1
|
Du R, Yimuran Z, Cai H, Zhou B, Ning Y, Ping W, Jiang B, Ge J. Characterization of exopolysaccharide/potato starch nanocomposite films loading g-C 3N 4 and Ag and their potential applications in food packaging. Int J Biol Macromol 2024; 281:136574. [PMID: 39406319 DOI: 10.1016/j.ijbiomac.2024.136574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/20/2024]
Abstract
The interest in nanocomposite films incorporating edible ingredients and active nanoparticles has surged due to their potential to enhance food quality and prolong shelf-life. This research focused on developing innovative exopolysaccharides (EPS)/potato starch (PS) nanocomposite films integrated with g-C3N4 and AgNO3. Extensive analysis was conducted to assess the microstructure, physical attributes and antimicrobial properties of these films. Fourier transform infrared (FT-IR) analysis revealed electrostatic and hydrogen bonding interactions within the film components. X-ray diffraction (XRD) and X-ray photoelectron spectrometer (XPS) data indicated a high level of compatibility among EPS, PS, g-C3N4, and AgNO3, with no new absorption peaks or characteristic signals of C3N4 and Ag appearing in the nanocomposite films patterns. The thickness, water solubility and water vapor permeability (WVP) of the EPS-PS-C3N4-Ag nanocomposite film increased due to the addition of g-C3N4, reached 0.31 ± 0.03 nm, 36.61 ± 1.76 % and 1.42 ± 0.34 × 10-10 g-1 s-1 Pa-1, respectively. While transparency, swelling degree, and oxygen permeability (OP) significantly decreased, reached 26.18 ± 2.38 %, 63.01 ± 2.51 % and 41.98 ± 1.28 %, respectively. Scanning electron microscopy (SEM) and atomic force microscope (AFM) images depicted an augmented roughness and porosity on the film surface upon integration of g-C3N4 and AgNO3. Moreover, the EPS-PS-C3N4-Ag nanocomposite film displayed enhanced mechanical strength due to the presence of g-C3N4. The melting temperature (Tm) of EPS-PS-C3N4-Ag nanocomposite film was 313.3 °C, the removal rates of DPPH and ABTS was 66.11 ± 2.87 % and 45.09 ± 1.23 % respectively. Significant inhibition of microbial growth was observed in film containing g-C3N4 and AgNO3, which demonstrated no toxicity towards NIH-33 cells, suggesting their potential application as promising active packaging material for food preservation.
Collapse
Affiliation(s)
- Renpeng Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China
| | - Zimuran Yimuran
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Huayang Cai
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Bosen Zhou
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yingying Ning
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wenxiang Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Baojiang Jiang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
2
|
Nguyen PN, Tran TQN, Le KH, Khong DT, Pham HP, Dang QV, Tran QH, Nguyen TM, Nguyen Dang N. Eco-synthesis of green silver nanoparticles using natural extracts and its application as co-catalyst in photocatalytic hydrogen production. RSC Adv 2024; 14:31036-31046. [PMID: 39351409 PMCID: PMC11440351 DOI: 10.1039/d4ra05675b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Green silver nanoparticles (AgNPs) were synthesized using natural extracts as reducing agents and were firstly applied as co-catalysts in low-intensity-visible-light driven photocatalytic hydrogen production (PH2P), which a solution for green energy sources and independence from fossil fuels. The as-prepared AgNPs possessed size in a few tens nanometers and exhibited surface plasmon resonance (SPR) effects in the 310-560 nm region. Depositing AgNPs on g-C3N4 nanosheets broadened the visible absorption range, reduced electron-hole recombination, and increased electronic communication at the interface. g-C3N4/Ag demonstrated high PH2P efficiency, stability over three consecutive cycles, and a rapidly rising photocurrent under low-intensity visible light irradiation, although these features were not observed in g-C3N4 alone. The H2 evolution of g-C3N4/Ag_CC (CC: Cinnamomum camphora), g-C3N4/Ag_GT (GT: green tea), and g-C3N4/Ag_PP (PP: pomelo peels) reached 252.6, 125.3 and 92.0 μmol g-1 at 180 min at the first cycle, respectively. Among them, g-C3N4/Ag_CC showed the highest photocatalytic activity, which may be attributed to the superior morphology, optical properties of AgNPs_CC, and efficient electron transfer from g-C3N4 to AgNPs_CC. The SPR effect and Schottky barriers formed at the interface could contribute to enhancing the overall efficiency of the heterojunction photocatalysts. The results highlighted a crucial advancement toward H2 production under low-intensity visible-light irradiation.
Collapse
Affiliation(s)
- Phuong N Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology (VAST) 29TL Street, Ward Thanh Loc, District 12 Ho Chi Minh City Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay Ha Noi Vietnam
| | - Thao Quynh Ngan Tran
- Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao, Ward 4, Go Vap District Ho Chi Minh City Vietnam
| | - Khoa Hai Le
- Insitute for Tropical Technology, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay HaNoi Vietnam
| | - Diem T Khong
- Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao, Ward 4, Go Vap District Ho Chi Minh City Vietnam
| | - Hoai Phuong Pham
- NTT Hi-Tech Institute, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh Street, Ward 13, District 4 Ho Chi Minh City 70000 Vietnam
| | - Quang V Dang
- Faculty of Materials Science and Technology, University of Science 227 Nguyen Van Cu Str., Dist. 5 Ho Chi Minh City Vietnam
- Vietnam National University, Ho Chi Minh (VNU-HCM) Linh Trung Ward, Thu Duc District Ho Chi Minh City 70000 Vietnam
| | - Quang-Hieu Tran
- Basic Sciences Department-Saigon Technology University 180 Cao Lo, Ward 4, District 8 Ho Chi Minh City 700000 Vietnam
| | - Tuan M Nguyen
- National Institute of Applied Mechanics and Informatics, Vietnam Academy of Science and Technology (VAST) 291 Dien Bien Phu Street, Ward 7, District 3 Ho Chi Minh City 70000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Street, Cau Giay Ha Noi Vietnam
| | - Nam Nguyen Dang
- Future Materials & Devices Lab., Institute of Fundamental and Applied Sciences, Duy Tan University Ho Chi Minh City 70000 Vietnam
- The Faculty of Environmental and Chemical Engineering, Duy Tan University Danang 50000 Vietnam
| |
Collapse
|
3
|
Kang L, Wang Y, Du R, Zhang J, Kang C. Construction of S/g-C 3N 4@β-Bi 2O 3 heterojunction and its photocatalytic degradation of toluene in the gas phase. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55836-55849. [PMID: 39245673 DOI: 10.1007/s11356-024-34840-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024]
Abstract
In this paper, a modification of g-C3N4 was carried out by combining non-metal doping with the construction of heterojunctions, and a type II heterojunction composite, S/g-C3N4@β-Bi2O3, was prepared. The phase structure, morphology, elemental composition, valence band structure, and light absorption performance of the photocatalyst were analyzed using characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectroscopy (UV-vis DRS). The performance of the composite photocatalyst in the photocatalytic degradation of gaseous toluene, one of the typical volatile organic compounds (VOCs), under simulated solar light was studied. The effects of preparation conditions, toluene concentration, and recycling on the photocatalytic performance of the composite photocatalyst were investigated. The results show that under the optimal preparation conditions, S/g-C3N4@β-Bi2O3 achieved a degradation efficiency of 74.0% for 5 ppm toluene after 5 h of light irradiation. Although the degradation efficiency decreased to 61.2% after five cycles, it maintained 83% of its initial activity, indicating good stability of the composite photocatalyst. Free radical quenching experiments demonstrated that h+ was the main active species in the photocatalytic degradation of toluene, followed by ·O2-. Based on all experimental results, the migration law of photo-generated charges was analyzed, and a possible photocatalytic mechanism was proposed. In this study, a new material was obtained for the photocatalytic removal of VOCs by improving the photocatalytic properties of g-C3N4.
