1
|
Titze L, Cadamuro F, Murenu N, Akbari R, Pellegrino L, Capitani G, Acciarri M, Antonini C, Russo L, Manfredi N. Spiro-Ometad As A Promising Substrate In Biomedical Devices. ChemistryOpen 2025:e202400002. [PMID: 39790026 DOI: 10.1002/open.202400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Bioactive films composed of Spiro-OMeTAD, a conductive molecular material (CMM), in combination with collagen have been manufactured and characterised for the first time. In-vitro cellular testing demonstrated the non-cytotoxicity of the doped Spiro-OMeTAD /Collagen films, opening the way for implantable or wearable medical devices and biosensors based on molecular materials.
Collapse
Affiliation(s)
- Lisa Titze
- Department of Materials Science and Milano-Bicocca Solar Energy Research Center - MIB-Solar, University of Milano-Bicocca, Via Cozzi 55, Milano, I-20125, Italy
| | - Francesca Cadamuro
- School of Medicine and Surgery, University of Milano-Bicocca, Via Raoul Follereau 3, Vedano al Lambro (MB), I-20854, Italy
| | - Nicoletta Murenu
- School of Medicine and Surgery, University of Milano-Bicocca, Via Raoul Follereau 3, Vedano al Lambro (MB), I-20854, Italy
| | - Raziyeh Akbari
- Department of Materials Science and Milano-Bicocca Solar Energy Research Center - MIB-Solar, University of Milano-Bicocca, Via Cozzi 55, Milano, I-20125, Italy
| | - Luca Pellegrino
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milano, I-20126, Italy
| | - Giancarlo Capitani
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milano, I-20126, Italy
| | - Maurizio Acciarri
- Department of Materials Science and Milano-Bicocca Solar Energy Research Center - MIB-Solar, University of Milano-Bicocca, Via Cozzi 55, Milano, I-20125, Italy
| | - Carlo Antonini
- Department of Materials Science and Milano-Bicocca Solar Energy Research Center - MIB-Solar, University of Milano-Bicocca, Via Cozzi 55, Milano, I-20125, Italy
| | - Laura Russo
- School of Medicine and Surgery, University of Milano-Bicocca, Via Raoul Follereau 3, Vedano al Lambro (MB), I-20854, Italy
| | - Norberto Manfredi
- Department of Materials Science and Milano-Bicocca Solar Energy Research Center - MIB-Solar, University of Milano-Bicocca, Via Cozzi 55, Milano, I-20125, Italy
| |
Collapse
|
2
|
Zhou YG, Li SK, Xue Y, Fan B, Gao QM, Zhan LW, Liu RT, Li YF, Sun RL, Tian YZ. Diels-Alder reaction in hydrogel synthesis: Mechanisms and functional aspects. J Biomater Appl 2024:8853282241306245. [PMID: 39668782 DOI: 10.1177/08853282241306245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The Diels-Alder reaction, a classical (4+2) cycloaddition process, holds significant standing within the realms of organic synthesis and polymer chemistry, frequently employed in areas such as pharmaceutical production and material science. Recently, hydrogels constructed via Diels-Alder reactions have garnered considerable attention from researchers. This review aims to summarize the advancements in utilizing the Diels-Alder reaction for hydrogel synthesis, exploring its impact on structural design, functionalization, and application domains. Initially, the fundamental principles of the Diels-Alder reaction are introduced alongside an examination of its benefits and characteristics in hydrogel fabrication. Subsequently, applications of Diels-Alder-generated hydrogels in biomedicine, smart responsive materials, drug delivery systems, among other fields, are comprehensively reviewed. Challenges and limitations encountered during hydrogel synthesis using this reaction are also discussed. Finally, prospective research directions and future prospects of Diels-Alder reactions in hydrogel synthesis are contemplated.
Collapse
Affiliation(s)
- Yi Gui Zhou
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Song Kai Li
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Yun Xue
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Bo Fan
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Qiu Ming Gao
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Long Wen Zhan
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Rui Tang Liu
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Yun Fei Li
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Rui Long Sun
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| | - Yong Zheng Tian
- The 940th Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Lanzhou, China
| |
Collapse
|
3
|
Ghosal K, Bhattacharyya SK, Mishra V, Zuilhof H. Click Chemistry for Biofunctional Polymers: From Observing to Steering Cell Behavior. Chem Rev 2024; 124:13216-13300. [PMID: 39621547 PMCID: PMC11638903 DOI: 10.1021/acs.chemrev.4c00251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/05/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Click chemistry has become one of the most powerful construction tools in the field of organic chemistry, materials science, and polymer science, as it offers hassle-free platforms for the high-yielding synthesis of novel materials and easy functionalization strategies. The absence of harsh reaction conditions or complicated workup procedures allowed the rapid development of novel biofunctional polymeric materials, such as biopolymers, tailor-made polymer surfaces, stimulus-responsive polymers, etc. In this review, we discuss various types of click reactions─including azide-alkyne cycloadditions, nucleophilic and radical thiol click reactions, a range of cycloadditions (Diels-Alder, tetrazole, nitrile oxide, etc.), sulfur fluoride exchange (SuFEx) click reaction, and oxime-hydrazone click reactions─and their use for the formation and study of biofunctional polymers. Following that, we discuss state-of-the-art biological applications of "click"-biofunctionalized polymers, including both passive applications (e.g., biosensing and bioimaging) and "active" ones that aim to direct changes in biosystems, e.g., for drug delivery, antiviral action, and tissue engineering. In conclusion, we have outlined future directions and existing challenges of click-based polymers for medicinal chemistry and clinical applications.
Collapse
Affiliation(s)
- Krishanu Ghosal
- Research
& Development Laboratory, Shalimar Paints
Limited, Nashik, Maharashtra 422403, India
| | | | - Vivek Mishra
- Amity
Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh 201313, India
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, Netherlands
- College
of Biological and Chemical Sciences, Jiaxing
University, Jiaxing 314001, China
| |
Collapse
|
4
|
Jamadi Khiabani M, Soroushzadeh S, Talebi A, Samanta A. Shear-Induced Cycloreversion Leading to Shear-Thinning and Autonomous Self-Healing in an Injectable, Shape-Holding Collagen Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2024; 16. [PMID: 39377244 PMCID: PMC11492320 DOI: 10.1021/acsami.4c08066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/09/2024]
Abstract
In vivo injectable extracellular matrix (ECM) derived hydrogels that are suitable for cell encapsulation have always been the holy grail in tissue engineering. Nevertheless, these hydrogels still fall short today of meeting three crucial criteria: (a) flexibility on the injectability time window, (b) autonomous self-healing of the injected hydrogel, and (c) shape-retention under aqueous conditions. Here we report the development of a collagen-based injectable hydrogel, cross-linked by cycloaddition reaction between furan and maleimide groups, that (a) is injectable up to 48 h after preparation, (b) can undergo complete autonomous self-healing after injection, (c) can retain its shape and size over several years when stored in the buffer, (d) can be degraded within hours when treated with collagenase, (e) is biocompatible as demonstrated by in vitro cell-culture, and (f) is completely resorbable in vivo when implanted subcutaneously in rats without causing any inflammation.
