1
|
Pu H, Peng D, Tang G, Ma Q, Huang H, Zhong Y, Long J, Huang X, Duan Y, Huang Y. Diaporpyrone E, an undescribed α-pyrone from the endophytic fungus Diaporthe sp. CB10100. Nat Prod Res 2024; 38:2989-2995. [PMID: 37125816 DOI: 10.1080/14786419.2023.2204434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 05/02/2023]
Abstract
An undescribed α-pyrone diaporpyrone E (1), and three known nucleotides, 5'-O-acetyl uridine (2), 5'-O-acetyl thymidine (3), and adenine (4), were identified from Diaporthe sp. CB10100, an endophytic fungus isolated from the medicinal plant Sinomenium acutum. The structure of 1 was determined by extensive analysis of its HRMS, 1D and 2D NMR spectroscopic data, as well as electronic circular dichroism calculations and comparison. The in vitro cytotoxic and antibacterial assays of 1 revealed that it has a 30.2% inhibitory effect on HepG2 cells at 50 μM, while no antibacterial activities against Staphylococcus aureus and Klebsiella pneumoniae at 64 μg/mL.
Collapse
Affiliation(s)
- Hong Pu
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China
| | - Dian Peng
- School of Pharmacy, Changsha Health Vocational College, Changsha, Hunan, China
| | - Genyun Tang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Qingxian Ma
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Huaiyi Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yani Zhong
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Jiayao Long
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, China
| |
Collapse
|
2
|
Pang X, Yang B, Zhou X, Wang J, Yang J, Liu Y. Two New Isocoumarins Isolated from the Marine-Sponge-Derived Fungus Setosphaeria sp. SCSIO41009. Chem Biodivers 2024; 21:e202302069. [PMID: 38246882 DOI: 10.1002/cbdv.202302069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Two new dihydroisocoumarins, exserolides L and M (1 and 2), along with six known compounds (3-8) were isolated from the extract of the marine-sponge-derived fungus Setosphaeria sp. SCSIO41009. Their structures were established by spectroscopic analyses. The absolute configurations of two new compounds were determined by modified Mosher's method and ECD data. Compounds 1 and 4 showed significant antiviral activities against A/Puerto Rico/8/34 H274Y (H1 N1) with IC50 values of 4.07±0.76 μM and 20.06±4.85 μM, respectively.
Collapse
Affiliation(s)
- Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jie Yang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| |
Collapse
|
3
|
Basharat Z, Sattar S, Bahauddin AA, Al Mouslem AK, Alotaibi G. Screening Marine Microbial Metabolites as Promising Inhibitors of Borrelia garinii: A Structural Docking Approach towards Developing Novel Lyme Disease Treatment. BIOMED RESEARCH INTERNATIONAL 2024; 2024:9997082. [PMID: 38456098 PMCID: PMC10919988 DOI: 10.1155/2024/9997082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
Lyme disease caused by the Borrelia species is a growing health concern in many parts of the world. Current treatments for the disease may have side effects, and there is also a need for new therapies that can selectively target the bacteria. Pathogens responsible for Lyme disease include B. burgdorferi, B. afzelii, and B. garinii. In this study, we employed structural docking-based screening to identify potential lead-like inhibitors against the bacterium. We first identified the core essential genome fraction of the bacterium, using 37 strains. Later, we screened a library of lead-like marine microbial metabolites (n = 4730) against the arginine deiminase (ADI) protein of Borrelia garinii. This protein plays a crucial role in the survival of the bacteria, and inhibiting it can kill the bacterium. The prioritized lead compounds demonstrating favorable binding energies and interactions with the active site of ADI were then evaluated for their drug-like and pharmacokinetic parameters to assess their suitability for development as drugs. Results from molecular dynamics simulation (100 ns) and other scoring parameters suggest that the compound CMNPD18759 (common name: aureobasidin; IUPAC name: 2-[(4R,6R)-4,6-dihydroxydecanoyl]oxypropan-2-yl (3S,5R)-3,5-dihydroxydecanoate) holds promise as a potential drug candidate for the treatment of Lyme disease, caused by B. garinii. However, further experimental studies are needed to validate the efficacy and safety of this compound in vivo.
Collapse
Affiliation(s)
| | - Sadia Sattar
- Molecular Virology Labs, Department of Biosciences, COMSATS University Islamabad, Islamabad Campus, Islamabad 45550, Pakistan
| | | | - Abdulaziz K. Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Ghallab Alotaibi
- Department of Pharmacology, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
4
|
Pellissier L, Gaudry A, Vilette S, Lecoultre N, Rutz A, Allard PM, Marcourt L, Ferreira Queiroz E, Chave J, Eparvier V, Stien D, Gindro K, Wolfender JL. Comparative metabolomic study of fungal foliar endophytes and their long-lived host Astrocaryum sciophilum: a model for exploring the chemodiversity of host-microbe interactions. FRONTIERS IN PLANT SCIENCE 2023; 14:1278745. [PMID: 38186589 PMCID: PMC10768666 DOI: 10.3389/fpls.2023.1278745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
Introduction In contrast to the dynamics observed in plant/pathogen interactions, endophytic fungi have the capacity to establish enduring associations within their hosts, leading to the development of a mutually beneficial relationship that relies on specialized chemical interactions. Research indicates that the presence of endophytic fungi has the ability to significantly modify the chemical makeup of the host organism. Our hypothesis proposes the existence of a reciprocal exchange of chemical signals between plants and fungi, facilitated by specialized chemical processes that could potentially manifest within the tissues of the host. This research aimed to precisely quantify the portion of the cumulative fungal endophytic community's metabolome detectable within host leaves, and tentatively evaluate its relevance to the host-endophyte interplay. The understory palm Astrocaryum sciophilum (Miq.) Pulle was used as a interesting host plant because of its notable resilience and prolonged life cycle, in a tropical ecosystem. Method Using advanced metabolome characterization, including UHPLC-HRMS/MS and molecular networking, the study explored enriched metabolomes of both host leaves and 15 endophytic fungi. The intention was to capture a metabolomic "snapshot" of both host and endophytic community, to achieve a thorough and detailed analysis. Results and discussion This approach yielded an extended MS-based molecular network, integrating diverse metadata for identifying host- and endophyte-derived metabolites. The exploration of such data (>24000 features in positive ionization mode) enabled effective metabolome comparison, yielding insights into cultivable endophyte chemodiversity and occurrence of common metabolites between the holobiont and its fungal communities. Surprisingly, a minor subset of features overlapped between host leaf and fungal samples despite significant plant metabolome enrichment. This indicated that fungal metabolic signatures produced in vitro remain sparingly detectable in the leaf. Several classes of primary metabolites were possibly shared. Specific fungal metabolites and/or compounds of their chemical classes were only occasionally discernible in the leaf, highlighting endophytes partial contribution to the overall holobiont metabolome. To our knowledge, the metabolomic study of a plant host and its microbiome has rarely been performed in such a comprehensive manner. The general analytical strategy proposed in this paper seems well-adapted for any study in the field of microbial- or microbiome-related MS and can be applied to most host-microbe interactions.
