1
|
Nguyen PN, Tran TQN, Le KH, Khong DT, Pham HP, Dang QV, Tran QH, Nguyen TM, Nguyen Dang N. Eco-synthesis of green silver nanoparticles using natural extracts and its application as co-catalyst in photocatalytic hydrogen production. RSC Adv 2024; 14:31036-31046. [PMID: 39351409 PMCID: PMC11440351 DOI: 10.1039/d4ra05675b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Green silver nanoparticles (AgNPs) were synthesized using natural extracts as reducing agents and were firstly applied as co-catalysts in low-intensity-visible-light driven photocatalytic hydrogen production (PH2P), which a solution for green energy sources and independence from fossil fuels. The as-prepared AgNPs possessed size in a few tens nanometers and exhibited surface plasmon resonance (SPR) effects in the 310-560 nm region. Depositing AgNPs on g-C3N4 nanosheets broadened the visible absorption range, reduced electron-hole recombination, and increased electronic communication at the interface. g-C3N4/Ag demonstrated high PH2P efficiency, stability over three consecutive cycles, and a rapidly rising photocurrent under low-intensity visible light irradiation, although these features were not observed in g-C3N4 alone. The H2 evolution of g-C3N4/Ag_CC (CC: Cinnamomum camphora), g-C3N4/Ag_GT (GT: green tea), and g-C3N4/Ag_PP (PP: pomelo peels) reached 252.6, 125.3 and 92.0 μmol g-1 at 180 min at the first cycle, respectively. Among them, g-C3N4/Ag_CC showed the highest photocatalytic activity, which may be attributed to the superior morphology, optical properties of AgNPs_CC, and efficient electron transfer from g-C3N4 to AgNPs_CC. The SPR effect and Schottky barriers formed at the interface could contribute to enhancing the overall efficiency of the heterojunction photocatalysts. The results highlighted a crucial advancement toward H2 production under low-intensity visible-light irradiation.
Collapse
Affiliation(s)
- Phuong N Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology (VAST) 29TL Street, Ward Thanh Loc, District 12 Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay Ha Noi Vietnam
| | - Thao Quynh Ngan Tran
- Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao, Ward 4, Go Vap District Ho Chi Minh City Vietnam
| | - Khoa Hai Le
- Insitute for Tropical Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay HaNoi Vietnam
| | - Diem T Khong
- Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao, Ward 4, Go Vap District Ho Chi Minh City Vietnam
| | - Hoai Phuong Pham
- NTT Hi-Tech Institute, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh Street, Ward 13, District 4 Ho Chi Minh City 70000 Vietnam
| | - Quang V Dang
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Str., Dist. 5 Ho Chi Minh City Vietnam
- Vietnam National University, Ho Chi Minh (VNU-HCM) Linh Trung Ward, Thu Duc District Ho Chi Minh City 70000 Vietnam
| | - Quang-Hieu Tran
- Basic Sciences Department-Saigon Technology University 180 Cao Lo, Ward 4, District 8 Ho Chi Minh City 700000 Vietnam
| | - Tuan M Nguyen
- National Institute of Applied Mechanics and Informatics, Vietnam Academy of Science and Technology (VAST) 291 Dien Bien Phu Street, Ward 7, District 3 Ho Chi Minh City 70000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay Ha Noi Vietnam
| | - Nam Nguyen Dang
- Future Materials & Devices Lab., Institute of Fundamental and Applied Sciences, Duy Tan University Ho Chi Minh City 70000 Vietnam
- The Faculty of Environmental and Chemical Engineering, Duy Tan University Danang 50000 Vietnam
| |
Collapse
|
2
|
Alwadai N, Abahussain AAM, Vadodariya DM, Banabdwin KM, Fakeeha AH, Abu-Dahrieh JK, Almuqati NS, Alghamdi AM, Kumar R, Al-Fatesh AS. Ni-Sr/TiZr for H 2 from methane via POM: Sr loading & optimization. RSC Adv 2024; 14:25273-25288. [PMID: 39139230 PMCID: PMC11320059 DOI: 10.1039/d4ra04781h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Achieving remarkable H2 yield with significantly high H2/CO over Ni-based catalysts through partial oxidation of methane (POM) is a realistic approach to depleting the concentration of CH4 and using H2 and CO as synthetic feedstock. This study examined Ni catalysts on titania-zirconia for methane conversion via POM at 600 °C and atmospheric pressure. The addition of strontium to the catalyst was explored to improve its performance. Catalysts were characterized by X-ray diffraction, Raman-infrared-UV-vis spectroscopy, and Temperature-programmed reduction-desorption techniques (TPR, TPD). 2.5 wt% Sr addition induced the formation of the highest concentration of extreme basic sites. Interestingly, over the unpromoted catalyst, active sites are majorly generated by hardly reducible NiO species whereas upon 2.5 wt% promoted Sr promotional addition, most of active sites are derived by easily reducible NiO species. 45% CH4 conversion and 47% H2 yield with H2/CO = 3.5 were achieved over 2.5 wt% Sr promoted 5Ni/30TiO2 + ZrO2 catalyst. These results provide insight into the role of basic sites in enhancing activity through switching indirect pathways over direct pathways for POM. Further process optimization was carried out in the range of 10 000-22 000 SV, 0.35-0.75 O2/CH4, and 600-800 °C reaction temperature over 5Ni2.5Sr/30TiO2 + ZrO2 by using central composite design under response surface methodology. The optimum activity as high as ∼88% CH4 conversion, 86-87% yield of H2, and 2.92H2/CO were predicted and experimentally validated at 800 °C reaction temperature, 0.35O2/CH4 ratio, and 10 000 space velocity.
Collapse
Affiliation(s)
- Norah Alwadai
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Abdulaziz A M Abahussain
- Chemical Engineering Department, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia
| | | | - Khaled M Banabdwin
- Chemical Engineering Department, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia
| | - Anis Hamza Fakeeha
- Chemical Engineering Department, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia
| | - Jehad K Abu-Dahrieh
- School of Chemistry and Chemical Engineering, Queen's University Belfast Belfast BT95AG UK
| | - Naif S Almuqati
- Institute of Refining and Petrochemicals Technologies, King Abdulaziz City for Science and Technology (KACST) P. O. Box 6086 Riyadh 11442 Saudi Arabia
| | - Ahmad M Alghamdi
- Chemical Engineering Department, College of Engineering, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh 11432 Saudi Arabia
| | - Rawesh Kumar
- Department of Chemistry, Indus University Ahmedabad Gujarat 382115 India
| | - Ahmed S Al-Fatesh
- Chemical Engineering Department, College of Engineering, King Saud University Riyadh 11421 Saudi Arabia
| |
Collapse
|
3
|
Darjazi H, Falco M, Colò F, Balducci L, Piana G, Bella F, Meligrana G, Nobili F, Elia GA, Gerbaldi C. Electrolytes for Sodium Ion Batteries: The Current Transition from Liquid to Solid and Hybrid systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313572. [PMID: 38809501 DOI: 10.1002/adma.202313572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/14/2024] [Indexed: 05/30/2024]
Abstract
Sodium-ion batteries (NIBs) have recently garnered significant interest in being employed alongside conventional lithium-ion batteries, particularly in applications where cost and sustainability are particularly relevant. The rapid progress in NIBs will undoubtedly expedite the commercialization process. In this regard, tailoring and designing electrolyte formulation is a top priority, as they profoundly influence the overall electrochemical performance and thermal, mechanical, and dimensional stability. Moreover, electrolytes play a critical role in determining the system's safety level and overall lifespan. This review delves into recent electrolyte advancements from liquid (organic and ionic liquid) to solid and quasi-solid electrolyte (dry, hybrid, and single ion conducting electrolyte) for NIBs, encompassing comprehensive strategies for electrolyte design across various materials, systems, and their functional applications. The objective is to offer strategic direction for the systematic production of safe electrolytes and to investigate the potential applications of these designs in real-world scenarios while thoroughly assessing the current obstacles and forthcoming prospects within this rapidly evolving field.
Collapse
Affiliation(s)
- Hamideh Darjazi
- GAME Lab, Department of Applied Science and Technology - DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
- National Reference Center for Electrochemical Energy Storage (GISEL) - INSTM, Via G. Giusti 9, Firenze, 50121, Italy
| | - Marisa Falco
- GAME Lab, Department of Applied Science and Technology - DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
- National Reference Center for Electrochemical Energy Storage (GISEL) - INSTM, Via G. Giusti 9, Firenze, 50121, Italy
| | - Francesca Colò
- GAME Lab, Department of Applied Science and Technology - DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
- National Reference Center for Electrochemical Energy Storage (GISEL) - INSTM, Via G. Giusti 9, Firenze, 50121, Italy
| | - Leonardo Balducci
- School of Sciences and Technologies - Chemistry Division, University of Camerino, Via Madonna delle Carceri ChIP, Camerino, 62032, Italy
| | - Giulia Piana
- GAME Lab, Department of Applied Science and Technology - DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
- National Reference Center for Electrochemical Energy Storage (GISEL) - INSTM, Via G. Giusti 9, Firenze, 50121, Italy
| | - Federico Bella
- National Reference Center for Electrochemical Energy Storage (GISEL) - INSTM, Via G. Giusti 9, Firenze, 50121, Italy
- Electrochemistry Group, Department of Applied Science and Technology - DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Giuseppina Meligrana
- GAME Lab, Department of Applied Science and Technology - DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
- National Reference Center for Electrochemical Energy Storage (GISEL) - INSTM, Via G. Giusti 9, Firenze, 50121, Italy
| | - Francesco Nobili
- National Reference Center for Electrochemical Energy Storage (GISEL) - INSTM, Via G. Giusti 9, Firenze, 50121, Italy
- School of Sciences and Technologies - Chemistry Division, University of Camerino, Via Madonna delle Carceri ChIP, Camerino, 62032, Italy
| | - Giuseppe A Elia
- GAME Lab, Department of Applied Science and Technology - DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
- National Reference Center for Electrochemical Energy Storage (GISEL) - INSTM, Via G. Giusti 9, Firenze, 50121, Italy
| | - Claudio Gerbaldi
- GAME Lab, Department of Applied Science and Technology - DISAT, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
- National Reference Center for Electrochemical Energy Storage (GISEL) - INSTM, Via G. Giusti 9, Firenze, 50121, Italy
| |
Collapse
|
4
|
Kumar A, Kim JH, Chang DW. Flexible and Ultra Low Weight Energy Harvesters Based on 2D Phosphorene or Black phosphorus (BP): Current and Futuristic Prospects. CHEMSUSCHEM 2024; 17:e202301718. [PMID: 38318655 DOI: 10.1002/cssc.202301718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Phosphorene, or two-dimensional (2D) black phosphorus, has recently emerged as a competitor of graphene as it offers several advantages, including a tunable band gap, higher on/off current ratio, piezoelectric nature, and biocompatibility. Researchers have succeeded in obtaining several forms of phosphorene, such as nanosheets, nanorods, nanoribbons, and quantum dots, with satisfactory yields. Nanostructures with various controlled properties have been fabricated in multiple devices for energy production. These phosphorene-based devices are lightweight, flexible, and efficient, demonstrating great potential for energy-harvesting applications in sensors and nanogenerators. While ongoing exploration and advancements continue for these lightweight energy harvesters, it is essential to review the current progress in order to develop a future roadmap for the potential use of these phosphorene-based energy harvesters in space programs. They could be employed in applications such as wearable devices for astronauts, where ultralow weight is a vital component of any integrated device. This review also anticipates the growing significance of phosphorene in various emerging applications such as robots, information storage devices, and artificial intelligence.