Collapse
Affiliation(s)
- Mahsa Jamadi Khiabani
- Macromolecular
Chemistry, Department of Chemistry—Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden
| | - Sareh Soroushzadeh
- Department
of Pathology, School of Medicine, Isfahan
University of Medical Sciences, Isfahan 8174673461, Iran
| | - Ardeshir Talebi
- Department
of Pathology, School of Medicine, Isfahan
University of Medical Sciences, Isfahan 8174673461, Iran
| | - Ayan Samanta
- Macromolecular
Chemistry, Department of Chemistry—Ångström Laboratory, Uppsala University, Box 538, 751 21 Uppsala, Sweden
| |
Collapse
|
5
|
Wang X, Wei P, Hu C, Zeng H, Fan Z. 3D printing of Rg3-loaded hydrogel scaffolds: anti-inflammatory and scar-formation related collagen inhibitory effects for scar-free wound healing. J Mater Chem B 2024; 12:4673-4685. [PMID: 38647236 DOI: 10.1039/d3tb02941g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
During the process of wound healing, the stimulation of inflammatory factors often leads to abnormal proliferation of blood vessels and collagen, ultimately resulting in scar formation. To address this challenge, we fabricate a novel dermal extracellular matrix (DECM) hydrogel scaffold loaded with ginsenoside Rg3 (Rg3) using 3D printing technology. Mesoporous silica nanoparticles (MSNs) are introduced into the system to encase the Rg3 to control its release rate and enhance its bioavailability. We systematically evaluate the biological, physicochemical, and wound healing properties of this scaffold. In vitro studies demonstrate that the hydrogel exhibits excellent biocompatibility and solid-like rheological properties, ensuring its successful printing. In vivo studies reveal that the composite hydrogel scaffolds effectively accelerate wound healing and achieve scar-free wound healing within three weeks. Histological and immunohistochemical (IHC) analyses show that the composite hydrogel scaffolds reduce the inflammatory response and inhibit excessive collagen accumulation. These combined effects underscore the potential of our approach in effectively inhibiting scar formation.
Collapse
Affiliation(s)
- Xusen Wang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Pengyu Wei
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Cewen Hu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Huajing Zeng
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
6
|
Zanrè E, Dalla Valle E, D’Angelo E, Sensi F, Agostini M, Cimetta E. Recent Advancements in Hydrogel Biomedical Research in Italy. Gels 2024; 10:248. [PMID: 38667667 PMCID: PMC11048829 DOI: 10.3390/gels10040248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Hydrogels have emerged as versatile biomaterials with remarkable applications in biomedicine and tissue engineering. Here, we present an overview of recent and ongoing research in Italy, focusing on extracellular matrix-derived, natural, and synthetic hydrogels specifically applied to biomedicine and tissue engineering. The analyzed studies highlight the versatile nature and wide range of applicability of hydrogel-based studies. Attention is also given to the integration of hydrogels within bioreactor systems, specialized devices used in biological studies to culture cells under controlled conditions, enhancing their potential for regenerative medicine, drug discovery, and drug delivery. Despite the abundance of literature on this subject, a comprehensive overview of Italian contributions to the field of hydrogels-based biomedical research is still missing and is thus our focus for this review. Consolidating a diverse range of studies, the Italian scientific community presents a complete landscape for hydrogel use, shaping the future directions of biomaterials research. This review aspires to serve as a guide and map for Italian researchers interested in the development and use of hydrogels in biomedicine.
Collapse
Affiliation(s)
- Eleonora Zanrè
- Department of Industrial Engineering (DII), University of Padova, 35131 Padova, Italy; (E.Z.); (E.D.V.)
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127 Padova, Italy; (E.D.); (F.S.); (M.A.)
| | - Eva Dalla Valle
- Department of Industrial Engineering (DII), University of Padova, 35131 Padova, Italy; (E.Z.); (E.D.V.)
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127 Padova, Italy; (E.D.); (F.S.); (M.A.)
| | - Edoardo D’Angelo
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127 Padova, Italy; (E.D.); (F.S.); (M.A.)
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
| | - Francesca Sensi
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127 Padova, Italy; (E.D.); (F.S.); (M.A.)
| | - Marco Agostini
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127 Padova, Italy; (E.D.); (F.S.); (M.A.)
- General Surgery 3, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padova, 35131 Padova, Italy; (E.Z.); (E.D.V.)
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127 Padova, Italy; (E.D.); (F.S.); (M.A.)
| |
Collapse
|
7
|
Porpiglia NM, Tagliaro I, Pellegrini B, Alessi A, Tagliaro F, Russo L, Cadamuro F, Musile G, Antonini C, Bertini S. Chitosan derivatives as dynamic coatings for transferrin glycoform separation in capillary electrophoresis. Int J Biol Macromol 2024; 254:127888. [PMID: 37926319 DOI: 10.1016/j.ijbiomac.2023.127888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/28/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
Chitosan and its derivatives are interesting biopolymers for different field of analytical chemistry, especially in separation techniques. The present study was aimed at testing chitosan water soluble derivatives as dynamic coating agents for application to capillary electrophoresis. In particular, chitosan was modified following three different chemical reactions (nucleophilic substitution, reductive amination, and condensation) to introduce differences in charge and steric hindrance, and to assess the effect of these physico-chemical properties in capillary electrophoresis. The effects were tested on the capillary electrophoretic separation of the glycoforms of human transferrin, an important iron-transporting serum protein, one of which, namely disialo-transferrin (CDT), is a biomarker of alcohol abuse. Chitosan derivatives were characterized by using NMR and 1H NMR, HP-SEC-TDA, DLS, and rheology. The use of these compounds as dynamic coatings in the electrolyte running buffer in capillary electrophoresis was tested assessing the peak resolution of the main glycoforms of human transferrin and particularly of disialo-transferrin. The results showed distinct changes of the peak resolution produced by the different derivatives. The best results in terms of peak resolution were achieved using polyethylene glycol (PEG)-modified chitosan, which, in comparison to a reference analytical approach, provided an almost baseline resolution of disialo-transferrin from the adjacent peaks.
Collapse
Affiliation(s)
- Nadia Maria Porpiglia
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Piazzale L. A. Scuro, 10, 37134 Verona, VR, Italy.
| | - Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy.
| | - Beatrice Pellegrini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy; Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Carbohydrate Science Department, 20133 Milan, Italy.
| | - Arianna Alessi
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy; Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Carbohydrate Science Department, 20133 Milan, Italy.
| | - Franco Tagliaro
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Piazzale L. A. Scuro, 10, 37134 Verona, VR, Italy; Institute Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 2-4 Bolshaya Pirogovskaya Street, 119991 Moscow, Russia.
| | - Laura Russo
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy; CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, H92 W2TY, Ireland.
| | - Francesca Cadamuro
- School of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro (MB), Italy.
| | - Giacomo Musile
- Unit of Forensic Medicine, Department of Diagnostics and Public Health, University of Verona, Piazzale L. A. Scuro, 10, 37134 Verona, VR, Italy.
| | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy.
| | - Sabrina Bertini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Carbohydrate Science Department, 20133 Milan, Italy.
| |
Collapse
|
8
|
Koumentakou I, Noordam MJ, Michopoulou A, Terzopoulou Z, Bikiaris DN. 3D-Printed Chitosan-Based Hydrogels Loaded with Levofloxacin for Tissue Engineering Applications. Biomacromolecules 2023; 24:4019-4032. [PMID: 37604780 DOI: 10.1021/acs.biomac.3c00362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Herein, we demonstrate the feasibility of a three-dimensional printed chitosan (CS)-poly(vinyl alcohol) (PVA)-gelatin (Gel) hydrogel incorporating the antimicrobial drug levofloxacin (LEV) as a potential tissue engineering scaffold. Hydrogels were prepared by physically cross-linking the polymers, and the printability of the prepared hydrogels was determined. The hydrogel with 3% w/v of CS, 3% w/v of PVA, and 2% w/v of Gel presented the best printability, producing smooth and uniform scaffolds. The integrity of 3D-printed scaffolds was improved via a neutralization process since after testing three different neutralized agents, i.e., NH3 vapors, EtOH/NaOH, and KOH solutions. It was proved that the CS/PVA/Gel hydrogel was formed by hydrogen bonds and remained amorphous in the 3D-printed structures. Drug loading studies confirmed the successful incorporation of LEV, and its in vitro release continued for 48 h. The cytotoxicity/cytocompatibility tests showed that all prepared scaffolds were cytocompatible.
