1
|
Zhang H, Yu B, Fang Y, Xie Z, Xiong Q, Zhang D, Cheng J, Guo Q, Su Y, Zhao J. Long-lasting, UV shielding, and cellulose-based avermectin nano/micro spheres with dual smart stimuli-microenvironment responsiveness for Plutella xylostella control. Carbohydr Polym 2024; 345:122553. [PMID: 39227095 DOI: 10.1016/j.carbpol.2024.122553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 09/05/2024]
Abstract
The requirement to improve the efficiency of pesticide utilization has led to the development of sustainable and smart stimuli-responsive pesticide delivery systems. Herein, a novel avermectin nano/micro spheres (AVM@HPMC-Oxalate) with sensitive stimuli-response function target to the Lepidoptera pests midgut microenvironment (pH 8.0-9.5) was constructed using hydroxypropyl methylcellulose (HPMC) as the cost-effective and biodegradable material. The avermectin (AVM) loaded nano/micro sphere was achieved with high AVM loading capacity (up to 66.8 %). The simulated release experiment proved the rapid stimuli-responsive and pesticides release function in weak alkaline (pH 9) or cellulase environment, and the release kinetics were explained through release models and SEM characterization. Besides, the nano/micro sphere size made AVM@HPMC-Oxalate has higher foliar retention rate (1.6-2.1-fold higher than commercial formulation) which is beneficial for improving the utilization of pesticides. The in vivo bioassay proved that AVM@HPMC-Oxalate could achieve the long-term control of Plutella xylostella by extending UV shielding performance (9 fold higher than commercial formulation). After 3 h of irradiation, the mortality rate of P. xylostella treated by AVM@HPMC-Oxalate still up to 56.7 % ± 5.8 %. Moreover, AVM@HPMC-Oxalate was less toxic to non-target organisms, and the acute toxicity to zebrafish was reduced by 2-fold compared with AVM technical.
Collapse
Affiliation(s)
- Haonan Zhang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Bin Yu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Yun Fang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Zhengang Xie
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Qiuyu Xiong
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Donglai Zhang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Jingli Cheng
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China
| | - Qunzhen Guo
- Zhejiang Zhuji United Chemicals Co., Ltd., Hangzhou 321042, PR China
| | - Yehua Su
- Bayin Aobao Industry Park, Alxa Economic Development Zone, Alxa League, Inner Mongolia, PR China
| | - Jinhao Zhao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
2
|
Rahmadiawan D, Abral H, Azka MA, Sapuan SM, Admi RI, Shi SC, Zainul R, Azril, Zikri A, Mahardika M. Enhanced properties of TEMPO-oxidized bacterial cellulose films via eco-friendly non-pressurized hot water vapor treatment for sustainable and smart food packaging. RSC Adv 2024; 14:29624-29635. [PMID: 39297036 PMCID: PMC11409441 DOI: 10.1039/d4ra06099g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/21/2024] Open
Abstract
Developing a simple and environmentally friendly method to vary the physical, mechanical, and thermal properties of cellulose films is of great importance. This study aimed to characterize 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-oxidized bacterial cellulose (BC) films prepared using non-pressurized hot water vapor (NPHWV) method. A wet BC-pellicle that had been oxidized with TEMPO was treated with NPHWV for 60, 120, and 240 minutes, respectively. As a control, a TEMPO-oxidized BC (TOBC) film without NPHWV was prepared. The results show that the longer NPHWV duration of the TOBC film increased the tensile and thermal properties. This film became more hydrophobic and showed lower moisture absorption, thermal conductivity and organic solvent uptake, more crystalline structure, and higher fiber density after NPHWV treatment. The acquired results provide a simple, inexpensive, and ecologically friendly method for varying TOBC film properties.
Collapse
Affiliation(s)
- Dieter Rahmadiawan
- Department of Mechanical Engineering, National Cheng Kung University (NCKU) Tainan Taiwan
- Department of Mechanical Engineering, Universitas Negeri Padang 25173 Padang Sumatera Barat Indonesia
| | - Hairul Abral
- Department of Mechanical Engineering, Andalas University 25163 Padang Sumatera Barat Indonesia
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University 25163 Padang Sumatera Barat Indonesia
| | - Muhammad Adlan Azka
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - S M Sapuan
- Advanced Engineering Materials and Composites Research Centre, Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia 43400 UPM Serdang Selangor Malaysia
| | - Ratna Isnanita Admi
- Laboratory of High-Temperature Coating, Research Center for Physics Indonesian Institute of Sciences (LIPI) Serpong Indonesia
| | - Shih-Chen Shi
- Department of Mechanical Engineering, National Cheng Kung University (NCKU) Tainan Taiwan
| | - Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Negeri Padang West Sumatera 25171 Indonesia
| | - Azril
- Department of Biomedical Engineering, National Cheng Kung University Tainan Taiwan
| | - Ahmad Zikri
- Department of Mechanical Engineering, Faculty of Engineering, Bursa Uludag University Bursa 16850 Turkey
| | - Melbi Mahardika
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN) Cibinong Indonesia
| |
Collapse
|
3
|
Zhou H, Li T, Zhu E, Wang S, Zhang Q, Li X, Zhang L, Fan Y, Ma J, Wang Z. Dissolving-co-catalytic strategy for the preparation of flexible and wet-stable cellulose membrane towards biodegradable packaging. Int J Biol Macromol 2024; 275:133454. [PMID: 38964692 DOI: 10.1016/j.ijbiomac.2024.133454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
In the realization of the goal of circular economy, cellulose as one of sustainable biomass resources, have attracted much attention because of their abundant sources, biodegradability and renewability. However, the mechanical and waterproof performance of cellulose-based materials are usually not satisfying, which limits their high-value utilization. In this study, cellulose membrane with high-performance from the aspects of mechanical properties, water-resistance ability, oxygen barrier capacity and biodegradability, was prepared from bleached hardwood pulp (HBKP) in a AlCl3/ZnCl2/H2O solution. The AlCl3/ZnCl2/H2O acted as both solvent and catalyst to dissolve cellulose and facilitate the chemical crosslinking of epichlorohydrin (EPI) with cellulose, thus improved the overall performance of the obtained cellulose membrane. The addition sequence, amount and crosslinking time of EPI during chemical crosslinking had important effects on the properties of the membranes. When 7 wt% EPI was crosslinked for 24 h, the tensile stress reached 133 MPa and the strain reached 17 %. Moreover, the membrane had excellent oxygen insulation down to (1.1 ± 0.31) × 10-4 cm3/m2·d·Pa, and good water-resistance ability, no obvious swelling behavior after 450 days of immersion in distilled water. Furthermore, the membrane could be degraded by microorganisms in about 20 days. This cellulose-based membrane offers a sustainable and biodegradable packaging material.
Collapse
Affiliation(s)
- Huimei Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tianqi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Enqing Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaoning Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinxia Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China..
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China..
| |
Collapse
|
4
|
Wan J, Luo C. Accumulation of Hydrogen Bonds and van der Waals Interactions Determines Force Response between Two Parallel Cellulose Chains: Steered Molecular Dynamics Simulations. J Phys Chem B 2024; 128:6742-6750. [PMID: 38975805 DOI: 10.1021/acs.jpcb.4c01826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
We investigated the response forces between two parallel cellulose chains during the shearing and tearing processes by using steered molecular dynamics simulations. It was found that there are two logarithmic dependencies between response force and pulling speed in shearing processes but only one in tearing, according to Bell's equation by fitting the f-ln v curve. The mechanism is that there are 2-fold interactions determining the force response between two parallel cellulose chains resisting chain separation during a shearing process. Our results indicate that hydrogen bonds dominate the interchain interactions in the fast pull mode (FPM) for shearing, while van der Waals interactions dominate in the slow pull mode (SPM). For tearing, the one-by-one breaking of hydrogen bonds and van der Waals interactions plays a main role.