Collapse
Affiliation(s)
- Avneesh Kumar
- Department of Industrial Chemistry and CECS Core Research Institute, Pukyong National University, Busan, 48513, Republic of Korea
| | - Joo Hyun Kim
- Department of Polymer Engineering and CECS Core Research Institute, Pukyong National University, Busan, 48513, Republic of Korea
| | - Dong Wook Chang
- Department of Industrial Chemistry and CECS Core Research Institute, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
5
|
Poorahong S, Oin W, Buapoon S, Nijpanich S, Harding DJ, Siaj M. Construction of an electrochemical pH sensor using one-pot synthesis of a molybdenum diselenide/nitrogen doped graphene oxide screen-printed electrode. RSC Adv 2024; 14:14616-14623. [PMID: 38708120 PMCID: PMC11066617 DOI: 10.1039/d4ra01708k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024] Open
Abstract
In this study, a one-pot synthesis of a molybdenum diselenide/nitrogen-doped graphene oxide (MoSe2/NGO) composite was demonstrated and used for the fabrication of an electrochemical pH sensor. The MoSe2/NGO composite was characterized using powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and Brunauer-Emmett-Teller analysis. The electrochemical behavior at different pH values was determined by recording the open-circuit potential. When applied for pH detection, the MoSe2/NGO modified screen-printed electrode (SPE) showed good linearity with a sensitivity of 61.3 mV pH-1 over a wide pH range of 2-14. In addition, the pH sensor exhibited a remarkably stable response, high reproducibility, and selectivity. The sensor was used to measure the acidity or alkalinity of real food and beverage samples. The results for these samples showed a relative error of less than 10% compared with the results obtained with the commercial pH meter. The portable sensor produced by screen printing electrodes paves the way for the development of simple, cost-effective, real-time, and robust pH sensors for the pH analysis of various sample matrices for clinical diagnostics, biosensing, and cost-effective applications.
Collapse
Affiliation(s)
- Sujittra Poorahong
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- Department of Chemistry, School of Science, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Wipawee Oin
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Saowaluk Buapoon
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
| | - Supinya Nijpanich
- Synchrotron Light Research Institute (Public Organization) Nakhon Ratchasima 30000 Thailand
| | - David J Harding
- Functional Materials and Nanotechnology Center of Excellence, Walailak University Thasala Nakhon Si Thammarat 80160 Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Mohamed Siaj
- Department of Chemistry, Université du Québec à Montréal Montréal Québec H3C 3P8 Canada
| |
Collapse
|
6
|
Scano A, Magner E, Pilloni M, Atzori L, Fantauzzi M, Slimani S, Peddis D, Fuentes GG, Ennas G. Combining high energy ball milling and liquid crystal templating method to prepare magnetic ordered mesoporous silica. A physico-chemical investigation. Phys Chem Chem Phys 2024; 26:13020-13033. [PMID: 38275012 DOI: 10.1039/d3cp04213h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The physico-chemical investigation of superparamagnetic MCM41 like materials prepared by the novel combination of high energy ball milling and a liquid crystal templating method is presented. Structural, morphological, textural, thermal, and preliminary magnetic characterization demonstrated the successful combination of the two synthesis techniques, avoiding the problems associated with the current methods used for the preparation of magnetic ordered mesoporous silica. MCM41 like materials with high specific surface area values (625-720 m2 g-1) and high mesopore volumes in the range 1-0.7 cm3 g-1 were obtained. The ordered mesoporous structure and accessible pores were maintained after the inclusion of increasing amounts of the magnetic component in the silica structure. All the samples showed superparamagnetic behaviour.
Collapse
Affiliation(s)
- Alessandra Scano
- Department of Chemical and Geological Sciences, University of Cagliari, SS 554 Bivio per Sestu, 09042, Monserrato, CA, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Edmond Magner
- Department of Chemical Sciences, Bernal Institute, University of Limerick, V94 T9PX, Limerick, Ireland
| | - Martina Pilloni
- Department of Chemical and Geological Sciences, University of Cagliari, SS 554 Bivio per Sestu, 09042, Monserrato, CA, Italy.
| | - Luciano Atzori
- Department of Chemical and Geological Sciences, University of Cagliari, SS 554 Bivio per Sestu, 09042, Monserrato, CA, Italy.
| | - Marzia Fantauzzi
- Department of Chemical and Geological Sciences, University of Cagliari, SS 554 Bivio per Sestu, 09042, Monserrato, CA, Italy.
| | - Sawssen Slimani
- Chemistry and Industrial Chemistry Department, University of Genova, Via Dodecaneso 31, 16146-Genova, Italy
- Institute of Structure of Matter - Consiglio Nazionale delle Ricerche, Monterotondo Stazione, 00016, Rome, Italy
| | - Davide Peddis
- Chemistry and Industrial Chemistry Department, University of Genova, Via Dodecaneso 31, 16146-Genova, Italy
- Institute of Structure of Matter - Consiglio Nazionale delle Ricerche, Monterotondo Stazione, 00016, Rome, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, Italy
| | - Gonzalo Garcia Fuentes
- Asociación de la Industria Navarra, Ctra. Pamplona, 1 - Edificio AIN, 31191 Cordovilla, Pamplona, Spain
| | - Guido Ennas
- Department of Chemical and Geological Sciences, University of Cagliari, SS 554 Bivio per Sestu, 09042, Monserrato, CA, Italy.
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Via Giuseppe Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
7
|
Komariah LN, Arita S, Cundari L, Afrah BD. Recovery of potassium salt by acidification of crude glycerol derived from biodiesel production. RSC Adv 2024; 14:6112-6120. [PMID: 38375015 PMCID: PMC10875729 DOI: 10.1039/d3ra08264d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/02/2024] [Indexed: 02/21/2024] Open
Abstract
Crude glycerol (CG) is a major byproduct of biodiesel production. Most of it cannot be utilized due to major impurities. The CG generally contains alkalis, which generate the residual salts in a series of its purification stages. This study aims to obtain the optimum process conditions and acid molar ratio to produce a higher potassium salt yield while improving the purity of glycerol by a simple acidification procedure. The CG was obtained from the transesterification of palm oil using a catalyst based on potassium carbonate. A phosphoric acid (85%) is utilized at various molar ratios and the process temperature is 60-80 °C. The strong acid was slowly added to the CG and heated for 30 minutes with a mixing speed of 250 rpm. The optimum acidification process occurred at a temperature of 70 °C with a molar crude glycerol ratio to phosphoric acid of 1 : 0.5. The glycerol purity was increased from 43.3% to 67.63% (w/w). It effectively obtains a potassium phosphate salt with a yield of 6.78%. The functional group infrared (IR) and X-ray fluorescence (XRF) spectra identified the salt residue as potassium dihydrogen phosphate (KH2PO4). This is composed predominantly of potassium oxide (K2O) and phosphorus pentoxide (P2O5), 50% and 47.9%, respectively.
Collapse
Affiliation(s)
- Leily Nurul Komariah
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya 30662 Indralaya Ogan Ilir Indonesia
| | - Susila Arita
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya 30662 Indralaya Ogan Ilir Indonesia
| | - Lia Cundari
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya 30662 Indralaya Ogan Ilir Indonesia
| | - Bazlina Dawami Afrah
- Department of Chemical Engineering, Faculty of Engineering, Universitas Sriwijaya 30662 Indralaya Ogan Ilir Indonesia
| |
Collapse
|
8
|
Jitjamnong J, Khongprom P, Ratanawilai T, Ratanawilai S. Glycerol carbonate synthesis via transesterification of enriched glycerol and dimethyl carbonate using a Li-incorporated MCM-41 framework. RSC Adv 2024; 14:5941-5958. [PMID: 38375007 PMCID: PMC10875607 DOI: 10.1039/d4ra00290c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Waste crude glycerol was successfully enriched and utilized as an inexpensive source for producing value-added chemicals, such as glycerol carbonate (GC) - a valuable compound with extensive industrial applications. The Li/MCM-41 heterogeneous catalyst was synthesized and used for the transesterification of enriched glycerol and dimethyl carbonate (DMC) to produce GC. The catalyst's physicochemical properties were characterized using thermogravimetric, Hammett indicator, inductively coupled plasma-optical emission spectroscopy, nitrogen adsorption-desorption, X-ray diffractometry, scanning electron microscopy, and Fourier-transform infrared spectroscopy analyses. Reaction conditions were optimized using response surface methodology and analysis of variance, yielding an accurate quadratic model to predict the GC yield under different transesterification variables. The results revealed that 5%Li/MCM-41 served as the optimal catalyst, achieving the highest TOF of 4.72 h-1. The DMC: enriched glycerol molar ratio had the greatest impact on the GC yield, with an R2 = 0.9743 and adjusted R2 = 0.9502. The optimal GC yield (58.77%) with a final purity of 78% was attained at a 5.15 wt% catalyst loading relative to the initial amount of enriched glycerol, DMC: enriched glycerol molar ratio of 4.24 : 1, and a reaction temperature of 86 °C for 165 min. The 5%Li/MCM-41 heterogeneous catalyst could be reused for four cycles with a decreased GC yield from 58.77% to 45.72%. Thus, the Li/MCM-41 catalyst demonstrated a remarkable efficiency and potential as a heterogeneous catalyst for synthesizing GC. This method not only contributes to environmental sustainability by making use of a byproduct from biodiesel production but also aligns with the principles of a circular economy.
Collapse
Affiliation(s)
- Jakkrapong Jitjamnong
- Department of Chemical Engineering, Faculty of Engineering, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Parinya Khongprom
- Department of Chemical Engineering, Faculty of Engineering, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
- Air Pollution and Health Effect Research Center, Prince of Songkla University Songkhla 90110 Thailand
| | - Thanate Ratanawilai
- Department of Industrial and Manufacturing Engineering, Faculty of Engineering, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| | - Sukritthira Ratanawilai
- Department of Chemical Engineering, Faculty of Engineering, Prince of Songkla University Hat Yai Songkhla 90110 Thailand
| |
Collapse
|
9
|
Albino A, Buonocore F, Celino M, Totti F. The chimera of 2D- and 1D-graphene magnetization by hydrogenation or fluorination: critically revisiting old schemes and proposing new ones by ab initio methods. NANOSCALE ADVANCES 2024; 6:1106-1121. [PMID: 38356622 PMCID: PMC10863704 DOI: 10.1039/d3na01008b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/06/2024] [Indexed: 02/16/2024]
Abstract
Graphene is an ideal candidate material for spintronics due to its layered structure and peculiar electronic structure. However, in its pristine state, the production of magnetic moments is not trivial. A very appealing approach is the chemical modification of pristine graphene. The main obstacle is the control of the geometrical features and the selectivity of functional groups. The lack of a periodic functionalization pattern of the graphene sheet prevents, therefore, the achievement of long-range magnetic order, thus limiting its use in spintronic devices. In such regards, the stability and the magnitude of the instilled magnetic moment depending on the size and shape of in silico designed graphane islands and ribbons embedded in graphene matrix will be computed and analysed. Our findings thus suggest that a novel and magneto-active graphene derivative nanostructure could become achievable more easily than extended graphone or nanoribbons, with a strong potential for future spintronics applications with a variable spin-current density.