Collapse
Affiliation(s)
- Ioanna Koumentakou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Michiel Jan Noordam
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Anna Michopoulou
- Biohellenika Biotechnology Company, Thessaloniki 57001, Greece
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Zoi Terzopoulou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| |
Collapse
|
9
|
Egorov AR, Kirichuk AA, Rubanik VV, Rubanik VV, Tskhovrebov AG, Kritchenkov AS. Chitosan and Its Derivatives: Preparation and Antibacterial Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6076. [PMID: 37763353 PMCID: PMC10532898 DOI: 10.3390/ma16186076] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
This comprehensive review illuminates the various methods of chitosan extraction, its antibacterial properties, and its multifarious applications in diverse sectors. We delve into chemical, physical, biological, hybrid, and green extraction techniques, each of which presents unique advantages and disadvantages. The choice of method is dictated by multiple variables, including the desired properties of chitosan, resource availability, cost, and environmental footprint. We explore the intricate relationship between chitosan's antibacterial activity and its properties, such as cationic density, molecular weight, water solubility, and pH. Furthermore, we spotlight the burgeoning applications of chitosan-based materials like films, nanoparticles, nonwoven materials, and hydrogels across the food, biomedical, and agricultural sectors. The review concludes by highlighting the promising future of chitosan, underpinned by technological advancements and growing sustainability consciousness. However, the critical challenges of optimizing chitosan's production for sustainability and efficiency remain to be tackled.
Collapse
Affiliation(s)
- Anton R. Egorov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Anatoly A. Kirichuk
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Vasili V. Rubanik
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| | - Alexander G. Tskhovrebov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
| | - Andreii S. Kritchenkov
- Department of Human Ecology and Biolementology, RUDN University, 6 Miklukho-Maklaya St., 117198 Moscow, Russia; (A.R.E.); (A.A.K.); (A.G.T.)
- Institute of Technical Acoustics NAS of Belarus, Ludnikova Prosp. 13, 210009 Vitebsk, Belarus; (V.V.R.); (V.V.R.J.)
| |
Collapse
|
10
|
Zhang M, An H, Zhang F, Jiang H, Wan T, Wen Y, Han N, Zhang P. Prospects of Using Chitosan-Based Biopolymers in the Treatment of Peripheral Nerve Injuries. Int J Mol Sci 2023; 24:12956. [PMID: 37629137 PMCID: PMC10454829 DOI: 10.3390/ijms241612956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Peripheral nerve injuries are common neurological disorders, and the available treatment options, such as conservative management and surgical repair, often yield limited results. However, there is growing interest in the potential of using chitosan-based biopolymers as a novel therapeutic approach to treating these injuries. Chitosan-based biopolymers possess unique characteristics, including biocompatibility, biodegradability, and the ability to stimulate cell proliferation, making them highly suitable for repairing nerve defects and promoting nerve regeneration and functional recovery. Furthermore, these biopolymers can be utilized in drug delivery systems to control the release of therapeutic agents and facilitate the growth of nerve cells. This comprehensive review focuses on the latest advancements in utilizing chitosan-based biopolymers for peripheral nerve regeneration. By harnessing the potential of chitosan-based biopolymers, we can pave the way for innovative treatment strategies that significantly improve the outcomes of peripheral nerve injury repair, offering renewed hope and better prospects for patients in need.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China; (H.A.)
| | - Fengshi Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Haoran Jiang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China; (H.A.)
| | - Na Han
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| | - Peixun Zhang
- Department of Orthopedics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (M.Z.)
- Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Beijing 100044, China
| |
Collapse
|
11
|
Agarwal T, Chiesa I, Costantini M, Lopamarda A, Tirelli MC, Borra OP, Varshapally SVS, Kumar YAV, Koteswara Reddy G, De Maria C, Zhang LG, Maiti TK. Chitosan and its derivatives in 3D/4D (bio) printing for tissue engineering and drug delivery applications. Int J Biol Macromol 2023; 246:125669. [PMID: 37406901 DOI: 10.1016/j.ijbiomac.2023.125669] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Tissue engineering research has undergone to a revolutionary improvement, thanks to technological advancements, such as the introduction of bioprinting technologies. The ability to develop suitable customized biomaterial inks/bioinks, with excellent printability and ability to promote cell proliferation and function, has a deep impact on such improvements. In this context, printing inks based on chitosan and its derivatives have been instrumental. Thus, the current review aims at providing a comprehensive overview on chitosan-based materials as suitable inks for 3D/4D (bio)printing and their applicability in creating advanced drug delivery platforms and tissue engineered constructs. Furthermore, relevant strategies to improve the mechanical and biological performances of this biomaterial are also highlighted.
Collapse
Affiliation(s)
- Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India.
| | - Irene Chiesa
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland.
| | - Anna Lopamarda
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
| | | | - Om Prakash Borra
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | | | | | - G Koteswara Reddy
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP, India
| | - Carmelo De Maria
- Research Center "E. Piaggio", Department of Information Engineering, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy.
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA; Department of Electrical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA; Department of Medicine, The George Washington University, Washington, DC 20052, USA
| | - Tapas Kumar Maiti
- Department of Biotechnology, Indian Institute of technology Kharagpur, West Bengal 721302, India
| |
Collapse
|
12
|
Mohite P, Rahayu P, Munde S, Ade N, Chidrawar VR, Singh S, Jayeoye TJ, Prajapati BG, Bhattacharya S, Patel RJ. Chitosan-Based Hydrogel in the Management of Dermal Infections: A Review. Gels 2023; 9:594. [PMID: 37504473 PMCID: PMC10379151 DOI: 10.3390/gels9070594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
The main objective of this review is to provide a comprehensive overview of the current evidence regarding the use of chitosan-based hydrogels to manage skin infections. Chitosan, a naturally occurring polysaccharide derived from chitin, possesses inherent antimicrobial properties, making it a promising candidate for treating various dermal infections. This review follows a systematic approach to analyze relevant studies that have investigated the effectiveness of chitosan-based hydrogels in the context of dermal infections. By examining the available evidence, this review aims to evaluate these hydrogels' overall efficacy, safety, and potential applications for managing dermal infections. This review's primary focus is to gather and analyze data from different recent studies about chitosan-based hydrogels combating dermal infections; this includes assessing their ability to inhibit the growth of microorganisms and reduce infection-related symptoms. Furthermore, this review also considers the safety profile of chitosan-based hydrogels, examining any potential adverse effects associated with their use. This evaluation is crucial to ensure that these hydrogels can be safely utilized in the management of dermal infections without causing harm to patients. The review aims to provide healthcare professionals and researchers with a comprehensive understanding of the current evidence regarding the use of chitosan-based hydrogels for dermal infection management. The findings from this review can contribute to informed decision-making and the development of potential treatment strategies in this field.