Collapse
Affiliation(s)
- Lu Kang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China
| | - Ying Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Ruihan Du
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Jinpu Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Chunli Kang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Water Resources and Water Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Michalska M, Pavlovsky J, Simha Martynkova G, Kratosova G, Hornok V, Nagy PB, Novak V, Szabo T. Comparative study of photocatalysis with bulk and nanosheet graphitic carbon nitrides enhanced with silver. Sci Rep 2024; 14:11512. [PMID: 38769357 PMCID: PMC11106318 DOI: 10.1038/s41598-024-62291-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024] Open
Abstract
The main goal of this research is to investigate the effectiveness of graphitic carbon nitride (g-C3N4, g-CN) in both bulk and nanosheet forms, which have been surface-modified with silver nanoparticles (Ag NPs), as photocatalysts for the degradation of acid orange 7 (AO7), a model dye. The photodegradation of AO7 dye molecules in water was used to test the potential photocatalytic properties of these powder materials under two different lamps with wavelengths of 368 nm (UV light) and 420 nm (VIS light). To produce Ag NPs (Ag content 0.5, 1.5, and 3 wt%) on the g-CN materials, a new synthesis route based on a wet and low-temperature method was proposed, eliminating the need for reducing agents. The photodegradation activity of the samples increased with increasing silver content, with the best photocatalytic performances achieved for bulk g-CN samples and nanosheet silver-modified samples (with the highest content of 3 wt% Ag) under UV light, i.e., more than 75% and 78%, respectively. The VIS-induced photocatalytic activity of both examined series was higher than that of UV. The highest activities of 92% and 98% were achieved for the 1.5% Ag-modified g-CN bulk and nanosheet materials. This research presents an innovative, affordable, and environmentally friendly chemical approach to synthesizing photocatalysts that can be used for degrading organic pollutants in wastewater treatment.
Collapse
Affiliation(s)
- Monika Michalska
- Department of Chemistry and Physico-Chemical Processes, Faculty of Materials Science and Technology, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic.
| | - Jiri Pavlovsky
- Department of Chemistry and Physico-Chemical Processes, Faculty of Materials Science and Technology, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Grazyna Simha Martynkova
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Gabriela Kratosova
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Viktoria Hornok
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla Tér. 1, Szeged, 6720, Hungary
| | - Peter B Nagy
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla Tér. 1, Szeged, 6720, Hungary
| | - Vlastimil Novak
- Department of Chemistry and Physico-Chemical Processes, Faculty of Materials Science and Technology, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| | - Tamas Szabo
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla Tér. 1, Szeged, 6720, Hungary
| |
Collapse
|
5
|
Devanesan S, AlSalhi MS, Liu X, Shanmuganathan R. G-C 3N 4-Ag composite mediated photocatalytic degradation of phenanthrene - A remedy for environmental pollution. ENVIRONMENTAL RESEARCH 2023; 239:117387. [PMID: 37832767 DOI: 10.1016/j.envres.2023.117387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 10/15/2023]
Abstract
In recent years, g-C3N4-Ag nanocomposite synthesis has gained considerable attention for its potential to treat polycyclic aromatic hydrocarbons (PAHs) and to act against bacteria and fungi. In this study, we present a novel approach to the synthesis of g-C3N4-Ag nanocomposite and evaluate its efficiency in both PAH removal and antimicrobial activity. The synthesis process involved the preparation of g-C3N4 by thermal polycondensation of melamine. The factors that affect the adsorption process of PAHs, like time, pH, irradiation type, and adsorbent dosage, were also evaluated. Isotherm models like Langmuir and Freundlich determined the adsorption capability of g-C3N4-Ag. In simulated models, phenanthrene was degraded to a maximum of 85% at lower concentrations of catalyst. The adsorption profile of phenanthrene obeys the pseudo-second-order and Freundlich isotherms pattern. The g-C3N4-Ag nanocomposite also exhibited antimicrobial activity against bacteria (Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Klebsiella pneumoniae) and fungi (Candida albicans). The present study is the first report stating the dual application of g-C3N4-Ag nanocomposite in reducing the concentration of PAH and killing bacterial and fungal pathogens. The higher adsorption capability proclaimed by g-C3N4-Ag nanocomposite shows the fabricated nanomaterial with great potential to remediate organic pollutants from the ecosystem.
Collapse
Affiliation(s)
- Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Xinghui Liu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, China
| | - Rajasree Shanmuganathan
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
6
|
Kumaravel S, Chandrasatheesh C, Palanisamy G, Lee J, Hasan I, Kumaravel S, Avula B, Pongiya UD, Balu K. Highly Efficient Solar-Light-Active Ag-Decorated g-C 3N 4 Composite Photocatalysts for the Degradation of Methyl Orange Dye. MICROMACHINES 2023; 14:1454. [PMID: 37512765 PMCID: PMC10383219 DOI: 10.3390/mi14071454] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
In this study, we utilized calcination and simple impregnation methods to successfully fabricate bare g-C3N4 (GCN) and x% Ag/g-C3N4 (x% AgGCN) composite photocatalysts with various weight percentages (x = 1, 3, 5, and 7 wt.%). The synthesized bare and composite photocatalysts were analyzed to illustrate their phase formation, functional group, morphology, and optical properties utilizing XRD, FT-IR, UV-Vis DRS, PL, FE-SEM, and the EDS. The photodegradation rate of MO under solar light irradiation was measured, and the 5% AgGCN composite photocatalyst showed higher photocatalytic activity (99%), which is very high compared to other bare and composite photocatalysts. The MO dye degradation rate constant with the 5% AgGCN photocatalyst exhibits 14.83 times better photocatalytic activity compared to the bare GCN catalyst. This photocatalyst showed good efficiency in the degradation of MO dye and demonstrated cycling stability even in the 5th successive photocatalytic reaction cycle. The higher photocatalytic activity of the 5% AgGCN composite catalyst for the degradation of MO dye is due to the interaction of Ag with GCN and the localized surface plasmon resonance (SPR) effect of Ag. The scavenger study results indicate that O2●- radicals play a major role in MO dye degradation. A possible charge-transfer mechanism is proposed to explain the solar-light-driven photocatalyst of GCN.
Collapse
Affiliation(s)
- Sakthivel Kumaravel
- Department of Environmental Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | | | - Govindasamy Palanisamy
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Imran Hasan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saranraj Kumaravel
- Department of Electrical Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Balakrishna Avula
- Department of Chemistry, Rajeev Gandhi Memorial College of Engineering and Technology (Autonomous), Nandyal 518501, Andhra Pradesh, India
| | - Uma Devi Pongiya
- Department of Biochemistry, Dhanalakshmi Srinivasan College of Arts and Science for Women (Autonomous), Perambalur 621212, Tamil Nadu, India
| | - Krishnakumar Balu
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, E.T.S. de Ingenieros, Universidad de Sevilla, Avda. Camino de los Descubrimientos s/n., 41092 Sevilla, Spain
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, Tamil Nadu, India
| |
Collapse
|
7
|
Zhang J, Gu X, Zhao Y, Zhang K, Yan Y, Qi K. Photocatalytic Hydrogen Production and Tetracycline Degradation Using ZnIn 2S 4 Quantum Dots Modified g-C 3N 4 Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020305. [PMID: 36678056 PMCID: PMC9866619 DOI: 10.3390/nano13020305] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 05/12/2023]
Abstract
In this work, ZnIn2S4/g-C3N4 (ZIS/CN) composites were synthesized by in-situ growth method, which showed excellent photocatalytic activity in the degradation of tetracycline and hydrogen production from water under visible light irradiation. ZnIn2S4 quantum dots (ZIS QDs) tightly combined with sheet g-C3N4 (CN) to accelerate the separation and transportation of photogenerated charges for enhanced photocatalytic activity. Among the prepared nanocomposites, 20%ZnIn2S4 QDs/g-C3N4 (20%ZIS/CN) delivered the highest photocatalytic activity. After 120 min of irradiation, the degradation rate of tetracycline with 20%ZIS/CN was 54.82%, 3.1 times that of CN while the rate of hydrogen production was 75.2 μmol·g-1·h-1. According to the optical and electrochemical characterization analysis, it was concluded that the excellent photocatalytic activities of the composite materials were mainly due to the following three points: enhancement in light absorption capacity, acceleration in the charge transport, and reduction in the carrier recombination rate through the formation of S-scheme heterojunction in the composite system. The high photocatalytic activity of ZIS/CN composites provides a new idea to develop highly efficient photocatalysts.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Pharmacy, Dali University, Dali 671000, China
| | - Xinyue Gu
- College of Pharmacy, Dali University, Dali 671000, China
| | - Yue Zhao
- College of Pharmacy, Dali University, Dali 671000, China
| | - Kai Zhang
- College of Biochemistry and Environmental Engineering, Baoding University, Baoding 071000, China
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, China
- Correspondence: (K.Z.); (Y.Y.); (K.Q.)