Collapse
Affiliation(s)
- Andrea Albino
- Dipartimento di Chimica "Ugo Schiff" & INSTM RU, Università degli Studi di Firenze Via della Lastruccia 3 Sesto Fiorentino (FI) 50019 Italy
| | - Francesco Buonocore
- Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA), Casaccia Research Centre Roma 00123 Italy
| | - Massimo Celino
- Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile (ENEA), Casaccia Research Centre Roma 00123 Italy
| | - Federico Totti
- Dipartimento di Chimica "Ugo Schiff" & INSTM RU, Università degli Studi di Firenze Via della Lastruccia 3 Sesto Fiorentino (FI) 50019 Italy
| |
Collapse
|
10
|
Kumar K. Charge transporting and thermally activated delayed fluorescence materials for OLED applications. Phys Chem Chem Phys 2024; 26:3711-3754. [PMID: 38221898 DOI: 10.1039/d3cp03214k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The design and synthesis of effective charge transporting (CT) and thermally activated delayed fluorescence (TADF) materials are in high demand to obtain high-performing OLED devices. Recently, the significant development in the field of OLEDs has led to the creation of numerous charge transporting and TADF materials with diverse structures. To further improve the device performance, a better understanding of the structural characteristics and structure-property relationships of these materials is essential. Moreover, to enhance the efficiency of OLEDs, all the electrogenerated excitons should be constrained in EMLs. The TADF mechanism can theoretically register 100% IQE through a potent up-conversion method from non-radiative triplet excitons to radiative singlet excitons. In this review, the structural importance, classification, physical properties, and electroluminescence data of some recent charge transporting and TADF materials are summarized and discussed. Moreover, their molecular structural dependence on functional groups and linkers is classified, which can enhance their charge transporting or emitting ability. To offer a potential roadmap for the further development of charge transporting and TADF materials, it is hoped that this study will encourage researchers to acknowledge their important role in OLEDs.
Collapse
Affiliation(s)
- Krishan Kumar
- School of Chemical Sciences, IIT Mandi, Himachal Pradesh 175075, India.
| |
Collapse
|
11
|
Nayak S, Bhattacharya S, Roy P, Bhakta V, Bhattacharya S. Supramolecular interaction of PCBM with porphyrins in solution: Photophysical insights. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123476. [PMID: 37827003 DOI: 10.1016/j.saa.2023.123476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 10/14/2023]
Abstract
This work reports the self-assembly between [6,6]-phenyl C71 butyric acid methyl ester (PCBM) and 2,3,7,8,12,13,17,18-octaethyl-21H,23H porphyrin (1)(and/2,3,7,8,12,13,17,18-octaethyl-21H,23H porphyrin Zn(II) (2) in toluene. Ground state intermolecular interaction is evidenced from absorption spectrophotometric measurements. New absorption bands are observed in the visible region which may be identified due to charge transfer (CT). Several important physicochemical factors are enumerated for PCBM-1 and PCBM-2 systems. Fluorescence investigations elicit complex formation of PCBM with porphyrins (with both 1 and 2) and reveal considerable magnitude of binding constant (K) for PCBM-2 system, i.e., KPCBM-2 = 80,435 dm3⋅mol-1 compared to PCBM-1 system, i.e., KPCM-1 = 12,600 dm3·mol-1 as well as highly ratio of selectivity in binding (KPCBM-2/KPCBM-1 ∼ 6.4). Time resolved fluorescence experiments reveal that photoexcited decay from the excited singlet state of porphyrins (i.e., 1* and 2*) by PCBM is statically controlled compared to dynamic path. Magnitude of solvent reorganization energy indicates possibility of faster charge recombination in case of PCBM-2 system. Both 1H and 13C NMR measurements provide substantial support behind complexation of PCBM with porphyrins (both 1 and 2) in solution. Ab initio calculations in vacuo support the trend in K for PCBM-1 and PCBM-2 systems and establish the proper orientation of PCBM towards 1 (and/ 2) during complexation. Transient absorption measurements establish two different mode of energy transfer pathway from porphyrin to PCBM in toluene.
Collapse
Affiliation(s)
- Subrata Nayak
- Physical Research Laboratory-2, Chemistry Department, The University of Burdwan, Golapbag, Purba Bardhaman, West Bengal 713 104, India
| | - Shalmali Bhattacharya
- Department of Computer Science & Engineering, Academy of Technology, Adisaptagram, Hooghly 712 502, India
| | - Pialee Roy
- Department of Chemistry, Guskara Mahavidyalaya, Guskara, West Bengal 713 128, India
| | - Viki Bhakta
- Department of Chemistry, Rajabazar Science College, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, West Bengal 700009, India
| | - Sumanta Bhattacharya
- Physical Research Laboratory-2, Chemistry Department, The University of Burdwan, Golapbag, Purba Bardhaman, West Bengal 713 104, India.
| |
Collapse
|
12
|
Song Y, Zhang X, Klusener PAA, Nockemann P. Advancing mesoporous carbon synthesis for supercapacitors: a systematic investigation of cross-linking agent effects on pore structure and functionality. NANOSCALE 2023. [PMID: 38032274 DOI: 10.1039/d3nr03244b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Soft-templating synthesis provides an effective route to prepare ordered mesoporous carbons (MCs) that can be used for supercapacitors. During this process, the cross-linking of carbon precursors is critical to obtain tailored pore structural MCs, thus careful selection of appropriate cross-linking agents is required. Despite the shift from the prevailing cross-linker formaldehyde to its more environmentally friendly alternatives, detailed understanding on the influence of different cross-linking agents on templating synthesis is still lacking. Therefore, it remains challenging to draw a conclusion regarding which cross-linker can effectively enable an ideal cross-linking and a robust templating synthesis of ordered MCs. This work presents a systematic study, by comparing three typical cross-linkers (formaldehyde, glyoxal, and glyoxylic acid), on the pore architecture, surface functionality, and electrochemical performance of resulting MCs. Both the type of cross-linker and its ratio with precursor monomer were found to be crucial for the pore architecture and electrochemical performance of resulting MCs. Glyoxal showed to be a promising cross-linker for easily generating ordered mesopores between 3.3-6.1 nm when the molar ratio between cross-linker and carbon precursor ranged from 1 to 2, whereas glyoxylic acid and formaldehyde induced interrupted or disordered mesopores. When the resulting MCs were used as supercapacitor electrodes, those cross-linked with glyoxal also led to overall higher capacitance in both 6 M KOH aqueous and ionic liquid [N2220][NTf2]/acetonitrile electrolytes thanks to the dominance of ordered mesopore channels, especially MC prepared at glyoxal/precursor molar ratio of 1.5. These findings on the effect of cross-linking on templating synthesis can be used to guide the customisation of MCs for supercapacitors and other applications by smartly choosing a suitable cross-linking agent and its ratio with the precursor.
Collapse
Affiliation(s)
- Yaoguang Song
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, BT9 5AG, Belfast, UK.
| | - Xiaolei Zhang
- Department of Chemical and Process Engineering, University of Strathclyde, G1 1XJ, Glasgow, UK.
| | - Peter A A Klusener
- Shell Global Solutions International B.V., Energy Transition Campus Amsterdam, Grasweg 31, 1031 HW Amsterdam, The Netherlands
| | - Peter Nockemann
- The QUILL Research Centre, School of Chemistry and Chemical Engineering, Queen's University Belfast, BT9 5AG, Belfast, UK.
| |
Collapse
|
13
|
Kishore MA, Lee S, Yoo JS. Fundamental Limitation in Electrochemical Methane Oxidation to Alcohol: A Review and Theoretical Perspective on Overcoming It. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301912. [PMID: 37740423 PMCID: PMC10625077 DOI: 10.1002/advs.202301912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/27/2023] [Indexed: 09/24/2023]
Abstract
The direct conversion of gaseous methane to energy-dense liquid derivatives such as methanol and ethanol is of profound importance for the more efficient utilization of natural gas. However, the thermo-catalytic partial oxidation of this simple alkane has been a significant challenge due to the high C-H bond energy. Exploiting electrocatalysis for methane activation via active oxygen species generated on the catalyst surface through electrochemical water oxidation is generally considered as economically viable and environmentally benign compared to energy-intensive thermo-catalysis. Despite recent progress in electrochemical methane oxidation to alcohol, the competing oxygen evolution reaction (OER) still impedes achieving high faradaic efficiency and product selectivity. In this review, an overview of current progress in electrochemical methane oxidation, focusing on mechanistic insights on methane activation, catalyst design principles based on descriptors, and the effect of reaction conditions on catalytic performance are provided. Mechanistic requirements for high methanol selectivity, and limitations of using water as the oxidant are discussed, and present the perspective on how to overcome these limitations by employing carbonate ions as the oxidant.
Collapse
Affiliation(s)
- M.R. Ashwin Kishore
- Department of Chemical EngineeringUniversity of SeoulSeoul02504Republic of Korea
| | - Sungwoo Lee
- Department of Chemical EngineeringUniversity of SeoulSeoul02504Republic of Korea
| | - Jong Suk Yoo
- Department of Chemical EngineeringUniversity of SeoulSeoul02504Republic of Korea
| |
Collapse
|
14
|
Kresse J, Georgi M, Hübner R, Eychmüller A. Structural investigations of Au-Ni aerogels: morphology and element distribution. NANOSCALE ADVANCES 2023; 5:5487-5498. [PMID: 37822903 PMCID: PMC10563840 DOI: 10.1039/d3na00359k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
The physical properties of nanomaterials are determined by their structural features, making accurate structural control indispensable. This carries over to future applications. In the case of metal aerogels, highly porous networks of aggregated metal nanoparticles, such precise tuning is still largely pending. Although recent improvements in controlling synthesis parameters like electrolytes, reductants, or mechanical stirring, the focus has always been on one particular morphology at a time. Meanwhile, complex factors, such as morphology and element distributions, are studied rather sparsely. We demonstrate the capabilities of precise morphology design by deploying Au-Ni, a novel element combination for metal aerogels in itself, as a model system to combine common aerogel morphologies under one system for the first time. Au-Ni aerogels were synthesized via modified one- and two-step gelation, partially combined with galvanic replacement, to obtain aerogels with alloyed, heterostructural (novel metal aerogel structure of interconnected nanoparticles and nanochains), and hollow spherical building blocks. These differences in morphology are directly reflected in the physisorption behavior, linking the isotherm shape and pore size distribution to the structural features of the aerogels, including a broad-ranging specific surface area (35-65 m2 g-1). The aerogels were optimized regarding metal concentration, destabilization, and composition, revealing some delicate structural trends regarding the ligament size and hollow sphere character. Hence, this work significantly improves the structural tailoring of metal aerogels and possible up-scaling. Lastly, preliminary ethanol oxidation tests demonstrated that morphology design extends to the catalytic performance. All in all, this work emphasizes the strengths of morphology design to obtain optimal structures, properties, and (performances) for any material application.
Collapse
Affiliation(s)
- Johannes Kresse
- Physical Chemistry, TU Dresden Zellescher Weg 19 Dresden 01069 Germany
| | - Maximilian Georgi
- Physical Chemistry, TU Dresden Zellescher Weg 19 Dresden 01069 Germany
| | - René Hübner
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e.V. Dresden 01328 Germany
| | | |
Collapse
|
15
|
Anzai A, Higashi M, Yamauchi M. Direct electrochemical CO 2 conversion using oxygen-mixed gas on a Cu network cathode and tailored anode. Chem Commun (Camb) 2023; 59:11188-11191. [PMID: 37622265 DOI: 10.1039/d3cc03298a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Electrochemical CO2 reduction (eCO2R) by direct introduction of 60% air-containing CO2 mixed gas was demonstrated using a porous Cu network cathode formed on a hydrophobic gas diffusion layer (Cu/P-GDL). Cu/P-GDL exhibited eCO2R using the mixed gas with a remarkable faradaic efficiency of 85% for the production of C2+ chemicals, whereas a Cu cathode constructed on a conventional carbon gas diffusion layer (Cu/C-GDL) produced neither eCO2R products nor H2. Furthermore, the electrolyzer with Cu/P-GDL and optimized anode configuration achieved a partial current density of 132 mA cm-2 for C2+ chemicals even in the presence of 12% O2. Demonstration of eCO2R with impure CO2 gas would greatly expand its future applications.