Collapse
Affiliation(s)
- Jia Wan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chuanfu Luo
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Ravn JL, Manfrão-Netto JHC, Schaubeder JB, Torello Pianale L, Spirk S, Ciklic IF, Geijer C. Engineering Saccharomyces cerevisiae for targeted hydrolysis and fermentation of glucuronoxylan through CRISPR/Cas9 genome editing. Microb Cell Fact 2024; 23:85. [PMID: 38493086 PMCID: PMC10943827 DOI: 10.1186/s12934-024-02361-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND The abundance of glucuronoxylan (GX) in agricultural and forestry residual side streams positions it as a promising feedstock for microbial conversion into valuable compounds. By engineering strains of the widely employed cell factory Saccharomyces cerevisiae with the ability to directly hydrolyze and ferment GX polymers, we can avoid the need for harsh chemical pretreatments and costly enzymatic hydrolysis steps prior to fermentation. However, for an economically viable bioproduction process, the engineered strains must efficiently express and secrete enzymes that act in synergy to hydrolyze the targeted polymers. RESULTS The aim of this study was to equip the xylose-fermenting S. cerevisiae strain CEN.PK XXX with xylanolytic enzymes targeting beechwood GX. Using a targeted enzyme approach, we matched hydrolytic enzyme activities to the chemical features of the GX substrate and determined that besides endo-1,4-β-xylanase and β-xylosidase activities, α-methyl-glucuronidase activity was of great importance for GX hydrolysis and yeast growth. We also created a library of strains expressing different combinations of enzymes, and screened for yeast strains that could express and secrete the enzymes and metabolize the GX hydrolysis products efficiently. While strains engineered with BmXyn11A xylanase and XylA β-xylosidase could grow relatively well in beechwood GX, strains further engineered with Agu115 α-methyl-glucuronidase did not display an additional growth benefit, likely due to inefficient expression and secretion of this enzyme. Co-cultures of strains expressing complementary enzymes as well as external enzyme supplementation boosted yeast growth and ethanol fermentation of GX, and ethanol titers reached a maximum of 1.33 g L- 1 after 48 h under oxygen limited condition in bioreactor fermentations. CONCLUSION This work underscored the importance of identifying an optimal enzyme combination for successful engineering of S. cerevisiae strains that can hydrolyze and assimilate GX. The enzymes must exhibit high and balanced activities, be compatible with the yeast's expression and secretion system, and the nature of the hydrolysis products must be such that they can be taken up and metabolized by the yeast. The engineered strains, particularly when co-cultivated, display robust growth and fermentation of GX, and represent a significant step forward towards a sustainable and cost-effective bioprocessing of GX-rich biomass. They also provide valuable insights for future strain and process development targets.
Collapse
Affiliation(s)
- Jonas L Ravn
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden.
| | - João H C Manfrão-Netto
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biorenewables National Laboratory (LNBR), Campinas, 13083-100, Brazil
| | - Jana B Schaubeder
- Institute of Bioproducts and Paper Technology (BPTI), Graz University of Technology, Inffeldgasse 23, Graz, 8010, Austria
| | - Luca Torello Pianale
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology (BPTI), Graz University of Technology, Inffeldgasse 23, Graz, 8010, Austria
| | - Iván F Ciklic
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden
- Estación Experimental Agropecuaria Mendoza, Instituto Nacional de Tecnología Agropecuaria (INTA), 5507 Luján de Cuyo, San Martín, Mendoza, 3853, Argentina
| | - Cecilia Geijer
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, 412 96, Sweden.
| |
Collapse
|
6
|
Zhou Y, Zheng L, Chen X, Huang Y, Essawy H, Du G, Zhou X, Zhang J. Developing high performance biodegradable film based on crosslinking of cellulose acetate and tannin using caprolactone. Int J Biol Macromol 2024; 262:130067. [PMID: 38336318 DOI: 10.1016/j.ijbiomac.2024.130067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The use of metal catalysts during the production process of cellulose acetate (CA) film can have an impact on the environment, due to their toxicity. Diphenyl phosphate (DPP) was used instead of toxic metal catalyst to react with cellulose acetate, tannin (T) and caprolactone (CL) for preparation of cellulose acetate-caprolactone-tannin (CA-CL-T) film. The results show that DPP can produce a cross-linked network structure composed of tannin, caprolactone and cellulose acetate. The maximum molecular weight reached 113,260 Da. The introduction of tannin and caprolactone into cellulose acetate caused the resulting CA-CL-T film acquire excellent strengthening/toughening effect, in which a tensile strength of 23 MPa and elongation at break of 18 % were attained. More importantly, the resistance of the film to UV radiation was significantly improved with the tannin addition, which was corroborated by the CA-CL-T film still exhibiting a tensile strength of 13 MPa and elongation at break around 13 % after continuous exposure to UV radiation for 9 days. On the other hand, the insertion of caprolactone provoked enhancement of the overall moisture resistance. Five days treatment of the films with Penicillium sp. induced gradual drop in quality, indicating the CA-CL-T film show response to biodegradation. In all, the effective crosslinking between the components of the developed material is responsible for the acquired set of these distinct characteristics.
Collapse
Affiliation(s)
- Yunxia Zhou
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China; Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, 100091 Beijing, China
| | - LuLu Zheng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Xinyi Chen
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Yuxiang Huang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Haidian, 100091 Beijing, China.
| | - Hisham Essawy
- Department of Polymers and Pigments, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Guanben Du
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Xiaojian Zhou
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China.
| | - Jun Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
7
|
Lux C, Kerz S, Ribeiro CC, Bareuther J, Lützenkirchen J, Stock S, Tsintsaris M, Rehahn M, Stark RW, von Klitzing R. Conceptualizing flexible papers using cellulose model surfaces and polymer particles. SOFT MATTER 2024; 20:1333-1346. [PMID: 38251414 DOI: 10.1039/d3sm01461d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Cellulose, as a naturally abundant and biocompatible material, is still gaining interest due to its high potential for functionalization. This makes cellulose a promising candidate for replacing plastics. Understanding how cellulose interacts with various additives is crucial for creating composite materials with diverse properties, as it is the case for plastics. In addition, the mechanical properties of the composite materials are assumed to be related to the mobility of the additives against the cellulose. Using a well-defined cellulose model surface (CMS), we aim to understand the adsorption and desorption of two polymeric particles (core-shell particles and microgels) to/from the cellulose surface. The nanomechanics of particles and CMS are quantified by indentation measurements with an atomic force microscope (AFM). AFM topography measurements quantified particle adsorption and desorption on the CMS, while peak force AFM measurements determined the force needed to move individual particles. Both particles and the CMS exhibited pH-dependent charge behavior, allowing a tunable interaction between them. Particle adsorption was irreversible and driven by electrostatic forces. In contrast, desorption and particle mobility forces are dominated by structural morphology. In addition, we found that an annealing procedure consisting of swelling/drying cycles significantly increased the adhesion strength of both particles. Using the data, we achieve a deeper understanding of the interaction of cellulose with polymeric particles, with the potential to advance the development of functional materials and contribute to various fields, including smart packaging, sensors, and biomedical applications.
Collapse
Affiliation(s)
- Cassia Lux
- Soft Matter at Interfaces, Department of Physics, 64289 Darmstadt, Germany.
| | - Sabrina Kerz
- Soft Matter at Interfaces, Department of Physics, 64289 Darmstadt, Germany.
| | - Catarina C Ribeiro
- Physics of Surfaces, Department of Material Science, 64287 Darmstadt, Germany
| | - Jennifer Bareuther
- Macromolecular Chemistry: Chemistry of Polymers, Department of Chemistry, 64287 Darmstadt, Germany
| | - Johannes Lützenkirchen
- Institute for Nuclear Disposal, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
| | - Sebastian Stock
- Soft Matter at Interfaces, Department of Physics, 64289 Darmstadt, Germany.
| | | | - Matthias Rehahn
- Macromolecular Chemistry: Chemistry of Polymers, Department of Chemistry, 64287 Darmstadt, Germany
| | - Robert W Stark
- Physics of Surfaces, Department of Material Science, 64287 Darmstadt, Germany
| | | |
Collapse
|
8
|
Khosrowshahi MS, Mashhadimoslem H, Shayesteh H, Singh G, Khakpour E, Guan X, Rahimi M, Maleki F, Kumar P, Vinu A. Natural Products Derived Porous Carbons for CO 2 Capture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304289. [PMID: 37908147 PMCID: PMC10754147 DOI: 10.1002/advs.202304289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Indexed: 11/02/2023]
Abstract
As it is now established that global warming and climate change are a reality, international investments are pouring in and rightfully so for climate change mitigation. Carbon capture and separation (CCS) is therefore gaining paramount importance as it is considered one of the powerful solutions for global warming. Sorption on porous materials is a promising alternative to traditional carbon dioxide (CO2 ) capture technologies. Owing to their sustainable availability, economic viability, and important recyclability, natural products-derived porous carbons have emerged as favorable and competitive materials for CO2 sorption. Furthermore, the fabrication of high-quality value-added functional porous carbon-based materials using renewable precursors and waste materials is an environmentally friendly approach. This review provides crucial insights and analyses to enhance the understanding of the application of porous carbons in CO2 capture. Various methods for the synthesis of porous carbon, their structural characterization, and parameters that influence their sorption properties are discussed. The review also delves into the utilization of molecular dynamics (MD), Monte Carlo (MC), density functional theory (DFT), and machine learning techniques for simulating adsorption and validating experimental results. Lastly, the review provides future outlook and research directions for progressing the use of natural products-derived porous carbons for CO2 capture.