| | - Ya Yan
- College of Pharmacy, Dali University, Dali 671000, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
- Correspondence: (K.Z.); (Y.Y.); (K.Q.)
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, China
- Correspondence: (K.Z.); (Y.Y.); (K.Q.)
| |
Collapse
|
8
|
Etemadi H, Soltani T, Yoshida H, Zhang Y, Telfer SG, Buchanan JK, Plieger PG. Synergistic Effect of Redox Dual PdO x /MnO x Cocatalysts on the Enhanced H 2 Production Potential of a SnS/α-Fe 2O 3 Heterojunction via Ethanol Photoreforming. ACS OMEGA 2022; 7:42347-42358. [PMID: 36440114 PMCID: PMC9685606 DOI: 10.1021/acsomega.2c05410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
In the quest for optimal H2 evolution (HE) through ethanol photoreforming, a dual cocatalyst-modified heterocatalyst strategy is utilized. Tin(II) sulfide (SnS) was hybridized with α-Fe2O3 to form the heterocatalyst FeOSnS with a p-n heterojunction structure as confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-vis diffusive reflectance spectroscopy (UV-vis DRS), and Brunauer-Emmett-Teller (BET) techniques. PdO x and PdO x /MnO x cocatalysts were loaded onto the FeOSnS heterocatalyst through the impregnation method, as verified by high-resolution transform electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and elemental mapping. Photocatalytic ethanol photoreforming resulted in the production of H2 as the main product with a selectivity of 99% and some trace amounts of CH4. The FeOSnS2-PdO x 2%/MnO x 1% photocatalyst achieved the highest HE rate of 1654 μmol/g, attributed to the synergistic redox contribution of the PdO x and MnO x species.
Collapse
Affiliation(s)
- Hossein Etemadi
- School
of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North4410, New Zealand
| | - Tayyebeh Soltani
- Graduate
School of Human and Environmental Studies, Kyoto University, Kyoto606-8501, Japan
| | - Hisao Yoshida
- Graduate
School of Human and Environmental Studies, Kyoto University, Kyoto606-8501, Japan
- Elements
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto615-8520, Japan
| | - Yiming Zhang
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, School of Natural
Sciences, Massey University, Private Bag 11 222, Palmerston North4410, New Zealand
| | - Shane G. Telfer
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, School of Natural
Sciences, Massey University, Private Bag 11 222, Palmerston North4410, New Zealand
| | - Jenna K. Buchanan
- School
of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North4410, New Zealand
| | - Paul G. Plieger
- School
of Natural Sciences, Massey University, Private Bag 11 222, Palmerston North4410, New Zealand
| |
Collapse
|
9
|
Song J, Zhao K, Yin X, Liu Y, Khan I, Liu SY. Photocatalytic degradation of tetracycline hydrochloride with g-C 3N 4/Ag/AgBr composites. Front Chem 2022; 10:1069816. [PMID: 36451930 PMCID: PMC9702527 DOI: 10.3389/fchem.2022.1069816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Graphite carbon nitride (g-C3N4), as a polymer semiconductor photocatalyst, is widely used in the treatment of photocatalytic environmental pollution. In this work, a Z-scheme g-C3N4/Ag/AgBr heterojunction photocatalyst was prepared based on the preparation of a g-C3N4-based heterojunction via in-situ loading through photoreduction method. The g-C3N4/Ag/AgBr composite showed an excellent photocatalytic performance in the degradation of tetracycline hydrochloride pollutants. Among the prepared samples, g-C3N4/Ag/AgBr-8% showed the best photocatalytic ability for the degradation of tetracycline hydrochloride, whose photocatalytic degradation kinetic constant was 0.02764 min-1, which was 9.8 times that of g-C3N4, 2.4 times that of AgBr, and 1.9 times that of Ag/AgBr. In the photocatalytic process, •O2- and •OH are main active oxygen species involved in the degradation of organic pollutants. The photocatalytic mechanism of g-C3N4/Ag/AgBr is mainly through the formation of Z-scheme heterojunctions, which not only effectively improves the separation efficiency of photogenerated electron-hole pairs, but also maintains the oxidation and reduction capability of AgBr and g-C3N4, respectively.
Collapse
Affiliation(s)
- Jiahe Song
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Kun Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Xiangbin Yin
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Ying Liu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Iltaf Khan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Shu-Yuan Liu
- Department of Pharmacology, Shenyang Medical College, Shenyang, China
| |
Collapse
|
10
|
Liu SY, Zada A, Yu X, Liu F, Jin G. NiFe 2O 4/g-C 3N 4 heterostructure with an enhanced ability for photocatalytic degradation of tetracycline hydrochloride and antibacterial performance. CHEMOSPHERE 2022; 307:135717. [PMID: 35863405 DOI: 10.1016/j.chemosphere.2022.135717] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 05/26/2023]
Abstract
In this work, NiFe2O4/g-C3N4 heterostructure was prepared and used for the photocatalytic decomposition of tetracycline hydrochloride antibiotic and for inactivation of E. coli bacteria. The fabricated NiFe2O4/g-C3N4 composite displayed enhanced ability for photodegradation of organic pollutants and disinfection activities compared to the bare samples, because of the enhancement of visible light absorbance, heterojunction formation and photo-Fenton process. The optimized sample 10%-NiFe2O4/g-C3N4 has photodegraded 94.5% of tetracycline hydrochloride in 80 min. The active species trapping experiments revels that ·O2-, h+ and •OH are key decomposing species participated in the antibiotic degradation. It is hoped that the present study will provide a better understanding to fabricate efficient photocatalysts for the decomposition of organic pollutants and disinfection of bacteria.
Collapse
Affiliation(s)
- Shu-Yuan Liu
- Department of Pharmacology, Shenyang Medical College, Shenyang, 110034, China.
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Xinyuan Yu
- Department of Pharmacology, Shenyang Medical College, Shenyang, 110034, China
| | - Fanzhe Liu
- Department of Pharmacology, Shenyang Medical College, Shenyang, 110034, China
| | - Ge Jin
- Department of Pharmacology, Shenyang Medical College, Shenyang, 110034, China.
| |
Collapse
|
11
|
Gao RH, Ge Q, Jiang N, Cong H, Liu M, Zhang YQ. Graphitic carbon nitride (g-C 3N 4)-based photocatalytic materials for hydrogen evolution. Front Chem 2022; 10:1048504. [PMID: 36386003 PMCID: PMC9640947 DOI: 10.3389/fchem.2022.1048504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/14/2022] [Indexed: 07/30/2023] Open
Abstract
The semiconductors, such as TiO2, CdS, ZnO, BiVO4, graphene, produce good applications in photocatalytic water splitting for hydrogen production, and great progress have been made in the synthesis and modification of the materials. As a two-dimensional layered structure material, graphitic carbon nitride (g-C3N4), with the unique properties of high thermostability and chemical inertness, excellent semiconductive ability, affords good potential in photocatalytic hydrogen evolution. However, the related low efficiency of g-C3N4 with fast recombination rate of photogenerated charge carriers, limited visible-light absorption, and low surface area of prepared bulk g-C3N4, has called out the challenge issues to synthesize and modify novel g-C3N4-block photocatalyst. In this review, we have summarized several strategies to improve the photocatalytic performance of pristine g-C3N4 such as pH, morphology control, doping with metal or non-metal elements, metal deposition, constructing a heterojunction or homojunction, dye-sensitization, and so forth. The performances for photocatalytic hydrogen evolution and possible development of g-C3N4 materials are shared with the researchers interested in the relevant fields hereinto.
