1
|
Verma G, Kumar S, Slaughter ER, Vardhan H, Alshahrani TM, Niu Z, Gao WY, Wojtas L, Chen YS, Ma S. Bifunctional Metal-Organic Nanoballs Featuring Lewis Acidic and Basic Sites as a New Platform for One-Pot Tandem Catalysis. Chempluschem 2024; 89:e202400169. [PMID: 38578649 DOI: 10.1002/cplu.202400169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024]
Abstract
The design and synthesis of polyhedra using coordination-driven self-assembly has been an intriguing research area for synthetic chemists. Metal-organic polyhedra are a class of intricate molecular architectures that have garnered significant attention in the literature due to their diverse structures and potential applications. Hereby, we report Cu-MOP, a bifunctional metal-organic cuboctahedra built using 2,6-dimethylpyridine-3,5-dicarboxylic acid and copper acetate at room temperature. The presence of both Lewis basic pyridine groups and Lewis acidic copper sites imparts catalytic activity to Cu-MOP for the tandem one-pot deacetalization-Knoevenagel/Henry reactions. The effect of solvent system and time duration on the yields of the reactions was studied, and the results illustrate the promising potential of these metal-organic cuboctahedra, also known as nanoballs for applications in catalysis.
Collapse
Affiliation(s)
- Gaurav Verma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St., Denton, Texas, 76201, USA
| | - Sanjay Kumar
- Department of Chemistry, Multani Mal Modi College, Modi College, Lower Mall, Patiala, Punjab, 147001, India
| | - Elliott R Slaughter
- Texas Academy of Mathematics and Sciences, University of North Texas, 1508 W Mulberry St., Denton, Texas, 76201, USA
| | - Harsh Vardhan
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main St., Houston, Texas, 77005-1827, USA
| | - Thamraa M Alshahrani
- Department of Physics, College of Science, Princess Nourahbint Abdulrahman University, Riyadh, 11564, SaudiArabia
| | - Zheng Niu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Wen-Yang Gao
- Chemistry & Biochemistry Department, Ohio University, Athens, Ohio, 45701, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, Florida, 33620, USA
| | - Yu-Sheng Chen
- ChemMatCARS, Center for Advanced Radiation Sources, The University of Chicago, 9700 South Cass Avenue, Argonne, Illinois, 60439, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St., Denton, Texas, 76201, USA
| |
Collapse
|
2
|
Karmakar A, Santos AACD, Liu P, Gurbanov AV, Pires J, Alegria ECBA, Hasanov KI, Guedes da Silva MFC, Wang Z, Pombeiro AJL. Thiophene-Functionalized Cadmium(II)-Based Metal-Organic Frameworks for CO 2 Adsorption with Gate-Opening Effect, Separation, and Catalytic Conversion. Inorg Chem 2024; 63:13321-13337. [PMID: 38987901 DOI: 10.1021/acs.inorgchem.4c01063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Two new porous three-dimensional cadmium(II) metal-organic frameworks (MOFs) containing thiophene-appended carboxylate acid ligands, formulated as [Cd(L1)(4,4'-Bipy)]n.2n(DMF) (1) and [Cd(L2)(4,4'-Bipy)]n.2n(DMF) (2) [where L1 = 5-{(thiophen-2-ylmethyl)amino}isophthalate, L2 = 5-{(thiophen-3-ylmethyl)amino}isophthalate, 4,4'-Bipy = 4,4'-bipyridine, and DMF = N,N'-dimethylformamide] have been synthesized and structurally characterized. The gas adsorption analysis of the activated MOFs shows that they specifically capture CO2 (uptake amount 4.36 mmol/g under 1 bar at 195 K) over N2 and CH4. Moreover, both MOFs show a gate-opening-closing phenomenon, which features the S-shaped isotherms with impressive hysteretic desorption during the CO2 adsorption-desorption process at 195 K. Ideal adsorbed solution theory (IAST) calculations of these MOFs displayed that the obtained selectivity values for CO2/CH4 (50:50) and CO2/N2 (15:85) are approximately 8.6-23 and 93-565, respectively. Configurational bias Monte Carlo simulation was performed to understand the mechanism behind the better CO2 adsorption by these MOFs. Catalytic activity of the MOFs for the CO2 fixation reactions with different epoxides to form cyclic carbonates were tested. These MOFs demonstrated a significantly high conversion (94-99%) of epichlorohydrin to the corresponding cyclic carbonate within 8 h of reaction time at 1 bar of CO2 pressure, at 70 °C, and they can be reused up to five cycles without losing considerably their activity.