Collapse
Affiliation(s)
- Mobin Safarzadeh Khosrowshahi
- Nanotechnology DepartmentSchool of Advanced TechnologiesIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Hossein Mashhadimoslem
- Faculty of Chemical EngineeringIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Hadi Shayesteh
- Faculty of Chemical EngineeringIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Elnaz Khakpour
- Nanotechnology DepartmentSchool of Advanced TechnologiesIran University of Science and Technology (IUST)NarmakTehran16846Iran
| | - Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Mohammad Rahimi
- Department of Biosystems EngineeringFaculty of AgricultureFerdowsi University of MashhadMashhad9177948974Iran
| | - Farid Maleki
- Department of Polymer Engineering and Color TechnologyAmirkabir University of TechnologyNo. 424, Hafez StTehran15875‐4413Iran
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of EngineeringScience and Environment (CESE)The University of NewcastleUniversity DriveCallaghanNew South Wales2308Australia
| |
Collapse
|
9
|
Moradian M, Wiebe H, van de Ven TGM. Ultrathin ultrastrong transparent films made from regenerated cellulose and epichlorohydrin. Carbohydr Polym 2023; 318:121131. [PMID: 37479441 DOI: 10.1016/j.carbpol.2023.121131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023]
Abstract
Thin films used in electronic devices are often petroleum-based, non-biodegradable, and non-renewable polymers. Herein, ultrathin ultrastrong regenerated cellulose films were made with a facile method by applying a solution of mildly carboxylated nanocellulose and various amounts of epichlorohydrin (ECH) as a crosslinker. The morphology and physiochemical properties of films were measured using FE-SEM, TEM, FTIR, NMR, UV-Vis, XRD, DLS, and TGA. Carboxylated cellulose with a charge content of 1.5 mmol/g was prepared to make alkaline dopes containing nanocrystalline cellulose (CNC). Then, ECH (0-50%) was added and the dope was blade cast, dried in an oven, regenerated in an acid bath, washed, and air dried to make uniform films approximately 1 μm thick. The tensile stress and elastic modulus of the films were measured and found to be 100-300 MPa and 5-12.7 GPa, respectively. Higher amounts of ECH led to stronger films. All films were over 96% transparent, insoluble in water, and absorbed 24-28% moisture. TGA analysis showed ultrathin films were thermally resistant up to 250 °C and were stable and unchanged over a month at 105 °C showing excellent thermal aging resistance. Overall, films with 5-10% ECH are extremely strong, which makes them promising bioresource-based candidates for flexible electronic applications.
Collapse
Affiliation(s)
- Mohammadhadi Moradian
- Department of Natural Resources, Cellulose Industries Group, Behbahan Khatam Alanbia University of Technology, 63973-63616 Behbahan, Iran.
| | - Hannah Wiebe
- Department of Chemistry, Quebec Centre for Advanced Materials, Pulp & Paper Research Centre, McGill University, 3420 University Street, H3A 2A7 Montreal, Quebec, Canada.
| | - Theo G M van de Ven
- Department of Chemistry, Quebec Centre for Advanced Materials, Pulp & Paper Research Centre, McGill University, 3420 University Street, H3A 2A7 Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Huynh N, Valle-Delgado JJ, Fang W, Arola S, Österberg M. Tuning the water interactions of cellulose nanofibril hydrogels using willow bark extract. Carbohydr Polym 2023; 317:121095. [PMID: 37364945 DOI: 10.1016/j.carbpol.2023.121095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Cellulose nanofibrils (CNFs) are increasingly used as precursors for foams, films and composites, where water interactions are of great importance. In this study, we used willow bark extract (WBE), an underrated natural source of bioactive phenolic compounds, as a plant-based modifier for CNF hydrogels, without compromising their mechanical properties. We found that the introduction of WBE into both native, mechanically fibrillated CNFs and TEMPO-oxidized CNFs increased considerably the storage modulus of the hydrogels and reduced their swelling ratio in water up to 5-7 times. A detailed chemical analysis revealed that WBE is composed of several phenolic compounds in addition to potassium salts. Whereas the salt ions reduced the repulsion between fibrils and created denser CNF networks, the phenolic compounds - which adsorbed readily on the cellulose surfaces - played an important role in assisting the flowability of the hydrogels at high shear strains by reducing the flocculation tendency, often observed in pure and salt-containing CNFs, and contributed to the structural integrity of the CNF network in aqueous environment. Surprisingly, the willow bark extract exhibited hemolysis activity, which highlights the importance of more thorough investigations of biocompatibility of natural materials. WBE shows great potential for managing the water interactions of CNF-based products.
Collapse
Affiliation(s)
- Ngoc Huynh
- FinnCERES Materials Bioeconomy Cluster, Finland; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Juan José Valle-Delgado
- FinnCERES Materials Bioeconomy Cluster, Finland; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Wenwen Fang
- FinnCERES Materials Bioeconomy Cluster, Finland; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Suvi Arola
- FinnCERES Materials Bioeconomy Cluster, Finland; Sustainable Products and Materials, Functional Cellulose Team, VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Monika Österberg
- FinnCERES Materials Bioeconomy Cluster, Finland; Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland.
| |
Collapse
|
11
|
Sampl C, Schaubeder J, Hirn U, Spirk S. Interplay of electrolyte concentration and molecular weight of polyDADMAC on cellulose surface adsorption. Int J Biol Macromol 2023; 239:124286. [PMID: 37011749 DOI: 10.1016/j.ijbiomac.2023.124286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023]
Abstract
Cationic polyelectrolytes (PEs) are commonly used additives in manufacturing of cellulose based products such as regenerated fibers and paper to tailor their product properties. Here we are studying the adsorption of poly(diallyldimethylammonium chloride), PD, on cellulose, using in situ surface plasmon resonance spectroscopy (SPR) measurements. We employ model surfaces from regenerated cellulose xanthate (CX) and trimethylsilyl cellulose (TMSC), mimicking industrially relevant regenerated cellulose substrates. The effects of the PDs molecular weight were strongly depending on the ionic strength and type of electrolyte (NaCl vs CaCl2). Without electrolytes, the adsorption was monolayer-type, i.e. independent of molecular weight. At moderate ionic strength, adsorption increased due to more pronounced PE coiling, while at high ionic strength electrostatic shielding strongly reduced adsorption of PDs. Results exhibited pronounced differences for the chosen substrates (cellulose regenerated from xanthate (CXreg) vs. regenerated from trimethylsilyl cellulose, TMSCreg). Consistently higher adsorbed amounts of the PD were determined on CXreg surfaces compared TMSC. This can be attributed to a more negative zeta potential, a higher AFM roughness and a higher degree of swelling (investigated by QCM-D) of the CXreg substrates.
Collapse
|
12
|
Pang J, Mehandzhiyski AY, Zozoulenko I. A computational study of cellulose regeneration: Coarse-grained molecular dynamics simulations. Carbohydr Polym 2023; 313:120853. [PMID: 37182953 DOI: 10.1016/j.carbpol.2023.120853] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
Understanding the microscopic mechanisms of regeneration of cellulose is prerequisite for engineering and controlling its material properties. In this paper, we performed coarse-grained Martini 3 molecular dynamics simulations of cellulose regeneration at a scale comparable to the experiments. The X-ray diffraction (XRD) curves were monitored to follow the structural changes of regenerated cellulose and trace formation of cellulose sheets and crystallites. The calculated coarse-grained morphologies of regenerated cellulose were backmapped to atomistic ones. After the backmapping we find that the regenerated coarse-grained cellulose structures calculated for both topology parameters of cellulose Iβ and cellulose II/III, are transformed to cellulose II, where the calculated XRD curves exhibit the main peak at approximately 20-21 degrees, corresponding to the (110)/(020) planes of cellulose II. This result is in good quantitative agreement with the available experimental observations.
Collapse
Affiliation(s)
- Jiu Pang
- Laboratory of Organic Electronics and Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
| | - Aleksandar Y Mehandzhiyski
- Laboratory of Organic Electronics and Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
| | - Igor Zozoulenko
- Laboratory of Organic Electronics and Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden.
| |
Collapse
|
13
|
Bio-Based Polybenzoxazine-Cellulose Grafted Films: Material Fabrication and Properties. Polymers (Basel) 2023; 15:polym15040849. [PMID: 36850133 PMCID: PMC9967979 DOI: 10.3390/polym15040849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Despite the fact that amino cellulose (AC) is biodegradable, biocompatible, and has excellent film-forming properties, AC films have poor mechanical properties and are not thermally stable. An AC-based composite film prepared from AC and curcumin-stearylamine based benzoxazine (C-st) is reported in order to improve its performance and promote its application. As starting materials, C-st and AC were used to produce a C-st/AC composite film possessing a synergistic property through chemical cross-linking and hydrogen bonds. Two salient features with respect to the curing behavior were obtained. Firstly, the onset of curing was reduced to 163 °C when the benzoxazine monomer was synthesized from fully bio-based precursors (such as curcumin and stearylamine). Secondly, a synergistic effect in curing behavior was obtained by mixing C-st with AC. As a result of tensile tests and thermal analysis, the poly(C-st) benefited the composite films with pronounced mechanical and thermal properties, even at elevated temperatures. There was a 2.5-fold increase in tensile strength compared to the AC film, indicating that the composite films have the potential to be used for functional purposes. These poly(C-st)/AC films with improved mechanical and thermal properties have the ability to replace naturally occurring polymer films in film-related applications.