Collapse
Affiliation(s)
- Popat Mohite
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Pudji Rahayu
- Department of Pharmacy of Tanjung Karang State Health Polytechnic, Soekarno-Hatta, Bandar Lampung 35145, Lampung, Indonesia
| | - Shubham Munde
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Nitin Ade
- Department of Pharmaceutical Quality Assurance, A.E.T.'s St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Vijay R Chidrawar
- SVKM's NMIMS School of Pharmacy and Technology Management, Jadcharla 509301, Telangana, India
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Titilope J Jayeoye
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana 384012, Gujarat, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS Deemed-to-be-University, Shirpur 425405, Maharashtra, India
| | - Ravish J Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Anand 388421, Gujarat, India
| |
Collapse
|
13
|
Asim S, Tabish TA, Liaqat U, Ozbolat IT, Rizwan M. Advances in Gelatin Bioinks to Optimize Bioprinted Cell Functions. Adv Healthc Mater 2023; 12:e2203148. [PMID: 36802199 PMCID: PMC10330013 DOI: 10.1002/adhm.202203148] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/31/2023] [Indexed: 02/21/2023]
Abstract
Gelatin is a widely utilized bioprinting biomaterial due to its cell-adhesive and enzymatically cleavable properties, which improve cell adhesion and growth. Gelatin is often covalently cross-linked to stabilize bioprinted structures, yet the covalently cross-linked matrix is unable to recapitulate the dynamic microenvironment of the natural extracellular matrix (ECM), thereby limiting the functions of bioprinted cells. To some extent, a double network bioink can provide a more ECM-mimetic, bioprinted niche for cell growth. More recently, gelatin matrices are being designed using reversible cross-linking methods that can emulate the dynamic mechanical properties of the ECM. This review analyzes the progress in developing gelatin bioink formulations for 3D cell culture, and critically analyzes the bioprinting and cross-linking techniques, with a focus on strategies to optimize the functions of bioprinted cells. This review discusses new cross-linking chemistries that recapitulate the viscoelastic, stress-relaxing microenvironment of the ECM, and enable advanced cell functions, yet are less explored in engineering the gelatin bioink. Finally, this work presents the perspective on the areas of future research and argues that the next generation of gelatin bioinks should be designed by considering cell-matrix interactions, and bioprinted constructs should be validated against currently established 3D cell culture standards to achieve improved therapeutic outcomes.
Collapse
Affiliation(s)
- Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
| | - Tanveer A. Tabish
- Cardiovascular Division, Radcliff Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Usman Liaqat
- Department of Materials Engineering, School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Pakistan
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics, Penn State, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State, Hershey, PA 16802, USA
- Department of Medical Oncology, Cukurova University, Adana 01330, Turkey
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, 49931 USA
- Health Research Institute, Michigan Technological University, Houghton, MI, 49931 USA
| |
Collapse
|
14
|
Loi G, Stucchi G, Scocozza F, Cansolino L, Cadamuro F, Delgrosso E, Riva F, Ferrari C, Russo L, Conti M. Characterization of a Bioink Combining Extracellular Matrix-like Hydrogel with Osteosarcoma Cells: Preliminary Results. Gels 2023; 9:gels9020129. [PMID: 36826299 PMCID: PMC9957231 DOI: 10.3390/gels9020129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Three-dimensional (3D) bioprinting allows the production of artificial 3D cellular microenvironments thanks to the controlled spatial deposition of bioinks. Proper bioink characterization is required to achieve the essential characteristics of printability and biocompatibility for 3D bioprinting. In this work, a protocol to standardize the experimental characterization of a new bioink is proposed. A functionalized hydrogel based on gelatin and chitosan was used. The protocol was divided into three steps: pre-printing, 3D bioprinting, and post-printing. For the pre-printing step, the hydrogel formulation and its repeatability were evaluated. For the 3D-bioprinting step, the hydrogel-printability performance was assessed through qualitative and quantitative tests. Finally, for the post-printing step, the hydrogel biocompatibility was investigated using UMR-106 cells. The hydrogel was suitable for printing grids with good resolution from 4 h after the cross-linker addition. To guarantee a constant printing pressure, it was necessary to set the extruder to 37 °C. Furthermore, the hydrogel was shown to be a valid biomaterial for the UMR-106 cells' growth. However, fragmentation of the constructs appeared after 14 days, probably due to the negative osteosarcoma-cell interference. The protocol that we describe here denotes a strong approach to bioink characterization to improve standardization for future biomaterial screening and development.
Collapse
Affiliation(s)
- Giada Loi
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100 Pavia, Italy
- Correspondence:
| | - Gaia Stucchi
- Department of Clinical Surgical Sciences, University of Pavia, Via Adolfo Ferrata 5, 27100 Pavia, Italy
| | - Franca Scocozza
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100 Pavia, Italy
| | - Laura Cansolino
- Department of Clinical Surgical Sciences, University of Pavia, Via Adolfo Ferrata 5, 27100 Pavia, Italy
| | - Francesca Cadamuro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Elena Delgrosso
- Department of Clinical Surgical Sciences, University of Pavia, Via Adolfo Ferrata 5, 27100 Pavia, Italy
| | - Federica Riva
- Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Cinzia Ferrari
- Department of Clinical Surgical Sciences, University of Pavia, Via Adolfo Ferrata 5, 27100 Pavia, Italy
- Animal Welfare and Radiobiology Service Center, University of Pavia, Via Adolfo Ferrata 5, 27100 Pavia, Italy
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, H92 W2TY Galway, Ireland
| | - Michele Conti
- Department of Civil Engineering and Architecture, University of Pavia, Via Adolfo Ferrata 3, 27100 Pavia, Italy
| |
Collapse
|
15
|
Mirjalili F, Mahmoodi M. Controlled release of protein from gelatin/chitosan hydrogel containing platelet-rich fibrin encapsulated in chitosan nanoparticles for accelerated wound healing in an animal model. Int J Biol Macromol 2023; 225:588-604. [PMID: 36403766 DOI: 10.1016/j.ijbiomac.2022.11.117] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
The physiological healing process is disrupted in many cases using the current wound healing procedures, resulting in delayed wound healing. Hydrogel wound dressings provide a moist environment to enhance granulation tissue and epithelium formation in the wound area. However, exudate accumulation, bacterial proliferation, and reduced levels of growth factors are difficulties of hydrogel dressings. Here, we loaded platelet-rich fibrin-chitosan (CH-PRF) nanoparticles into the gelatin-chitosan hydrogel (Gel-CH/CH-PRF) by solvent mixing method. Our goal was to evaluate the characteristics of hydrogel dressings, sustained release of proteins from the hydrogel dressing containing PRF, and reduction in the risk of infection by the bacteria in the wound area. The Gel-CH/CH-PRF hydrogel showed excellent swelling behavior, good porosity, proper specific surface area, high absorption of wound exudates, and proper vapor permeability rate (2023 g/m 2.day), which provided requisite moisture without dehydration around the wound area. Thermal behavior and the protein release from the hydrogels were investigated using simultaneous thermal analysis and the Bradford test, respectively. Most importantly, an excellent ability to control the release of proteins from the hydrogel dressings was observed. The high antimicrobial activity of hydrogel was confirmed using Gram-positive and Gram-negative bacteria. Due to the presence of chitosan in the hydrogels, the lowest scavenging capacity-50 value (5.82 μgmL-1) and the highest DPPH radical scavenging activity (83 %) at a concentration 25 μgmL-1 for Gel-CH/CH-PRF hydrogel were observed. Also, the hydrogels revealed excellent cell viability and proliferation. The wound healing process was studied using an in vivo model of the full-thickness wound. The wound closure was significantly higher on Gel-CH/CH-PRF hydrogel compared to the control group, indicating the highest epidermis thickness, and enhancing the formation of new granulation tissue. Our findings demonstrated that Gel-CH/CH-PRF hydrogel can provide an ideal wound dressing for accelerated wound healing.