Collapse
Affiliation(s)
- Akihiko Anzai
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Manabu Higashi
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Miho Yamauchi
- Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan.
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
- Research Center for Negative Emissions Technologies (K-NETs), Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
16
|
Liu B, Han L, Xu H, Su JJ, Zhan D. Ultrasonic-Assisted Electrochemical Nanoimprint Lithography: Forcing Mass Transfer to Enhance the Localized Etching Rate of GaAs. Chem Asian J 2023; 18:e202300491. [PMID: 37493590 DOI: 10.1002/asia.202300491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
Electrochemical nanoimprint lithography (ECNL) has emerged as a promising technique for fabricating three-dimensional micro/nano-structures (3D-MNSs) directly on semiconductor wafers. This technique is based on a localized corrosion reaction induced by the contact potential across the metal/semiconductor boundaries. The anodic etching of semiconductor and the cathodic reduction of electron acceptors occur at the metal/semiconductor/electrolyte interface and the Pt mold surface, respectively. However, the etching rate is limited by the mass transfer of species in the ultrathin electrolyte layer between the mold and the workpiece. To overcome this challenge, we introduce the ultrasonics effect into the ECNL process to facilitate the mass exchange between the ultrathin electrolyte layer and the bulk solution, thereby improving the imprinting efficiency. Experimental investigations demonstrate a positive linear relationship between the reciprocal of the area duty ratio of the mold and the imprinting efficiency. Furthermore, the introduction of ultrasonics improves the imprinting efficiency by approximately 80 %, irrespective of the area duty ratio. The enhanced imprinting efficiency enables the fabrication of 3D-MNSs with higher aspect ratios, resulting in a stronger light trapping effect. These results indicate the prospective applications of ECNL in semiconductor functional devices, such as photoelectric detection and photovoltaics.
Collapse
Affiliation(s)
- Bing Liu
- Department of Mechanical and Electrical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, Fujian, China
| | - Lianhuan Han
- Department of Mechanical and Electrical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361005, Fujian, China
| | - Hantao Xu
- Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jian-Jia Su
- Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Dongping Zhan
- Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
17
|
Svirelis J, Adali Z, Emilsson G, Medin J, Andersson J, Vattikunta R, Hulander M, Järlebark J, Kolman K, Olsson O, Sakiyama Y, Lim RYH, Dahlin A. Stable trapping of multiple proteins at physiological conditions using nanoscale chambers with macromolecular gates. Nat Commun 2023; 14:5131. [PMID: 37612271 PMCID: PMC10447545 DOI: 10.1038/s41467-023-40889-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
The possibility to detect and analyze single or few biological molecules is very important for understanding interactions and reaction mechanisms. Ideally, the molecules should be confined to a nanoscale volume so that the observation time by optical methods can be extended. However, it has proven difficult to develop reliable, non-invasive trapping techniques for biomolecules under physiological conditions. Here we present a platform for long-term tether-free (solution phase) trapping of proteins without exposing them to any field gradient forces. We show that a responsive polymer brush can make solid state nanopores switch between a fully open and a fully closed state with respect to proteins, while always allowing the passage of solvent, ions and small molecules. This makes it possible to trap a very high number of proteins (500-1000) inside nanoscale chambers as small as one attoliter, reaching concentrations up to 60 gL-1. Our method is fully compatible with parallelization by imaging arrays of nanochambers. Additionally, we show that enzymatic cascade reactions can be performed with multiple native enzymes under full nanoscale confinement and steady supply of reactants. This platform will greatly extend the possibilities to optically analyze interactions involving multiple proteins, such as the dynamics of oligomerization events.
Collapse
Affiliation(s)
- Justas Svirelis
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Zeynep Adali
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Gustav Emilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Jesper Medin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - John Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Radhika Vattikunta
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Mats Hulander
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Julia Järlebark
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Krzysztof Kolman
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Oliver Olsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Yusuke Sakiyama
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056, Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056, Basel, Switzerland
| | - Andreas Dahlin
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden.
| |
Collapse
|
18
|
Singh A, Singh G, Kaur N, Singh N. Fabrication of FRET based nano sensor from biomass-derived fluorescent carbon quantum dots and naphthalimide for ratiometric detection of nitric oxide: To examine nitrite levels in meat samples. Anal Chim Acta 2023; 1270:341444. [PMID: 37311616 DOI: 10.1016/j.aca.2023.341444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
Nitric oxide (NO) is a ubiquitous, gaseous, free radical signaling molecule which plays a key role in physiological and pathological processes. Literature reports revealed that the conventional methods such as colorimetry, electron paramagnetic resonance (EPR), electrochemical etc. to detect NO are costly, time consuming and lack resolution, particularly in aqueous or biological system. Thus, in this context, herein we have developed covalently linked biomass derived carbon quantum dots (CQDs) and naphthalimide based nano sensor system for FRET based ratiometric detection of nitric oxide (NO) in pure aqueous media. The CQDs derived from orange peels were characterized using UV-visible absorption, fluorescence spectroscopy, PXRD, TEM, FT-IR and zeta potential studies. Further, the obtained CQDs were functionalized with amine functionality, and subsequently linked with naphthalimide derivative (5) using terephthaldehyde through covalent bond formation. The conjugation of naphthalimide (5) and functionalized CQDs was studied using DLS, zeta potential, FT-IR and time resolved fluorescence spectroscopy. The excitation of developed nano sensor system at λex 360 nm results in fluorescence emission at λem 530 nm which establishes the FRET pair between the CQDs and naphthalimide unit. However, in the presence of NO, the observed FRET pair abolishes due to the cleavage of NO susceptible imine bond. The developed sensor demonstrates high selectivity towards NO with limit of detection (LOD) and limit of quantification (LOQ) of 15 nM and 50 nM respectively. Further, the developed sensor system was also utilized for indirect detection of nitrite (NO2-) in food samples for food safety and monitoring.
Collapse
Affiliation(s)
- Amanpreet Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Punjab, 140001, India
| | - Gagandeep Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Punjab, 140001, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India.
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Punjab, 140001, India.
| |
Collapse
|
19
|
Mukti NIF, Ariyanto T, Sediawan WB, Prasetyo I. Efficacy of modified carbon molecular sieve with iron oxides or choline chloride-based deep eutectic solvent for the separation of CO 2/CH 4. RSC Adv 2023; 13:23158-23168. [PMID: 37533783 PMCID: PMC10392867 DOI: 10.1039/d3ra02890a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023] Open
Abstract
It is necessary to separate CO2 from biogas to improve its quality for the production of biomethane. Herein, an improvement in the separation of CO2/CH4via adsorption was achieved by modifying the surface of CMS. The surface modification of CMS was performed by impregnation with metal oxide (Fe3O4) and N-doping (DES-[ChCl:Gly]). Subsequently, the efficacy of the surface-modified CMS was investigated. This involved CMS modification, material characterization, and performance analysis. The uptake of CO2 by CMS-DES-[ChCl:Gly] and CMS-Fe3O4 was comparable; however, their performance for the separation of CO2/CH4 was different. Consequently, CMS-DES-[ChCl:Gly] and CMS-Fe3O4 exhibited ca. 1.6 times enhanced CO2 uptake capacity and ca. 1.70 times and 1.55 times enhanced CO2/CH4 separation, respectively. Also, both materials exhibited similar repeatability. However, CMS-DES-[ChCl:Gly] was more difficult to regenerate than CMS-Fe3O4, which is due to the higher adsorption heat value of the former (59.5 kJ).
Collapse
Affiliation(s)
- Nur Indah Fajar Mukti
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Islam Indonesia Yogyakarta 55584 Indonesia
- Carbon Material Research Group, Department of Chemical Engineering, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Teguh Ariyanto
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
- Carbon Material Research Group, Department of Chemical Engineering, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Wahyudi Budi Sediawan
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| | - Imam Prasetyo
- Department of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
- Carbon Material Research Group, Department of Chemical Engineering, Universitas Gadjah Mada Yogyakarta 55281 Indonesia
| |
Collapse
|
20
|
Waris, Hasnat A, Hasan S, Bano S, Sultana S, Ibhadon AO, Khan MZ. Development of nanozyme based sensors as diagnostic tools in clinic applications: a review. J Mater Chem B 2023; 11:6762-6781. [PMID: 37377089 DOI: 10.1039/d3tb00451a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Since 1970, many artificial enzymes that imitate the activity and structure of natural enzymes have been discovered. Nanozymes are a group of nanomaterials with enzyme-mimetic properties capable of catalyzing natural enzyme processes. Nanozymes have attracted great interest in biomedicine due to their excellent stability, rapid reactivity, and affordable cost. The enzyme-mimetic activities of nanozymes may be modulated by numerous parameters, including the oxidative state of metal ions, pH, hydrogen peroxide (H2O2) level, and glutathione (GSH) concentration, indicating the tremendous potential for biological applications. This article delivers a comprehensive overview of the advances in the knowledge of nanozymes and the creation of unique and multifunctional nanozymes, and their biological applications. In addition, a future perspective of employing the as-designed nanozymes in biomedical and diagnostic applications is provided, and we also discuss the barriers and constraints for their further therapeutic use.
Collapse
Affiliation(s)
- Waris
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
- Industrial Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, India
| | - Abul Hasnat
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
- Industrial Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, India
| | - Shumaila Hasan
- Department of Chemistry, Integral University, Lucknow-226026, India
| | - Sayfa Bano
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Saima Sultana
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Alex Omo Ibhadon
- School of Engineering, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - Mohammad Zain Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
- Industrial Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
21
|
Lu CH, Tsai CT, Jones Iv T, Chim V, Klausen LH, Zhang W, Li X, Jahed Z, Cui B. A NanoCurvS platform for quantitative and multiplex analysis of curvature-sensing proteins. Biomater Sci 2023; 11:5205-5217. [PMID: 37337788 PMCID: PMC10809791 DOI: 10.1039/d2bm01856j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The cell membrane is characterized by a rich variety of topographical features such as local protrusions or invaginations. Curvature-sensing proteins, including the Bin/Amphiphysin/Rvs (BAR) or epsin N-terminal homology (ENTH) family proteins, sense the bending sharpness and the positive/negative sign of these topographical features to induce subsequent intracellular signaling. A number of assays have been developed to study curvature-sensing properties of proteins in vitro, but it is still challenging to probe low curvature regime with the diameter of curvature from hundreds of nanometers to micrometers. It is particularly difficult to generate negative membrane curvatures with well-defined curvature values in the low curvature regime. In this work, we develop a nanostructure-based curvature sensing (NanoCurvS) platform that enables quantitative and multiplex analysis of curvature-sensitive proteins in the low curvature regime, in both negative and positive directions. We use NanoCurvS to quantitatively measure the sensing range of a negative curvature-sensing protein IRSp53 (an I-BAR protein) and a positive curvature-sensing protein FBP17 (an F-BAR protein). We find that, in cell lysates, the I-BAR domain of IRSp53 is able to sense shallow negative curvatures with the diameter-of-curvature up to 1500 nm, a range much wider than previously expected. NanoCurvS is also used to probe the autoinhibition effect of IRSp53 and the phosphorylation effect of FBP17. Therefore, the NanoCurvS platform provides a robust, multiplex, and easy-to-use tool for quantitative analysis of both positive and negative curvature-sensing proteins.