Collapse
|
14
|
Xylan-cellulose thin film platform for assessing xylanase activity. Carbohydr Polym 2022; 294:119737. [DOI: 10.1016/j.carbpol.2022.119737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/01/2022] [Accepted: 06/12/2022] [Indexed: 11/18/2022]
|
15
|
Aljadi Z, Aval NA, Kumar T, Qin T, Ramachandraiah H, Pettersson T, Russom A. Layer-by-Layer Cellulose Nanofibrils: A New Coating Strategy for Development and Characterization of Tumor Spheroids as a Model for In-Vitro Anti-Cancer Drug Screening. Macromol Biosci 2022; 22:e2200137. [PMID: 35899862 DOI: 10.1002/mabi.202200137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/21/2022] [Indexed: 11/09/2022]
Abstract
Three-dimensional multicellular spheroids (MCSs) are complex structure of cellular aggregates and cell-to-matrix interaction that emulates the in-vivo microenvironment. This research field has progressively grown to develop and improve spheroid generation techniques. Here, we present a new platform for spheroid generation using Layer-by-Layer (LbL) technology. Layer-by-Layer (LbL) containing cellulose nanofibrils (CNF) assemble on a standard 96 well plate. Various LbL assembly parameters, multiple cell seeding concentration, and two tumor cell lines (HEK 293 T, HCT 116) are utilized to generate and characterize spheroids. The number and the proliferation of generated spheroids in correlation to the number of LbL-CNF bi-layers, the viability, and the response to the anti-cancer drug are examined. The spheroids are formed and proliferated on the LbL-CNF coated wells with no significant difference in connection to the number of LbL-CNF bi-layers; however, the number of formed spheroids correlates positively with the cell seeding concentration (122 ± 17) for HCT 116 and (42 ± 8) for HEK 293T cell lines at 700 cells ml-1 . The generated spheroids proliferate progressively up to (309, 663) μm of HCT 116 and HEK 293T cell lines on the 5 bi-layers coated wells respectively overtime with maintaining viability. The (HCT 116) spheroids react to the anti-cancer drug. We demonstrate a new platform (LbL-CNF) coating strategy for spheroids generation, with high performance and efficiency to test anti-cancer drugs. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zenib Aljadi
- School of Engineering Sciences in Chemistry, Biotechnology and Health CBH, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Negar Abbasi Aval
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tharagan Kumar
- School of Engineering Sciences in Chemistry, Biotechnology and Health CBH, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Taoyu Qin
- School of Engineering Sciences in Chemistry, Biotechnology and Health CBH, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Harisha Ramachandraiah
- School of Engineering Sciences in Chemistry, Biotechnology and Health CBH, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Torbjörn Pettersson
- Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Aman Russom
- School of Engineering Sciences in Chemistry, Biotechnology and Health CBH, Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
16
|
Gacias-Amengual N, Wohlschlager L, Csarman F, Ludwig R. Fluorescent Imaging of Extracellular Fungal Enzymes Bound onto Plant Cell Walls. Int J Mol Sci 2022; 23:ijms23095216. [PMID: 35563607 PMCID: PMC9105846 DOI: 10.3390/ijms23095216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Lignocelluloytic enzymes are industrially applied as biocatalysts for the deconstruction of recalcitrant plant biomass. To study their biocatalytic and physiological function, the assessment of their binding behavior and spatial distribution on lignocellulosic material is a crucial prerequisite. In this study, selected hydrolases and oxidoreductases from the white rot fungus Phanerochaete chrysosporium were localized on model substrates as well as poplar wood by confocal laser scanning microscopy. Two different detection approaches were investigated: direct tagging of the enzymes and tagging specific antibodies generated against the enzymes. Site-directed mutagenesis was employed to introduce a single surface-exposed cysteine residue for the maleimide site-specific conjugation. Specific polyclonal antibodies were produced against the enzymes and were labeled using N-hydroxysuccinimide (NHS) ester as a cross-linker. Both methods allowed the visualization of cell wall-bound enzymes but showed slightly different fluorescent yields. Using native poplar thin sections, we identified the innermost secondary cell wall layer as the preferential attack point for cellulose-degrading enzymes. Alkali pretreatment resulted in a partial delignification and promoted substrate accessibility and enzyme binding. The methods presented in this study are suitable for the visualization of enzymes during catalytic biomass degradation and can be further exploited for interaction studies of lignocellulolytic enzymes in biorefineries.
Collapse
|
17
|
Elschner T, Adam J, Lesny H, Joseph Y, Fischer S. Growing of Artificial Lignin on Cellulose Ferulate Thin Films. Biomacromolecules 2022; 23:2089-2097. [PMID: 35438964 PMCID: PMC9907350 DOI: 10.1021/acs.biomac.2c00096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thin films of cellulose ferulate were designed to study the formation of dehydrogenation polymers (DHPs) on anchor groups of the surface. Trimethylsilyl (TMS) cellulose ferulate with degree of substitution values of 0.35 (ferulate) and 2.53 (TMS) was synthesized by sophisticated polysaccharide chemistry applying the Mitsunobu reaction. The biopolymer derivative was spin-coated into thin films to yield ferulate moieties on a smooth cellulose surface. Dehydrogenative polymerization of coniferyl alcohol was performed in a Quartz crystal microbalance with a dissipation monitoring device in the presence of H2O2 and adsorbed horseradish peroxidase. The amount of DHP formed on the surface was found to be independent of the base layer thickness from 14 to 75 nm. Pyrolysis-GC-MS measurements of the DHP revealed β-O-4 and β-5 linkages. Mimicking lignification of plant cell walls on highly defined model films enables reproducible investigations of structure-property relationships.
Collapse
Affiliation(s)
- Thomas Elschner
- Institute
of Plant and Wood Chemistry, Technische Universität Dresden, Pienner Str. 19, Tharandt 01737, Germany,
| | - Jörg Adam
- Institute
of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, Freiberg 09599, Germany
| | - Hans Lesny
- Institute
of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, Freiberg 09599, Germany
| | - Yvonne Joseph
- Institute
of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 3, Freiberg 09599, Germany
| | - Steffen Fischer
- Institute
of Plant and Wood Chemistry, Technische Universität Dresden, Pienner Str. 19, Tharandt 01737, Germany
| |
Collapse
|
18
|
Hemicellulose and Nano/Microfibrils Improving the Pliability and Hydrophobic Properties of Cellulose Film by Interstitial Filling and Forming Micro/Nanostructure. Polymers (Basel) 2022; 14:polym14071297. [PMID: 35406171 PMCID: PMC9003512 DOI: 10.3390/polym14071297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/04/2023] Open
Abstract
In this paper, nano/microfibrils were applied to enhance the mechanical and hydrophobic properties of the sugarcane bagasse fiber films. The successful preparation of nano/microfibrils was confirmed by scanning electron microscope (SEM), X-ray diffraction (XRD), fiber length analyzer (FLA), and ion chromatography (IC). The transparency, morphology, mechanical and hydrophobic properties of the cellulose films were evaluated. The results show that the nanoparticle was formed by the hemicellulose diffusing on the surface of the cellulose and agglomerating in the film-forming process at 40 °C. The elastic modulus of the cellulose film was as high as 4140.60 MPa, and the water contact angle was increased to 113°. The micro/nanostructures were formed due to hemicellulose adsorption on nano/microfilament surfaces. The hydrophobicity of the films was improved. The directional crystallization of nano/microfibrous molecules was found. Cellulose films with a high elastic modulus and high elasticity were obtained. It provides theoretical support for the preparation of high-performance cellulose film.
Collapse
|
19
|
Reishofer D, Resel R, Sattelkow J, Fischer WJ, Niegelhell K, Mohan T, Kleinschek KS, Amenitsch H, Plank H, Tammelin T, Kontturi E, Spirk S. Humidity Response of Cellulose Thin Films. Biomacromolecules 2022; 23:1148-1157. [PMID: 35225593 PMCID: PMC8924868 DOI: 10.1021/acs.biomac.1c01446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Cellulose-water interactions are crucial to understand biological processes as well as to develop tailor made cellulose-based products. However, the main challenge to study these interactions is the diversity of natural cellulose fibers and alterations in their supramolecular structure. Here, we study the humidity response of different, well-defined, ultrathin cellulose films as a function of industrially relevant treatments using different techniques. As treatments, drying at elevated temperature, swelling, and swelling followed by drying at elevated temperatures were chosen. The cellulose films were prepared by spin coating a soluble cellulose derivative, trimethylsilyl cellulose, onto solid substrates followed by conversion to cellulose by HCl vapor. For the highest investigated humidity levels (97%), the layer thickness increased by ca. 40% corresponding to the incorporation of 3.6 molecules of water per anhydroglucose unit (AGU), independent of the cellulose source used. The aforementioned treatments affected this ratio significantly with drying being the most notable procedure (2.0 and 2.6 molecules per AGU). The alterations were investigated in real time with X-ray reflectivity and quartz crystal microbalance with dissipation, equipped with a humidity module to obtain information about changes in the thickness, roughness, and electron density of the films and qualitatively confirmed using grazing incidence small angle X-ray scattering measurements using synchrotron irradiation.