Collapse
Affiliation(s)
- Fatemeh Mirjalili
- Department of Material Engineering, Maybod Branch, Islamic Azad University, Maybod, Iran
| | - Mahboobeh Mahmoodi
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd, 8915813135, Iran; Department of Bioengineering, University of California, Los Angeles, CA, United States of America.
| |
Collapse
|
16
|
Eftekhari-Pournigjeh F, Saeed M, Rajabi S, Tamimi M, Pezeshki-Modaress M. Three-dimensional biomimetic reinforced chitosan/gelatin composite scaffolds containing PLA nano/microfibers for soft tissue engineering application. Int J Biol Macromol 2023; 225:1028-1037. [PMID: 36414076 DOI: 10.1016/j.ijbiomac.2022.11.165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
In the current study, we successfully prepared chitosan/gelatin composite scaffolds reinforced by centrifugally spun polylactic acid (PLA) chopped nano/microfibers (PLA-CFs). Herein, different amounts of PLA-CFs (0 %, 1 %, 2 %, 3 %, and 4 % w/v) dispersed in chitosan/gelatin solution were used. Morphological characterization of prepared scaffolds revealed that at the initial stage of adding PLA-CFs, the chopped fibers were localized at the wall of the pores; however, as the fiber load increased, aggregations of chopped-fibers could be seen. Also, mechanical evaluation of scaffolds in terms of compression and tensile mode showed that samples reinforced with 2 % PLA-CFs had enhanced mechanical properties. Indeed, its tensile strength increased from 123.8 to 247.2 kPa for dry and 18.9 to 48.6 kPa for wet conditions. Furthermore, the tensile modulus associated with both conditions increased from 2.99 MPa and 44.5 kPa to 6.43 MPa and 158.4 kPa, respectively. The results of cell culture studies also confirmed that the prepared composite scaffold exhibited appropriate biocompatibility, cell proliferation and migration. The cell infiltration study of the samples revealed that scaffolds reinforced with 2 % PLA-CFs had significantly better cell penetration and distribution compared with the control ones on both days (7 and 14).
Collapse
Affiliation(s)
- Fatemeh Eftekhari-Pournigjeh
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran; Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Mahdi Saeed
- Department of Biomedical Engineering, Islamic Azad University, Central Tehran Branch, Tehran, Iran; Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, Tehran, Iran.
| | - Sarah Rajabi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Tamimi
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| | - Mohamad Pezeshki-Modaress
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Barreto MEV, Medeiros RP, Shearer A, Fook MVL, Montazerian M, Mauro JC. Gelatin and Bioactive Glass Composites for Tissue Engineering: A Review. J Funct Biomater 2022; 14:23. [PMID: 36662070 PMCID: PMC9861949 DOI: 10.3390/jfb14010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Nano-/micron-sized bioactive glass (BG) particles are attractive candidates for both soft and hard tissue engineering. They can chemically bond to the host tissues, enhance new tissue formation, activate cell proliferation, stimulate the genetic expression of proteins, and trigger unique anti-bacterial, anti-inflammatory, and anti-cancer functionalities. Recently, composites based on biopolymers and BG particles have been developed with various state-of-the-art techniques for tissue engineering. Gelatin, a semi-synthetic biopolymer, has attracted the attention of researchers because it is derived from the most abundant protein in the body, viz., collagen. It is a polymer that can be dissolved in water and processed to acquire different configurations, such as hydrogels, fibers, films, and scaffolds. Searching "bioactive glass gelatin" in the tile on Scopus renders 80 highly relevant articles published in the last ~10 years, which signifies the importance of such composites. First, this review addresses the basic concepts of soft and hard tissue engineering, including the healing mechanisms and limitations ahead. Then, current knowledge on gelatin/BG composites including composition, processing and properties is summarized and discussed both for soft and hard tissue applications. This review explores physical, chemical and mechanical features and ion-release effects of such composites concerning osteogenic and angiogenic responses in vivo and in vitro. Additionally, recent developments of BG/gelatin composites using 3D/4D printing for tissue engineering are presented. Finally, the perspectives and current challenges in developing desirable composites for the regeneration of different tissues are outlined.
Collapse
Affiliation(s)
- Maria E. V. Barreto
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Rebeca P. Medeiros
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Adam Shearer
- Department of Materials Science and Engineering, The Pennsylvania State University, State College, PA 16802, USA
| | - Marcus V. L. Fook
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Maziar Montazerian
- Northeastern Laboratory for Evaluation and Development of Biomaterials (CERTBIO), Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - John C. Mauro
- Department of Materials Science and Engineering, The Pennsylvania State University, State College, PA 16802, USA
| |
Collapse
|
18
|
Kędzierska M, Bańkosz M, Drabczyk A, Kudłacik-Kramarczyk S, Jamroży M, Potemski P. Silver Nanoparticles and Glycyrrhiza glabra (Licorice) Root Extract as Modifying Agents of Hydrogels Designed as Innovative Dressings. Int J Mol Sci 2022; 24:ijms24010217. [PMID: 36613661 PMCID: PMC9820111 DOI: 10.3390/ijms24010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
The interest in the application of plant extracts as modifiers of polymers intended for biomedical purposes is constantly increasing. The therapeutical properties of the licorice root, including its anti-inflammatory and antibacterial activity, make this plant particularly promising. The same applies to silver nanoparticles showing antibacterial properties. Thus the main purpose of the research was to design hydrogel dressings containing both licorice root extract and nanosilver so as to obtain a system promoting wound regeneration processes by preventing infection and inflammation within the wound. The first step included the preparation of the plant extract via the solid-liquid extraction using the Soxhlet extractor and the synthesis of silver nanoparticles by the chemical reduction of silver ions using a sodium borohydride as a reducing agent. Subsequently, hydrogels were synthesized via photopolymerization and subjected to studies aiming at characterizing their sorption properties, surface morphology via scanning electron microscopy, and their impact on simulated physiological liquids supported by defining these liquids' influence on hydrogels' structures by FT-IR spectroscopy. Next, the tensile strength of hydrogels and their percentage elongation were determined. Performed studies also allowed for determining the hydrogels' wettability and free surface energies. Finally, the cytotoxicity of hydrogels towards L929 murine fibroblasts via the MTT reduction assay was also verified. It was demonstrated that developed materials showed stability in simulated physiological liquids. Moreover, hydrogels were characterized by high elasticity (percentage elongation within the range of 24-29%), and their surfaces were hydrophilic (wetting angles below 90°). Hydrogels containing both licorice extract and nanosilver showed smooth and homogeneous surfaces. Importantly, cytotoxic properties towards L929 murine fibroblasts were excluded; thus, developed materials seem to have great potential for application as innovative dressings.