Collapse
Affiliation(s)
- Chih-Hao Lu
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Ching-Ting Tsai
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Taylor Jones Iv
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Vincent Chim
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Lasse H Klausen
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Wei Zhang
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Xiao Li
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Zeinab Jahed
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Wu-Tsai Neuroscience Institute and ChEM-H institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
22
|
Song Z, Wang X, Liu F, Zhou Q, Yin WJ, Wu H, Deng W, Wang J. Distilling universal activity descriptors for perovskite catalysts from multiple data sources via multi-task symbolic regression. MATERIALS HORIZONS 2023; 10:1651-1660. [PMID: 36960653 DOI: 10.1039/d3mh00157a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Developing activity descriptors via data-driven machine learning (ML) methods can speed up the design of highly active and low-cost electrocatalysts. Despite the fact that a large amount of activity data for electrocatalysts is stored in the literature, data from different publications are not comparable due to different experimental or computational conditions. In this work, an interpretable ML method, multi-task symbolic regression, was adopted to learn from data in multiple experiments. A universal activity descriptor to evaluate the oxygen evolution reaction (OER) performance of oxide perovskites free of calculations or experiments was constructed and reached high accuracy and generalization ability. Utilizing this descriptor with Bayesian-optimized parameters, a series of compelling double perovskites with excellent OER activity were predicted and further evaluated using first-principles calculations. Finally, the two ML-predicted nickel-based perovskites with the best OER activity were successfully synthesized and characterized experimentally. This work opens a new way to extend machine-learning material design by utilizing multiple data sources.
Collapse
Affiliation(s)
- Zhilong Song
- School of Physics, Southeast University, Nanjing, 211189, China.
| | - Xiao Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China.
| | - Fangting Liu
- School of Physics, Southeast University, Nanjing, 211189, China.
| | - Qionghua Zhou
- School of Physics, Southeast University, Nanjing, 211189, China.
- Suzhou Laboratory, Suzhou, China
| | - Wan-Jian Yin
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Soochow University, Suzhou, 215006, China.
- Light Industry Institute of Electrochemical Power Source, Soochow University, Suzhou, 215006, China
| | - Hao Wu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China.
| | - Weiqiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China.
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, 211189, China.
- Suzhou Laboratory, Suzhou, China
| |
Collapse
|
23
|
Mohamed RM, El-Sheikh SM, Kadi MW, Labib AA, Sheta SM. A novel test device and quantitative colorimetric method for the detection of human chorionic gonadotropin (hCG) based on Au@Zn-salen MOF for POCT applications. RSC Adv 2023; 13:11751-11761. [PMID: 37063717 PMCID: PMC10103075 DOI: 10.1039/d2ra07854f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/29/2023] [Indexed: 04/18/2023] Open
Abstract
The human chorionic gonadotropin (hCG) hormone is a biomarker that can predict tumors and early pregnancy; however, it is challenging to develop sensitive qualitative-quantitative procedures that are also effective, inventive, and unique. In this study, we used a novel easy in situ reaction of an organic nano-linker with Zn(NO3)2·6H2O and HAuCl4·3H2O to produce a gold-zinc-salen metal-organic framework composite known as Au-Zn-Sln-MOF. A wide variety of micro-analytical instruments and spectroscopic techniques were used in order to characterize the newly synthesized Au-Zn-Sln-MOF composite. Disclosure is provided for a novel swab test instrument and a straightforward colorimetric approach for detecting hCG hormone based on an Au-Zn-Sln-MOF composite. Both of these methods are easy. In order to validate a natural enzyme-free immunoassay, an Au-Zn-Sln-MOF composite was utilized in the role of an enzyme; a woman can use this gadget to determine whether or not she is pregnant in the early stages of the pregnancy or whether or not her hCG levels are excessively high, which is a symptom that she may have a tumor. This cotton swab test device is compatible with testing of various biological fluids, such as serum, plasma, or urine, and it can be easily transferred to the market to commercialize it as a costless kit, which will be 20-30% cheaper than what is available on the market. Additionally, it can be used easily at home and for near-patient testing (applications of point-of-care testing (POCT)).
Collapse
Affiliation(s)
- Reda M Mohamed
- Chemistry Department, Faculty of Science, King Abdul-Aziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Said M El-Sheikh
- Department of Nanomaterials and Nanotechnology, Central Metallurgical R & D Institute Cairo 11421 Egypt
| | - Mohammad W Kadi
- Chemistry Department, Faculty of Science, King Abdul-Aziz University P.O. Box 80203 Jeddah 21589 Saudi Arabia
| | - Ammar A Labib
- Department of Inorganic Chemistry, National Research Centre Cairo 12622 Egypt +201009697356
| | - Sheta M Sheta
- Department of Inorganic Chemistry, National Research Centre Cairo 12622 Egypt +201009697356
| |
Collapse
|
24
|
Ghaith ME, Abd El-Moghny MG, Alalawy HH, El-Shakre ME, El-Deab MS. Enhancing the performance of Ni nanoparticle modified carbon felt towards glycerol electrooxidation: impact of organic additive. RSC Adv 2023; 13:10893-10902. [PMID: 37033436 PMCID: PMC10077114 DOI: 10.1039/d3ra01197f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023] Open
Abstract
Organic additives are widely used in the deposition baths of metals and alloys thanks to their special function which affects the growth and the building of the crystal. This study investigates the effect of glycerol on Ni deposition onto carbon felt (CF) and its effect on the catalytic activity towards glycerol electrooxidation. The impact of glycerol on the morphology, distribution, and particle size of the electrodeposited Ni is disclosed using a scanning electron microscope (SEM). X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) techniques were used to probe the possible changes of the electrodeposited Ni oxide phases. Electrochemical measurements show that the as-synthesized Ni0.05@CF electrocatalyst prepared in the presence of 50 mM glycerol has a marked activity towards glycerol electrooxidation, as confirmed by the impressive increase of the oxidation current by about 1.6 times concurrently with a favorable negative shift of its onset potential. Moreover, the charge transfer resistance (R ct) is much reduced from 140 to 87 ohm. The addition of glycerol to the deposition bath is believed to retard the growth of the formed Ni deposits while enhancing the nucleation rate and thus increases the particle density and, consequently, the distribution of deposited Ni over the entire CF is improved along with increasing the surface concentration and surface-active sites. This assumption is supported by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Mohamed E Ghaith
- Chemistry Department, Faculty of Science, Cairo University Egypt
| | | | - Hafsa H Alalawy
- Chemistry Department, Faculty of Science, Cairo University Egypt
| | | | | |
Collapse
|
25
|
Öztürk Gündüz E, Atajanov R, Gedik ME, Tanrıverdi Eçik E, Günaydın G, Okutan E. BODIPY-GO nanocomposites decorated with a biocompatible branched ethylene glycol moiety for targeted PDT. Dalton Trans 2023; 52:5466-5477. [PMID: 36880343 DOI: 10.1039/d2dt04013a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The properties of graphene oxide (GO) have received much attention and been applied to the exploration of potential applications in disease-related diagnostics and non-invasive therapy. One application, photodynamic therapy (PDT), involves the killing of cancer cells where singlet oxygen is generated with light irradiation of the appropriate wavelength. In this work, three new BODIPY derivatives (13-15), decorated with carbohydrate moieties for active targeting and branched ethylene glycol for biocompatibility, and their GO based nanocarriers were designed to study the singlet oxygen production and PDT efficiency. First, BODIPYs were prepared, followed by the fabrication of GO layers with BODIPY dyes via a non-covalent method. Detailed characterizations of the materials were carried out with mass spectrometry, FT-IR spectroscopy, 1H NMR, 13C NMR, elemental analysis, Raman spectroscopies, EDX analysis and TEM and AFM microscopies. The efficiency of singlet oxygen generation in organic and water-based solutions was determined by photobleaching with 1,3-diphenylisobenzofuran (DPBF) and 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABDA), respectively. The results in in vitro PDT analysis against K562 human cancer cells indicate the prepared materials are highly promising in PDT anticancer therapy and the IC50 values of GO loaded BODIPY derivatives bearing heavy atoms, GO-14 and GO-15, were calculated as 40.59 nM and 39.21 nM, respectively.
Collapse
Affiliation(s)
- Ezel Öztürk Gündüz
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey.
| | - Rovshen Atajanov
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey.
| | - M Emre Gedik
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Çankaya, Ankara 06100, Turkey
| | - Esra Tanrıverdi Eçik
- Department of Chemistry, Faculty of Science, Atatürk University, Yakutiye, Erzurum, 25010, Turkey
| | - Gürcan Günaydın
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Çankaya, Ankara 06100, Turkey
| | - Elif Okutan
- Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey.
| |
Collapse
|
26
|
Oosthuizen DN, Weber IC. A Strategy to Enhance Humidity Robustness of p‐Type CuO Sensors for Breath Acetone Quantification. SMALL SCIENCE 2023. [DOI: 10.1002/smsc.202200096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Affiliation(s)
- Dina N. Oosthuizen
- Particle Technology Laboratory Department of Mechanical & Process Engineering ETH Zurich CH-8092 Zurich Switzerland
| | - Ines C. Weber
- Particle Technology Laboratory Department of Mechanical & Process Engineering ETH Zurich CH-8092 Zurich Switzerland
- Department of Endocrinology, Diabetes, and Clinical Nutrition University Hospital Zurich CH-8091 Zurich Switzerland
| |
Collapse
|
27
|
Ma ZW, Tang JW, Liu QH, Mou JY, Qiao R, Du Y, Wu CY, Tang DQ, Wang L. Identification of geographic origins of Morus alba Linn. through surfaced enhanced Raman spectrometry and machine learning algorithms. J Biomol Struct Dyn 2023; 41:14285-14298. [PMID: 36803175 DOI: 10.1080/07391102.2023.2180433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023]
Abstract
The leaves of Morus alba Linn., which is also known as white mulberry, have been commonly used in many of traditional systems of medicine for centuries. In traditional Chinese medicine (TCM), mulberry leaf is mainly used for anti-diabetic purpose due to its enrichment in bioactive compounds such as alkaloids, flavonoids and polysaccharides. However, these components are variable due to the different habitats of the mulberry plant. Therefore, geographic origin is an important feature because it is closely associated with bioactive ingredient composition that further influences medicinal qualities and effects. As a low-cost and non-invasive method, surface enhanced Raman spectrometry (SERS) is able to generate the overall fingerprints of chemical compounds in medicinal plants, which holds the potential for the rapid identification of their geographic origins. In this study, we collected mulberry leaves from five representative provinces in China, namely, Anhui, Guangdong, Hebei, Henan and Jiangsu. SERS spectrometry was applied to characterize the fingerprints of both ethanol and water extracts of mulberry leaves, respectively. Through the combination of SERS spectra and machine learning algorithms, mulberry leaves were well discriminated with high accuracies in terms of their geographic origins, among which the deep learning algorithm convolutional neural network (CNN) showed the best performance. Taken together, our study established a novel method for predicting the geographic origins of mulberry leaves through the combination of SERS spectra with machine learning algorithms, which strengthened the application potential of the method in the quality evaluation, control and assurance of mulberry leaves.
Collapse
Affiliation(s)
- Zhang-Wen Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jia-Wei Tang
- Department of Intelligent Medical Engineering, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu, Jiangsu Province, China
| | - Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau, China
| | - Jing-Yi Mou
- The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Rui Qiao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Department of Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yan Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Chang-Yu Wu
- Department of Biomedical Engineering, School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Dao-Quan Tang
- Department of Pharmaceutical Analysis, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
28
|
Dual-gate thin film transistor lactate sensors operating in the subthreshold regime. Biosens Bioelectron 2023; 222:114958. [PMID: 36502715 DOI: 10.1016/j.bios.2022.114958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Organic thin-film transistors (TFTs) with an electrochemically functionalized sensing gate are promising platforms for wearable health-monitoring technologies because they are light, flexible, and cheap. Achieving both high sensitivity and low power is highly demanding for portable or wearable devices. In this work, we present flexible printed dual-gate (DG) organic TFTs operating in the subthreshold regime with ultralow power and high sensitivity. The subthreshold operation of the gate-modulated TFT-based sensors not only increases the sensitivity but also reduces the power consumption. The DG configuration has deeper depletion and stronger accumulation, thereby further making the subthreshold slope sharper. We integrate an enzymatic lactate-sensing extended-gate electrode into the printed DG TFT and achieve exceptionally high sensitivity (0.77) and ultralow static power consumption (10 nW). Our sensors are successfully demonstrated in physiological lactate monitoring with human saliva. The accuracy of the DG TFT sensing system is as good as that of a high-cost conventional assay. The developed platform can be readily extended to various materials and technologies for high performance wearable sensing applications.