Collapse
Affiliation(s)
- David Reishofer
- Institute
of Bioproducts and Paper Technology, Graz
University of Technology, Inffeldgasse 23, Graz 8010, Austria
| | - Roland Resel
- Institute
for Solid State Physics, Graz University
of Technology, Petersgasse 16, Graz 8010, Austria
| | - Jürgen Sattelkow
- Institute
for Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, Graz 8010, Austria
| | - Wolfgang J. Fischer
- Institute
of Bioproducts and Paper Technology, Graz
University of Technology, Inffeldgasse 23, Graz 8010, Austria
| | - Katrin Niegelhell
- Institute
of Bioproducts and Paper Technology, Graz
University of Technology, Inffeldgasse 23, Graz 8010, Austria
| | - Tamilselvan Mohan
- Institute
of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - Karin Stana Kleinschek
- Institute
of Chemistry and Technology of Biobased Systems, Graz University of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - Heinz Amenitsch
- Institute
for Inorganic Chemistry, Graz University
of Technology, Stremayrgasse 9, Graz 8010, Austria
| | - Harald Plank
- Institute
for Electron Microscopy and Nanoanalysis, Graz University of Technology, Steyrergasse 17, Graz 8010, Austria
| | - Tekla Tammelin
- High Performance
Fibre Products, VTT Technical Research Center
of Finland Ltd, Espoo FI-02044 VTT, Finland
| | - Eero Kontturi
- Department
of Bioproducts and Biosystems, School of Chemical Technology, Aalto University, Espoo 02150, Finland
| | - Stefan Spirk
- Institute
of Bioproducts and Paper Technology, Graz
University of Technology, Inffeldgasse 23, Graz 8010, Austria
| |
Collapse
|
20
|
Vaillard AS, El Haitami A, Dreier LB, Fontaine P, Cousin F, Gutfreund P, Goldmann M, Backus EHG, Cantin S. Vertically Heterogeneous 2D Semi-Interpenetrating Networks Based on Cellulose Acetate and Cross-Linked Polybutadiene. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2538-2549. [PMID: 35171621 DOI: 10.1021/acs.langmuir.1c03084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This work reports the feasibility of polybutadiene (PB) cross-linking under UV irradiation in the presence of a linear polymer, cellulose acetate (CA), to form semi-interpenetrating polymer networks at the air-water interface. The thermodynamic properties and the morphology of two-dimensional (2D) CA/PB blends are investigated after UV irradiation and for a wide range of CA volume fractions. A contraction of the mixed Langmuir films is observed independent of the composition, in agreement with that recorded for the individual PB monolayer after cross-linking. The PB network formation is demonstrated by in situ sum-frequency generation spectroscopy on the equivolumic CA/PB mixed film. From Brewster angle microscopy observations, the PB network synthesis does not induce any morphology change at the mesoscopic scale, and all of the mixed films remain homogeneous laterally. In situ neutron reflectometry is used to probe the effect of PB cross-linking on the vertical structure of CA/PB mixed films. For all studied compositions, significant thickening of the films is evidenced, consistent with their contraction ratio. This thickening is accompanied by a partial expulsion of the PB toward the film-air interface, which is attributed to the hydrophobic character of the PB. This phenomenon is stronger for films rich in PB. In particular, the structure of the PB-rich film undergoes a transition from vertically homogeneous to inhomogeneous along the depth. 2D semi-interpenetrating polymer networks can thus be synthesized at the air-water interface with a morphology that is strongly influenced by the polymer-polymer and polymer-environment interactions.
Collapse
Affiliation(s)
| | | | - Lisa B Dreier
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | | | - Michel Goldmann
- Synchrotron SOLEIL, L'Orme des Merisiers, 91192 Gif sur Yvette Cedex, France
- Institut des NanoSciences de Paris, Sorbonne Université, 75252 Paris Cedex 05, France
- Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, 75006 Paris, France
| | - Ellen H G Backus
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department of Physical Chemistry, University of Vienna, Währinger Strasse 42, A-1090 Vienna, Austria
| | | |
Collapse
|
21
|
Punia Bangar S, Whiteside WS, Dunno KD, Cavender GA, Dawson P, Love R. Starch-based bio-nanocomposites films reinforced with cellulosic nanocrystals extracted from Kudzu (Pueraria montana) vine. Int J Biol Macromol 2022; 203:350-360. [PMID: 35104472 DOI: 10.1016/j.ijbiomac.2022.01.133] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/22/2021] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
In the current study, starch-based active nanocomposite films reinforced with cellulosic nanocrystals (CNCs) of Kudzu were developed as an alternative option to existing biodegradable plastic packaging. Firstly, Kudzu CNCs were prepared by subjecting Kudzu fibers to the processes such as depolymerization followed by bleaching, acid hydrolysis, and mechanical dispersion. Further, nanocomposite films were formulated by blending pearl millet starch (PMS) and glycerol (30%) with different Kudzu CNCs compositions (0-7 wt%) using the solution casting process. The prepared PMS/Kudzu CNCs nanocomposite films were analyzed for their morphological (SEM and TEM), thermal (TGA and DSC), structural (FTIR), mechanical (tensile strength (TS), elongation at break and young modulus), and water barrier properties. The PMS/Kudzu CNCs films possessed improved crystallinity, heat and moisture-barrier properties, TS, and young-modulus after reinforcement. The optimum reinforcer concentration of CNCs was 5%. The Kudzu CNCs reinforced starch film offers a promising candidate for developing biodegradable films.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, USA
| | | | - Kyle D Dunno
- Department of Packaging Science, Rochester Institute of Technology, Rochester, New York, USA
| | | | - Paul Dawson
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, USA
| | - Reid Love
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, USA
| |
Collapse
|
22
|
Barrier Dispersion-Based Coatings Containing Natural and Paraffin Waxes. Molecules 2022; 27:molecules27030930. [PMID: 35164198 PMCID: PMC8839680 DOI: 10.3390/molecules27030930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Petroleum, synthetic, and natural waxes have been used as hydrophobic bases for dispersions intended for use as barrier coatings for packaging paper. Oil-in-water dispersions with alkaline pH were prepared by a two-step homogenization procedure containing paraffin wax, with various characteristics, the Fischer–Tropsch synthesis product or beeswax. The size of the dispersed particles determined by dynamic light scattering depended on the type of hydrophobic base used and was in the range of 350–440 nm. The ability of dispersion particles in aggregation driven by electrostatic attraction, evaluated by Zeta potential analysis by electrophoretic light scattering, was from −26 to −50 mV. Static multiply light scattering was used for 30 days of stability assessment and helped to select the dispersion with a Sarawax SX70 wax base as the most stable. Dispersions were further used for coating the backing of kraft paper by the Meyer rod method. Coated paper with an applied coating of 6 g/m2 had very good hydrophobic properties (Cobb60 < 4 g/m2), sufficient strength properties, and air permeation, which enabled its application as a packaging material. The dispersions based on Sarawax SX70 wax were evaluated as the best coating for Mondi ProVantage Kraftliner 125 g/m2 backing paper. Good hydrophobic properties and strength properties indicate the possibility of using the SX70-based wax dispersion coating as a replacement for PFAS coatings in some applications.
Collapse
|
23
|
Katan T, Kargl R, Mohan T, Steindorfer T, Mozetič M, Kovač J, Stana Kleinschek K. Solid Phase Peptide Synthesis on Chitosan Thin Films. Biomacromolecules 2022; 23:731-742. [PMID: 35023341 PMCID: PMC8924862 DOI: 10.1021/acs.biomac.1c01155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Stable chitosan thin
films can be promising substrates for creating
nanometric peptide-bound polyglucosamine layers. Those are of scientific
interest since they can have certain structural similarities to bacterial
peptidoglycans. Such films were deposited by spin coating from chitosan
solutions and modified by acetylation and N-protected
amino acids. The masses of deposited materials and their stability
in aqueous solutions at different pH values and water interaction
were determined with a quartz crystal microbalance with dissipation
(QCM-D). The evolution of the surface composition was followed by
X-ray photoelectron (XPS) and attenuated total reflectance infrared
(ATR-IR) spectroscopy. Morphological changes were measured by atomic
force microscopy (AFM), while the surface wettability was monitored
by by static water contact angle measurements. The combination of
the characterization techniques enabled an insight into the surface
chemistry for each treatment step and confirmed the acetylation and
coupling of N-protected glycine peptides. The developed
procedures are seen as first steps toward preparing thin layers of
acetylated chitin, potentially imitating the nanometric peptide substituted
glycan layers found in bacterial cell walls.