Collapse
Affiliation(s)
- Leonie Pellissier
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Arnaud Gaudry
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Salomé Vilette
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Nicole Lecoultre
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Adriano Rutz
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| | - Jérôme Chave
- Laboratoire Evolution et diversité Biologique (Unité Mixte de Recherche (UMR) 5174), Centre National de la Recherche Scientifique (CNRS), Université Toulouse III (UT3), Institut de Recherche pour le Développement (IRD), Université Toulouse 3, Toulouse, France
| | - Véronique Eparvier
- Université Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Didier Stien
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Laboratoire de Biodiversité et Biotechnologie Microbiennes, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls-Sur-Mer, France
| | - Katia Gindro
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Centre Médical Universitaire (CMU), Geneva, Switzerland
| |
Collapse
|
5
|
Wei W, Khan B, Dai Q, Lin J, Kang L, Rajput NA, Yan W, Liu G. Potential of Secondary Metabolites of Diaporthe Species Associated with Terrestrial and Marine Origins. J Fungi (Basel) 2023; 9:jof9040453. [PMID: 37108907 PMCID: PMC10143158 DOI: 10.3390/jof9040453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Diaporthe species produce versatile secondary metabolites (SMs), including terpenoids, fatty acids, polyketides, steroids, and alkaloids. These structurally diverse SMs exhibit a wide range of biological activities, including cytotoxic, antifungal, antibacterial, antiviral, antioxidant, anti-inflammatory, and phytotoxic activities, which could be exploited in the medical, agricultural, and other modern industries. This review comprehensively covers the production and biological potencies of isolated natural products from the genus Diaporthe associated with terrestrial and marine origins. A total of 275 SMs have been summarized from terrestrial (153; 55%) and marine (110; 41%) origins during the last twelve years, and 12 (4%) compounds are common to both environments. All secondary metabolites are categorized predominantly on the basis of their bioactivities (cytotoxic, antibacterial, antifungal, and miscellaneous activity). Overall, 134 bioactive compounds were isolated from terrestrial (92; 55%) and marine (42; 34%) origins, but about half the compounds did not report any kind of activity. The antiSMASH results suggested that Diaporthe strains are capable of encoding a wide range of SMs and have tremendous biosynthetic potential for new SMs. This study will be useful for future research on drug discovery from terrestrial and marine natural products.
Collapse
Affiliation(s)
- Wei Wei
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| | - Babar Khan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Qun Dai
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| | - Jie Lin
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| | - Liqin Kang
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| | - Nasir Ahmed Rajput
- Department of Plant Pathology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Wei Yan
- College of Plant Protection, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing Agricultural University, Nanjing 210095, China
| | - Guiyou Liu
- School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing 211200, China
| |
Collapse
|
6
|
Chemical Investigation of Endophytic Diaporthe unshiuensis YSP3 Reveals New Antibacterial and Cytotoxic Agents. J Fungi (Basel) 2023; 9:jof9020136. [PMID: 36836251 PMCID: PMC9963169 DOI: 10.3390/jof9020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Chemical investigation of the plant-derived endophytic fungus Diaporthe unshiuensis YSP3 led to the isolation of four new compounds (1-4), including two new xanthones (phomopthane A and B, 1 and 2), one new alternariol methyl ether derivative (3) and one α-pyrone derivative (phomopyrone B, 4), together with eight known compounds (5-12). The structures of new compounds were interpreted on the basis of spectroscopic data and single-crystal X-ray diffraction analysis. All new compounds were assessed for their antimicrobial and cytotoxic potential. Compound 1 showed cytotoxic activity against HeLa and MCF-7 cells with IC50 values of 5.92 µM and 7.50 µM, respectively, while compound 3 has an antibacterial effect on Bacillus subtilis (MIC value 16 μg/mL).
Collapse
|
7
|
Eichberg J, Maiworm E, Oberpaul M, Czudai-Matwich V, Lüddecke T, Vilcinskas A, Hardes K. Antiviral Potential of Natural Resources against Influenza Virus Infections. Viruses 2022; 14:v14112452. [PMID: 36366550 PMCID: PMC9693975 DOI: 10.3390/v14112452] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Influenza is a severe contagious disease caused by influenza A and B viruses. The WHO estimates that annual outbreaks lead to 3-5 million severe infections of which approximately 10% lead to the death of the patient. While vaccination is the cornerstone of prevention, antiviral drugs represent the most important treatment option of acute infections. Only two classes of drugs are currently approved for the treatment of influenza in numerous countries: M2 channel blockers and neuraminidase inhibitors. In some countries, additional compounds such as the recently developed cap-dependent endonuclease inhibitor baloxavir marboxil or the polymerase inhibitor favipiravir are available. However, many of these compounds suffer from poor efficacy, if not applied early after infection. Furthermore, many influenza strains have developed resistances and lost susceptibility to these compounds. As a result, there is an urgent need to develop new anti-influenza drugs against a broad spectrum of subtypes. Natural products have made an important contribution to the development of new lead structures, particularly in the field of infectious diseases. Therefore, this article aims to review the research on the identification of novel lead structures isolated from natural resources suitable to treat influenza infections.