Collapse
Affiliation(s)
- Rui-Han Gao
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, China
| | - Qingmei Ge
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
| | - Nan Jiang
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
| | - Hang Cong
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
| | - Mao Liu
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
| | - Yun-Qian Zhang
- Enterprise Technology Center of Guizhou Province, Guizhou University, Guiyang, China
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, China
| |
Collapse
|
12
|
Ma Q, Mu Y, Gong L, Zhu C, Di S, Cheng M, Gao J, Shi J, Zhang L. Manganese-based nanoadjuvants for enhancement of immune effect of DNA vaccines. Front Bioeng Biotechnol 2022; 10:1053872. [PMID: 36338143 PMCID: PMC9633283 DOI: 10.3389/fbioe.2022.1053872] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
As a highly pathogenic avian influenza virus, influenza A (H5N1) has been reported to infect humans, posing a major threat to both poultry industry and public health. It is an urgent need to develop a kind of effective vaccine to prevent death and reduce the incidence rate of H5N1 avian influenza. Compared with traditional inactivated or attenuated vaccines, deoxyribonucleic (DNA) vaccines have the advantages of continuously expressing plasmid-encoded antigens and inducing humoral and cellular immunity. However, the immune effect of DNA vaccines is limited to its poor immunogenicity. Using of nanoadjuvants with DNA vaccines holds a great promise to increase the transfection efficiency and immunogenicity of DNA vaccines. In this study, we developed a nano co-delivery system with a manganese-based liposome as adjuvant for delivery of a DNA vaccine. This system has been found to protect DNA vaccine, enhance phagocytosis as well as promote activation of antigen-presenting cells (APCs) and immune cells in draining lymph nodes. In addition, the effect of this nanovaccine has been evaluated in mouse models, where it induces highly potent hemagglutination inhibitory antibody (HI) and IgG antibodies, while activating both humoral and cellular immunity in the host. Overall, this strategy opens up a new prospect for manganese nanoadjuvants in increasing the immunogenicity of DNA vaccines.
Collapse
Affiliation(s)
- Qiang Ma
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Science, Northwest A & F University, Xianyang, China
| | - Yongxu Mu
- Department of Interventional, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
| | - Lidong Gong
- Institute of Systems Biomedicine, Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Chuanda Zhu
- Institute of Systems Biomedicine, Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Shiming Di
- Institute of Systems Biomedicine, Department of Pharmacology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Ming Cheng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinming Gao
- College of Chemistry and Pharmacy, Northwest A & F University, Xianyang, China
- *Correspondence: Jinming Gao, ; Jihai Shi, ; Liang Zhang,
| | - Jihai Shi
- Department of Dermatology, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China
- *Correspondence: Jinming Gao, ; Jihai Shi, ; Liang Zhang,
| | - Liang Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Jinming Gao, ; Jihai Shi, ; Liang Zhang,
| |
Collapse
|
13
|
Gu X, Tan C, He L, Guo J, Zhao X, Qi K, Yan Y. Mn 2+ doped AgInS 2 photocatalyst for formaldehyde degradation and hydrogen production from water splitting by carbon tube enhancement. CHEMOSPHERE 2022; 304:135292. [PMID: 35691399 DOI: 10.1016/j.chemosphere.2022.135292] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 05/26/2023]
Abstract
In this work, AgInS2 and Mn2+ doped AgInS2 (Mn-AgInS2) with different Mn2+: (Ag+ + In3+) ratios were synthesized via a low temperature liquid method. The photocatalytic activity of the obtained samples was followed by taking formaldehyde as the target pollutant under visible light irradiation. The photocatalysts were passed through various characterization procedures to investigate their morphological, structural and photophysical characteristics. The optimal proportion sample [with the ratio n (Mn2+): n (Ag+ + In3+) = 1:100] photodegraded about 79% formaldehyde in 150 min. These upgraded activities are attributed to the enhanced visible light absorption and superior charge separation due to the presence of Mn2+ as confirmed site from charge separation measurements. In addition, a possible mechanism for the photodegradation of formaldehyde is proposed based on the experimental results. Furthermore, the photocatalytic water splitting performance of Mn-AgInS2 and multi-walled carbon nanotubes (MWCNTs) modified Mn-AgInS2 is investigated and compared under simulated sunlight irradiation, and remarkable hydrogen production is achieved (105 μmol h-1 g-1) by using the latter.
Collapse
Affiliation(s)
- Xinyue Gu
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China
| | - Chen Tan
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China
| | - Lixian He
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China
| | - Jie Guo
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China
| | - Xia Zhao
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China.
| | - Ya Yan
- College of Pharmacy, Dali University, Dali, 671000, Yunnan, PR China.
| |
Collapse
|
14
|
Z-scheme Ag-loaded g-C3N4/CuNb2O6 composite photocatalyst for RhB dye degradation. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Balraj G, Gurrapu R, Anil Kumar A, Sumalatha V, Ayodhya D. Facile synthesis and characterization of noble metals decorated g-C3N4 (g-C3N4/Pt and g-C3N4/Pd) nanocomposites for efficient photocatalytic production of Schiff bases. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
16
|
Prabakaran E, Pillay K. Self-Assembled Silver Nanoparticles Decorated on Exfoliated Graphitic Carbon Nitride/Carbon Sphere Nanocomposites as a Novel Catalyst for Catalytic Reduction of Cr(VI) to Cr(III) from Wastewater and Reuse for Photocatalytic Applications. ACS OMEGA 2021; 6:35221-35243. [PMID: 34984255 PMCID: PMC8717378 DOI: 10.1021/acsomega.1c00866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/16/2021] [Indexed: 06/14/2023]
Abstract
Silver nanoparticles decorated on an exfoliated graphitic carbon nitride/carbon sphere (AgNP/Eg-C3N4/CS) nanocomposites were synthesized by an adsorption method with a self-assembled process. These nanoparticles were characterized by different techniques like UV-visible (UV-vis) spectroscopy, photoluminescence (PL) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermal gravimetric analysis (TGA), Raman spectroscopy, scanning electron spectroscopy (SEM), transmission electron spectroscopy (TEM), electrochemical impedance spectroscopy (EIS), and ζ potential. AgNP/Eg-C3N4/CS nanocomposites showed a higher catalytic reduction activity for the conversion of Cr(VI) into Cr(III) with formic acid (FA) at 45 °C when compared to bulk graphitic carbon nitride (Bg-C3N4, Eg-C3N4, CS, and Eg-C3N4/CS). The kinetic rate constants were determined as a function of catalyst dosage, concentration of Cr(VI), pH, and temperature for the AgNP/Eg-C3N4/CS nanocomposite. This material showed higher reduction efficiency (98.5%, k = 0.0621 min-1) with turnover frequency (0.0158 min-1) for the reduction of Cr(VI) to Cr(III). It also showed great selectivity and high stability after six repeated cycles (98.5%). Further, the reusability of the Cr(III)-AgNP/Eg-C3N4/CS nanocomposite was also investigated for the photocatalytic degradation of methylene blue (MB) under visible light irradiation with various time intervals and it showed good degradation efficiency (α = 97.95%). From these results, the AgNP/Eg-C3N4/CS nanocomposite demonstrated higher catalytic activity, improved environmental friendliness, lower cost for the conversion of toxic Cr(VI) to Cr(III) in solutions, and also good reusability.