Collapse
Affiliation(s)
- Magdalena Kędzierska
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 93-513 Lodz, Poland
| | - Magdalena Bańkosz
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Anna Drabczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
- Correspondence: (A.D.); (M.J.)
| | - Sonia Kudłacik-Kramarczyk
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Mateusz Jamroży
- Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
- Correspondence: (A.D.); (M.J.)
| | - Piotr Potemski
- Department of Chemotherapy, Medical University of Lodz, Copernicus Memorial Hospital of Lodz, 93-513 Lodz, Poland
| |
Collapse
|
19
|
Mortier C, Costa D, Oliveira M, Haugen H, Lyngstadaas S, Blaker J, Mano J. Advanced hydrogels based on natural macromolecules: chemical routes to achieve mechanical versatility. MATERIALS TODAY CHEMISTRY 2022; 26:101222. [DOI: 10.1016/j.mtchem.2022.101222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
20
|
Development of Chitosan/Gelatin-Based Hydrogels Incorporated with Albumin Particles. Int J Mol Sci 2022; 23:ijms232214136. [PMID: 36430612 PMCID: PMC9694906 DOI: 10.3390/ijms232214136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
The research subject of this paper are natural polymer-based hydrogels modified with albumin particles. The proteins were obtained via the salt-induced precipitation method, and next characterized using dynamic light scattering (DLS), UV-Vis spectroscopy and FT-IR spectroscopy. The most favorable composition showing monodispersity and particles with a size lower than 40 nm was selected for modification of hydrogels. Such systems were obtained via the photopolymerization performed under the influence of UV radiation using diacrylate poly(ethylene glycol) as a crosslinking agent and 2-hydroxy-2-methylpropiophenone as a photoinitiator. Next, the hydrogels' swelling ability, mechanical properties, wettability and surface morphology were characterized. Moreover, FT-IR spectroscopy, incubation studies in simulated physiological liquids, pro-inflammatory activity analysis and MTT reduction assay with L929 murine fibroblasts were performed. The release profiles of proteins from hydrogels were also verified. Materials modified with proteins showed higher swelling ability, increased flexibility even by 50% and increased surface hydrophilicity. Hydrogels' contact angles were within the range 62-69° while the tensile strength of albumin-containing hydrogels was approx. 0.11 MPa. Furthermore, the possibility of the effective release of protein particles from hydrogels in acidic environment (approximately 70%) was determined. Incubation studies showed hydrogels' stability and lack of their degradation in tested media. The viability of fibroblasts was 89.54% for unmodified hydrogel, and approx. 92.73% for albumin-modified hydrogel, and such an increase indicated the positive impact of the albumin on murine fibroblast proliferation.
Collapse
|
21
|
Taaca KLM, Prieto EI, Vasquez MR. Current Trends in Biomedical Hydrogels: From Traditional Crosslinking to Plasma-Assisted Synthesis. Polymers (Basel) 2022; 14:2560. [PMID: 35808607 PMCID: PMC9268762 DOI: 10.3390/polym14132560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
The use of materials to restore or replace the functions of damaged body parts has been proven historically. Any material can be considered as a biomaterial as long as it performs its biological function and does not cause adverse effects to the host. With the increasing demands for biofunctionality, biomaterials nowadays may not only encompass inertness but also specialized utility towards the target biological application. A hydrogel is a biomaterial with a 3D network made of hydrophilic polymers. It is regarded as one of the earliest biomaterials developed for human use. The preparation of hydrogel is often attributed to the polymerization of monomers or crosslinking of hydrophilic polymers to achieve the desired ability to hold large amounts of aqueous solvents and biological fluids. The generation of hydrogels, however, is shifting towards developing hydrogels through the aid of enabling technologies. This review provides the evolution of hydrogels and the different approaches considered for hydrogel preparation. Further, this review presents the plasma process as an enabling technology for tailoring hydrogel properties. The mechanism of plasma-assisted treatment during hydrogel synthesis and the current use of the plasma-treated hydrogels are also discussed.
Collapse
Affiliation(s)
- Kathrina Lois M. Taaca
- Department of Mining, Metallurgical and Materials Engineering, College of Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines
- Materials Science and Engineering Program, College of Science, University of the Philippines Diliman, Quezon City 1101, Philippines
| | - Eloise I. Prieto
- National Institute of Molecular Biology and Biotechnology, College of Science, National Science Complex, University of the Philippines, Diliman, Quezon City 1101, Philippines;
| | - Magdaleno R. Vasquez
- Department of Mining, Metallurgical and Materials Engineering, College of Engineering, University of the Philippines Diliman, Quezon City 1101, Philippines
| |
Collapse
|
22
|
Givinostat-Liposomes: Anti-Tumor Effect on 2D and 3D Glioblastoma Models and Pharmacokinetics. Cancers (Basel) 2022; 14:cancers14122978. [PMID: 35740641 PMCID: PMC9220922 DOI: 10.3390/cancers14122978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma is the most common and aggressive brain tumor, associated with poor prognosis and survival, representing a challenging medical issue for neurooncologists. Dysregulation of histone-modifying enzymes (HDACs) is commonly identified in many tumors and has been linked to cancer proliferation, changes in metabolism, and drug resistance. These findings led to the development of HDAC inhibitors, which are limited by their narrow therapeutic index. In this work, we provide the proof of concept for a delivery system that can improve the in vivo half-life and increase the brain delivery of Givinostat, a pan-HDAC inhibitor. Here, 150-nm-sized liposomes composed of cholesterol and sphingomyelin with or without surface decoration with mApoE peptide, inhibited human glioblastoma cell growth in 2D and 3D models by inducing a time- and dose-dependent reduction in cell viability, reduction in the receptors involved in cholesterol metabolism (from -25% to -75% of protein levels), and reduction in HDAC activity (-25% within 30 min). In addition, liposome-Givinostat formulations showed a 2.5-fold increase in the drug half-life in the bloodstream and a 6-fold increase in the amount of drug entering the brain in healthy mice, without any signs of overt toxicity. These features make liposomes loaded with Givinostat valuable as potential candidates for glioblastoma therapy.
Collapse
|
23
|
Teixeira MC, Lameirinhas NS, Carvalho JPF, Silvestre AJD, Vilela C, Freire CSR. A Guide to Polysaccharide-Based Hydrogel Bioinks for 3D Bioprinting Applications. Int J Mol Sci 2022; 23:6564. [PMID: 35743006 PMCID: PMC9223682 DOI: 10.3390/ijms23126564] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Three-dimensional (3D) bioprinting is an innovative technology in the biomedical field, allowing the fabrication of living constructs through an approach of layer-by-layer deposition of cell-laden inks, the so-called bioinks. An ideal bioink should possess proper mechanical, rheological, chemical, and biological characteristics to ensure high cell viability and the production of tissue constructs with dimensional stability and shape fidelity. Among the several types of bioinks, hydrogels are extremely appealing as they have many similarities with the extracellular matrix, providing a highly hydrated environment for cell proliferation and tunability in terms of mechanical and rheological properties. Hydrogels derived from natural polymers, and polysaccharides, in particular, are an excellent platform to mimic the extracellular matrix, given their low cytotoxicity, high hydrophilicity, and diversity of structures. In fact, polysaccharide-based hydrogels are trendy materials for 3D bioprinting since they are abundant and combine adequate physicochemical and biomimetic features for the development of novel bioinks. Thus, this review portrays the most relevant advances in polysaccharide-based hydrogel bioinks for 3D bioprinting, focusing on the last five years, with emphasis on their properties, advantages, and limitations, considering polysaccharide families classified according to their source, namely from seaweed, higher plants, microbial, and animal (particularly crustaceans) origin.
Collapse
Affiliation(s)
| | | | | | | | | | - Carmen S. R. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (M.C.T.); (N.S.L.); (J.P.F.C.); (A.J.D.S.); (C.V.)
| |
Collapse
|
24
|
Gupta A, Lee J, Ghosh T, Nguyen VQ, Dey A, Yoon B, Um W, Park JH. Polymeric Hydrogels for Controlled Drug Delivery to Treat Arthritis. Pharmaceutics 2022; 14:540. [PMID: 35335915 PMCID: PMC8948938 DOI: 10.3390/pharmaceutics14030540] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
Rheumatoid arthritis (RA) and osteoarthritis (OA) are disabling musculoskeletal disorders that affect joints and cartilage and may lead to bone degeneration. Conventional delivery of anti-arthritic agents is limited due to short intra-articular half-life and toxicities. Innovations in polymer chemistry have led to advancements in hydrogel technology, offering a versatile drug delivery platform exhibiting tissue-like properties with tunable drug loading and high residence time properties This review discusses the advantages and drawbacks of polymeric materials along with their modifications as well as their applications for fabricating hydrogels loaded with therapeutic agents (small molecule drugs, immunotherapeutic agents, and cells). Emphasis is given to the biological potentialities of hydrogel hybrid systems/micro-and nanotechnology-integrated hydrogels as promising tools. Applications for facile tuning of therapeutic drug loading, maintaining long-term release, and consequently improving therapeutic outcome and patient compliance in arthritis are detailed. This review also suggests the advantages, challenges, and future perspectives of hydrogels loaded with anti-arthritic agents with high therapeutic potential that may alter the landscape of currently available arthritis treatment modalities.