Collapse
Affiliation(s)
- Johanna Eichberg
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Elena Maiworm
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Markus Oberpaul
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Volker Czudai-Matwich
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Tim Lüddecke
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Institute of Insect Biotechnology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26–32, 35392 Giessen, Germany
| | - Kornelia Hardes
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
- BMBF Junior Research Group in Infection Research “ASCRIBE”, Ohlebergsweg 12, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Correspondence:
| |
Collapse
|
8
|
Review Marine Pharmacology in 2018: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action. Pharmacol Res 2022; 183:106391. [DOI: 10.1016/j.phrs.2022.106391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
|
9
|
Frediansyah A, Sofyantoro F, Alhumaid S, Al Mutair A, Albayat H, Altaweil HI, Al-Afghani HM, AlRamadhan AA, AlGhazal MR, Turkistani SA, Abuzaid AA, Rabaan AA. Microbial Natural Products with Antiviral Activities, Including Anti-SARS-CoV-2: A Review. Molecules 2022; 27:4305. [PMID: 35807550 PMCID: PMC9268554 DOI: 10.3390/molecules27134305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 virus, which caused the COVID-19 infection, was discovered two and a half years ago. It caused a global pandemic, resulting in millions of deaths and substantial damage to the worldwide economy. Currently, only a few vaccines and antiviral drugs are available to combat SARS-CoV-2. However, there has been an increase in virus-related research, including exploring new drugs and their repurposing. Since discovering penicillin, natural products, particularly those derived from microbes, have been viewed as an abundant source of lead compounds for drug discovery. These compounds treat bacterial, fungal, parasitic, and viral infections. This review incorporates evidence from the available research publications on isolated and identified natural products derived from microbes with anti-hepatitis, anti-herpes simplex, anti-HIV, anti-influenza, anti-respiratory syncytial virus, and anti-SARS-CoV-2 properties. About 131 compounds with in vitro antiviral activity and 1 compound with both in vitro and in vivo activity have been isolated from microorganisms, and the mechanism of action for some of these compounds has been described. Recent reports have shown that natural products produced by the microbes, such as aurasperone A, neochinulin A and B, and aspulvinone D, M, and R, have potent in vitro anti-SARS-CoV-2 activity, targeting the main protease (Mpro). In the near and distant future, these molecules could be used to develop antiviral drugs for treating infections and preventing the spread of disease.
Collapse
Affiliation(s)
- Andri Frediansyah
- PRTPP, National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Fajar Sofyantoro
- Faculty of Biology, Gadjah Mada University, Yogyakarta 55281, Indonesia;
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia;
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia;
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia;
| | - Hayyan I. Altaweil
- Department of Clinical Laboratory Sciences, Mohammed Al-Mana College of Health Sciences, Dammam 34222, Saudi Arabia;
| | - Hani M. Al-Afghani
- Laboratory Department, Security Forces Hospital, Makkah 24269, Saudi Arabia;
- Gene Center for Research and Training, Jeddah 2022, Saudi Arabia
| | - Abdullah A. AlRamadhan
- Laboratory and Toxicology Department, Security Forces Specialized Comprehensive Clinics, Al-Ahsa 36441, Saudi Arabia;
| | - Mariam R. AlGhazal
- Hematopathology Department, Dammam Regional Laboratory, Dammam 1854, Saudi Arabia;
| | | | - Abdulmonem A. Abuzaid
- Medical Microbiology Department, Security Forces Hospital Programme, Dammam 32314, Saudi Arabia;
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, Faculty of Basic and Applied Sciences, University of Haripur, Haripur 22610, Pakistan
| |
Collapse
|
10
|
Lacerda ÍCDS, Polonio JC, Golias HC. Endophytic Fungi as a Source of Antiviral Compounds - A Review. Chem Biodivers 2022; 19:e202100971. [PMID: 35426966 DOI: 10.1002/cbdv.202100971] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/14/2022] [Indexed: 11/05/2022]
Abstract
Endophytic fungi are a rich source of secondary metabolites. The interactions between endophytes and their hosts lead to the production of several bioactive substances grouped into different classes, each having a wide variety of effects against various pathogens. The metabolites obtained from these organisms include steroids, alkaloids, phenols, isocoumarins, xanthones, quinones, and terpenoids, among others. These substances are known to have antibiotic, antiparasitic, antifungal, and antiviral effects. This review summarizes secondary metabolites with antiviral effects produced by endophytic fungi and highlights the importance of research in developing novel antiviral substances. We demonstrate that endophytic fungi are a rich source of secondary metabolites that combat pathologies caused by viruses. Optimizing practical and biotechnological screening tools for the research of these metabolites will provide promising drugs to combat these infections.
Collapse
Affiliation(s)
| | - Júlio Cesar Polonio
- Department of Cell Biology, Genetics and Biotechnology, State University of Maringá (UEM), Brazil
| | - Halison Correia Golias
- Department of Humanities, Microbiology Laboratory, Federal Technological University of Paraná (UTFPR), Brazil
| |
Collapse
|
11
|
Wei X, Zeng Y, Sun C, Meng F, Wang Y. Recent advances in natural phthalides: Distribution, chemistry, and biological activities. Fitoterapia 2022; 160:105223. [PMID: 35654379 DOI: 10.1016/j.fitote.2022.105223] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/04/2022]
Abstract
Phthalides, an important class of bioactive natural products, are widely distributed in plants, fungi, lichens, and liverworts. Amon them, n-butylphthalide, a phthalide monomer, has been approved to cure ischemic stroke. Owing to their good bioactivities in anti-microbial, anti-inflammatory, anti-tumor, anti-diabetic, and other aspects, a large number of researches have been conducted on phthalides from nature materials. In recent years, hundreds of novel natural phthalides were obtained. This review provides profiles of the advances in the distribution, chemistry, and biological activities of natural phthalides in 2016-2022.