Collapse
Affiliation(s)
- Tadeja Katan
- Institute of Chemistry and Technology of Biobased Systems (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Rupert Kargl
- Institute of Chemistry and Technology of Biobased Systems (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Tamilselvan Mohan
- Institute of Chemistry and Technology of Biobased Systems (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Tobias Steindorfer
- Institute of Chemistry and Technology of Biobased Systems (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Miran Mozetič
- Department of Surface Engineering, Jožef Stefan Institute (IJS), Jamova 39, 1000 Ljubljana, Slovenia
| | - Janez Kovač
- Department of Surface Engineering, Jožef Stefan Institute (IJS), Jamova 39, 1000 Ljubljana, Slovenia
| | - Karin Stana Kleinschek
- Institute of Chemistry and Technology of Biobased Systems (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
24
|
Hoffellner L, Henögl EM, Petschacher P, Schennach R, Leitner E. The Interaction of Cellulose Thin Films With Small Organic Molecules-Comparability of Two Inherently Different Methods. Front Chem 2021; 9:769022. [PMID: 34869213 PMCID: PMC8639685 DOI: 10.3389/fchem.2021.769022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Paper is the material of choice for a large range of applications because it has many favorable environmental and economic characteristics. Especially in the packaging sector of dry goods and food products, paper has found unique applications. For that purpose, it has to fulfill certain requirements: Primarily it should protect the packaged goods. In order to ensure the compliance of a paper packaging, its interactions with the packaged goods should be investigated. Therefore, it is of utmost importance to understand how the paper interacts with chemicals of different nature and what factors influence these interactions-be that the nature of the paper or the characteristics of the substances. In this study, we investigated the surface interactions of cellulose thin films with n-decane and deuterated methanol using two different analytical methods: headspace solid-phase microextraction with gas chromatography and flame ionization detection (HS-SPME-GC/FID) and temperature-programmed desorption (TPD). Cellulose thin films were characterized with contact angle and FT-IR measurements and successfully applied as model systems for real paper samples. Regarding the interactions of the cellulose films with the model compounds, the two inherently different methods, HS-SPME-GC/FID and TPD, provide very comparable results. While the nonpolar n-decane was readily released from the cellulose films, the polar model compound deuterated methanol showed a strong interaction with the polar cellulose surface.
Collapse
Affiliation(s)
- Lisa Hoffellner
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria.,CD-Laboratory for Mass Transport Through Paper, Graz University of Technology, Graz, Austria
| | - Elias M Henögl
- CD-Laboratory for Mass Transport Through Paper, Graz University of Technology, Graz, Austria.,Institute of Solid-State Physics, Graz University of Technology, Graz, Austria
| | - Patrick Petschacher
- Institute of Solid-State Physics, Graz University of Technology, Graz, Austria
| | - Robert Schennach
- CD-Laboratory for Mass Transport Through Paper, Graz University of Technology, Graz, Austria.,Institute of Solid-State Physics, Graz University of Technology, Graz, Austria
| | - Erich Leitner
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, Graz, Austria.,CD-Laboratory for Mass Transport Through Paper, Graz University of Technology, Graz, Austria
| |
Collapse
|
25
|
Arumughan V, Nypelö T, Hasani M, Larsson A. Fundamental aspects of the non-covalent modification of cellulose via polymer adsorption. Adv Colloid Interface Sci 2021; 298:102529. [PMID: 34773888 DOI: 10.1016/j.cis.2021.102529] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022]
Abstract
The increasing need for new material applications based on cellulose demands increased functional diversity and thus new functionalisation/modification approaches. The non-covalent modification of cellulose fibres via the adsorption of functional polymers has emerged as a promising route for tailoring the properties of material. This review focuses on fundamental aspects of polymer adsorption on cellulose surfaces, where the adsorption of polyelectrolytes and non-polyelectrolytes are treated separately. Adsorption studies on model surfaces as well as cellulose macro-fibres are reviewed. A correlation of the adsorption findings with the Scheutjens-Fleer polymer adsorption theory is provided, allowing the fundamentals behind the polymer adsorption phenomenon and its context in utilization of cellulose fibres to be understood.
Collapse
|
26
|
Jinkins KR, Wang J, Dwyer JH, Wang X, Arnold MS. Confined Shear Alignment of Ultrathin Films of Cellulose Nanocrystals. ACS APPLIED BIO MATERIALS 2021; 4:7961-7966. [PMID: 35006777 DOI: 10.1021/acsabm.1c00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellulose nanocrystals (CNCs) are a naturally abundant nanomaterial derived from cellulose which exhibit many exciting mechanical, chemical, and rheological properties, making CNCs attractive for use in coatings. Furthermore, the alignment of CNCs is important to exploit their anisotropic mechanical and piezoelectric properties. Here, we demonstrate and study the fabrication of submonolayer to 25 nm thick films of CNCs via solution-based shear alignment. CNC solution is forced through a sub-millimeter tall channel at high volumetric flow rates generating shear. The half-width at half-maximum of the spread in CNC alignment significantly improves from 78 to 17° by increasing the shear rate from 19 to 19,000 s-1. We demonstrate that the film thickness is increased by increasing the volume of CNC solution flowed over the substrate and/or increasing the CNC solution concentration, with a degradation in film uniformity at higher (≥7 wt %) concentrations, likely due to CNC aggregates in the solution. Deposition of ultrathin aligned CNC films occurs within seconds and the technique is inherently scalable, demonstrating the promise of solution-based shear for the fabrication of ultrathin aligned CNC films, thereby enabling the future study of their inherent material properties or use in high-performance coatings and applications.
Collapse
Affiliation(s)
- Katherine R Jinkins
- Department of Materials Science & Engineering, University of Wisconsin-Madison, 1509 University Ave., Madison, Wisconsin 53706, United States
| | - Jingyu Wang
- Department of Materials Science & Engineering, University of Wisconsin-Madison, 1509 University Ave., Madison, Wisconsin 53706, United States
| | - Jonathan H Dwyer
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - Xudong Wang
- Department of Materials Science & Engineering, University of Wisconsin-Madison, 1509 University Ave., Madison, Wisconsin 53706, United States
| | - Michael S Arnold
- Department of Materials Science & Engineering, University of Wisconsin-Madison, 1509 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
27
|
Spirk S, Palasingh C, Nypelö T. Current Opportunities and Challenges in Biopolymer Thin Film Analysis—Determination of Film Thickness. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.755446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polymer thin films with thickness below 100 nm are a fascinating class of 2D materials with commercial and research applications in many branches ranging from coatings to photoresists and insulating materials, to mention just a few uses. Biopolymers have extended the scope of polymer thin films with unique materials such as cellulose, cellulose nanocrystals, cellulose nanofibrils with tunable water uptake, crystallinity and optical properties. The key information needed in thin biopolymer film use and research is film thickness. It is often challenging to determine precisely and hence several techniques and their combinations are used. Additional challenges with hydrophilic biopolymers such as cellulose are the presence of humidity and the soft and often heterogenous structure of the films. This minireview summarizes currently used methods and techniques for biopolymer thin film thickness analysis and outlines challenges for accurate and reproducible characterization. Cellulose is chosen as the representative biopolymer.
Collapse
|
28
|
Vaillard AS, El Haitami A, Fontaine P, Cousin F, Gutfreund P, Goldmann M, Cantin S. Surface Pressure-Induced Interdiffused Structure Evidenced by Neutron Reflectometry in Cellulose Acetate/Polybutadiene Langmuir Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5717-5730. [PMID: 33905653 DOI: 10.1021/acs.langmuir.1c00745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Binary blends of water-insoluble polymers are a versatile strategy to obtain nanostructured films at the air-water interface. However, there are few reported structural studies of such systems in the literature. Depending on the compatibility of the polymers and the role of the air-water interface, one can expect various morphologies. In that context, we probed Langmuir monolayers of cellulose acetate (CA), of deuterated and postoxidized polybutadiene (PBd) and three mixtures of CA/PBd at various concentrations by coupling surface pressure-area isotherms, Brewster angle microscopy (BAM), and neutron reflectometry at the air-water interface to determine their thermodynamic and structural properties. The homogeneity of the films in the vertical direction, averaged laterally over the spatial coherence length of the neutron beam (∼5 μm), was assessed by neutron reflectometry measurements using D2O/H2O subphases contrast-matched to the mixed films. At 5 mN/m, the whole mixed films can be described by a single slightly hydrated thin layer. However, at 15 mN/m, the fit of the reflectivity curves requires a two-layer model consisting of a CA/PBd blend layer in contact with the water, interdiffused with a PBd layer at the interface with air. At intermediate surface pressure (10 mN/m), the determined structure was between those obtained at 5 and 15 mN/m depending on film composition. This PBd enrichment at the air-film interface at high surface pressure, which leads to the PBd depletion in the blend monolayer at the water surface, is attributed to the hydrophobic character of this polymer compared with the predominantly hydrophilic CA.