Collapse
|
29
|
Singh G, Pandey SP, Singh PK. Guest Binding with Sulfated Cyclodextrins: Does the Size of Cavity Matter? Chemphyschem 2023; 24:e202200421. [PMID: 36228089 DOI: 10.1002/cphc.202200421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/01/2022] [Indexed: 01/19/2023]
Abstract
Sulfated cyclodextrins have recently emerged as potential candidates for producing host-induced guest aggregation with properties better than p-sulfonatocalixarenes that have previously shown numerous applications involving the phenomena of host-induced guest aggregation. In the class of sulfated cyclodextrins (SCD), sulfated β-cyclodextrin (β-SCD) remains the most extensively investigated host molecule. Although it is assumed that the host-induced guest aggregation is predominantly an outcome of interaction of the guest molecule with the charges on the exterior of SCD cavity, it has not been deciphered whether the variation in the cavity size will make a difference in the efficiency of host-induced guest-aggregation process. In this investigation, we present a systematic study of host-induced guest aggregation of a cationic molecular rotor dye, Thioflavin T (ThT) with three different sulfated cyclodextrin molecules, α-SCD, β-SCD and γ-SCD, which differ in their cavity size, using steady-state emission, ground-state absorption and time-resolved emission measurements. The obtained photophysical properties of ThT, upon interaction with different SCD molecules, indicate that the binding strength of ThT with different SCD molecules correlate with the cavity size of the host molecule, giving rise to the strongest complexation of ThT with the largest host molecule (γ-SCD). The binding affinity of ThT towards different host molecules has been supported by molecular docking calculations. The results obtained are further supported with the temperature and ionic strength dependent studies performed on the host-guest complex. Our results indicate that for host-induced guest aggregation, involving oppositely charged molecules, the size of the cavity also plays a crucial role beside the charge density on the exterior of host cavity.
Collapse
Affiliation(s)
- Gaurav Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400 085, India
| | - Shrishti P Pandey
- Amity Institute of Biotechnology, Amity University, Mumbai-Pune Expressway, Bhatan Panvel, Mumbai, 410206, India.,Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W), 400056, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre Trombay, Mumbai, 400 085, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400 094, India
| |
Collapse
|
30
|
Ghaith ME, Abd El-Moghny MG, El-Nagar GA, Alalawy HH, El-Shakre ME, El-Deab MS. Tailor-designed binary Ni-Cu nano dendrites decorated 3D-carbon felts for efficient glycerol electrooxidation. RSC Adv 2023; 13:895-905. [PMID: 36686903 PMCID: PMC9811513 DOI: 10.1039/d2ra06853b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Herein, 3D-Carbon Felt (CF) are decorated with nickel-copper (Ni-Cu@CF) bimetallic nanostructures through either sequential or co-electrodeposition tactics. Their catalytic activity towards glycerol electrooxidation is investigated by employing cyclic voltammetry (CV) and linear sweep voltammetry LSV. The morphology and composition of the various Ni-Cu@CF are investigated using X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) together with various electrochemical measurements (e.g., CV, chronoamperometry, LSV). The co-deposition of Ni-Cu shows a dendritic-like structure with higher electrocatalytic activity towards glycerol electrooxidation compared to the monometallic counterparts. Interestingly, the best electrode (NiCu@CF Ni particles as the top layer) prepared by sequential electrodeposition shows 1.6-fold higher glycerol oxidation activity, manifested in oxidation current, compared to Ni-coated CF due to Ni particles covering the surface of dendritic copper uniformly. Thus, the surface concentration of Ni is increased and at the same time a synergistic effect occurs between Ni and Cu by the simple addition of Cu which reinforces the surface concentration of Ni from 3.4 × 10-8 to 1.1 × 10-7 mol cm-2.
Collapse
Affiliation(s)
- Mohamed E Ghaith
- Chemistry Department, Faculty of Science, Cairo University Cairo Egypt
| | | | - Gumaa A El-Nagar
- Chemistry Department, Faculty of Science, Cairo University Cairo Egypt
- Helmholtz-Zentrum Berlin für Materialien und Energie Berlin Germany
| | - Hafsa H Alalawy
- Chemistry Department, Faculty of Science, Cairo University Cairo Egypt
| | | | - Mohamed S El-Deab
- Chemistry Department, Faculty of Science, Cairo University Cairo Egypt
| |
Collapse
|
31
|
Saurabh S, Hossain MK, Singh S, Agnihotri SK, Samajdar DP. Optical performance analysis of InP nanostructures for photovoltaic applications. RSC Adv 2023; 13:9878-9891. [PMID: 37006350 PMCID: PMC10051016 DOI: 10.1039/d3ra00039g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
In this article, we have performed a comparative analysis of six different types of nanostructures that can improve photon management for photovoltaic applications. These nanostructures act as anti-reflective structures by improving the absorption characteristics and tailoring the optoelectronic properties of the associated devices. The absorption enhancement in indium phosphide (InP) and silicon (Si) based cylindrical nanowires (CNWs) and rectangular nanowires (RNWs), truncated nanocones (TNCs), truncated nanopyramids (TNPs), inverted truncated nanocones (ITNCs), and inverted truncated nanopyramids (ITNPs) are computed using the finite element method (FEM) based commercial COMSOL Multiphysics package. The influence of geometrical dimensions of the investigated nanostructures such as period (P), diameter (D), width (W), filling ratio (FR), bottom W and D (Wbot/Dbot), and top W and D (Wtop/Dtop) on the optical performance are analyzed in detail. Optical short circuit current density (Jsc) is computed using the absorption spectra. The results of numerical simulations indicate that InP nanostructures are optically superior to Si nanostructures. In addition to this, the InP TNP generates an optical short circuit current density (Jsc) of 34.28 mA cm−2, which is ∼10 mA cm−2 higher than its Si counterpart. The effect of incident angle on the ultimate efficiency of the investigated nanostructures in transverse electric (TE) and transverse magnetic (TM) modes is also explored. Theoretical insights into the design strategies of different nanostructures proposed in this article will act as a benchmark for choosing the device dimensions of appropriate nanostructures for the fabrication of efficient photovoltaic devices. The optical performance of different indium phosphide (InP) nanostructures are investigated using Wave Optics Module of COMSOL Multiphysics. Our results indicate that InP based nanostructures outperform silicon based nanostructures.![]()
Collapse
Affiliation(s)
- Siddharth Saurabh
- Department of Electronics and Communication Engineering, PDPM Indian Institute of Information Technology, Design and ManufacturingJabalpur 482005India
| | - M. Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy CommissionDhaka 1349Bangladesh
| | - Sadhna Singh
- Department of Electronics and Communication Engineering, PDPM Indian Institute of Information Technology, Design and ManufacturingJabalpur 482005India
| | - Suneet Kumar Agnihotri
- Department of Electronics and Communication Engineering, PDPM Indian Institute of Information Technology, Design and ManufacturingJabalpur 482005India
| | - D. P. Samajdar
- Department of Electronics and Communication Engineering, PDPM Indian Institute of Information Technology, Design and ManufacturingJabalpur 482005India
| |
Collapse
|
32
|
Hricovíni M, Asher JR, Hricovíni M. Intramolecular crankshaft-type rearrangement in a photoisomerised glycoconjugate †. RSC Adv 2023; 13:9413-9417. [PMID: 36968057 PMCID: PMC10034262 DOI: 10.1039/d3ra01678a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/24/2023] Open
Abstract
High-resolution NMR spectroscopy revealed that a novel glycoconjugate, consisting of two β-glucopyranoses attached to a quinazolinone-like structure, exhibited photoisomerization around the –N–N
<svg xmlns="http://www.w3.org/2000/svg" version="1.0" width="13.200000pt" height="16.000000pt" viewBox="0 0 13.200000 16.000000" preserveAspectRatio="xMidYMid meet"><metadata>
Created by potrace 1.16, written by Peter Selinger 2001-2019
</metadata><g transform="translate(1.000000,15.000000) scale(0.017500,-0.017500)" fill="currentColor" stroke="none"><path d="M0 440 l0 -40 320 0 320 0 0 40 0 40 -320 0 -320 0 0 -40z M0 280 l0 -40 320 0 320 0 0 40 0 40 -320 0 -320 0 0 -40z"/></g></svg>
and CH–C– bonds of the –N–NCH–C– linkage in the same timeframe (the so-called “crankshaft rotation”) upon exposure to UV light. Experimental NMR data combined with DFT calculations discovered that the attachment of carbohydrate residues to photoactive compounds significantly changed the isomerization process and intramolecular rearrangement compared to the unglycosylated system, while the overall molecular structure remained virtually unchanged. A reversible photoinduced intramolecular crankshaft-type rearrangement in a glycoconjugate proceeds simultaneously at both the –N–N and CH–C– bonds.![]()
Collapse
Affiliation(s)
- Michal Hricovíni
- Institute of Chemistry, Slovak Academy of SciencesDúbravská cesta 9845 38 BratislavaSlovak Republic
| | - James R. Asher
- Institute of Inorganic Chemistry, Slovak Academy of SciencesDúbravská cesta 9845 36 BratislavaSlovak Republic
- Faculty of Natural Sciences, Department of Inorganic Chemistry, Comenius UniversityMlynská Dolina, CH284215BratislavaSlovak Republic
| | - Miloš Hricovíni
- Institute of Chemistry, Slovak Academy of SciencesDúbravská cesta 9845 38 BratislavaSlovak Republic+421-2-5941-0222+421-2-5941-0323
| |
Collapse
|
33
|
Recent advances in the application of metal-organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214853] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
Qosimah D, Santoso S, Maftuch M, Khotimah H, Fitri LE, Aulanni’am A, Suwanti LT. Methanol extract of Black soldier fly ( Hermetia illucens) prepupae against Aeromonas and Staphylococcus aureus bacteria in vitro and in silico. Open Vet J 2023; 13:48-63. [PMID: 36777443 PMCID: PMC9897505 DOI: 10.5455/ovj.2023.v13.i1.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/12/2022] [Indexed: 02/05/2023] Open
Abstract
Background Staphylococcus and Aeromonas bacteria are pathogens in humans and animals. The therapy disrupts the virulence structure of the bacteria, resulting in bacterial death. Currently, chemical drugs have resulted in many resistant bacteria, so it is necessary to find alternative natural materials that are not toxic and do not quickly induce resistance. Aims This study aimed to analyze the potential of methanol extract from Black soldier fly (BSF) prepupae as an antibacterial agent against Staphylococcus aureus and Aeromonas through in silico and in vitro tests. Methods The BSF prepupae methanol extract was analyzed for protein and fatty acid contents. Disc diffusion method, minimal inhibitory concentration, and minimum bactericidal concentration test were used for in vitro tests against Staphylococcis and Aeromonas. Molecular docking of the active ingredients (defensin, chitin, and chitosan as well as fatty acids) in BSF was downloaded from the NCBI database and docked by the Hex Cuda version 8.0 program with Correlation type parameters Shape + Electro and Grid Dimension version 0.6. Docking results were analyzed using the Discovery Studio program version 21.1.1. Results The highest fatty acid contents in the extract were palmitic acid and myristic acid. Methanol extract from BSF prepupae acted as a bactericidal agent against S. aureus at a concentration of 320 mg/ml, in contrast to Aeromonas, which still showed bacterial growth. The results of the in silico test showed that defensin-aerolysin and defensin-hemolysin was bound to the same active site area. However, the amount of binding energy produced by 69-Defensin-83-aerolysin was higher than all defensin types in BSF against Aeromonas. Chitin and chitosan showed a bond on the active site of aerolysin and hemolysin, but chitosan had a stronger bond than chitin. In silico study also showed the strongest binding affinity of BSF fatty acids to isoleucyl-tRNA synthetase of S. aureus. Conclusion The study showed that methanol extract from BSF prepupae had potential capability as an antibacterial agent against S. aureus than Aeromonas in vitro and in silico.