Collapse
Affiliation(s)
- Anirban Karmakar
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
| | - Andreia A C D Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, Lisboa 1959-007, Portugal
| | - Peixi Liu
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R. China
| | - Atash V Gurbanov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
- Excellence Center, Baku State University, Z. Xalilov Str. 33, AZ 1148 Baku, Azerbaijan
| | - João Pires
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Elisabete C B A Alegria
- Departamento de Engenharia Química, Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1, Lisboa 1959-007, Portugal
| | - Khudayar I Hasanov
- Western Caspian University, Istiqlaliyyat Str. 31, AZ 1001 Baku , Azerbaijan
- Azerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade St. 14, AZ 1022 Baku, Azerbaijan
| | - M Fátima C Guedes da Silva
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
| | - Zhihua Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, P.R. China
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, IST-ID Associação do Instituto Superior Técnico para a Investigação e Desenvolvimento, Universidade de Lisboa, Lisboa 1000-043, Portugal
| |
Collapse
|
3
|
Polyaromatic Carboxylate Ligands Based Zn(II) Coordination Polymers for Ultrasound-Assisted One-Pot Tandem Deacetalization–Knoevenagel Reactions. Catalysts 2022. [DOI: 10.3390/catal12030294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Solvothermal reactions between the polyaromatic group containing carboxylic acid pro-ligands 5-{(pyren-1-ylmethyl)amino}isophthalic acid (H2L1) and 5-{(anthracen-9-ylmethyl)amino}isophthalic acid (H2L2) with Zn(NO3)2·6H2O led to the formation of the new 1D coordination polymer [Zn(L1)(NMF)]n (1) and four other coordination polymers, [Zn(L1)(DMF)]n (2), [Zn(L1)(4,4′-Bipy)]n (3), [Zn(L2)(DMF)(H2O)2]n·n(H2O) (4) and [Zn2(L2)2(DMF)(CH3OH)]n (5), which were previously reported by our group. Single crystal X-ray diffraction analyses revealed that the CP 1 has a one-dimensional (1D) double-chain-type structure similar to that of CP 2. For CP 3, the assembly of the Zn(II) ion with a deprotonated L12− ligand and 4,4′-bipyridine produces a 3D network. CP 4 and 5 exhibit 1D linear and 2D layered-type structures. The ultrasound-assisted tandem reactions promoted by CPs have not yet been well studied. Thus, in the present work, we have investigated the catalytic activities of the newly synthesized CP 1, as well as of the other CPs 2–5, towards the tandem deacetalization–Knoevenagel condensation reactions of various acetals under ultrasonic irradiation. They proved to be highly efficient, with special emphasis on catalyst 1, which completely converted the substrate (benzaldehyde dimethyl acetal) into the desired product (2-benzylidenemalononitrile) after 2 h. The stability of the catalysts, namely regarding the action of ultrasonic radiation, was demonstrated by their reuse, where only a slight loss of activity was observed after four cycles. Heterogeneity was also demonstrated, and no leaching was detected over the various cycles.
Collapse
|
4
|
Anyaegbu CE, Zhang H, Xiao J, Tao M, Ma N, Zhang W. Tertiary amine-bisquaternary ammonium functionalized polyacrylonitrile fiber for catalytic synthesis of pyran-annulated heterocycles. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Karmakar A, Hazra S, Pombeiro AJ. Urea and thiourea based coordination polymers and metal-organic frameworks: Synthesis, structure and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214314] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Liang Q, Cheng H, Li C, Ning L, Shao L. A covalent modification strategy for di-alkyne tagged metal–organic frameworks to access efficient heterogeneous catalysts toward C–C bond formation. NEW J CHEM 2022. [DOI: 10.1039/d1nj04982h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A di-alkyne tagged MOF was proposed to introduce diverse metals, and UiO-66-(alkyne-Co)2 displayed an efficient catalytic performance for the Knoevenagel reaction.
Collapse
Affiliation(s)
- Qianqian Liang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, 201203, China
| | - Hua Cheng
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, 201203, China
| | - Chengwen Li
- DezhouDeyao Pharmaceutical Co, Ltd, No. 6000 East Dongfanghong Road, Shandong, 253084, China
| | - Liangmin Ning
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Liming Shao
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai, 201203, China
- State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| |
Collapse
|
7
|
Karmakar A, Paul A, Santos PMR, Santos IRM, Guedes da Silva MFC, Pombeiro AJL. Designing and Construction of Polyaromatic Group Containing Cd(II)-based Coordination Polymers for Solvent-free Strecker-type Cyanation of Acetals. NEW J CHEM 2022. [DOI: 10.1039/d2nj00168c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work, we have synthesized and characterized two novel Cd(II) coordination polymers, [Cd4(L1)4(DMF)6]n.3n(DMF) (1) and [Cd2(L2)2(DMF)3]n.2n(DMF) (2), and studied their catalytic application. They were synthesized via solvothermal reaction...