Collapse
|
17
|
Zhao Y, Zada A, Yang Y, Pan J, Wang Y, Yan Z, Xu Z, Qi K. Photocatalytic Removal of Antibiotics on g-C 3N 4 Using Amorphous CuO as Cocatalysts. Front Chem 2021; 9:797738. [PMID: 34957051 PMCID: PMC8692713 DOI: 10.3389/fchem.2021.797738] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Amorphous CuO is considered as an excellent cocatalyst, owing to its large surface area and superior conductivity compared with its crystalline counterpart. The current work demonstrates a facile method to prepare amorphous CuO, which is grown on the surface of graphitic carbon nitride (g-C3N4) and is then applied for the photocatalytic degradation of tetracycline hydrochloride. The prepared CuO/g-C3N4 composite shows higher photocatalytic activities compared with bare g-C3N4. Efficient charge transfer between g-C3N4 and CuO is confirmed by the photocurrent response spectra and photoluminescence spectra. This work provides a facile approach to prepare low-cost composites for the photocatalytic degradation of antibiotics to safeguard the environment.
Collapse
Affiliation(s)
- Yue Zhao
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, and Hubei Key Laboratory of Industrial Fume and Pollution Control, Jianghan University, Wuhan, China
- College of Life Science, Shenyang Normal University, Shenyang, China
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Yang Yang
- College of Physical Science and Technology, Shenyang Normal University, Shenyang, China
| | - Jing Pan
- College of Life Science, Shenyang Normal University, Shenyang, China
| | - Yan Wang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Zhaoxiong Yan
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, and Hubei Key Laboratory of Industrial Fume and Pollution Control, Jianghan University, Wuhan, China
| | - Zhihua Xu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, and Hubei Key Laboratory of Industrial Fume and Pollution Control, Jianghan University, Wuhan, China
| | - Kezhen Qi
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, and Hubei Key Laboratory of Industrial Fume and Pollution Control, Jianghan University, Wuhan, China
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| |
Collapse
|
18
|
Designing Ag2O modified g-C3N4/TiO2 ternary nanocomposites for photocatalytic organic pollutants degradation performance under visible light: Synergistic mechanism insight. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127472] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Zada A, Khan M, Hussain Z, Shah MIA, Ateeq M, Ullah M, Ali N, Shaheen S, Yasmeen H, Ali Shah SN, Dang A. Extended visible light driven photocatalytic hydrogen generation by electron induction from g-C3N4 nanosheets to ZnO through the proper heterojunction. Z PHYS CHEM 2021. [DOI: 10.1515/zpch-2020-1778] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
The alarming energy crises has forced the scientific community to work for sustainable energy modules to meet energy requirements. As for this, ZnO/g-C3N4 nanocomposites with proper heterojunction were fabricated by coupling a proper amount of ZnO with 2D graphitic carbon nitride (g-C3N4) nanosheets and the obtained nanocomposites were applied for photocatalytic hydrogen generation from water under visible light illumination (λ > 420 nm). The morphologies and the hydrogen generation performance of fabricated photocatalysts were characterized in detail. Results showed that the optimized 5ZnO/g-C3N4 nanocomposite produced 70 µmol hydrogen gas in 1 h compare to 8 µmol by pure g-C3N4 under identical illumination conditions in the presence of methanol without the addition of cocatalyst. The much improved photoactivities of the nanocomposites were attributed to the enhanced charge separation through the heterojunction as confirmed from photoluminescence study, capacity of the fabricated samples for •OH radical generation and steady state surface photovoltage spectroscopic (SS-SPS) measurements. We believe that this work would help to fabricate low cost and effective visible light driven photocatalyst for energy production.
Collapse
Affiliation(s)
- Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan , Mardan 23200 , Pakistan
| | - Muhammad Khan
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University , Xi’an 710072 , China
| | - Zahid Hussain
- Department of Chemistry, Abdul Wali Khan University Mardan , Mardan 23200 , Pakistan
| | | | - Muhammad Ateeq
- Department of Chemistry, Abdul Wali Khan University Mardan , Mardan 23200 , Pakistan
| | - Mohib Ullah
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology , Harbin 150080 China
| | - Nauman Ali
- Institute of Chemical Sciences, University of Peshawar , Peshawar , Pakistan
| | - Shabana Shaheen
- Key Laboratory of Functional Inorganic Materials Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology , Harbin 150080 China
| | - Humaira Yasmeen
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University , Harbin 150040 , China
| | - Syed Niaz Ali Shah
- Department of Chemistry, Abdul Wali Khan University Mardan , Mardan 23200 , Pakistan
| | - Alei Dang
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University , Xi’an 710072 , China
| |
Collapse
|
20
|
Zada A, Khan M, Khan MA, Khan Q, Habibi-Yangjeh A, Dang A, Maqbool M. Review on the hazardous applications and photodegradation mechanisms of chlorophenols over different photocatalysts. ENVIRONMENTAL RESEARCH 2021; 195:110742. [PMID: 33515579 DOI: 10.1016/j.envres.2021.110742] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/28/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Chlorophenols are very important environmental pollutants, which have created huge problems for both aquatic and terrestrial lives. Therefore, their removal needs urgent, effective, and advanced technologies to safeguard our environment for future generation. This review encompasses a comprehensive study of the applications of chlorophenols, their hazardous effects and photocatalytic degradation under light illumination. The effect of various factors such as pH and presence of different anions on the photocatalytic oxidation of chlorophenols have been elaborated comprehensively. The production of different oxidizing agents taking part in the photodegradation of chlorophenols are given a bird eye view. The photocatalytic degradation mechanism of different chlorophenols over various photocatalyts has been discussed in more detail and elaborated that how different photocatalysts degrade the same chlorophenols with the aid of different oxidizing agents produced during photocatalysis. Finally, a future perspective has been given to deal with the effective removal of these hazardous pollutants from the environment.
Collapse
Affiliation(s)
- Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Muhammad Khan
- Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China; Department of Chemistry, University of Okara, Renala Khurd, Punjab, Pakistan
| | - Muhammad Asim Khan
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qasim Khan
- College of Electronic Science and Technology, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Aziz Habibi-Yangjeh
- Applied Chemistry Department, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Alei Dang
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Muhammad Maqbool
- Department of Clinical & Diagnostic Sciences, Health Physics Program, The University of Alabama at Birmingham, AL, 35294, USA.