Collapse
Affiliation(s)
- Anuradha Gupta
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Jungmi Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Torsha Ghosh
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Van Quy Nguyen
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Anup Dey
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Been Yoon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Wooram Um
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Korea; (A.G.); (J.L.); (T.G.); (V.Q.N.); (A.D.); (B.Y.); (W.U.)
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
25
|
Castillo-Henríquez L, Sanabria-Espinoza P, Murillo-Castillo B, Montes de Oca-Vásquez G, Batista-Menezes D, Calvo-Guzmán B, Ramírez-Arguedas N, Vega-Baudrit J. Topical Chitosan-Based Thermo-Responsive Scaffold Provides Dexketoprofen Trometamol Controlled Release for 24 h Use. Pharmaceutics 2021; 13:2100. [PMID: 34959381 PMCID: PMC8708345 DOI: 10.3390/pharmaceutics13122100] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/13/2021] [Accepted: 11/26/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic and non-healing wounds demand personalized and more effective therapies for treating complications and improving patient compliance. Concerning that, this work aims to develop a suitable chitosan-based thermo-responsive scaffold to provide 24 h controlled release of Dexketoprofen trometamol (DKT). Three formulation prototypes were developed using chitosan (F1), 2:1 chitosan: PVA (F2), and 1:1 chitosan:gelatin (F3). Compatibility tests were done by DSC, TG, and FT-IR. SEM was employed to examine the morphology of the surface and inner layers from the scaffolds. In vitro release studies were performed at 32 °C and 38 °C, and the profiles were later adjusted to different kinetic models for the best formulation. F3 showed the most controlled release of DKT at 32 °C for 24 h (77.75 ± 2.72%) and reduced the burst release in the initial 6 h (40.18 ± 1.00%). The formulation exhibited a lower critical solution temperature (LCST) at 34.96 °C, and due to this phase transition, an increased release was observed at 38 °C (88.52 ± 2.07% at 12 h). The release profile for this formulation fits with Hixson-Crowell and Korsmeyer-Peppas kinetic models at both temperatures. Therefore, the developed scaffold for DKT delivery performs adequate controlled release, thereby; it can potentially overcome adherence issues and complications in wound healing applications.
Collapse
Affiliation(s)
- Luis Castillo-Henríquez
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica; (L.C.-H.); (G.M.d.O.-V.); (D.B.-M.)
- Laboratory of Physical Chemistry, Faculty of Pharmacy, University of Costa Rica, San José 11501-2060, Costa Rica; (P.S.-E.); (B.M.-C.); (N.R.-A.)
| | - Pablo Sanabria-Espinoza
- Laboratory of Physical Chemistry, Faculty of Pharmacy, University of Costa Rica, San José 11501-2060, Costa Rica; (P.S.-E.); (B.M.-C.); (N.R.-A.)
| | - Brayan Murillo-Castillo
- Laboratory of Physical Chemistry, Faculty of Pharmacy, University of Costa Rica, San José 11501-2060, Costa Rica; (P.S.-E.); (B.M.-C.); (N.R.-A.)
| | - Gabriela Montes de Oca-Vásquez
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica; (L.C.-H.); (G.M.d.O.-V.); (D.B.-M.)
| | - Diego Batista-Menezes
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica; (L.C.-H.); (G.M.d.O.-V.); (D.B.-M.)
| | | | - Nils Ramírez-Arguedas
- Laboratory of Physical Chemistry, Faculty of Pharmacy, University of Costa Rica, San José 11501-2060, Costa Rica; (P.S.-E.); (B.M.-C.); (N.R.-A.)
- Laboratory of Biopharmacy and Pharmacokinetics (LABIOFAR), Institute of Pharmaceutical Research (INIFAR), San José 11501-2060, Costa Rica
| | - José Vega-Baudrit
- National Laboratory of Nanotechnology (LANOTEC), National Center for High Technology (CeNAT), San José 1174-1200, Costa Rica; (L.C.-H.); (G.M.d.O.-V.); (D.B.-M.)
- Laboratory of Polymers (POLIUNA), Chemistry School, National University of Costa Rica, Heredia 86-3000, Costa Rica
| |
Collapse
|
26
|
Jiang J, You D, Wang Q, Gao G. Novel Fabrication and Biological Characterizations of AgNPs-decorated PEEK with gelatin functional nanocomposite to improve superior biomedical applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 33:590-604. [PMID: 34752202 DOI: 10.1080/09205063.2021.2004632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is an increasing interest in the use of polyether ether ketone (PEEK) for biomedical applications. Herein, we have developed silver nanoparticles (AgNPs) decorated PEEK with gelatin (GEL) nanocomposite hydrogel with enhanced antibacterial and biocompatibility through the blending method. The prepared highly porous PEEK/GEL/AgNPs nanocomposite hydrogel was characterized using SEM, TEM, FT-IR, and XRD analysis. The SEM image showed that AgNPs were encapsulated in the porous PEEK/GEL hydrogel; within this porous hydrogel, the AgNPs were homogeneously dispersed. Furthermore, the tensile strength, flexural strength, and Young's modulus were 99 ± 2.4 MPa, 154 ± 7.7 MPa, and 2.3 ± 0.1 GPa, respectively, when AgNPs were added to PEEK/GEL hydrogels exhibited the mechanical performances. The antibacterial assays demonstrate that the AgNPs-decorated PEEK/GEL nanocomposite hydrogel effectively inhibits the antibacterial effect against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria, respectively. Then MC3T3-E1 cells were demonstrated the AgNPs-decorated PEEK/GEL nanocomposite hydrogel was significantly enhanced cell viability and superior alkaline phosphatase (ALP) activity compared with PEEK/GEL hydrogel. This work opens a new avenue of the facile and effective modification of PEEK/GEL/AgNPs nanocomposite hydrogel has increased in vitro antibacterial and biocompatibility properties has great potential to be used as biomedical applications.
Collapse
Affiliation(s)
- Jianhui Jiang
- Fujian Key Laboratory of Oral Diseases, Fujian Provincial Engineering Research Center of Oral Biomaterials, Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, PR China
| | - Dongdong You
- Department of stomatology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, PR China
| | - Qingmei Wang
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, PR China
| | - Guanglin Gao
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, PR China
| |
Collapse
|
27
|
Stubbe B, Mignon A, Van Damme L, Claes K, Hoeksema H, Monstrey S, Van Vlierberghe S, Dubruel P. Photo-Crosslinked Gelatin-Based Hydrogel Films to Support Wound Healing. Macromol Biosci 2021; 21:e2100246. [PMID: 34555246 DOI: 10.1002/mabi.202100246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/30/2021] [Indexed: 11/11/2022]
Abstract
Gelatin is used widely in the biomedical field, among other for wound healing. Given its upper critical solution temperature, crosslinking is required. To this end, gelatin is chemically modified with different photo-crosslinkable moieties with low (32-34%) and high (63-65%) degree of substitution (DS): gelatin-methacrylamide (gel-MA) and gelatin-acrylamide (gel-AA) and gelatin-pentenamide (gel-PE). Next to the more researched gel-MA, it is especially interesting and novel to compare with other gelatin-derived compounds for the application of wound healing. An additional comparison is made with commercial dressings. The DS is directly proportional to the mechanical characteristics and inversely proportional to the swelling capacity. Gel-PE shows weaker mechanical properties (G' < 15 kPa) than gel-AA and gel-MA (G' < 39 and 45 kPa, respectively). All derivatives are predominantly elastic (recovery indices of 89-94%). Gel-AA and gel-MA show excellent biocompatibility, whereas gel-PE shows a significantly lower initial biocompatibility, evolving positively toward day 7. Overall, gel-MA shows to have the most potential to be applied as wound dressing. Future blending with gel-AA to improve the curing kinetics can lead to dressings able to compete with current commercial dressings.