Collapse
|
8
|
Pandey R, Singh D, Thakur N, Raj KK. Catalytic C-H Bond Activation and Knoevenagel Condensation Using Pyridine-2,3-Dicarboxylate-Based Metal-Organic Frameworks. ACS OMEGA 2021; 6:13240-13259. [PMID: 34056473 PMCID: PMC8158822 DOI: 10.1021/acsomega.1c01155] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/23/2021] [Indexed: 05/08/2023]
Abstract
Three 1D coordination polymers (CPs) [M(pdca)(H2O)2] n (M = Zn, Cd, and Co; 1-3), and a 3D coordination framework {[(CH3)2NH2][CuK(2,3-pdca)(pa)(NO3)2]} n (4) (2,3-pdca = pyridine-2,3-dicarboxylate and pa = picolinic acid), have been synthesized adopting a solvothermal reaction strategy. The CPs have been thoroughly characterized using various spectral techniques, that is, elemental analyses, FT-IR, TGA, DSC, UV/vis, and luminescence. Structural information on 1-4 was obtained by PXRD and X-ray single-crystal analyses, whereas morphological insights were attained through FESEM, AFM, EDX, HRTEM, and BET surface area analyses. Roughness parameters were calculated from AFM analysis, whereas dimensions of small domains and interplanar spacing were defined with the aid of HRTEM. CPs 1-3 are 1D isostructural networks, whereas 4 is a 3D framework. Moreover, 1-4 display moderate luminescence at rt. In addition, 1-4 have been applied as economic and efficient porous catalysts for the Knoevenagel condensation reaction and C-H bond activation under mild conditions with good yields (95-98 and 97-99%), respectively. Notably, 1-3 can be reused up to seven cycles, whereas 4 can be reused up to five catalytic cycles with retained catalytic efficiency. Relative catalytic efficacy toward the Knoevenagel condensation reaction follows in the order 2 > 1 > 3 > 4, whereas 2 > 4 > 1 > 3 for C-H activation. The present result demonstrates synthetic, structural, optical, morphological, and catalytic aspects of 1-4.
Collapse
Affiliation(s)
- Rampal Pandey
- Department
of Chemistry, National Institute of Technology
Uttarakhand, Srinagar, Uttarakhand 246174, India
| | - Durgesh Singh
- Department
of Chemistry, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Neha Thakur
- Department
of Chemistry, National Institute of Technology
Uttarakhand, Srinagar, Uttarakhand 246174, India
| | - Krishna K. Raj
- Department
of Chemistry, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| |
Collapse
|
9
|
Chakraborty G, Park IH, Medishetty R, Vittal JJ. Two-Dimensional Metal-Organic Framework Materials: Synthesis, Structures, Properties and Applications. Chem Rev 2021; 121:3751-3891. [PMID: 33630582 DOI: 10.1021/acs.chemrev.0c01049] [Citation(s) in RCA: 291] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gouri Chakraborty
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | | | - Jagadese J. Vittal
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
10
|
1D Zn(II) Coordination Polymers as Effective Heterogeneous Catalysts in Microwave-Assisted Single-Pot Deacetalization-Knoevenagel Tandem Reactions in Solvent-Free Conditions. Catalysts 2021. [DOI: 10.3390/catal11010090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The new 1D CPs [Zn(L1)(H2O)4]n.nH2O (1) and [Zn(L2)(H2O)2]n (2) [L1 = 1,1′-(ethane-1,2-diyl)bis(6-oxo-1,6-dihydropyridine-3-carboxylic acid); L2 = 1,1′-(propane-1,3-diyl)bis(6-oxo-1,6-dihydropyridine-3-carboxylic acid)] were prepared from flexible dicarboxylate pro-ligands (H2L1 and H2L2). Both CPs 1 and 2 were characterized by elemental, FTIR, and powder X-ray diffraction analysis. Their geometry and the structural features were unveiled by single-crystal X-ray diffraction analysis. The underlying topology of the CPs was illustrated by the topological analysis of the H-bonded structure of CP 1, which revealed a 3,4,6-connected trinodal net. On the other hand, topological analysis on the hydrogen-bonded network of CP 2 showed a 2,3,3,4,6,7-connected hexanodal net. The thermal stability of the CPs was investigated by thermogravimetric analysis. CPs 1 and 2 act as heterogeneous catalysts in one-pot tandem deacetalization–Knoevenagel condensation reactions under environmentally mild conditions. CPs 1 exhibits a yield of ca. 91% in a microwave-assisted solvent-free medium, whereas a slightly lower yield was obtained for CP 2 (87%) under the same experimental protocol. The recyclability of catalyst 1 was also assessed. To our knowledge, these are the first Zn(II)-based CPs to be applied as heterogeneous catalysts for the above tandem reactions under environmentally friendly conditions.