| |
Collapse
|
21
|
Graphitic C3N4 modified by Ru(II)-based dyes for photocatalytic H2 evolution. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Photocatalytic Degradation of the Light Sensitive Organic Dyes: Methylene Blue and Rose Bengal by Using Urea Derived g-C3N4/ZnO Nanocomposites. Catalysts 2020. [DOI: 10.3390/catal10121457] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In this study, we report the fabrication of graphitic carbon nitride doped zinc oxide nanocomposites, g-C3N4/ZnO, (Zn-Us) by using different amount of urea. They were further characterized by X-ray Diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman, UV-vis, Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM) techniques. The prepared nanocomposites were used as photocatalysts for the mineralization of the light sensitive dyes Methylene Blue (MB) and Rose Bengal (RB) under UV light irradiation, and corresponding photo-mechanism was proposed. Benefiting from these photocatalytic characteristics, urea derived g-C3N4/ZnO photocatalysts have been found to have excellent photodegradation activity against the MB and RB for 6 h and 4 h, respectively. Under the given experimental conditions, the degradation percentage of fabricated Zn-Us were shown ~90% for both model dyes. Compared to cationic MB dye, anionic RB dye is more actively degraded on the surface of prepared photocatalysts. The results obtained can be effectively used for future practical applications in wastewater treatment
Collapse
|
23
|
Qi K, Selvaraj R, Wang L. Editorial: Functionalized Inorganic Semiconductor Nanomaterials: Characterization, Properties, and Applications. Front Chem 2020; 8:616728. [PMID: 33262974 PMCID: PMC7686566 DOI: 10.3389/fchem.2020.616728] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022] Open
Affiliation(s)
- Kezhen Qi
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Rengaraj Selvaraj
- Department of Chemistry, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Liwei Wang
- School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
24
|
Liu Y, Ma Z. g-C3N4 Modified by meso-Tetrahydroxyphenylchlorin for Photocatalytic Hydrogen Evolution Under Visible/Near-Infrared Light. Front Chem 2020; 8:605343. [PMID: 33240861 PMCID: PMC7677346 DOI: 10.3389/fchem.2020.605343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022] Open
Abstract
A new photocatalyst denoted as mTHPC/pCN was prepared by modifying protonated graphitic carbon nitride (pCN) by meso-tetrahydroxyphenylchlorin (mTHPC). Relevant samples were characterized via various methods including zeta potential measurements, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, N2 adsorption–desorption, transmission electron microscopy, ultraviolet-visible–near-infrared spectroscopy, electrochemical impedance spectroscopy, photocurrent response measurements, electron spin resonance spectroscopy, and phosphorescence spectroscopy. Compared with pCN, mTHPC/pCN shows enhanced absorption in the visible and near-infrared regions and thus higher photocatalytic activity in hydrogen evolution. A possible mechanism for mTHPC/pCN is proposed.
Collapse
Affiliation(s)
- Yanfei Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Zhen Ma
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
- *Correspondence: Zhen Ma
| |
Collapse
|
25
|
Khan WA, Arain MB, Bibi H, Tuzen M, Shah N, Zada A. Selective electromembrane extraction and sensitive colorimetric detection of copper(II). Z PHYS CHEM 2020. [DOI: 10.1515/zpch-2020-1761] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In this study, an extremely effective electromembrane extraction (EME) method was developed for the selective extraction of Cu(II) followed by Red-Green-Blue (RGB) detection. The effective parameters optimized for the extraction efficiency of EME include applied voltage, extraction time, supported liquid membrane (SLM) composition, pH of acceptor/donor phases, and stirring rate. Under optimized conditions, Cu(II) was extracted from a 3 mL aqueous donor phase to 8 µL of 100 mM HCl acceptor solution through 1-octanol SLM using an applied voltage of 50 V for 15 min. The proposed method provides a working range of 0.1–0.75 µg·mL−1 with 0.03 µg·mL−1 limit for detection. Finally, the developed technique was applied to different environmental water samples for monitoring environmental pollution. Obtained relative recoveries were within the range of 93–106%. The relative standard deviation (RSD) and enhancement factor (EF) were found to be ≤4.8% and 100 respectively. We hope that this method can be introduced for quantitative determination of Cu(II) as a fast, simple, portable, inexpensive, effective, and precise procedure.
Collapse
Affiliation(s)
- Wajid Ali Khan
- Department of Chemistry , Abdul Wali Khan University , 23200 , Mardan , KPK , Pakistan
| | - Muhammad Balal Arain
- Department of Chemistry , Abdul Wali Khan University , 23200 , Mardan , KPK , Pakistan
- Department of Chemistry , University of Karachi , 75270 , Karachi , Pakistan
| | - Hashmat Bibi
- Department of Chemistry , Abdul Wali Khan University , 23200 , Mardan , KPK , Pakistan
| | - Mustafa Tuzen
- Tokat Gaziosmanpaşa University , Department of Chemistry , 60250 , Tokat , Turkey
| | - Nasrullah Shah
- Department of Chemistry , Abdul Wali Khan University , 23200 , Mardan , KPK , Pakistan
| | - Amir Zada
- Department of Chemistry , Abdul Wali Khan University , 23200 , Mardan , KPK , Pakistan
| |
Collapse
|
26
|
Ullah A, Khan J, Sohail M, Hayat A, Zhao TK, Ullah B, Khan M, Uddin I, Ullah S, Ullah R, Rehman AU, Khan WU. Fabrication of polymer carbon nitride with organic monomer for effective photocatalytic hydrogen evolution. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112764] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Hassani A, Faraji M, Eghbali P. Facile fabrication of mpg-C3N4/Ag/ZnO nanowires/Zn photocatalyst plates for photodegradation of dye pollutant. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112665] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
28
|
Nguyen Van M, Mai OLT, Pham Do C, Lam Thi H, Pham Manh C, Nguyen Manh H, Pham Thi D, Do Danh B. Fe-Doped g-C 3N 4: High-Performance Photocatalysts in Rhodamine B Decomposition. Polymers (Basel) 2020; 12:E1963. [PMID: 32872559 PMCID: PMC7564836 DOI: 10.3390/polym12091963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 11/17/2022] Open
Abstract
Herein, Fe-doped C3N4 high-performance photocatalysts, synthesized by a facile and cost effective heat stirring method, were investigated systematically using powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) surface area measurement, X-ray photoelectron (XPS), UV-Vis diffusion reflectance (DRS) and photoluminescence (PL) spectroscopy. The results showed that Fe ions incorporated into a g-C3N4 nanosheet in both +3 and +2 oxidation states and in interstitial configuration. Absorption edge shifted slightly toward the red light along with an increase of absorbance in the wavelength range of 430-570 nm. Specific surface area increased with the incorporation of Fe into g-C3N4 lattice, reaching the highest value at the sample doped with 7 mol% Fe (FeCN7). A sharp decrease in PL intensity with increasing Fe content is an indirect evidence showing that electron-hole pair recombination rate decreased. Interestingly, Fe-doped g-C3N4 nanosheets present a superior photocatalytic activity compared to pure g-C3N4 in decomposing RhB solution. FeCN7 sample exhibits the highest photocatalytic efficiency, decomposing almost completely RhB 10 ppm solution after 30 min of xenon lamp illumination with a reaction rate approximately ten times greater than that of pure g-C3N4 nanosheet. This is in an agreement with the BET measurement and photoluminescence result which shows that FeCN7 possesses the largest specific surface area and low electron-hole recombination rate. The mechanism of photocatalytic enhancement is mainly explained through the charge transfer processes related to Fe2+/Fe3+ impurity in g-C3N4 crystal lattice.
Collapse
Affiliation(s)
- Minh Nguyen Van
- Center for Nano Science and Technology, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi 100000, Vietnam; (M.N.V.); (C.P.M.)
- Department of Physics, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi 100000, Vietnam; (C.P.D.); (B.D.D.)
| | - Oanh Le Thi Mai
- Center for Nano Science and Technology, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi 100000, Vietnam; (M.N.V.); (C.P.M.)
- Department of Physics, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi 100000, Vietnam; (C.P.D.); (B.D.D.)
| | - Chung Pham Do
- Department of Physics, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi 100000, Vietnam; (C.P.D.); (B.D.D.)
| | - Hang Lam Thi
- Faculty of Basic Sciences, Hanoi University of Natural Resources and Environment, 41A Phu Dien Road, North Tu Liem, Hanoi 100000, Vietnam;
| | - Cuong Pham Manh
- Center for Nano Science and Technology, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi 100000, Vietnam; (M.N.V.); (C.P.M.)