Collapse
Affiliation(s)
- Xiaodong Wei
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741001, PR China.
| | - Yanping Zeng
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), Southwest University, Chongqing 400715, PR China
| | - Chao Sun
- Shandong Academy of Pharmaceutical Sciences, Ji'nan 250101, PR China
| | - Fancheng Meng
- College of Pharmaceutical Sciences, Key Laboratory of Luminescence Analysis and Molecular Sensing (Ministry of Education), Southwest University, Chongqing 400715, PR China
| | - Yibo Wang
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui 741001, PR China
| |
Collapse
|
12
|
Veríssimo ACS, Pinto DCGA, Silva AMS. Marine-Derived Xanthone from 2010 to 2021: Isolation, Bioactivities and Total Synthesis. Mar Drugs 2022; 20:md20060347. [PMID: 35736150 PMCID: PMC9225453 DOI: 10.3390/md20060347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Marine life has proved to be an invaluable source of new compounds with significant bioactivities, such as xanthones. This review summarizes the advances made in the study of marine-derived xanthones from 2010 to 2021, from isolation towards synthesis, highlighting their biological activities. Most of these compounds were isolated from marine-derived fungi, found in marine sediments, and associated with other aquatic organisms (sponge and jellyfish). Once isolated, xanthones have been assessed for different bioactivities, such as antibacterial, antifungal, and cytotoxic properties. In the latter case, promising results have been demonstrated. Considering the significant bioactivities showed by xanthones, efforts have been made to synthesize these compounds, like yicathins B and C and the secalonic acid D, through total synthesis.
Collapse
|
13
|
Soares JX, Loureiro DRP, Dias AL, Reis S, Pinto MMM, Afonso CMM. Bioactive Marine Xanthones: A Review. Mar Drugs 2022; 20:58. [PMID: 35049913 PMCID: PMC8778107 DOI: 10.3390/md20010058] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 02/08/2023] Open
Abstract
The marine environment is an important source of specialized metabolites with valuable biological activities. Xanthones are a relevant chemical class of specialized metabolites found in this environment due to their structural variety and their biological activities. In this work, a comprehensive literature review of marine xanthones reported up to now was performed. A large number of bioactive xanthone derivatives (169) were identified, and their structures, biological activities, and natural sources were described. To characterize the chemical space occupied by marine-derived xanthones, molecular descriptors were calculated. For the analysis of the molecular descriptors, the xanthone derivatives were grouped into five structural categories (simple, prenylated, O-heterocyclic, complex, and hydroxanthones) and six biological activities (antitumor, antibacterial, antidiabetic, antifungal, antiviral, and miscellaneous). Moreover, the natural product-likeness and the drug-likeness of marine xanthones were also assessed. Marine xanthone derivatives are rewarding bioactive compounds and constitute a promising starting point for the design of other novel bioactive molecules.
Collapse
Affiliation(s)
- José X. Soares
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.X.S.); (D.R.P.L.); (S.R.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (A.L.D.); (M.M.M.P.)
| | - Daniela R. P. Loureiro
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.X.S.); (D.R.P.L.); (S.R.)
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (A.L.D.); (M.M.M.P.)
- Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Ana Laura Dias
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (A.L.D.); (M.M.M.P.)
| | - Salete Reis
- Laboratório Associado para a Química Verde (LAQV), Rede de Química e Tecnologia (REQUIMTE), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (J.X.S.); (D.R.P.L.); (S.R.)
| | - Madalena M. M. Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (A.L.D.); (M.M.M.P.)
- Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Carlos M. M. Afonso
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (A.L.D.); (M.M.M.P.)
- Interdisciplinary Center of Marine and Environmental Investigation (CIIMAR/CIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| |
Collapse
|
14
|
Chen S, Cai R, Liu Z, Cui H, She Z. Secondary metabolites from mangrove-associated fungi: source, chemistry and bioactivities. Nat Prod Rep 2021; 39:560-595. [PMID: 34623363 DOI: 10.1039/d1np00041a] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering 1989 to 2020The mangrove forests are a complex ecosystem occurring at tropical and subtropical intertidal estuarine zones and nourish a diverse group of microorganisms including fungi, actinomycetes, bacteria, cyanobacteria, algae, and protozoa. Among the mangrove microbial community, mangrove associated fungi, as the second-largest ecological group of the marine fungi, not only play an essential role in creating and maintaining this biosphere but also represent a rich source of structurally unique and diverse bioactive secondary metabolites, attracting significant attention of organic chemists and pharmacologists. This review summarizes the discovery relating to the source and characteristics of metabolic products isolated from mangrove-associated fungi over the past thirty years (1989-2020). Its emphasis included 1387 new metabolites from 451 papers, focusing on bioactivity and the unique chemical diversity of these natural products.
Collapse
Affiliation(s)
- Senhua Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Runlin Cai
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,College of Science, Shantou University, Shantou 515063, China
| | - Zhaoming Liu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,State Key Laboratory of Applied Microbiology Southern China, Guangdong Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Hui Cui
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China. .,School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
15
|
Chromone Derivatives with α-Glucosidase Inhibitory Activity from the Marine Fungus Penicillium thomii Maire. Molecules 2021; 26:molecules26175273. [PMID: 34500706 PMCID: PMC8434415 DOI: 10.3390/molecules26175273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/17/2022] Open
Abstract
The fungal strain YPGA3 was isolated from the sediments of the Yap Trench and identified as Penicillium thomii. Eight new chromone derivatives, named penithochromones M-T (1-8), along with two known analogues, 9 and 10, were isolated from the strain. The structures were established by detailed analyses of the spectroscopic data. The absolute configuration of the only chiral center in compound 1 was tentatively determined by comparing the experimental and the calculated specific rotations. Compounds 7 and 8 represent the first examples of chromone derivatives featuring a 5,7-dioxygenated chromone moiety with a 9-carbon side chain. Bioassay study revealed that compounds 6-10 exhibited remarkable inhibition against α-glucosidase with IC50 values ranging from 268 to 1017 μM, which are more active than the positive control acarbose (1.3 mmol).