Collapse
|
11
|
Das A, Anbu N, SK M, Dhakshinamoorthy A, Biswas S. Highly Active Bisamino Functionalized Zr(IV)‐UiO‐67 Metal‐Organic Framework for Cascade Catalysis. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000399] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Aniruddha Das
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Assam India
| | - Nagaraj Anbu
- School of Chemistry Madurai Kamaraj University 625021 Madurai Tamil Nadu India
| | - Mostakim SK
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Assam India
| | | | - Shyam Biswas
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Assam India
| |
Collapse
|
12
|
Paul A, Martins LMDRS, Karmakar A, Kuznetsov ML, C. Guedes da Silva MF, Pombeiro AJL. Zn(II)-to-Cu(II) Transmetalation in an Amide Functionalized Complex and Catalytic Applications in Styrene Oxidation and Nitroaldol Coupling. Molecules 2020; 25:E2644. [PMID: 32517273 PMCID: PMC7321079 DOI: 10.3390/molecules25112644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 11/16/2022] Open
Abstract
The mononuclear zinc(II) complex cis-[ZnL2(H2O)2] (1; L = 4-(pyridin-3-ylcarbamoyl)benzoate) was synthesized and characterized. By soaking crystals of 1 in a mixture of DMF-H2O solution containing a slight excess of Cu(NO3)2 × 3H2O a transmetalation reaction occurred affording the related copper(II) complex trans-[CuL2(H2O)2] (2). The structures of the compounds were authenticated by single crystal X-ray diffraction revealing, apart from a change in the isomerism, an alteration in the relative orientation of the chelating carboxylate groups and of the pyridine moieties. H-bond interactions stabilize both geometries and expand them into two-dimensional (2D) networks. The transmetalation was confirmed by SEM-EDS analysis. Moreover, the thermodynamic feasibility of the transmetalation is demonstrated by density-functional theory (DFT) studies. The catalytic activities of 1 and 2 for the oxidation of styrene and for the nitroaldol (Henry) C-C coupling reaction were investigated. The copper(II) compound 2 acts as heterogeneous catalyst for the microwave-assisted oxidation of styrene with aqueous hydrogen peroxide, yielding selectively (>99%) benzaldehyde up to 66% of conversion and with a turnover frequency (TOF) of 132 h-1. The zinc(II) complex 1 is the most active catalyst (up to 87% yield) towards the nitroaldol (Henry) coupling reaction between benzaldehyde and nitro-methane or -ethane to afford the corresponding β-nitro alcohols. The reaction of benzaldehyde with nitroethane in the presence of 1 produced 2-nitro-1-phenylpropanol in the syn and the anti diastereoisomeric forms, with a considerable higher selectivity towards the former (66:34).
Collapse
Affiliation(s)
- Anup Paul
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (A.K.); (M.L.K.)
| | - Luísa M. D. R. S. Martins
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (A.K.); (M.L.K.)
| | | | | | - M. Fátima C. Guedes da Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (A.K.); (M.L.K.)
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (A.K.); (M.L.K.)
| |
Collapse
|
13
|
Karmakar A, Soliman MMA, Rúbio GMDM, Guedes da Silva MFC, Pombeiro AJL. Synthesis and catalytic activities of a Zn(ii) based metallomacrocycle and a metal-organic framework towards one-pot deacetalization-Knoevenagel tandem reactions under different strategies: a comparative study. Dalton Trans 2020; 49:8075-8085. [PMID: 32525152 DOI: 10.1039/d0dt01312a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Solvothermal reactions between a pyridine based amide functionalized dicarboxylic acid, 4,4'-{(pyridine-2,6-dicarbonyl)bis(azanediyl)}dibenzoic acid (H2L), and zinc(ii) nitrate in the absence and presence of a base produced the binuclear metallomacrocyclic compound [Zn2(L)2(H2O)4]·2(H2O)·6(DMF) (1) and the metallomacrocyclic based two dimensional MOF [Zn5(L)4(OH)2(H2O)4]n·8n(DMF)·4n(H2O) (2), respectively. Compound 1 bears two tetrahedral Zn(ii) centres, whereas the 2D framework 2 includes a penta-nuclear Zn(ii) cluster as a secondary building block unit, with two of the metal cations assuming a tetrahedral type geometry and the remaining three an octahedral type geometry. The topological analyses reveal that compound 1 has a 2-connected uninodal net and framework 2 has a 2, 8-connected binodal net. These compounds heterogeneously catalyse the tandem deacetalization-Knoevenagel condensation reactions carried out under conventional heating, microwave irradiation or ultrasonic irradiation. Comparative studies show that ultrasonic irradiation (final product yield of 99% after 2 h of reaction time) provides the most favourable method (e.g., microwave irradiation leads to a final product yield of 91% after 3 h of reaction time). Moreover, the catalysts can be reused at least for five consecutive cycles without losing activity significantly.
Collapse
Affiliation(s)
- Anirban Karmakar
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| | | | | | | | | |
Collapse
|