Collapse
Affiliation(s)
- Dahliatul Qosimah
- Doctoral Study Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia,Laboratory Microbiology and Immunology, Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, Indonesia,Corresponding Author: Dahliatul Qosimah. Doctoral Study Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia.
| | - Sanarto Santoso
- Laboratory of Microbiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Maftuch Maftuch
- Laboratory of Fish Diseases, Faculty of Fisheries and Marine Science, Universitas Brawijaya, Malang, Indonesia
| | - Husnul Khotimah
- Laboratory of Pharmacology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Loeki Enggar Fitri
- Laboratory of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Aulanni’am Aulanni’am
- Department of Chemistry, Faculty of Sciences, Universitas Brawijaya, Malang, Indonesia
| | - Lucia Tri Suwanti
- Veterinary Parasitology Department, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
35
|
Tivari S, Singh PK, Singh PP, Srivastava V. Visible light-induced photoredox catalyzed C-N coupling of amides with alcohols. RSC Adv 2022; 12:35221-35226. [PMID: 36540212 PMCID: PMC9730743 DOI: 10.1039/d2ra07065k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/02/2022] [Indexed: 03/23/2024] Open
Abstract
A visible-light-mediated method for the construction of N-monoalkylated products from easily available benzamides and benzyl alcohol in the presence of eosin Y has been developed. The reaction proceeded smoothly, for a wide range of derivatives of benzamides and benzyl alcohols, to give the desired products in good to excellent yields. Biological studies, such as those on drug-likeness and molecular docking, are carried out on the molecules.
Collapse
Affiliation(s)
- Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj-211002 Uttar Pradesh India
| | - Pravin K Singh
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj-211002 Uttar Pradesh India
| | - Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Naini Prayagraj-211010 Uttar Pradesh India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj-211002 Uttar Pradesh India
| |
Collapse
|
36
|
Pha-sita Plengplung, Ratanatawanate C, Dubas ST. Influence of Salt Doping on the In Situ Synthesis of Zeolitic Imidazolate Framework-8 in Poly(diallyldimethylammonium chloride)/Poly(sodium-p-styrenesulfonate) Polyelectrolytes Complexes. POLYMER SCIENCE SERIES A 2022. [DOI: 10.1134/s0965545x2270033x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
37
|
Wang R, Sun W, Han H, Sun W, Liu R. A novel fine gangue depressant: Metal ions-starch colloidal depressant and its effect on ultrafine chlorite. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Ndruru STCL, Widiarto S, Pramono E, Wahyuningrum D, Bundjali B, Arcana IM. Modification of Nias’ Cacao Pod Husk Cellulose through Carboxymethylation Stages by Using MAOS Method and Its Application as Li‐ion Batteries’ Biopolymer Electrolyte Membrane**. ChemistrySelect 2022. [DOI: 10.1002/slct.202202510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Sun Theo Constan Lotebulo Ndruru
- Inorganic Physical Chemistry Division Institut Teknologi Bandung Jalan Ganesha 10 Bandung 40132 Jawa Barat Indonesia
- Research Center for Chemistry National Research and Innovation Agency (BRIN) PUSPIPTEK Area Serpong Tangerang Selatan Banten 15314 Indonesia
- Electromedical Technology Program Sekolah Tinggi Ilmu Kesehatan Binalita Sudama Medan Jl. Gedung PBSI No.1 Sumatera Utara Indonesia
| | - Sonny Widiarto
- Analytical Chemistry Division Universitas Lampung Jalan Prof. Dr. Sumantri Brojonegoro No. 1, Bandar Lampung Lampung 35145 Indonesia
| | - Edi Pramono
- Chemistry Department Universitas Sebelas Maret Jalan Ir. Sutami No. 36 A Kentingan Surakarta 57126 Indonesia
| | - Deana Wahyuningrum
- Organic Chemistry Division Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung Jalan Ganesha 10 Bandung 40132 Jawa Barat Indonesia
| | - Bunbun Bundjali
- Inorganic Physical Chemistry Division Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung Jalan Ganesha 10 Bandung 40132 Jawa Barat Indonesia
| | - I Made Arcana
- Inorganic Physical Chemistry Division Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung Jalan Ganesha 10 Bandung 40132 Jawa Barat Indonesia
| |
Collapse
|
39
|
Yuan G, Guo H, Bo L, Wang M, Zhang H, Chen X. Study of poly (organic palygorskite-methyl methacrylate)/poly(vinylidene fluoride-co-hexafluoropropylene) blended gel polymer electrolyte for lithium-ion batteries. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Haskew MJ, Nikman S, O'Sullivan CE, Galeb HA, Halcovitch NR, Hardy JG, Murphy ST. Mg/Zn metal‐air primary batteries using silk fibroin‐ionic liquid polymer electrolytes. NANO SELECT 2022. [DOI: 10.1002/nano.202200200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Mathew J. Haskew
- School of Engineering Lancaster University Bailrigg Lancaster UK
- Department of Chemistry Lancaster University Faraday Building Bailrigg Lancaster UK
| | - Shahin Nikman
- Department of Chemistry Lancaster University Faraday Building Bailrigg Lancaster UK
| | - Carys E. O'Sullivan
- Department of Chemistry Lancaster University Faraday Building Bailrigg Lancaster UK
| | - Hanaa A. Galeb
- Department of Chemistry Lancaster University Faraday Building Bailrigg Lancaster UK
- Department of Chemistry Science and Arts College, Rabigh Campus King Abdulaziz University Jeddah Saudi Arabia
| | - Nathan R. Halcovitch
- Department of Chemistry Lancaster University Faraday Building Bailrigg Lancaster UK
| | - John G. Hardy
- Department of Chemistry Lancaster University Faraday Building Bailrigg Lancaster UK
- Materials Science Institute Lancaster University Faraday Building, John Creed Avenue Bailrigg Lancaster UK
| | - Samuel T. Murphy
- School of Engineering Lancaster University Bailrigg Lancaster UK
- Materials Science Institute Lancaster University Faraday Building, John Creed Avenue Bailrigg Lancaster UK
| |
Collapse
|
41
|
Budhiraja M, Chudasama B, Ali A, Tyagi V. Production of a recyclable nanobiocatalyst to synthesize quinazolinone derivatives. RSC Adv 2022; 12:31734-31746. [PMID: 36425315 PMCID: PMC9667765 DOI: 10.1039/d2ra04405f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/06/2022] [Indexed: 09/08/2024] Open
Abstract
Nanobiocatalysts (NBCs) are an emerging innovation that paves the way toward sustainable and eco-friendly endeavors. In the quest for a robust and reusable nanobiocatalyst, herein, we report a nanobiocatalyst, namely CALB@MrGO, developed via immobilizing Candida antarctica lipase B onto the surface of Fe3O4-decorated reduced graphene oxide (MrGO). Next, the enormous potential of the NBC (CALB@MrGO) was checked by employing it to synthesize clinically important quinazolinone derivatives in good to excellent yield (70-95%) using differently substituted aryl aldehydes with 2-aminobenzamide. Further, the synthetic utility and generality of this protocol was proved by setting up a gram-scale reaction, which afforded the product in 87% yield. The green chemistry metrics calculated for the gram-scale reaction those prove the greenness of this protocol.
Collapse
Affiliation(s)
- Meenakshi Budhiraja
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology (TIET) Patiala Punjab India
| | - Bhupendra Chudasama
- Center of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology Patiala-147004 India
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Amjad Ali
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology (TIET) Patiala Punjab India
- Center of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Vikas Tyagi
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology (TIET) Patiala Punjab India
- Center of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology Patiala-147004 India
| |
Collapse
|
42
|
Riester O, Burkhardtsmaier P, Gurung Y, Laufer S, Deigner HP, Schmidt MS. Synergy of R-(-)carvone and cyclohexenone-based carbasugar precursors with antibiotics to enhance antibiotic potency and inhibit biofilm formation. Sci Rep 2022; 12:18019. [PMID: 36289389 PMCID: PMC9606123 DOI: 10.1038/s41598-022-22807-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/19/2022] [Indexed: 01/24/2023] Open
Abstract
The widespread use of antibiotics in recent decades has been a major factor in the emergence of antibiotic resistances. Antibiotic-resistant pathogens pose increasing challenges to healthcare systems in both developing and developed countries. To counteract this, the development of new antibiotics or adjuvants to combat existing resistance to antibiotics is crucial. Glycomimetics, for example carbasugars, offer high potential as adjuvants, as they can inhibit metabolic pathways or biofilm formation due to their similarity to natural substrates. Here, we demonstrate the synthesis of carbasugar precursors (CSPs) and their application as biofilm inhibitors for E. coli and MRSA, as well as their synergistic effect in combination with antibiotics to circumvent biofilm-induced antibiotic resistances. This results in a biofilm reduction of up to 70% for the CSP rac-7 and a reduction in bacterial viability of MRSA by approximately 45% when combined with the otherwise ineffective antibiotic mixture of penicillin and streptomycin.
Collapse
Affiliation(s)
- Oliver Riester
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany ,grid.10392.390000 0001 2190 1447Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany
| | - Pia Burkhardtsmaier
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany
| | - Yuna Gurung
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany
| | - Stefan Laufer
- grid.10392.390000 0001 2190 1447Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany ,Tuebingen Center for Academic Drug Discovery and Development (TüCAD2), 72076 Tübingen, Germany
| | - Hans-Peter Deigner
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany ,grid.10392.390000 0001 2190 1447Faculty of Science, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany ,grid.418008.50000 0004 0494 3022EXIM Department, Fraunhofer Institute IZI (Leipzig), Schillingallee 68, 18057 Rostock, Germany
| | - Magnus S. Schmidt
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany
| |
Collapse
|
43
|
Tian T, Xu J, Xiong Y, Ramanan N, Ryan M, Xie F, Petit C. Cu-functionalised porous boron nitride derived from a metal-organic framework. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:20580-20592. [PMID: 36324859 PMCID: PMC9531768 DOI: 10.1039/d2ta05515e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Porous boron nitride (BN) displays promising properties for interfacial and bulk processes, e.g. molecular separation and storage, or (photo)catalysis. To maximise porous BN's potential in such applications, tuning and controlling its chemical and structural features is key. Functionalisation of porous BN with metal nanoparticle represents one possible route, albeit a hardly explored one. Metal-organic frameworks (MOFs) have been widely used as precursors to synthesise metal functionalised porous carbon-based materials, yet MOF-derived metal functionalised inorganic porous materials remain unexplored. Here, we hypothesise that MOFs could also serve as a platform to produce metal-functionalised porous BN. We have used a Cu-containing MOF, i.e. Cu/ZIF-8, as a precursor and successfully obtained porous BN functionalised with Cu nanoparticles (i.e. Cu/BN). While we have shown control of the Cu content, we have not yet demonstrated it for the nanoparticle size. The functionalisation has led to improved light harvesting and enhanced electron-hole separation, which have had a direct positive impact on the CO2 photoreduction activity (production formation rate 1.5 times higher than pristine BN and 12.5 times higher than g-C3N4). In addition, we have found that the metal in the MOF precursor impacts porous BN's purity. Unlike Cu/ZIF-8, a Co-containing ZIF-8 precursor led to porous C-BN (i.e. BN with a large amount of C in the structure). Overall, given the diversity of metals in MOFs, one could envision our approach as a method to produce a library of different metal functionalised porous BN samples.