Collapse
|
16
|
Chen C, Chen W, Tao H, Yang B, Zhou X, Luo X, Liu Y. Diversified Polyketides and Nitrogenous Compounds from the Mangrove Endophytic Fungus
Penicillium steckii
SCSIO
41025. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chun‐Mei Chen
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou Guangdong 510301 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wei‐Hao Chen
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou Guangdong 510301 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hua‐Ming Tao
- School of Traditional Chinese Medicine Southern Medical University Guangzhou Guangdong 510515 China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou Guangdong 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou Guangdong 511458 China
| | - Xue‐Feng Zhou
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou Guangdong 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou Guangdong 511458 China
| | - Xiao‐Wei Luo
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning Guangxi 530200 China
| | - Yong‐Hong Liu
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou Guangdong 510301 China
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning Guangxi 530200 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou Guangdong 511458 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
17
|
Sun TT, Zhu HJ, Cao F. Marine Natural Products as a Source of Drug Leads against Respiratory Viruses: Structural and Bioactive Diversity. Curr Med Chem 2021; 28:3568-3594. [PMID: 33106135 DOI: 10.2174/0929867327666201026150105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Respiratory viruses, including influenza virus, respiratory syncytial virus, coronavirus, etc., have seriously threatened the human health. For example, the outbreak of severe acute respiratory syndrome coronavirus, SARS, affected a large number of countries around the world. Marine organisms, which could produce secondary metabolites with novel structures and abundant biological activities, are an important source for seeking effective drugs against respiratory viruses. This report reviews marine natural products with activities against respiratory viruses, the emphasis of which was put on structures and antiviral activities of these natural products. This review has described 167 marinederived secondary metabolites with activities against respiratory viruses published from 1981 to 2019. Altogether 102 references are cited in this review article.
Collapse
Affiliation(s)
- Tian-Tian Sun
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Hua-Jie Zhu
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Fei Cao
- College of Pharmaceutical Sciences, Institute of Life Science and Green Development, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| |
Collapse
|
18
|
Cadamuro RD, da Silveira Bastos IMA, Silva IT, da Cruz ACC, Robl D, Sandjo LP, Alves S, Lorenzo JM, Rodríguez-Lázaro D, Treichel H, Steindel M, Fongaro G. Bioactive Compounds from Mangrove Endophytic Fungus and Their Uses for Microorganism Control. J Fungi (Basel) 2021; 7:455. [PMID: 34200444 PMCID: PMC8228968 DOI: 10.3390/jof7060455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
Mangroves are ecosystems with unique characteristics due to the high salinity and amount of organic matter that house a rich biodiversity. Fungi have aroused much interest as they are an important natural source for the discovery of new bioactive compounds, with potential biotechnological and pharmacological interest. This review aims to highlight endophytic fungi isolated from mangrove plant species and the isolated bioactive compounds and their bioactivity against protozoa, bacteria and pathogenic viruses. Knowledge about this type of ecosystem is of great relevance for its preservation and as a source of new molecules for the control of pathogens that may be of importance for human, animal and environmental health.
Collapse
Affiliation(s)
- Rafael Dorighello Cadamuro
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (R.D.C.); (I.M.A.d.S.B.); (I.T.S.); (A.C.C.d.C.); (D.R.); (M.S.)
| | - Isabela Maria Agustini da Silveira Bastos
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (R.D.C.); (I.M.A.d.S.B.); (I.T.S.); (A.C.C.d.C.); (D.R.); (M.S.)
| | - Izabella Thais Silva
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (R.D.C.); (I.M.A.d.S.B.); (I.T.S.); (A.C.C.d.C.); (D.R.); (M.S.)
- Department of Pharmaceutical Sciences, Federal University Santa Catarina, Florianopolis 88040-900, SC, Brazil
| | - Ariadne Cristiane Cabral da Cruz
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (R.D.C.); (I.M.A.d.S.B.); (I.T.S.); (A.C.C.d.C.); (D.R.); (M.S.)
- Department of Dentistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Diogo Robl
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (R.D.C.); (I.M.A.d.S.B.); (I.T.S.); (A.C.C.d.C.); (D.R.); (M.S.)
| | - Louis Pergaud Sandjo
- Department of Chemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil;
| | - Sergio Alves
- Laboratory of Biochemistry and Genetics, Federal University of Fronteira Sul, Chapecó 89802-112, SC, Brazil;
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avd. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | | | - Helen Treichel
- Laboratory of Microbiology and Bioprocess, Federal University of Fronteira Sul, Erechim 99700-000, RS, Brazil;
| | - Mário Steindel
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (R.D.C.); (I.M.A.d.S.B.); (I.T.S.); (A.C.C.d.C.); (D.R.); (M.S.)
| | - Gislaine Fongaro
- Department of Microbiology, Immunology, and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (R.D.C.); (I.M.A.d.S.B.); (I.T.S.); (A.C.C.d.C.); (D.R.); (M.S.)
| |
Collapse
|
19
|
Calado MDL, Silva J, Alves C, Susano P, Santos D, Alves J, Martins A, Gaspar H, Pedrosa R, Campos MJ. Marine endophytic fungi associated with Halopteris scoparia (Linnaeus) Sauvageau as producers of bioactive secondary metabolites with potential dermocosmetic application. PLoS One 2021; 16:e0250954. [PMID: 33983974 PMCID: PMC8118457 DOI: 10.1371/journal.pone.0250954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/17/2021] [Indexed: 12/16/2022] Open
Abstract
Marine fungi and, particularly, endophytic species have been recognised as one of the most prolific sources of structurally new and diverse bioactive secondary metabolites with multiple biotechnological applications. Despite the increasing number of bioprospecting studies, very few have already evaluated the cosmeceutical potential of marine fungal compounds. Thus, this study focused on a frequent seaweed in the Portuguese coast, Halopteris scoparia, to identify the endophytic marine fungi associated with this host, and assess their ability to biosynthesise secondary metabolites with antioxidative, enzymatic inhibitory (hyaluronidase, collagenase, elastase and tyrosinase), anti-inflammatory, photoprotective, and antimicrobial (Cutibacterium acnes, Staphylococcus epidermidis and Malassezia furfur) activities. The results revealed eight fungal taxa included in the Ascomycota, and in the most representative taxonomic classes in marine ecosystems (Eurotiomycetes, Sordariomycetes and Dothideomycetes). These fungi were reported for the first time in Portugal and in association with H. scoparia, as far as it is known. The screening analyses showed that most of these endophytic fungi were producers of compounds with relevant biological activities, though those biosynthesised by Penicillium sect. Exilicaulis and Aspergillus chevalieri proved to be the most promising ones for being further exploited by dermocosmetic industry. The chemical analysis of the crude extract from an isolate of A. chevalieri revealed the presence of two bioactive compounds, echinulin and neoechinulin A, which might explain the high antioxidant and UV photoprotective capacities exhibited by the extract. These noteworthy results emphasised the importance of screening the secondary metabolites produced by these marine endophytic fungal strains for other potential bioactivities, and the relevance of investing more efforts in understanding the ecology of halo/osmotolerant fungi.
