle on the Au strip causes a red-shift of the LSPR extinction peak, enabling the detection of interleukin-10 (IL-10) cytokine. For LSPR sensor fabrication, we employed a roll-to-roll nanoimprinting process to create nanograting structures on polyethylene terephthalate (PET) film. By the angled deposition of Au on the PET film, we demonstrated a double-bent Au structure with a strong LSPR extinction peak at ~760 nm. Using the Au LSPR sensor, we developed an enzyme-linked immunosorbent assay (ELISA) protocol by forming a sandwich structure of IL-10 capture antibody/IL-10/IL-10 detection antibody. To enhance the LSPR signal, we introduced colloidal Au nanocube (AuNC) to be cross-linked with IL-10 detection antibody for immunogold assay. Using IL-10 as a model protein, we successfully achieved nanomolar sensitivity. We confirmed that the shift of the extinction peak was improved by 450% due to plasmon coupling between AuNC and Au strip. We expect that the AuNC-assisted LSPR sensor platform can be utilized as a diagnostic tool by providing convenient and fast detection of the LSPR signal.
Collapse
Affiliation(s)
- Seung Hee Baek
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Hyun Woo Song
- Department of Mechanical Engineering, School of Mechanical Engineering, Kyungpook National University, Daegu, South Korea
| | - Sunwoong Lee
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Yeo Hyang Kim
- Department of Pediatrics, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jung-Sub Wi
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science, Daejeon, South Korea
| | - Jong G Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul, South Korea
| | - Jun Seok Park
- Department of Surgery, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Seonki Hong
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Moon Kyu Kwak
- Department of Mechanical Engineering, School of Mechanical Engineering, Kyungpook National University, Daegu, South Korea
| | - Hye Jin Lee
- Department of Chemistry and Green Nano Materials Research Center, Kyungpook National University, Daegu, South Korea
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
22
|
Kasoju A, Shahdeo D, Khan AA, Shrikrishna NS, Mahari S, Alanazi AM, Bhat MA, Giri J, Gandhi S. Fabrication of microfluidic device for Aflatoxin M1 detection in milk samples with specific aptamers. Sci Rep 2020; 10:4627. [PMID: 32170077 PMCID: PMC7070014 DOI: 10.1038/s41598-020-60926-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/05/2020] [Indexed: 11/09/2022] Open
Abstract
This study describes the colorimetric detection of aflatoxin M1 (Afl M1) in milk samples using a microfluidic paper-based analytical device (µPAD). Fabrication of µPADs was done using a simple and quick approach. Each μPAD contained a detection zone and a sample zone interconnected by microchannels. The colorimetric assay was developed using unmodified AuNPs as a probe and 21-mer aptamer as a recognition molecule. The free aptamers were adsorbed onto the surface of AuNPs in absence of Afl M1, even at high salt concentrations. The salt induced aggregation of specific aptamers occurred in presence of Afl M1. Under optimum conditions, the analytical linear range was found to be 1 µM to 1 pM with limit of detection 3 pM and 10 nM in standard buffer and spiked milk samples respectively. The proposed aptamer based colorimetric assay was repeatable, quick, selective, and can be used for on-site detection of other toxins in milk and meat samples.
Collapse
Affiliation(s)
- Aruna Kasoju
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, India
- Department of Biotechnology, JNTUA College of Engineering, Andhra Pradesh, 516390, India
| | - Deepshikha Shahdeo
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, India
| | - Azmat Ali Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Kind Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | | | - Subhasis Mahari
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, India
| | - Amer M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Kind Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, Kind Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology (IIT), Hyderabad, 502285, India
| | - Sonu Gandhi
- DBT- National Institute of Animal Biotechnology, Hyderabad, 500032, India.
| |
Collapse
|
23
|
Fadlalla MH, Ling S, Wang R, Li X, Yuan J, Xiao S, Wang K, Tang S, Elsir H, Wang S. Development of ELISA and Lateral Flow Immunoassays for Ochratoxins (OTA and OTB) Detection Based on Monoclonal Antibody. Front Cell Infect Microbiol 2020; 10:80. [PMID: 32211342 PMCID: PMC7067699 DOI: 10.3389/fcimb.2020.00080] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Ochratoxins were important secondary metabolites secreted by fungi, and OTA and OTB are mainly significant mycotoxin, having toxic effects on humans and animals. Therefore, it is important to establish a rapid, sensitive, and precise method for ochratoxins detection and quantification in real samples. In this study, a stable monoclonal antibody (mAb) that recognizing both OTA and OTB toxins was employed for the establishment of indirect competitive ELISA (ic-ELISA), colloidal gold nanoparticles (CGNs), and nanoflowers gold strips (AuNFs) for detection of ochratoxins in real samples. A 6E5 hybridoma cell line stable secreting mAb against both OTA and OTB toxins was obtained by fusion of splenocytes with myeloma SP2/0 cells. The 6E5 mAb had a high affinity (3.7 × 108 L/mol) to OTA, and also showed similar binding activity to OTB. The optimized ic-ELISA resulted in a linear range of 0.06–0.6 ng/mL for ochratoxins (OTA and OTB) detection. The IC50 was 0.2 ng/mL and the limit of detection (LOD) was 0.03 ng/mL. The mean recovery rate from the spiked samples was 89.315 ± 2.257%, with a coefficient variation of 2.182%. The result from lateral flow immunoassays indicated that the LOD of CGNs and AuNFs were 5 and 1 μg/mL, respectively. All these results indicated that the developed ic-ELISA, CGNs, and AuNFs in this study could be used for the analysis of the residual of ochratoxins (OTA and OTB) in food and agricultural products.