Collapse
Affiliation(s)
| | | | - Philippe Fontaine
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, 91192 Gif sur Yvette Cedex, France
| | - Fabrice Cousin
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA-CNRS UMR 12, F-91191 Gif-sur-Yvette, France
| | - Philipp Gutfreund
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Michel Goldmann
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin, BP48, 91192 Gif sur Yvette Cedex, France
- Institut des NanoSciences de Paris, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France
- Faculté des Sciences Fondamentales et Biomédicales, Université de Paris, 45 rue des Sts-Pères, 75006 Paris, France
| | | |
Collapse
|
29
|
Wulz P, Waldner C, Krainer S, Kontturi E, Hirn U, Spirk S. Surface hydrophobization of pulp fibers in paper sheets via gas phase reactions. Int J Biol Macromol 2021; 180:80-87. [PMID: 33722621 DOI: 10.1016/j.ijbiomac.2021.03.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 01/03/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
Hydrophobization of cellulosic materials and particularly paper products is a commonly used procedure to render papers more resistant to water and moisture. Here, we explore the hydrophobization of unsized paper sheets via the gas phase. We employed three different compounds, namely palmitoyl chloride (PCl), trifluoroacetic anhydride/acetic anhydride (TFAA/Ac2O)) and hexamethyldisilazane (HMDS) which were vaporized and allowed to react with the paper sheets via the gas phase. All routes yielded hydrophobic papers with static water contact angles far above 90° and indicated the formation of covalent bonds. The PCl and TFAA approach negatively impacted the mechanical and optical properties of the paper leading to a decrease in tensile strength and yellowing of the sheets. The HMDS modified papers did not exhibit any differences regarding relevant paper technological parameters (mechanical properties, optical properties, porosity) compared to the non-modified sheets. XPS studies revealed that the HMDS modified samples have a rather low silicon content, pointing at the formation of submonolayers of trimethylsilyl groups on the fiber surfaces in the paper network. This was further investigated by penetration dynamic analysis using ultrasonication, which revealed that the whole fiber network has been homogeneously modified with the silyl groups and not only the very outer surface as for the PCl and the TFAA modified papers. This procedure yields a possibility to study the influence of hydrophobicity on paper sheets and their network properties without changing structural and mechanical paper parameters.
Collapse
Affiliation(s)
- Philipp Wulz
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria; CD Laboratory for Fiber Swelling and Paper Performance, Inffeldgasse 23, 8010 Graz, Austria
| | - Carina Waldner
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria; CD Laboratory for Fiber Swelling and Paper Performance, Inffeldgasse 23, 8010 Graz, Austria
| | - Sarah Krainer
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria; CD Laboratory for Fiber Swelling and Paper Performance, Inffeldgasse 23, 8010 Graz, Austria
| | - Eero Kontturi
- Department of Bioproducts and Biosystems (BIO), Aalto University, P.O. Box 16300, FI-00076 Espoo, Finland
| | - Ulrich Hirn
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria; CD Laboratory for Fiber Swelling and Paper Performance, Inffeldgasse 23, 8010 Graz, Austria.
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria; CD Laboratory for Fiber Swelling and Paper Performance, Inffeldgasse 23, 8010 Graz, Austria
| |
Collapse
|
30
|
Liu C, Qin S, Xie J, Lin X, Zheng Y, Yang J, Kan H, Shi Z. Using Carboxymethyl Cellulose as the Additive With Enzyme-Catalyzed Carboxylated Starch to Prepare the Film With Enhanced Mechanical and Hydrophobic Properties. Front Bioeng Biotechnol 2021; 9:638546. [PMID: 33604332 PMCID: PMC7884610 DOI: 10.3389/fbioe.2021.638546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/05/2021] [Indexed: 01/25/2023] Open
Abstract
Carboxymethyl cellulose, a hydrophobic derivative from cellulose that can be prepared from different biomass, has been widely applied in food, medicine, chemical, and other industries. In this work, carboxymethyl cellulose was used as the additive to improve the hydrophobicity and strength of carboxylated starch film, which is prepared from starch catalyzed by bio-α-amylase. This study investigated the effects of different bio-α-amylase dosages (starch 0.5%, starch 1%) and different activation times (10, 30 min) on starch to prepare the carboxylated starch. The effects of different carboxymethyl cellulose content on the carboxylated starch film were investigated by analysis viscosity, fourier-transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, x-ray powder diffraction, scanning electron microscope, and contact angle. The results showed that preparing carboxylated starch using activated starch increased the carboxyl content, which could improve the effectiveness of the activated enzyme compared to prolonging the activation time. The carboxyl starch prepared by enzyme catalysis had a lower gelatinization temperature, and enzyme activation destroyed the crystallization area of the starch, thus facilitating the carboxylation reaction. The addition of 15% carboxymethyl cellulose improved the mechanical properties of the prepared film with maximum tensile strength of 44.8 MPa. Carboxymethyl cellulose effectively improved the hydrophobicity of the starch film with the addition amount of 10–30%, while hydrophobic property was stable at 66.8° when the addition amount was exceeded to 35%. In this work, it can be found that carboxymethyl cellulose improve the mechanical and hydrophobic properties of starch film, laying the foundation for the application of carboxylated starch materials.
Collapse
Affiliation(s)
- Can Liu
- The Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, China
| | - Shijiao Qin
- The Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, China.,College of Life Science, Southwest Forestry University, Kunming, China
| | - Jin Xie
- The Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, China
| | - Xu Lin
- The Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, China
| | - Yunwu Zheng
- The Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, China
| | - Jing Yang
- The Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, China
| | - Huan Kan
- College of Life Science, Southwest Forestry University, Kunming, China
| | - Zhengjun Shi
- The Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, China
| |
Collapse
|
31
|
Sampl C, Eyley S, Thielemans W, Hirn U, Spirk S. Real-time adsorption of optical brightening agents on cellulose thin films. Carbohydr Polym 2021; 261:117826. [PMID: 33766333 DOI: 10.1016/j.carbpol.2021.117826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
Optical brightening agents (OBAs) are commonly used in textile and paper industry to adjust product brightness and color appearence. Continuous production processes lead to short residence time of the dyes in the fiber suspension, making it necessary to understand the kinetics of adsorption. The interaction mechanisms of OBAs with cellulose are challenging to establish as the fibrous nature of cellulosic substrates complicates acquisition of real-time data. Here, we explore the real-time adsorption of different OBAs (di, tetra- and hexasulfonated compounds) onto different cellulose surfaces using surface plasmon resonance spectroscopy. Ionic strength, surface topography and polarity were varied and yielded 0.76-11.35 mg m-2 OBA on cellulose. We identified four independent mechanisms governing OBA-cellulose interactions. These involve the polarity of the cellulose surface, the solubility of the OBA, the ionic strength during adsorption and presence of bivalent cations such as Ca2+. These results can be exploited for process optimization in related industries as they allow for a simple adjustment and experimental testing procedures including performance assessment of novel OBAs.
Collapse
Affiliation(s)
- Carina Sampl
- Graz University of Technology, Institute of Bioproducts and Paper Technology (BPTI), Inffeldgasse 23, 8010 Graz, Austria; CD-Laboratory for Fibre Swelling and Paper Performance, Inffeldgasse 23, 8010 Graz, Austria
| | - Samuel Eyley
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Ulrich Hirn
- Graz University of Technology, Institute of Bioproducts and Paper Technology (BPTI), Inffeldgasse 23, 8010 Graz, Austria; CD-Laboratory for Fibre Swelling and Paper Performance, Inffeldgasse 23, 8010 Graz, Austria.
| | - Stefan Spirk
- Graz University of Technology, Institute of Bioproducts and Paper Technology (BPTI), Inffeldgasse 23, 8010 Graz, Austria; CD-Laboratory for Fibre Swelling and Paper Performance, Inffeldgasse 23, 8010 Graz, Austria
| |
Collapse
|
32
|
Lux C, Tilger T, Geisler R, Soltwedel O, von Klitzing R. Model Surfaces for Paper Fibers Prepared from Carboxymethyl Cellulose and Polycations. Polymers (Basel) 2021; 13:435. [PMID: 33573003 PMCID: PMC7866410 DOI: 10.3390/polym13030435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 11/16/2022] Open
Abstract
For tailored functionalization of cellulose based papers, the interaction between paper fibers and functional additives must be understood. Planar cellulose surfaces represent a suitable model system for studying the binding of additives. In this work, polyelectrolyte multilayers (PEMs) are prepared by alternating dip-coating of the negatively charged cellulose derivate carboxymethyl cellulose and a polycation, either polydiallyldimethylammonium chloride (PDADMAC) or chitosan (CHI). The parameters varied during PEM formation are the concentrations (0.1-5 g/L) and pH (pH = 2-6) of the dipping solutions. Both PEM systems grow exponentially, revealing a high mobility of the polyelectrolytes (PEs). The pH-tunable charge density leads to PEMs with different surface topographies. Quartz crystal microbalance experiments with dissipation monitoring (QCM-D) reveal the pronounced viscoelastic properties of the PEMs. Ellipsometry and atomic force microscopy (AFM) measurements show that the strong and highly charged polycation PDADMAC leads to the formation of smooth PEMs. The weak polycation CHI forms cellulose model surfaces with higher film thicknesses and a tunable roughness. Both PEM systems exhibit a high water uptake when exposed to a humid environment, with the PDADMAC/carboxymethyl cellulose (CMC) PEMs resulting in a water uptake up to 60% and CHI/CMC up to 20%. The resulting PEMs are water-stable, but water swellable model surfaces with a controllable roughness and topography.