Collapse
Affiliation(s)
- Tian Tian
- Barrer Centre, Department of Chemical Engineering, Imperial College London, South Kensington Campus London SW7 2AZ UK
| | - Jiamin Xu
- Department of Materials, Imperial College London, South Kensington Campus London SW7 2AZ UK
| | - Ying Xiong
- Barrer Centre, Department of Chemical Engineering, Imperial College London, South Kensington Campus London SW7 2AZ UK
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Campus de Cantoblanco Madrid 28049 Spain
| | - Nitya Ramanan
- Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus Didcot OX11 0DE UK
| | - Mary Ryan
- Department of Materials, Imperial College London, South Kensington Campus London SW7 2AZ UK
| | - Fang Xie
- Department of Materials, Imperial College London, South Kensington Campus London SW7 2AZ UK
| | - Camille Petit
- Barrer Centre, Department of Chemical Engineering, Imperial College London, South Kensington Campus London SW7 2AZ UK
| |
Collapse
|
44
|
Nguyen DM, Wu Y, Nolin A, Lo CY, Guo T, Dhong C, Martin DC, Kayser LV. Electronically Conductive Hydrogels by in Situ Polymerization of a Water-Soluble EDOT-Derived Monomer. ADVANCED ENGINEERING MATERIALS 2022; 24:2200280. [PMID: 36275121 PMCID: PMC9586015 DOI: 10.1002/adem.202200280] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 05/30/2023]
Abstract
Electronically conductive hydrogels have gained popularity in bioelectronic interfaces because their mechanical properties are similar to biological tissues, potentially preventing scaring in implanted electronics. Hydrogels have low elastic moduli, due to their high water content, which facilitates their integration with biological tissues. To achieve electronically conductive hydrogels, however, requires the integration of conducting polymers or nanoparticles. These “hard” components increase the elastic modulus of the hydrogel, removing their desirable compatibility with biological tissues, or lead to the heterogeneous distribution of the conductive material in the hydrogel scaffold. A general strategy to transform hydrogels into electronically conductive hydrogels without affecting the mechanical properties of the parent hydrogel is still lacking. Herein, a two‐step method is reported for imparting conductivity to a range of different hydrogels by in‐situ polymerization of a water‐soluble and neutral conducting polymer precursor: 3,4–ethylenedioxythiophene diethylene glycol (EDOT‐DEG). The resulting conductive hydrogels are homogenous, have conductivities around 0.3 S m−1, low impedance, and maintain an elastic modulus of 5–15 kPa, which is similar to the preformed hydrogel. The simple preparation and desirable properties of the conductive hydrogels are likely to lead to new materials and applications in tissue engineering, neural interfaces, biosensors, and electrostimulation.
Collapse
Affiliation(s)
- Dan My Nguyen
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716, United States
| | - Yuhang Wu
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Abigail Nolin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Chun-Yuan Lo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716, United States
| | - Tianzheng Guo
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Charles Dhong
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - David C Martin
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, 19716, United States
| | - Laure V Kayser
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716, United States
| |
Collapse
|
45
|
Ceria-Doped Cr3C2–NiCr Coatings on Austenite Steel for Investigation in Actual Boiler Environment. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
46
|
Zavagna-Witt M, Tahir N, Arus VA, Roy R, Azzouz A. Synthesis of exopolysaccharide-based organo-montmorillonite with improved affinity towards carbon dioxide and hydrophilic character. CR CHIM 2022. [DOI: 10.5802/crchim.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Investigating the effect of N-doping on carbon quantum dots structure, optical properties and metal ion screening. Sci Rep 2022; 12:13806. [PMID: 35970901 PMCID: PMC9378613 DOI: 10.1038/s41598-022-16893-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Carbon quantum dots (CQDs) derived from biomass, a suggested green approach for nanomaterial synthesis, often possess poor optical properties and have low photoluminescence quantum yield (PLQY). This study employed an environmentally friendly, cost-effective, continuous hydrothermal flow synthesis (CHFS) process to synthesise efficient nitrogen-doped carbon quantum dots (N-CQDs) from biomass precursors (glucose in the presence of ammonia). The concentrations of ammonia, as nitrogen dopant precursor, were varied to optimise the optical properties of CQDs. Optimised N-CQDs showed significant enhancement in fluorescence emission properties with a PLQY of 9.6% compared to pure glucose derived-CQDs (g-CQDs) without nitrogen doping which have PLQY of less than 1%. With stability over a pH range of pH 2 to pH 11, the N-CQDs showed excellent sensitivity as a nano-sensor for the highly toxic highly-pollutant chromium (VI), where efficient photoluminescence (PL) quenching was observed. The optimised nitrogen-doping process demonstrated effective and efficient tuning of the overall electronic structure of the N-CQDs resulting in enhanced optical properties and performance as a nano-sensor.
Collapse
|
48
|
Gorkowski K, Benedict KB, Carrico CM, Dubey MK. Complexities in Modeling Organic Aerosol Light Absorption. J Phys Chem A 2022; 126:4827-4833. [PMID: 35834798 PMCID: PMC9340763 DOI: 10.1021/acs.jpca.2c02236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/04/2022] [Indexed: 11/29/2022]
Abstract
Aerosol particles dynamically evolve in the atmosphere by physicochemical interactions with sunlight, trace chemical species, and water. Current modeling approaches fix properties such as aerosol refractive index, introducing spatial and temporal errors in the radiative impacts. Further progress requires a process-level description of the refractive indices as the particles age and experience physicochemical transformations. We present two multivariate modeling approaches of light absorption by brown carbon (BrC). The initial approach was to extend the modeling framework of the refractive index at 589 nm (nD), but that result was insufficient. We developed a second multivariate model using aromatic rings and functional groups to predict the imaginary part of the complex refractive index. This second model agreed better with measured spectral absorption peaks, showing promise for a simplified treatment of BrC optics. In addition to absorption, organic functionalities also alter the water affinity of the molecules, leading to a hygroscopic uptake and increased light absorption, which we show through measurements and modeling.
Collapse
Affiliation(s)
- Kyle Gorkowski
- Earth
and Environmental Science, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, United States
| | - Katherine B. Benedict
- Earth
and Environmental Science, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, United States
| | - Christian M. Carrico
- New
Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, United States
| | - Manvendra K. Dubey
- Earth
and Environmental Science, Los Alamos National
Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
49
|
Pourhajibagher M, Etemad-Moghadam S, Alaeddini M, Miri Mousavi RS, Bahador A. DNA-aptamer-nanographene oxide as a targeted bio-theragnostic system in antimicrobial photodynamic therapy against Porphyromonas gingivalis. Sci Rep 2022; 12:12161. [PMID: 35842460 PMCID: PMC9288515 DOI: 10.1038/s41598-022-16310-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/07/2022] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to design and evaluate the specificity of a targeted bio-theragnostic system based on DNA-aptamer-nanographene oxide (NGO) against Porphyromonas gingivalis during antimicrobial photodynamic therapy (aPDT). Following synthesis and confirmation of NGO, the binding of selected labeled DNA-aptamer to NGO was performed and its hemolytic activity, cytotoxic effect, and release times were evaluated. The specificity of DNA-aptamer-NGO to P. gingivalis was determined. The antimicrobial effect, anti-biofilm potency, and anti-metabolic activity of aPDT were then assessed after the determination of the bacteriostatic and bactericidal concentrations of DNA-aptamer-NGO against P. gingivalis. Eventually, the apoptotic effect and anti-virulence capacity of aPDT based on DNA-aptamer-NGO were investigated. The results showed that NGO with a flaky, scale-like, and layered structure in non-cytotoxic DNA-aptamer-NGO has a continuous release in the weak-acid environment within a period of 240 h. The binding specificity of DNA-aptamer-NGO to P. gingivalis was confirmed by flow cytometry. When irradiated, non-hemolytic DNA-aptamer-NGO were photoactivated, generated ROS, and led to a significant decrease in the cell viability of P. gingivalis (P < 0.05). Also, the data indicated that DNA-aptamer-NGO-mediated aPDT led to a remarkable reduction of biofilms and metabolic activity of P. gingivalis compared to the control group (P < 0.05). In addition, the number of apoptotic cells increased slightly (P > 0.05) and the expression level of genes involved in bacterial biofilm formation and response to oxidative stress changed significantly after exposure to aPDT. It is concluded that aPDT using DNA-aptamer-NGO as a targeted bio-theragnostic system is a promising approach to detect and eliminate P. gingivalis as one of the main bacteria involved in periodontitis in periopathogenic complex in real-time and in situ.
Collapse
Affiliation(s)
- Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahroo Etemad-Moghadam
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojgan Alaeddini
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvaneh Sadat Miri Mousavi
- Pharmaceutical Engineering Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Abbas Bahador
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Fellowship in Clinical Laboratory Sciences, BioHealth Lab, Tehran, Iran.
| |
Collapse
|
50
|
Kang CSM, Hutt OE, Pringle JM. Halide-Free Synthesis of New Difluoro(oxalato)borate [DFOB] - -Based Ionic Liquids and Organic Ionic Plastic Crystals. Chemphyschem 2022; 23:e202200115. [PMID: 35451216 PMCID: PMC9401595 DOI: 10.1002/cphc.202200115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/31/2022] [Indexed: 11/29/2022]
Abstract
The implementation of next-generation batteries requires the development of safe, compatible electrolytes that are stable and do not cause safety problems. The difluoro(oxalato)borate ([DFOB]- ) anion has been used as an electrolyte additive to aid with stability, but such an approach has most commonly been carried out using flammable solvent electrolytes. As an alternative approach, utilisation of the [DFOB]- anion to make ionic liquids (ILs) or Organic Ionic Plastic Crystals (OIPCs) allows the advantageous properties of ILs or OIPCs, such as higher thermal stability and non-volatility, combined with the benefits of the [DFOB]- anion. Here, we report the synthesis of new [DFOB]- -based ILs paired with triethylmethylphosphonium [P1222 ]+ , and diethylisobutylmethylphosphonium [P122i4 ]+ . We also report the first OIPCs containing the [DFOB]- anion, formed by combination with the 1-ethyl-1-methylpyrrolidinium [C2 mpyr]+ cation, and the triethylmethylammonium [N1222 ]+ cation. The traditional synthetic route using halide starting materials has been successfully replaced by a halide-free tosylate-based synthetic route that is advantageous for a purer, halide free product. The synthesised [DFOB]- -based salts exhibit good thermal stability, while the ILs display relatively high ionic conductivity. Thus, the new [DFOB]- -based electrolytes show promise for further investigation as battery electrolytes both in liquid and solid-state form.
Collapse
Affiliation(s)
- Colin S. M. Kang
- Institute for Frontier MaterialsDeakin University221 Burwood HwyBurwoodVictoriaAustralia
| | - Oliver E. Hutt
- Boron Molecular500 Princes HwyNoble ParkVictoriaAustralia
| | - Jennifer M. Pringle
- Institute for Frontier MaterialsDeakin University221 Burwood HwyBurwoodVictoriaAustralia
| |
Collapse
|