Collapse
Affiliation(s)
- Mohamed Hassan Fadlalla
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sumei Ling
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongzhi Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiulan Li
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Yuan
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shiwei Xiao
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ke Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqin Tang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hoyda Elsir
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
24
|
Wang S, Zhang H, Li W, Birech Z, Ma L, Li D, Li S, Wang L, Shang J, Hu J. A multi-channel localized surface plasmon resonance system for absorptiometric determination of abscisic acid by using gold nanoparticles functionalized with a polyadenine-tailed aptamer. Mikrochim Acta 2019; 187:20. [PMID: 31807965 DOI: 10.1007/s00604-019-4003-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/03/2019] [Indexed: 11/29/2022]
Abstract
A multi-channel localized surface plasmon resonance system is described for absorptiometric determination of abscisic acid (ABA). The system is making use of gold nanoparticles and consists of a broadband light source, a multi-channel alignment device, and a fiber spectrometer. The method is based on the specific interaction between an ABA-binding aptamer and ABA. This induces the growth of gold nanoparticles (AuNPs) functionalized with a polyadenine-tailed aptamer that act as optical probes. Different concentrations of ABA give rise to varied morphologies of grown AuNPs. This causes a change of absorption spectra which is recorded by the system. ABA can be quantified by measurement of the peak wavelength shifts of grown AuNPs. Under optimized conditions, this method shows a linear relationship in the 1 nM to 10 μM ABA concentration range. The detection limit is 0.51 nM. The sensitivity of the ABA assay is strongly improved compared to the method based on salt-induced AuNP aggregation. This is attributed to the use of a poly-A-tailed aptamer and the catalytic ability of AuNPs. In the actual application, the ABA concentration of ABA in fresh leaves of rice is measured with the maximum relative error of 8.03% in comparison with the ELISA method. Graphical abstractSchematic representation of an absorptiometric approach for determination of abscisic acid based on the growth of polyA-tailed aptamer-AuNPs probes and a multi-channel localized surface plasmon resonance system.
Collapse
Affiliation(s)
- Shun Wang
- College of Science, Henan Agricultural University, Zhengzhou, 450002, China.,College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hao Zhang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei Li
- College of Science, Henan Agricultural University, Zhengzhou, 450002, China.,State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Zephania Birech
- Department of Physics, University of Nairobi, Nairobi, 30197, Kenya
| | - Liuzheng Ma
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Dongxian Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shixin Li
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ling Wang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Junjuan Shang
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiandong Hu
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China. .,State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China.
| |
Collapse
|
25
|
Wang D, Zhu J, Zhang Z, Zhang Q, Zhang W, Yu L, Jiang J, Chen X, Wang X, Li P. Simultaneous Lateral Flow Immunoassay for Multi-Class Chemical Contaminants in Maize and Peanut with One-Stop Sample Preparation. Toxins (Basel) 2019; 11:E56. [PMID: 30669515 PMCID: PMC6356774 DOI: 10.3390/toxins11010056] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/26/2022] Open
Abstract
Multi-class chemical contaminants, such as pesticides and mycotoxins, are recognized as the major risk factors in agro products. It is thus necessary to develop rapid and simple sensing methods to fulfill the on-site monitoring of multi-class chemical contaminants with different physicochemical properties. Herein, a lateral flow immunoassay via time-resolved fluorescence was developed for the rapid, on-site, simultaneous, and quantitative sensing aflatoxin B₁ (AFB₁), zearalenone (ZEA), and chlorothalonil (CTN) in maize and peanut. The sample preparation was optimized to a single step, combining the grinding and extraction. Under optimal conditions, the sensing method lowered the limits of detection (LOD) to 0.16, 0.52, and 1.21 µg/kg in maize and 0.18, 0.57, and 1.47 µg/kg in peanut with an analytical range of 0.48⁻20, 1.56⁻200, and 3.63⁻300 µg/kg for AFB₁, ZEA and CTN, respectively. The protocol could be completed within 15 min, including sample preparation and lateral flow immunoassay. The recovery range was 83.24⁻110.80%. An excellent correlation was observed between this approach and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for mycotoxins and gas chromatography-tandem mass spectrometry (GC-MS/MS) for pesticide in maize and peanut. This work could be applied in on-site multi-class sensing for food safety.
Collapse
Affiliation(s)
- Du Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Jianguo Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Zhaowei Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Wen Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Jun Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Xiaomei Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Xuefang Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| |
Collapse
|