- Nguyen Trai Specialized Senior High School, Haiduong 03000, Vietnam
| | - Hung Nguyen Manh
- Department of Physics, Hanoi University of Mining and Geology, Duc Thang ward, North Tu Liem District, Hanoi 100000, Vietnam;
| | - Duyen Pham Thi
- Military Science Academy, 322 Le Trong Tan street, Dinh Cong, Hoang Mai, Hanoi 100000, Vietnam;
| | - Bich Do Danh
- Department of Physics, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi 100000, Vietnam; (C.P.D.); (B.D.D.)
| |
Collapse
|
29
|
Presentato A, Armetta F, Spinella A, Chillura Martino DF, Alduina R, Saladino ML. Formulation of Mesoporous Silica Nanoparticles for Controlled Release of Antimicrobials for Stone Preventive Conservation. Front Chem 2020; 8:699. [PMID: 32974275 PMCID: PMC7471835 DOI: 10.3389/fchem.2020.00699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
The biotic deterioration of artifacts of archaeological and artistic interest mostly relies on the action of microorganisms capable of thriving under the most disparate environmental conditions. Thus, to attenuate biodeterioration phenomena, biocides can be used by the restorers to prevent or slow down the microbial growth. However, several factors such as biocide half-life, its wash-out because of environmental conditions, and its limited time of action make necessary its application repeatedly, leading to negative economic implications. Sound and successful treatments are represented by controlled release systems (CRSs) based on porous materials. Here, we report on the design and development of a CRS system based on mesoporous silica nanoparticles (MSNs), as a carrier, and loaded with a biocide. MSNs, with a diameter of 55 nm and cylindrical pores of ca. 3-8 nm arranged as parallel arrays concerning the NP diameter, and with 422 m2/g of specific surface area were synthesized by the sol-gel method assisted by oil in water emulsion. Biocide loading and release were carried out in water and monitored by UV-Vis Spectroscopy; in addition, microbiological assay was performed using as control the MCM-41 mesoporous silica loaded with the same biocide. The role of specific supramolecular interaction in regulating the release is discussed. Further, we demonstrated that this innovative formulation was useful in inhibiting the in vitro growth of Kocuria rhizophila, an environmental Gram-positive bacterial strain. Besides, the CRS here prepared reduced the bacterial biomass contaminating a real case study (i.e., stone derived from the Santa Margherita cave located in Sicily, Italy), after several months of treatment thus opening for innovative treatments of deteriorated stone artifacts.
Collapse
Affiliation(s)
- Alessandro Presentato
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
| | - Francesco Armetta
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
| | - Alberto Spinella
- Advanced Technologies Network (ATeN) Center, University of Palermo, Palermo, Italy
| | - Delia Francesca Chillura Martino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy.,Advanced Technologies Network (ATeN) Center, University of Palermo, Palermo, Italy
| | - Rosa Alduina
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
| | - Maria Luisa Saladino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|
30
|
Facile Green Synthesis of Ag@g-C3N4 for Enhanced Photocatalytic and Catalytic Degradation of Organic Pollutant. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01816-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
|
32
|
Yan F, Wu Y, Jiang L, Xue X, Lv J, Lin L, Yu Y, Zhang J, Yang F, Qiu Y. Design of C 3 N 4 -Based Hybrid Heterojunctions for Enhanced Photocatalytic Hydrogen Production Activity. CHEMSUSCHEM 2020; 13:876-881. [PMID: 31944616 DOI: 10.1002/cssc.201903437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Indexed: 06/10/2023]
Abstract
Semiconductors and metals can form an Ohmic contact with an electric field pointing to the metal, or a Schottky contact with an electric field pointing to the semiconductor. If these two types of heterojunctions are constructed on a single nanoparticle, the two electric fields may cause a synergistic effect and increase the separation rate of the photogenerated electrons and holes. Metal Ni and Ag nanoparticles were successively loaded on the graphitic carbon nitride (g-C3 N4 ) surface by precipitation and photoreduction in the hope of forming hybrid heterojunctions on single nanoparticles. TEM/high-resolution TEM images showed that Ag and Ni were loaded on different locations on C3 N4 , which indicated that during the photoreduction reaction Ag+ obtained electrons from C3 N4 in the reduction reaction, whereas oxidation reactions proceeded on Ni nanoparticles. Photocatalytic hydrogen production experiments showed that C3 N4 -based hybrid heterojunctions can greatly improve the photocatalytic activity of materials. The possible reason is that two heterojunctions could form a long-range electric field similar to the p-i-n structure in semiconductors. Most of the photogenerated carriers were generated and then separated in this electric field, thereby increasing the separation rate of electrons and holes. This further improved the photocatalytic activity of C3 N4 .
Collapse
Affiliation(s)
- Fengpo Yan
- Key Laboratory of Green Perovskites Application of Fujian Province Universities, Fujian Jiangxia University, Fuzhou, 350108, P.R. China
| | - Yonghua Wu
- Key Laboratory of Green Perovskites Application of Fujian Province Universities, Fujian Jiangxia University, Fuzhou, 350108, P.R. China
| | - Linqin Jiang
- Key Laboratory of Green Perovskites Application of Fujian Province Universities, Fujian Jiangxia University, Fuzhou, 350108, P.R. China
| | - Xiaogang Xue
- School of Materials Science and Engineering, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, 541004, P.R. China
| | - Jiangquan Lv
- Key Laboratory of Green Perovskites Application of Fujian Province Universities, Fujian Jiangxia University, Fuzhou, 350108, P.R. China
| | - Lingyan Lin
- Key Laboratory of Green Perovskites Application of Fujian Province Universities, Fujian Jiangxia University, Fuzhou, 350108, P.R. China
| | - Yunlong Yu
- Key Laboratory of Green Perovskites Application of Fujian Province Universities, Fujian Jiangxia University, Fuzhou, 350108, P.R. China
| | - Jiye Zhang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai, 200444, P.R. China
| | - Fugui Yang
- Mathematical Institution, Fujian Jiangxia University, Fuzhou, 350108, P.R. China
| | - Yu Qiu
- Key Laboratory of Green Perovskites Application of Fujian Province Universities, Fujian Jiangxia University, Fuzhou, 350108, P.R. China
| |
Collapse
|
33
|
Zhang S, Khan I, Qin X, Qi K, Liu Y, Bai S. Construction of 1D Ag-AgBr/AlOOH Plasmonic Photocatalyst for Degradation of Tetracycline Hydrochloride. Front Chem 2020; 8:117. [PMID: 32195222 PMCID: PMC7066255 DOI: 10.3389/fchem.2020.00117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/07/2020] [Indexed: 11/13/2022] Open
Abstract
In this work, the highly efficient and low-cost Ag-AgBr/AlOOH plasmonic photocatalyst is successfully prepared via a simple and mild wet-chemical process and used for degrading high concentration methylene blue (MB) and tetracycline hydrochloride (TCH). The optimized 6-Ag-AgBr/AlOOH sample showed a 79% decomposition of TCH in 2 h, which is almost two times higher than that of bare AgBr (37%). For degrading MB, the photocatalytic activity of 6-Ag-AgBr/AlOOH (decomposing 84% in 2 h) showed a large enhancement as compared to bare AgBr (only 57%). The TEM, HRTEM, XRD, DRS, and XPS characterization results confirm that Ag-AgBr is a composite catalyst formed by loading Ag nanoparticles onto AgBr surfaces and then loaded on to AlOOH. The possible mechanism proposed is that •O 2 - and •OH radicals produced under sun light are the main active species for degrading MB and TCH. It is hoped that this work will open a new gateway to the synthesis of highly efficient and low-cost Ag-AgBr/AlOOH plasmonic photocatalysts for degrading organic pollutants.