Collapse
Affiliation(s)
- Maria da Luz Calado
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Joana Silva
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Celso Alves
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Patrícia Susano
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Débora Santos
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Joana Alves
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Alice Martins
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
| | - Helena Gaspar
- MARE–Marine and Environmental Sciences Centre, Polytechnic of Leiria, Peniche, Portugal
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, Peniche, Portugal
| | - Rui Pedrosa
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| | - Maria Jorge Campos
- BioISI–Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, Lisbon, Portugal
| |
Collapse
|
20
|
Wu X, Xia Y, He F, Zhu C, Ren W. Intestinal mycobiota in health and diseases: from a disrupted equilibrium to clinical opportunities. MICROBIOME 2021; 9:60. [PMID: 33715629 PMCID: PMC7958491 DOI: 10.1186/s40168-021-01024-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/04/2021] [Indexed: 05/08/2023]
Abstract
Bacteria, viruses, protozoa, and fungi establish a complex ecosystem in the gut. Like other microbiota, gut mycobiota plays an indispensable role in modulating intestinal physiology. Notably, the most striking characteristics of intestinal fungi are their extraintestinal functions. Here, we provide a comprehensive review of the importance of gut fungi in the regulation of intestinal, pulmonary, hepatic, renal, pancreatic, and brain functions, and we present possible opportunities for the application of gut mycobiota to alleviate/treat human diseases. Video Abstract.
Collapse
Affiliation(s)
- Xiaoyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Yaoyao Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Fang He
- College of Animal Science and Technology, Southwest University, Chongqing, 400716 China
| | - Congrui Zhu
- College of Veterinary Medicine, Kansas State University, Manhattan, KS USA
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
21
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
22
|
Zhang Q, Ma WG, Zhao Q, Zhao YY, Huang ZP, Xu YX, Zhu DF, Li JC, Zhang XM. α-pyrone derivatives from endophytic fungus Diaporthe sp. RJ-41. BIOCHEM SYST ECOL 2021. [DOI: 10.1016/j.bse.2020.104198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Xu TC, Lu YH, Wang JF, Song ZQ, Hou YG, Liu SS, Liu CS, Wu SH. Bioactive Secondary Metabolites of the Genus Diaporthe and Anamorph Phomopsis from Terrestrial and Marine Habitats and Endophytes: 2010-2019. Microorganisms 2021; 9:217. [PMID: 33494367 PMCID: PMC7912663 DOI: 10.3390/microorganisms9020217] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The genus Diaporthe and its anamorph Phomopsis are distributed worldwide in many ecosystems. They are regarded as potential sources for producing diverse bioactive metabolites. Most species are attributed to plant pathogens, non-pathogenic endophytes, or saprobes in terrestrial host plants. They colonize in the early parasitic tissue of plants, provide a variety of nutrients in the cycle of parasitism and saprophytism, and participate in the basic metabolic process of plants. In the past ten years, many studies have been focused on the discovery of new species and biological secondary metabolites from this genus. In this review, we summarize a total of 335 bioactive secondary metabolites isolated from 26 known species and various unidentified species of Diaporthe and Phomopsis during 2010-2019. Overall, there are 106 bioactive compounds derived from Diaporthe and 246 from Phomopsis, while 17 compounds are found in both of them. They are classified into polyketides, terpenoids, steroids, macrolides, ten-membered lactones, alkaloids, flavonoids, and fatty acids. Polyketides constitute the main chemical population, accounting for 64%. Meanwhile, their bioactivities mainly involve cytotoxic, antifungal, antibacterial, antiviral, antioxidant, anti-inflammatory, anti-algae, phytotoxic, and enzyme inhibitory activities. Diaporthe and Phomopsis exhibit their potent talents in the discovery of small molecules for drug candidates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shao-Hua Wu
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China; (T.-C.X.); (Y.-H.L.); (J.-F.W.); (Z.-Q.S.); (Y.-G.H.); (S.-S.L.); (C.-S.L.)
| |
Collapse
|
24
|
Ameen F, AlNadhari S, Al-Homaidan AA. Marine microorganisms as an untapped source of bioactive compounds. Saudi J Biol Sci 2021; 28:224-231. [PMID: 33424301 PMCID: PMC7783642 DOI: 10.1016/j.sjbs.2020.09.052] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 01/12/2023] Open
Abstract
The search for novel biologically active molecules has extended to the screening of organisms associated with less explored environments. In this sense, Oceans, which cover nearly the 67% of the globe, are interesting ecosystems characterized by a high biodiversity that is worth being explored. As such, marine microorganisms are highly interesting as promising sources of new bioactive compounds of potential value to humans. Some of these microorganisms are able to survive in extreme marine environments and, as a result, they produce complex molecules with unique biological interesting properties for a wide variety of industrial and biotechnological applications. Thus, different marine microorganisms (fungi, myxomycetes, bacteria, and microalgae) producing compounds with antioxidant, antibacterial, apoptotic, antitumoral and antiviral activities have been already isolated. This review compiles and discusses the discovery of bioactive molecules from marine microorganisms reported from 2018 onwards. Moreover, it highlights the huge potential of marine microorganisms for obtaining highly valuable bioactive compounds.