Collapse
Affiliation(s)
| | | | | | | | - Regine von Klitzing
- Soft Matter at Interfaces, Department of Physics, Technical University of Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany; (C.L.); (T.T.); (R.G.); (O.S.)
| |
Collapse
|
33
|
Vilaró P, Sampl C, Teichert G, Schlemmer W, Hobisch M, Weissl M, Panizzolo L, Ferreira F, Spirk S. Interactions and Dissociation Constants of Galactomannan Rendered Cellulose Films with Concavalin A by SPR Spectroscopy. Polymers (Basel) 2020; 12:E3040. [PMID: 33353119 PMCID: PMC7766192 DOI: 10.3390/polym12123040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/01/2023] Open
Abstract
Interactions of biomolecules at interfaces are important for a variety of physiological processes. Among these, interactions of lectins with monosaccharides have been investigated extensively in the past, while polysaccharide-lectin interactions have scarcely been investigated. Here, we explore the adsorption of galactomannans (GM) extracted from Prosopis affinis on cellulose thin films determined by a combination of multi-parameter surface plasmon resonance spectroscopy (MP-SPR) and atomic force microscopy (AFM). The galactomannan adsorbs spontaneously on the cellulose surfaces forming monolayer type coverage (0.60 ± 0.20 mg·m-2). The interaction of a lectin, Concavalin A (ConA), with these GM rendered cellulose surfaces using MP-SPR has been investigated and the dissociation constant KD (2.1 ± 0.8 × 10-8 M) was determined in a range from 3.4 to 27.3 nM. The experiments revealed that the galactose side chains as well as the mannose reducing end of the GM are weakly interacting with the active sites of the lectins, whereas these interactions are potentially amplified by hydrophobic effects between the non-ionic GM and the lectins, thereby leading to an irreversible adsorption.
Collapse
Affiliation(s)
- Pilar Vilaró
- Sede Tacuarembó, Espacio de Ciencia y Tecnología Química, Universidad de la República, CENUR Nores-te. Ruta 5 Km 386, Tacuarembó 45000, Uruguay; (P.V.); (F.F.)
| | - Carina Sampl
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria; (C.S.); (G.T.); (W.S.); (M.H.); (M.W.)
| | - Gundula Teichert
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria; (C.S.); (G.T.); (W.S.); (M.H.); (M.W.)
| | - Werner Schlemmer
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria; (C.S.); (G.T.); (W.S.); (M.H.); (M.W.)
| | - Mathias Hobisch
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria; (C.S.); (G.T.); (W.S.); (M.H.); (M.W.)
| | - Michael Weissl
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria; (C.S.); (G.T.); (W.S.); (M.H.); (M.W.)
| | - Luis Panizzolo
- Departamento de Ciencia y Tecnología de Alimentos, Facultad de Química, Universidad de la República, Avenida General Flores 2124, Montevideo 11800, Uruguay;
| | - Fernando Ferreira
- Sede Tacuarembó, Espacio de Ciencia y Tecnología Química, Universidad de la República, CENUR Nores-te. Ruta 5 Km 386, Tacuarembó 45000, Uruguay; (P.V.); (F.F.)
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Inffeldgasse 23, 8010 Graz, Austria; (C.S.); (G.T.); (W.S.); (M.H.); (M.W.)
| |
Collapse
|
34
|
Nypelö T, Berke B, Spirk S, Sirviö JA. Review: Periodate oxidation of wood polysaccharides-Modulation of hierarchies. Carbohydr Polym 2020; 252:117105. [PMID: 33183584 DOI: 10.1016/j.carbpol.2020.117105] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/16/2022]
Abstract
Periodate oxidation of polysaccharides has transitioned from structural analysis into a modification method for engineered materials. This review summarizes the research on this topic. Fibers, fibrils, crystals, and molecules originating from forests that have been subjected to periodate oxidation can be crosslinked with other entities via the generated aldehyde functionality, that can also be oxidized or reduced to carboxyl or alcohol functionality or used as a starting point for further modification. Periodate-oxidized materials can be subjected to thermal transitions that differ from the native cellulose. Oxidation of polysaccharides originating from forests often features oxidation of structures rather than liberated molecules. This leads to changes in macro, micro, and supramolecular assemblies and consequently to alterations in physical properties. This review focuses on these aspects of the modulation of structural hierarchies due to periodate oxidation.
Collapse
Affiliation(s)
- Tiina Nypelö
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden; Wallenberg Wood Science Center, Chalmers University of Technology, Gothenburg, Sweden.
| | - Barbara Berke
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Stefan Spirk
- Institute of Bioproducts and Paper Technology, Graz University of Technology, Graz, Austria
| | - Juho Antti Sirviö
- Fibre and Particle Engineering Research Unit, University of Oulu, Oulu, Finland
| |
Collapse
|
35
|
Sato K, Tominaga Y, Imai Y. Nanocelluloses and Related Materials Applicable in Thermal Management of Electronic Devices: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E448. [PMID: 32131448 PMCID: PMC7152987 DOI: 10.3390/nano10030448] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/29/2022]
Abstract
Owing to formidable advances in the electronics industry, efficient heat removal in electronic devices has been an urgent issue. For thermal management, electrically insulating materials that have higher thermal conductivities are desired. Recently, nanocelluloses (NCs) and related materials have been intensely studied because they possess outstanding properties and can be produced from renewable resources. This article gives an overview of NCs and related materials potentially applicable in thermal management. Thermal conduction in dielectric materials arises from phonons propagation. We discuss the behavior of phonons in NCs as well.
Collapse
Affiliation(s)
- Kimiyasu Sato
- National Institute of Advanced Industrial Science and Technology (AIST), Anagahora 2266-98, Shimoshidami, Moriyama-ku, Nagoya 463-8560, Japan; (Y.T.); (Y.I.)
| | | | | |
Collapse
|
36
|
Jones AOF, Resel R, Schrode B, Machado-Charry E, Röthel C, Kunert B, Salzmann I, Kontturi E, Reishofer D, Spirk S. Structural Order in Cellulose Thin Films Prepared from a Trimethylsilyl Precursor. Biomacromolecules 2019; 21:653-659. [PMID: 31774663 DOI: 10.1021/acs.biomac.9b01377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biopolymer cellulose is investigated in terms of the crystallographic order within thin films. The films were prepared by spin-coating of a trimethylsilyl cellulose precursor followed by an exposure to HCl vapors; two different source materials were used. Careful precharacterization of the films was performed by infrared spectroscopy and atomic force microscopy. Subsequently, the films were investigated by grazing incidence X-ray diffraction using synchrotron radiation. The results showed broad diffraction peaks, indicating a rather short correlation length of the molecular packing in the range of a few nanometers. The analysis of the diffraction patterns was based on the known structures of crystalline cellulose, as the observed peak pattern was comparable to cellulose phase II and phase III. The dominant fraction of the film is formed by two different types of layers, which are oriented parallel to the substrate surface. The stacking of the layers results in a one-dimensional crystallographic order with a defined interlayer distance of either 7.3 or 4.2 Å. As a consequence, two different preferred orientations of the polymer chains are observed. In both cases, polymer chain axes are aligned parallel to the substrate surface, and the orientation of the cellulose molecules are concluded to be either edge-on or flat-on. A minor fraction of the cellulose molecules form nanocrystals that are randomly distributed within the films. In this case, the molecular packing density was found to be smaller in comparison to the known crystalline phases of cellulose.
Collapse
Affiliation(s)
- Andrew O F Jones
- Institute of Solid State Physics , Graz University of Technology , Petersgasse 16 , 8010 Graz , Austria
| | - Roland Resel
- Institute of Solid State Physics , Graz University of Technology , Petersgasse 16 , 8010 Graz , Austria
| | - Benedikt Schrode
- Institute of Solid State Physics , Graz University of Technology , Petersgasse 16 , 8010 Graz , Austria
| | - Eduardo Machado-Charry
- Institute of Solid State Physics , Graz University of Technology , Petersgasse 16 , 8010 Graz , Austria
| | - Christian Röthel
- Institute of Solid State Physics , Graz University of Technology , Petersgasse 16 , 8010 Graz , Austria.,Institute for Pharmaceutical Sciences, Department of Pharmaceutical Technology , Karl-Franzens University of Graz , 8010 Graz , Austria
| | - Birgit Kunert
- Institute of Solid State Physics , Graz University of Technology , Petersgasse 16 , 8010 Graz , Austria
| | - Ingo Salzmann
- Department of Physics, Department of Chemistry and Biochemistry , Concordia University , H4B 1R6 Montréal , Canada
| | - Eero Kontturi
- Department of Bioproducts and Biosystems , Aalto University , P.O. Box 16300, 00076 Aalto , Finland
| | - David Reishofer
- Institute of Paper, Pulp and Fiber Technology , Graz University of Technology , 8010 Graz , Austria
| | - Stefan Spirk
- Institute of Paper, Pulp and Fiber Technology , Graz University of Technology , 8010 Graz , Austria
| |
Collapse
|