Collapse
Affiliation(s)
- Siyang Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Iltaf Khan
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Xiaohong Qin
- Department of Information and Control Engineering, Shenyang Institute of Science and Technology, Shenyang, China
| | - Kezhen Qi
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, China
| | - Ying Liu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Shuchong Bai
- Institute of Paleontological, Shenyang Normal University, Shenyang, China
| |
Collapse
|
34
|
Zada A, Khan M, Qureshi MN, Liu SY, Wang R. Accelerating Photocatalytic Hydrogen Production and Pollutant Degradation by Functionalizing g-C 3N 4 With SnO 2. Front Chem 2020; 7:941. [PMID: 32133336 PMCID: PMC7039856 DOI: 10.3389/fchem.2019.00941] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/26/2019] [Indexed: 11/25/2022] Open
Abstract
Energy crises and environmental pollution are two serious threats to modern society. To overcome these problems, graphitic carbon nitride (g-C3N4) nanosheets were fabricated and functionalized with SnO2 nanoparticles to produce H2 from water splitting and degrade 2-chlorophenol under visible light irradiation. The fabricated samples showed enhanced photocatalytic activities for both H2 evolution and pollutant degradation as compared to bare g-C3N4 and SnO2. These enhanced photoactivities are attributed to the fast charge separation as the excited electrons transfer from g-C3N4 to the conduction band of SnO2. This enhanced charge separation has been confirmed by the photoluminescence spectra, steady state surface photovoltage spectroscopic measurement, and formed hydroxyl radicals. It is believed that this work will provide a feasible route to synthesize photocatalysts for improved energy production and environmental purification.
Collapse
Affiliation(s)
- Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Khan
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, China
| | | | - Shu-Yuan Liu
- Department of Pharmacology, Shenyang Medical College, Shenyang, China.,Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Physics and Electronic Engineering, Harbin Normal University, Harbin, China
| | - Ruidan Wang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| |
Collapse
|
35
|
Saha RK, Debanath MK, Paul B, Medhi S, Saikia E. Antibacterial and nonlinear dynamical analysis of flower and hexagon-shaped ZnO microstructures. Sci Rep 2020; 10:2598. [PMID: 32054975 PMCID: PMC7018978 DOI: 10.1038/s41598-020-59534-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/21/2020] [Indexed: 12/02/2022] Open
Abstract
The present study reports the antibacterial properties of flower-shaped ZnO (FZnO) microstructures and its comparison with that of hexagon-shaped bulk ZnO (BZnO) nanostructures. The samples are prepared successfully by wet chemical method and the surface morphologies, structures and size of the ZnO samples are characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), BET adsorption isotherm, and Photoluminescence (PL) Spectroscopy. The SEM and TEM images of the sample have confirmed flower-shaped structure of the ZnO. The materials are also analyzed by using an innovative tool called Lacunarity, a nonlinear dynamical (NLD) tool for proper understanding of the inherent surface properties of the particles formed, comparing the results estimated with the BET results obtained, thereby confirming our proposition to use it as an important parameter in predictive models. In this new approach, geometry of the surface structure is being associated with biological properties, in order to come up with easier ways to identify materials for any such applications where rich surface structure is desired. The photocatalytic activity of the flower-shaped material is carried out to find out its optical properties as another marker for confirming the antimicrobial activities. It has been reported for the first time that the prominent antibacterial activities are favoured by the FZnO microstructure having lesser Lacunarity, significantly better than its bulk counterpart, for inhibiting gram negative - Escherichia coli microorganism.
Collapse
Affiliation(s)
- Rajat K Saha
- Department of Applied Sciences, Gauhati University, Guwahati, 781014, India
| | - Mrinal K Debanath
- Department of Applied Sciences, Gauhati University, Guwahati, 781014, India
| | - Bishaldip Paul
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, India
| | - Subhash Medhi
- Department of Bioengineering and Technology, Gauhati University, Guwahati, 781014, India
| | - Eeshankur Saikia
- Department of Applied Sciences, Gauhati University, Guwahati, 781014, India.
| |
Collapse
|
36
|
Zhang H, Xuan Y, Cheng P, Ma W, Zhao Z, Liu X. Nanotwinned Structure-Dependent Photocatalytic Performances of the Multipod Frameworks of Cu 7S 4 Hollow Microcages. Front Chem 2020; 8:15. [PMID: 32039164 PMCID: PMC6992655 DOI: 10.3389/fchem.2020.00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022] Open
Abstract
The 14-pods Cu7S4 hollow microcages wholly exposed with nanotwinned building blocks were successfully prepared by an ethanol-assisted sacrificial Cu2O template approach. Its photocatalytic activity for the degradation of methylene blue (MB) was determined. The results suggest that the Cu7S4 microcages with nanotwinned building blocks possess higher catalytic activity than the Cu7S4 microcages without the nanotwinned structures, suggesting that the special nanotwinned components can improve the catalytic performance of the multipod framework. Further investigate reveals that the nanotwins inside the Cu7S4 microcages can facilite the transport of free charges, decrease the recombination of photoinduced electrons and holes, and elongate the lifetime of the electron–hole pairs. Our work will provide powerful evidence that the nanotwinned building blocks of the synthesized Cu7S4 microcages play a crucial role for the high catalytic activity.
Collapse
Affiliation(s)
- Hongdan Zhang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Yang Xuan
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Peng Cheng
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Wenwen Ma
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang, China
| | - Xiaoyang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
37
|
Qi K, Lv W, Khan I, Liu SY. Photocatalytic H2 generation via CoP quantum-dot-modified g-C3N4 synthesized by electroless plating. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63459-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Patel SB, Vasava DV. Synthesis and Characterization of Ag@g−C
3
N
4
and Its Photocatalytic Evolution in Visible Light Driven Synthesis Of Ynone. ChemCatChem 2019. [DOI: 10.1002/cctc.201901802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sunil B. Patel
- School of Sciences Department of chemistryGujarat University Navrangpura Ahmedabad- 380009 India
| | - Dilip V. Vasava
- School of Sciences Department of chemistryGujarat University Navrangpura Ahmedabad- 380009 India
| |
Collapse
|
39
|
Hayat A, Rahman MU, Khan I, Khan J, Sohail M, Yasmeen H, Liu SY, Qi K, Lv W. Conjugated Electron Donor⁻Acceptor Hybrid Polymeric Carbon Nitride as a Photocatalyst for CO 2 Reduction. Molecules 2019; 24:E1779. [PMID: 31071946 PMCID: PMC6539331 DOI: 10.3390/molecules24091779] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 04/28/2019] [Accepted: 05/05/2019] [Indexed: 11/17/2022] Open
Abstract
This work incorporates a variety of conjugated donor-acceptor (DA) co-monomers such as 2,6-diaminopurine (DP) into the structure of a polymeric carbon nitride (PCN) backbone using a unique nanostructure co-polymerization strategy and examines its photocatalytic activity performance in the field of photocatalytic CO2 reduction to CO and H2 under visible light irradiation. The as-synthesized samples were successfully analyzed using different characterization methods to explain their electronic and optical properties, crystal phase, microstructure, and their morphology that influenced the performance due to the interactions between the PCN and the DPco-monomer. Based on the density functional theory (DFT) calculation result, pure PCN and CNU-DP15.0 trimers (interpreted as incorporation of the co-monomer at two different positions) were extensively evaluated and exhibited remarkable structural optimization without the inclusion of any symmetry constraints (the non-modified sample derived from urea, named as CNU), and their optical and electronic properties were also manipulated to control occupation of their respective highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). Also, co-polymerization of the donor-acceptor 2,6-diamino-purine co-monomer with PCN influenced the chemical affinities, polarities, and acid-base functions of the PCN, remarkably enhancing the photocatalytic activity for the production of CO and H2 from CO2 by 15.02-fold compared than that of the parental CNU, while also improving the selectivity.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| | - Mati Ur Rahman
- College of Chemistry, Fuzhou University, Fuzhou 350002, China.
| | - Iltaf Khan
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 158308, China.
| | - Javid Khan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Key Laboratory of Environment and Energy Chemistry of Guangdong Higher Education Institutes, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Muhammad Sohail
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Humaira Yasmeen
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Shu-Yuan Liu
- Department of pharmacology, Shenyang Medical College, Shenyang 110034, China.
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.
| | - Kezhen Qi
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China.
| | - Wenxiu Lv
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, China.
| |
Collapse
|