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh AlNadhari
- Department of Plant Protection, College of Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Ali A. Al-Homaidan
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
25
|
Zeng Z, Gao D, Yang G, Wu Q, Ren X, Zhang P, Li Y. Ultrathin interfacial modification of Li-rich layered oxide electrode/sulfide solid electrolyte via atomic layer deposition for high electrochemical performance batteries. NANOTECHNOLOGY 2020; 31:454001. [PMID: 32721938 DOI: 10.1088/1361-6528/abaa12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, Li-rich layered oxides (LLOs) are modified by sulfide solid electrolyte Li10GeP2S12 (LGPS) with high ionic conductivity to enhance the diffusion of Li+ and an ultrathin Al2O3 layer is interposed between LLOs and LGPS through the atomic layer deposition (ALD) technique to inhibit the development of the highly resistive space-charge layer, the side reactions and structure transition of the composites, thus excellently promoting the electrochemical properties of the composites in liquid electrolyte. Among the different ALD cycles of Al2O3, 10 cycles of ultrathin Al2O3 layer achieves the greatest electrochemical performance. The beginning discharge capacity of LLOs@Al2O3/LGPS composites comes up to 233.4 mA h g-1 with a capacity retention of 90.6% and a voltage retention of 97.3% after 100 cycles at 0.2 C. The composites also exhibit the optimal rate capability and a high energy density of 581 Wh kg-1 at 1 C. The galvanostatic intermittent titration technique test indicates that the composites (LLOs@Al2O3/LGPS) possess the greatest Li+ diffusion coefficient (1.58 × 10-10 cm2 s-1) compared to LLOs (0.85 × 10-10 cm2 s-1) and LLOs/LGPS (1.10 × 10-10 cm2 s-1). More importantly, charge curves at the beginning of the initial charge and electrochemical impedance spectroscopy curves clearly reveal the inhibition of the development of the highly resistive space-charge layer.
Collapse
Affiliation(s)
- Zhisen Zeng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
26
|
Wang CN, Lu HM, Gao CH, Guo L, Zhan ZY, Wang JJ, Liu YH, Xiang ST, Wang J, Luo XW. Cytotoxic benzopyranone and xanthone derivatives from a coral symbiotic fungus Cladosporium halotolerans GXIMD 02502. Nat Prod Res 2020; 35:5596-5603. [PMID: 32713199 DOI: 10.1080/14786419.2020.1799363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Coral-derived microorganisms have been historically proven to be prolific sources of bioactive secondary metabolites. Twelve benzopyranone and/or xanthone derivatives, including a new benzopyranone with an uncommon carboxyl group at C-8, coniochaetone K (1), were obtained from the Beibu Gulf-derived coral symbiotic fungus Cladosporium halotolerans GXIMD 02502. Their structures were determined by extensive spectroscopic data interpretation and comparison with literature values. The absolute configuration of 1 was accomplished by comparison of specific optical rotation as well as quantum chemical ECD calculations. The in vitro cytotoxicity of compounds 1-12 against two human prostatic cancer cell lines, C4-2B and 22RV1, were evaluated. And compounds 1, 3, 6-8, and 10-11 demonstrated significant cytotoxicity with inhibitions ranging from 55.8% to 82.1% at the concentration of 10 μM.
Collapse
Affiliation(s)
- Chao-Nan Wang
- Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Hu-Mu Lu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, P.R. China
| | - Cheng-Hai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, P.R. China
| | - Lang Guo
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Zhen-Yu Zhan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, P.R. China
| | - Jun-Jian Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yong-Hong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, P.R. China
| | - Song-Tao Xiang
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Jian Wang
- Changchun University of Chinese Medicine, Changchun, P.R. China
| | - Xiao-Wei Luo
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, P.R. China
| |
Collapse
|
27
|
Tian Y, Sang H, Liu M, Chen F, Huang Y, Li L, Liu S, Yang J. Dihydromyricetin is a new inhibitor of influenza polymerase PB2 subunit and influenza-induced inflammation. Microbes Infect 2020; 22:254-262. [DOI: 10.1016/j.micinf.2020.05.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
|
28
|
Intaraudom C, Punyain W, Bunbamrung N, Dramae A, Boonruangprapa T, Pittayakhajonwut P. Antimicrobial drimane - phthalide derivatives from Hypoxylon fendleri BCC32408. Fitoterapia 2019; 138:104353. [PMID: 31476402 DOI: 10.1016/j.fitote.2019.104353] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 11/17/2022]
Abstract
Fourteen new compounds including thirteen drimane - phthalide derivatives (fendlerals A - C, fendlerins A - D, fendlerols A - B, fendleric acids A - C, fendlerinine G) and one terphenyl derivative (fendleryl E) along with eight known compounds, fendlerinine A, rickenyls C - D, fendleryls C - D, atromentin, tetramethyl atromentin, and (±)-microsphaerophthalide F, were isolated from the wood fungus Hypoxylon fendleri BCC32408. Compared with the prior work, the results indicated the agitation effect on the production of bioactive drimane - phthalides. The chemical structures were determined based upon spectroscopic analyses and the absolute configurations were verified by comparison of the ECD spectral data with the calculated ECD spectra of the related compounds. Compounds 1-3 exhibited antimicrobial activity against Plasmodium falciparum (IC50 4.15-4.39 μM), Colletotrichum capsici (MIC 6.25-12.5 μg/mL), and Bacillus cereus (MIC 1.56-3.13 μg/mL). All tested compounds displayed broad cytotoxicity against cancerous (MCF-7, KB, and NCI-H187) and non-cancerous (Vero) cells.
Collapse
Affiliation(s)
- Chakapong Intaraudom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Wikorn Punyain
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Nantiya Bunbamrung
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Aibrohim Dramae
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Tanapong Boonruangprapa
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phaholyothin Road, Klong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
29
|
Niu Z, Chen Y, Guo H, Li SN, Li HH, Liu HX, Liu Z, Zhang W. Cytotoxic Polyketides from a Deep-Sea Sediment Derived Fungus Diaporthe phaseolorum FS431. Molecules 2019; 24:E3062. [PMID: 31443573 PMCID: PMC6749523 DOI: 10.3390/molecules24173062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 01/28/2023] Open
Abstract
Two new chromone-derived polyketides phaseolorins, G and H (1 and 2), and one new anthraquinone derivative, phaseolorin I (3), together with three known compounds (4-6), were isolated from the deep-sea sediment-derived fungus Diaporthe phaseolorum FS431. The structures of the new compounds were determined by comprehensive analysis of their spectroscopic data, and the absolute configuration of 1 was established by quantum chemical calculations of electron capture detection (ECD). All the isolated compounds (1-6) were tested for their in vitro cytotoxic activities against four human tumor cell lines, of which compound 4 exhibited significant effect against MCF-7, HepG-2, and A549 tumor cell lines with IC50 values of 2.60, 2.55, and 4.64 µM, respectively.