Collapse
Affiliation(s)
- Birgit Stubbe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium
| | - Arn Mignon
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium.,Smart Polymeric Biomaterials, Surface and Interface Engineered Materials, Biomaterials and Tissue Engineering, Campus Group T, KU Leuven, Andreas Vesaliusstraat 13, Leuven, 3000, Belgium
| | - Lana Van Damme
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium.,Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Karel Claes
- Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium.,Ghent Burn Center, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Henk Hoeksema
- Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium.,Ghent Burn Center, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Stan Monstrey
- Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium.,Ghent Burn Center, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, 9000, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, Ghent, 9000, Belgium
| |
Collapse
|
28
|
Li DQ, Wang SY, Meng YJ, Guo ZW, Cheng MM, Li J. Fabrication of self-healing pectin/chitosan hybrid hydrogel via Diels-Alder reactions for drug delivery with high swelling property, pH-responsiveness, and cytocompatibility. Carbohydr Polym 2021; 268:118244. [PMID: 34127224 DOI: 10.1016/j.carbpol.2021.118244] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/27/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022]
Abstract
Self-healing hydrogels with pH-responsiveness could protect loaded drugs from being destroyed till it arrives to the target. The pectin-based hydrogel is a candidate due to the health benefit, anti-inflammation, antineoplastic activity, nontoxicity, and biospecific degradation, et al. However, the abundant existence of water-soluble branched heteropolysaccharide chains influenced its performance resulting in limitation of the potential. In the present study, we prepared a series of self-healing pectin/chitosan hydrogels via the Diels-Alder reaction. Moreover, pectin/chitosan composite hydrogel was prepared as a contrast. By comparison, it can be seen that the Diels-Alder reaction greatly improved the cross-linking density of hydrogels. The self-healing experiments showed excellent self-healing performance. In different swelling mediums, significant transformation in the swelling ratio was shown, indicating well-swelling property, pH- and thermo-responsiveness. The drug loading and release studies presented high loading efficiency and sustained release performance. The cytotoxicity assay that showed a high cell proliferation ratio manifested great cytocompatibility.
Collapse
Affiliation(s)
- De-Qiang Li
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China; Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People's Republic of China.
| | - Shu-Ya Wang
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China
| | - Yu-Jie Meng
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China
| | - Zong-Wei Guo
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, People's Republic of China
| | - Mei-Mei Cheng
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China
| | - Jun Li
- College of Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, Xinjiang, People's Republic of China.
| |
Collapse
|
29
|
Magli S, Rossi L, Consentino C, Bertini S, Nicotra F, Russo L. Combined Analytical Approaches to Standardize and Characterize Biomaterials Formulations: Application to Chitosan-Gelatin Cross-Linked Hydrogels. Biomolecules 2021; 11:biom11050683. [PMID: 34062918 PMCID: PMC8147276 DOI: 10.3390/biom11050683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
A protocol based on the combination of different analytical methodologies is proposed to standardize the experimental conditions for reproducible formulations of hybrid hydrogels. The final hybrid material, based on the combination of gelatin and chitosan functionalized with methylfuran and cross-linked with 4-arm-PEG-maleimide, is able to mimic role, dynamism, and structural complexity of the extracellular matrix. Physical-chemical properties of starting polymers and finals constructs were characterized exploiting the combination of HP-SEC-TDA, UV, FT-IR, NMR, and TGA.
Collapse
Affiliation(s)
- Sofia Magli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (S.M.); (L.R.); (F.N.)
- BioNanoMedicine Center, University of Milano-Bicocca, 20126 Milan, Italy
| | - Lorenzo Rossi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (S.M.); (L.R.); (F.N.)
- BioNanoMedicine Center, University of Milano-Bicocca, 20126 Milan, Italy
| | - Cesare Consentino
- G. Ronzoni Institute for Chemical and Biochemical Research, 20126 Milan, Italy; (C.C.); (S.B.)
| | - Sabrina Bertini
- G. Ronzoni Institute for Chemical and Biochemical Research, 20126 Milan, Italy; (C.C.); (S.B.)
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (S.M.); (L.R.); (F.N.)
- BioNanoMedicine Center, University of Milano-Bicocca, 20126 Milan, Italy
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (S.M.); (L.R.); (F.N.)
- BioNanoMedicine Center, University of Milano-Bicocca, 20126 Milan, Italy
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
- Correspondence: ; Tel.: +39-0264483462
| |
Collapse
|
30
|
Choi YJ, Park H, Ha DH, Yun HS, Yi HG, Lee H. 3D Bioprinting of In Vitro Models Using Hydrogel-Based Bioinks. Polymers (Basel) 2021; 13:366. [PMID: 33498852 PMCID: PMC7865738 DOI: 10.3390/polym13030366] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which has recently emerged as a global pandemic, has caused a serious economic crisis due to the social disconnection and physical distancing in human society. To rapidly respond to the emergence of new diseases, a reliable in vitro model needs to be established expeditiously for the identification of appropriate therapeutic agents. Such models can be of great help in validating the pathological behavior of pathogens and therapeutic agents. Recently, in vitro models representing human organs and tissues and biological functions have been developed based on high-precision 3D bioprinting. In this paper, we delineate an in-depth assessment of the recently developed 3D bioprinting technology and bioinks. In particular, we discuss the latest achievements and future aspects of the use of 3D bioprinting for in vitro modeling.
Collapse
Affiliation(s)
- Yeong-Jin Choi
- Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), 797, Changwon 51508, Korea; (Y.-J.C.); (H.P.); (H.-S.Y.)
| | - Honghyun Park
- Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), 797, Changwon 51508, Korea; (Y.-J.C.); (H.P.); (H.-S.Y.)
| | | | - Hui-Suk Yun
- Department of Advanced Biomaterials Research, Korea Institute of Materials Science (KIMS), 797, Changwon 51508, Korea; (Y.-J.C.); (H.P.); (H.-S.Y.)
| | - Hee-Gyeong Yi
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University (CNU), Gwangju 61186, Korea
| | - Hyungseok Lee
- Department of Mechanical and Biomedical Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea
- Interdisciplinary Program in Biohealth-Machinery Convergence Engineering, Kangwon National University (KNU), Chuncheon 24341, Korea
| |
Collapse
|
31
|
Cadamuro F, Russo L, Nicotra F. Biomedical Hydrogels Fabricated Using Diels–Alder Crosslinking. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Francesca Cadamuro
- Department of Biotechnology and Biosciences University of Milano Bicocca Piazza della Scienza 2 20126 Milano Italy
| | - Laura Russo
- Department of Biotechnology and Biosciences University of Milano Bicocca Piazza della Scienza 2 20126 Milano Italy
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences University of Milano Bicocca Piazza della Scienza 2 20126 Milano Italy
| |
Collapse
|