Collapse
Affiliation(s)
- Zheng Niu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Yuexiu District, Guangzhou 510070, China
| | - Yuchan Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Yuexiu District, Guangzhou 510070, China
| | - Heng Guo
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Yuexiu District, Guangzhou 510070, China
| | - Sai-Ni Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Yuexiu District, Guangzhou 510070, China
| | - Hao-Hua Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Yuexiu District, Guangzhou 510070, China
| | - Hong-Xin Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Yuexiu District, Guangzhou 510070, China
| | - Zhaoming Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Yuexiu District, Guangzhou 510070, China.
| | - Weimin Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Yuexiu District, Guangzhou 510070, China.
| |
Collapse
|
30
|
Intaraudom C, Bunbamrung N, Dramae A, Boonyuen N, Choowong W, Rachtawee P, Pittayakhajonwut P. Chromone derivatives, R- and S- taeniolin, from the marine-derived fungus Taeniolella sp. BCC31839. Nat Prod Res 2019; 35:392-398. [PMID: 31250661 DOI: 10.1080/14786419.2019.1634710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Two unknown enantiomeric compounds, named (R)- and (S)-taeniolin, along with six known compounds, were isolated from the marine-associated fungus Taeniolella sp. BCC31839. Chemical structures were determined by NMR spectroscopic techniques, and the absolute configurations were confirmed by Mosher application together with CD spectral analyses. Both were inactive for antimicrobial activity against multidrug-resistant malaria parasite (Plasmodium falciparum) and bacteria (Mycobacerium tuberculosis and Bacillus cereus) at maximum tested concentration.
Collapse
Affiliation(s)
- Chakapong Intaraudom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Klong Luang, Pathum Thani, Thailand
| | - Nantiya Bunbamrung
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Klong Luang, Pathum Thani, Thailand
| | - Aibrohim Dramae
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Klong Luang, Pathum Thani, Thailand
| | - Nattawut Boonyuen
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Klong Luang, Pathum Thani, Thailand
| | - Wilunda Choowong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Klong Luang, Pathum Thani, Thailand
| | - Pranee Rachtawee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Klong Luang, Pathum Thani, Thailand
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Klong Luang, Pathum Thani, Thailand
| |
Collapse
|
31
|
Luo XW, Chen CM, Li KL, Lin XP, Gao CH, Zhou XF, Liu YH. Sesquiterpenoids and meroterpenoids from a mangrove derived fungus Diaporthe sp. SCSIO 41011. Nat Prod Res 2019; 35:282-288. [PMID: 31177836 DOI: 10.1080/14786419.2019.1627355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
One new sesquiterpenoid, 1-methoxypestabacillin B (1), along with one known sesquiterpenoid (2) and six known chrodrimanin-type meroterpenoids (3‒8) were obtained from the solid cultures of a mangrove endophytic fungus Diaporthe sp. SCSIO 41011. Their structures including the absolute configuration at C-6 of compound 1, were determined by extensive spectroscopic analyses and ECD calculations. Meanwhile, the X-ray crystal structures and absolute configurations of two previously reported chrodrimanins E (3) and H (6), are described for the first time. All the compounds were examined for HIV latency-reversal and anti-influenza A virus activities.
Collapse
Affiliation(s)
- Xiao-Wei Luo
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China.,CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chun-Mei Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kun-Long Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Ping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Cheng-Hai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Xue-Feng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yong-Hong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China.,CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica/RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Liu N, Peng S, Yang J, Cong Z, Lin X, Liao S, Yang B, Zhou X, Zhou X, Liu Y, Wang J. Structurally diverse sesquiterpenoids and polyketides from a sponge-associated fungus Aspergillus sydowii SCSIO41301. Fitoterapia 2019; 135:27-32. [DOI: 10.1016/j.fitote.2019.03.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 03/30/2019] [Indexed: 10/27/2022]
|
33
|
Yang J, Huang Y, Liu S. Investigational antiviral therapies for the treatment of influenza. Expert Opin Investig Drugs 2019; 28:481-488. [PMID: 31018720 DOI: 10.1080/13543784.2019.1606210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Influenza viral ribonucleoprotein complexes (vRNPs) play a key role in viral transcription and replication; hence, the recent development of novel anti-influenza drugs targeting vRNPs has garnered widespread interest. AREAS COVERED We discuss the function of the constituents of vRNPs and summarize those vRNPs-targeted synthetic drugs that are in preclinical and early clinical development. EXPERT OPINION vRNPs contain high-value drug targets; such targets include the subunits PA, PB1, PB2, and NP. Developing a new generation of antiviral therapies with strategies that utilize existing drugs, natural compounds originated from new resources and novel drug combinations may open up new therapeutic approaches to influenza.
Collapse
Affiliation(s)
- Jie Yang
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China
| | - Yingna Huang
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China
| | - Shuwen Liu
- a Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou , China.,b State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology , Southern Medical University , Guangzhou , China
| |
Collapse
|
34
|
Structures, Activities and Drug-Likeness of Anti-Infective Xanthone Derivatives Isolated from the Marine Environment: A Review. Molecules 2019; 24:molecules24020243. [PMID: 30634698 PMCID: PMC6359551 DOI: 10.3390/molecules24020243] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/24/2022] Open
Abstract
Marine organisms represent almost half of total biodiversity and are a very important source of new bioactive substances. Within the varied biological activities found in marine products, their antimicrobial activity is one of the most relevant. Infectious diseases are responsible for high levels of morbidity and mortality and many antimicrobials lose their effectiveness with time due to the development of resistance. These facts justify the high importance of finding new, effective and safe anti-infective agents. Among the variety of biological activities of marine xanthone derivatives, one that must be highlighted is their anti-infective properties. In this work, a literature review of marine xanthones with anti-infective activity, namely antibacterial, antifungal, antiparasitic and antiviral, is presented. Their structures, biological activity, sources and the methods used for bioactivity evaluation are described. The xanthone derivatives are grouped in three sets: xanthones, hydroxanthones and glycosylated derivatives. Moreover, molecular descriptors, biophysico-chemical properties, and pharmacokinetic parameters were calculated, and the chemical space occupied by marine xanthone derivatives is recognized. The chemical space was compared with marketed drugs and framed accordingly to the drug-likeness concept in order to profile the pharmacokinetic of anti-infective marine xanthone derivatives.
Collapse
|